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We develop an algorithm for computing the (exact) cumulative distribution function of the time-dependent workload in a piecewise-
stationary M,/G /1 queue with a work-conserving service discipline and general service-time distributions, where service times are
determined at arrival instants. The ¢ subscripts indicate that the arrival rate and the general service-time distribution may change with
time, but we allow changes only at finitely many time points. The algorithm 4s based on numerical transform inversion, using the
classical Tak4cs double-transform of the transient workload in an M/G/1 queue recursively over the successive stationary intervals. In
particular, we apply our recently developed Fourier-series-based inversion algorithms for two-dimensional transforms and nested
one-dimensional transforms. We also do additional work to greatly speed up the computation while tightly controlling the error. As
a consequence, the computation time grows only quadratically with the number of intervals. The algorithm is effective for ten or
fewer intervals, where the intervals may have unlimited and possibly unequal lengths, typically running in at most a few minutes and
maintaining high accuracy. We have also demonstrated that the algorithm can solve a 21-interval example with 7-to-10-digit accuracy
in about half an hour. Models with only a few intervals are useful to study overload control strategies.

It has long been recognized that many queueing systems
are most appropriately modeled by nonstationary
queueing models, in which the arrival and service rates are
functions of time; e.g., see Palm (1943), Koopman (1972),
Green et al. (1991), and Chapter 6 of Hall (1991). In
response to this need, there is a growing literature on
methods for calculating time-dependent performance mea-
sures in nonstationary queueing models. The mainstay is
clearly computer simulation, which is very appealing be-
cause of its flexibility and, more and more, also because of
its ease of use. Nonstationary queueing models can be
analyzed effectively by computer simulation by using mul-
tiple independent replications, but many replications are
required to obtain good estimates of time-dependent prob-
ability distributions, especially if extremely small tail prob-
abilities (e.g., 107°) are required, as in applications to
high-speed communication networks. (We discuss simula-
tion further in Section 9.)

Numerical solutions based on analytical expressions of
time-dependent performance measures are an alternative
to simulation. The mainstay here has no doubt been the
numerical solution of time-dependent continuous-time
Markov chains (CTMCs) by numerically solving a system
of time-dependent ordinary differential equations (ODEs).
The ODE approach was successfully used by Koopman
(1972), Taaffe and Ong (1987), Ong and Taaffe (1989),
Green et al. (1991), Zhang and Coyle (1991), Davis et al.
(1995), and no doubt many others. The ODE approach

applies naturally to the queue-length process in Markovian
M,/M,/s/r models and generalizations such as Ph,/Ph,/s/r
models involving time-dependent phase-type distributions.
It is also possible to apply iterative techniques to discrete-
time Markov chains (DTMCs), either directly or for
CTMC:s after applying uniformization (or randomization);
e.g., see Gross and Miller (1984). New time-domain meth-
ods are also being developed; e.g., see Logothetics (1994).
An important way to treat larger and more complicated
models numerically is to exploit approximations; e.g., see
Asmussen and Rolski (1994), Duda (1986), Ong and Ta-
affe (1989), Taaffe and Ong (1987), and references in these
sources.

We suggest a different analytical approach: numerical
transform inversion. The general idea is that we can obtain
a two-dimensional transform of a desired time-dependent
performance measure by taking the transform with respect
to time as well as the performance state variable. Familiar
examples are the two-dimensional transforms of the tran-
sient performance measures of the M/G/1 queue in Takacs
(1962). In Choudhury et al. (1994a) we developed numer-
ical inversion algorithms to invert such multidimensional
transforms, and showed that these algorithms are effective
by applying them to compute transient performance mea-
sures in the M/G/1 queue. In Lucantoni et al. (1994) we
derived corresponding transient performance measures for
the more general BMAP/G/1 queue (with a Batch Mark-
ovian Arrival Process) and again applied two-dimensional
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transform inversion to calculate the time-dependent per-
formance measures in examples.

Our purpose here is to go beyond our previous trans-
form inversion work computing time-dependent distribu-
tions of stationary models to computing time-dependent
distributions of time-dependent models. In particular, we
calculate the distribution of the workload (virtual waiting
time), denoted by W(¢), at an arbitrary time ¢ in a
piecewise-stationary M,/G,/1 queue. This model has a sin-
gle server, unlimited waiting room, a work-conserving ser-
vice discipline (e.g., first-in first-out, last-in first-out,
processor sharing, etc.), a Poisson arrival process, and i.i.d.
service times with a general distribution that are indepen-
dent of the arrival process. The ¢ subscripts indicate that
the arrival rate and the service-time distribution are al-
lowed to depend on time, but the piecewise stationarity
implies that changes can occur only at finitely many time
points. The successive intervals can have unlimited and
unequal lengths, and the traffic intensities can exceed one
on some intervals. (In the context of the M,/M,/1 queue,
piecewise-stationary models have also recently been con-
sidered by van den Berg and Groenendijk 1991 and
Kuitenbrouwer 1992, but our methods are quite different.)

A customer arriving at time ¢ has a service-time distribu-
tion that depends on ¢, but otherwise does not depend on
the arrival process or the service times of other customers.
(The service times are determined upon arrival.) The M,/
G,/1 model also includes the MY/G,/1 model with a time-
dependent batch-Poisson arrival process, because the
workload process is the same as in an associated M,/G,/1
model with service times equal to the sum of all the service
times in the batches.

The workload at time ¢ is the remaining service time of
the customer in service, if any, plus the sum of all the
remaining service times of other customers in the system
at time ¢. In the case of the first-in first-out (FIFO) disci-
pline, the workload is also the virtual waiting time, the
time that a hypothetical arrival at time ¢ would have to wait
before beginning service, i.e., the time required to complete
service of all the customers in the system at time ¢, ignor-
ing new arrivals after time ¢ in non-FIFO disciplines. The
sample path of the workload process decreases at rate 1
whenever there is work in the system and has jumps up at
each arrival epoch equal to the service time of that arriving
customer. In the M,/G,/1 model, the workload process is a
nonstationary Markov process on the nonnegative half
line. A difficulty for some methods is that the state space is
the nonnegative real line, which is unbounded and un-
countably infinite.

The M,/G,/1 model with periodic arrival rate has re-
ceived quite a bit of attention (see Lemoine 1989, Rolski
1987 and 1989, Asmussen and Rolski 1994, and references
in these sources), but not much work has been done on
numerical methods. Our algorithm can be applied to peri-
odic systems by iterating on the initial distribution, but we
do not consider that here.

An alternative ODE-based numerical algorithm for cal-
culating a time-dependent workload distribution in
M,/Ph,/1 (and more general Markovian) models with finite
waiting room was developed by Ong and Taaffe (1989).
Their algorithm is based on computing the first passage
time to the origin after time ¢ for the Markovian queue-
length process, assuming no new arrival after the time of
interest. It is important to recognize that the Ong-Taaffe
algorithm is for a different model, where the service-time
distribution is determined when service begins and is in
process, and not at arrival instants. It does not seem easy
to treat our model with time-dependent service times de-
termined upon arrival in their framework. The Ong-Taaffe
algorithm should be effective for many models when the
service-time distributions either do not change or are de-
termined when service is in process, but it does not apply
when the service-time distribution is not phase type, and
the required computation will grow as the order of the
phase-type distribution grows and the number of waiting
spaces grows. In contrast, our algorithm is less sensitive to
the form of the service-time distribution and has unlimited
waiting room. Also, the accuracy of our algorithm is usu-
ally up to seven to ten digits, which is more than what is
achievable by their fast approximation procedure.

Our main idea is that the classical two-dimensional trans-
form expression for the transient workload distribution in
an M/G/1 queue (see Section 3 of Chapter 1 in Takécs
1962) can be used recursively, coupled with numerical
transform inversion, to calculate the workload distribution
in the piecewise-constant M,/G,/1 model. However, the
M,/G,/1 model is substantially more complicated than the
stationary M/G/1 model treated in Choudhury et al.
(1994a). First, computation of the two-dimensional trans-
form requires n recursive steps, where n is the number of
previous piecewise-constant intervals. Furthermore, each
recursive step requires the one-dimensional inversion of
the transform of a complex quantity resulting in a nested
set of inversions. A straightforward application of the re-
cursive procedure has two difficulties: first, the computa-
tional effort grows exponentially with the number of
intervals (a significant contribution of this paper is to show
that an effective algorithm can be developed where the com-
putational effort grows only quadratically with the number of
intervals); second, the numerical error also grows rapidly in
the nested inversion procedure. To address that problem, we
use a special error-control procedure reported in Choudhury
et al. (1994a). We first developed that error-control proce-
dure for solving the M,/G,/1 model considered here.

To illustrate we consider a concrete example. We con-
sider a time period of length 70 divided into 7 intervals,
each of length 10. We let the service-time distribution be
gamma with mean 1 and squared coefficient of variation
(SCV, variance divided by the square of the mean) 4 in all
intervals. We let the Poisson arrival process have rates 0.6,
09, 1.2, 1.5, 1.1, 0.8, and 0.5, respectively, in the seven
intervals. Note that the arrival rate first increases and then
decreases, achieving a maximum in the middle interval.
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Figure 1. The time-dependent complementary workload
distribution P(W(¢) > 1) for the first seven-
interval example with gamma service times hav-
ing mean 1 and SVC 4, arrival rates 0.6, 0.9, 1.2,
1.5, 1.1, 0.8, 0.5, and initial workload W(0) = 1.
Here each interval has length 10. The dotted
lines represent the probabilities if the arrival
rates did not change at the end of each interval.
The dashed lines represent the steady-state val-
ues associated with that interval.

Also note that the queue is instantaneously unstable (the
arrival rate exceeds the service rate) during the third,
fourth and fifth intervals.

In Figures 1 and 2 we plot the complementary workload
distributions P(W(t) > x) for the cases x = 1 and x = 10.
These values are obtained by calculating the distributions
at time values 2k for k = 1, 2,..., 35. In addition to
showing the transient behavior by a solid line, we also
show by dotted lines how the system would have behaved if
the arrival rates were not changed at the end of any par-
ticular interval. The dotted lines are obtained by another
application of our algorithm, again using time values 2k.
The dotted lines asymptotically approach the steady state
behavior associated with each interval. We also display by
dashed lines in each interval the constant limiting values
that would prevail if the rate in that interval held indefi-
nitely in the past. The dashed lines are obtained by apply-
ing the EULER numerical inversion algorithm in Abate
and Whitt (1992a) with the Pollaczek-Khintchine Laplace
transform of the steady-state workload distribution.

From Figures 1 and 2, it is evident that the actual time-
dependent workload distribution is very different from
both the one-interval steady-state view and the one-
interval transient view. This shows that the time-dependent
analysis provided by an algorithm such as ours can be very
important in the performance analysis of systems with
time-varying arrival rates.
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Figure 2. The time-dependent complementary workload
distribution P(W(z) > 10) for the first seven-
interval example with gamma service times hav-
ing mean 1 and SVC 4, arrival rates 0.6, 0.9, 1.2,
1.5, 1.1, 0.8, 0.5, and initial workload W(0) = 1.
Here each interval has length 10. The dotted
lines represent the probabilities if the arrival
rates did not change at the end of each interval.
The dashed lines represent the steady-state val-
ues associated with that interval.

Of course, when the traffic intensities are less than one
and the intervals are very long, the steady-state view be-
comes more appropriate. Our algorithm provides a means
for studying the phenomenon. To illustrate, we reconsider
the seven-interval example above with each interval being
100 instead of 10. Then we compute the time-dependent
workload distribution at times 20k for 1 < k& < 35. This
modified example is no harder to solve by our algorithm,
but it would require simulation runs ten times as long.

Figures 3 and 4 display the numerically computed time-
dependent workload tail probabilities P(W(t) > x) for x =
10 and 100 in this longer interval example. With the longer
intervals, the steady-state view is somewhat more appro-
priate in the first two intervals, where the traffic intensities
are less than one, but still not very good. For example, the
actual value of P(W(r) > 100) is order-of-magnitude less
than the steady-state value throughout the second interval.
This is evident in Figure 4 since the tail probability is
plotted in log scale.

In Figure 4, the steady-state view is also far off the mark
in the last two intervals, where the traffic intensities are
also less than one. The last two intervals are strongly af-
fected by the preceding period of length 300 where the
traffic intensities are greater than one. For this longer in-
terval example, considerable insight can be gained by con-
sidering the deterministic fluid approximation, in which
work arrives deterministically and continuously at a rate
equal to the instantaneous traffic intensity. The fluid model
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Figure 3. The time-dependent complementary workload
distribution P(W(t) > 10) for the second seven-
interval example with gamma service times hav-
ing mean 1 and SVC 4, arrival rates 0.6, 0.9, 1.2,
1.5, 1.1, 0.8, 0.5, and initial workload W(0) = 1.
Here each interval has length 100. The dashed
lings represent the steady-state values associated
with that interval.

predicts workloads of 80, 60, and 10 at times 500, 600, and
700. However, Figures 3 and 4 show that the fluid model is
not very accurate, either. (This conclusion still holds when
the intervals are increased to 1000, which again is no more
difficult to compute, using the same number of time points,
i.e., time points at 200k for 1 < k =< 35.)

For our numerical algorithm, major issues are precision
and computation time. We obtained the five numerical
values in the last (most difficult) interval for two values of
x with about (7-10)-digit precision on a SUN workstation
(SPARCSTATION 10) using FORTRAN with standard
double precision in three minutes of running time.
(Throughout the paper, when we speak of precision, we
refer to absolute precision; i.e., seven-digit precision
means to 1077.) As discussed in Section 8, we calculate
values in the last interval of a 2l-interval example with
similar precision in 26 minutes.

As indicated in Abate and Whitt (1992a), transform in-
version gets difficult with a purely deterministic (D)
service-time distribution; i.e., we get a high computational
requirement to achieve reasonable precision. However, in
Choudhury and Whitt (1997) we show that highly accurate
and fast computation is possible in this case as well
through an effective approximation scheme.

From an engineering point of view, the workload prob-
abilities have two clear applications. One application is
describing high percentiles of delays. For this purpose, we
are typically interested in tail probabilities in the range
107" to 1072, For such probabilities, we can clearly do with
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Figure 4. The time-dependent complementary workioad
distribution P(W(t) > 100) for the second seven-
interval example with gamma service times hav-
ing mean 1 and SVC 4, arrival rates 0.6, 0.9, 1.2,
1.5, 1.1, 0.8, 0.5, and initial workload W(0) = 1.
Here each interval has length 100. The dashed
lines represent the steady-state values associated
with that interval.

less than 10~ precision and thus may pursue some approxi-
mation procedure. Even simulation may be appropriate.
The second application is obtaining buffer overflow
probabilities in communication networks in order to do
proper buffer sizing, admission control, etc. For this appli-
cation, the output channel typically has constant service
rate and the variability in the service time comes from the
variability of the message size. In this case, the workload
gives the buffer occupancy, so that the workload tail prob-
ability approximately gives the buffer overflow probability.
(The approximation is due to the infinite buffer assump-
tion in the model.) For this application, workload tail
probabilities are typically required in the range 107° to
107" for which high precision is really needed. Fortu-
nately, as the workload tail probabilities get smaller, the
computational errors tend to get smaller too. Hence, when
we say we get (7-10)-digit precision, we mean that we get
seven-digit precision when the tail probability is near 1,
and ten-digit precision when the tail probability is less than
1073, We usually can get 11-digit precision or more for tail
probabilities of order 107° and 10 '°. Moreover, in this
case, simulation tends to be inadequate; see Section 9.
Here is how the rest of this paper is organized. In Sec-
tion 1 we present the two-dimensional Laplace transform
of the time-dependent workload distribution and give an
overview of our algorithm. In Section 2 we briefly describe
the two-dimensional numerical transform inversion algo-
rithm (in Choudhury et al. 1994a) that we use. We also
describe the one-dimensional numerical transform inver-
sion algorithm we use in the recursive algorithm; it is a
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modification of the EULER algorithm in Abate and Whitt
(1992a) to cover the case in which the inverse of the trans-
form is in general complex-valued instead of real-valued.

As indicated above, a straightforward application of this
algorithm leads to computational difficulties, both in com-
putation time and numerical precision. The numerical pre-
cision problem and the way to resolve it are explained in
Sections 2 and 3. The computation time problem is ex-
plained and quantified in Section 4. In Section 5 we indi-
cate how to speed up the computation by storing and
reusing intermediate computational results. The modifica-
tions make the computational complexity grow approxi-
mately linearly or quadratically with the number of
subintervals instead of exponentially.

In Section 6 we summarize the algorithm; those only
interested in implementing the algorithm can go directly
to Section 6 and refer to earlier sections only as needed.
In Section 7 we describe a degenerate case that can cause
numerical difficulties and indicate how to cope with it. In
Section 8 we describe our numerical experience. There we
indicate how we verify that we have produced an accurate
computation. In Section 9 we make a comparison with
simulation, indicating when our algorithm should be pre-
ferred. Finally, in Section 10 we briefly discuss ways to
exploit approximations to speed up the computation.

We end this introduction by pointing out that our ap-
proach can also be applied to other processes such as
queue-length processes and to more general models. We
hope to discuss such extensions in future papers. We can
treat more general models by applying the transient results
for the BMAP/G/1 queue in Lucantoni et al. (1994). We
can also calculate moments of the time-dependent distri-
butions, as in Choudhury and Lucantoni (1996). In
Choudhury and Whitt (1996) we have developed another
recursive algorithm for computing and inverting trans-
forms of performance measures arising in polling models.
That procedure also applies to time-dependent models. For
overviews of our recent work with numerical transform
inversion, see Choudhury et al. (1994b) and Choudhury
and Whitt (1995).

1. AN OVERVIEW OF THE ALGORITHM

Let W(t) be the workload at time ¢, let W(z, x) be its cdf
(cumulative distribution function), and let W*(¢, x) be its
complementary cdf, i.e.,

W, x)=PW(t)<x) and W, x)=1—- W, x).

Let w(t, s) be the Laplace-Stieltjes transform of W(t, x)
with respect to the space variable x and let w(£, x) be the
Laplace transform of W(t, x) with respect to the time vari-
able t, respectively; i.e.,

w(t, s) = f e ™d, Wt x), and (1)
0

%

w(& x) = J e YW, x) dt, (2)

0
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where s and £ are complex variables with Re(s) > 0 and
Re(&) > 0. Let w(¢, s) be the Laplace transform of w(z, s),
ie.,

o«

w(§, s) = J e %W, s) dt, 3)
0

where Re(¢) > 0.

Let w*(t, s) be the Laplace transform of W®(r, x) with
respect to the variable x and let w°(¢&, s) be the Laplace
transform of We(¢, 5) with respect to the variable ¢, i.e.,

we(t, s) = J e Y We(t, x) dx and
0

%

we(E s) = J e Mwe(s, s) dt. (4)

0

(Note that w*(¢, ) in (4) is the Laplace transform, whereas
w(t, sy in (1) is the Laplace-Stieltjes transform.) It can be
shown that

we(E, 5) =S1—§—W(i’ 23 (%)

The form of Equation (5) suggests a possible numerical
problem for very small s or & but no difficulty occurs since
the inversion algorithm never has to compute the transform
at very small s or & As will be shown later, the inversion
summation is done along contours parallel to the imagi-
nary axes of the complex s and ¢ planes with Re(£) =
Ay/2tl; and Re(s) = A,/2xl,, where ¢ is the time point, x is
the state variable and 4, 4., /;, [, are positive parameters
of the inversion. Thus, Re(¢) and Re(s) may be close to
zero only if ¢ or x are very large. However, it can be shown
that, if f or x are very large, then we can always increase A4,
or A, as well, thereby ensuring that Re(£) or Re(s) are
never too close to zero.

We intend to compute W*(¢, x) by numerically inverting
the double transform w*(¢, s). However, since w°(¢, s) is
directly related to w(¢, s), in the rest of the paper we show
how to get the latter. We compute W*(s, x) instead of
W(t, x) because we are often interested in small tail prob-
abilities (say 107° to 107°) and in that range it is possible
to compute W'(t, x) significantly more accurately, as ex-
plained in Section 2.

To proceed further, we now assume that the arrival rate
and the service-time cdf change at only finitely many
points. In addition, suppose that the time of interest is
inside the nth stationary interval and ¢ represents the time
since the beginning of the nth interval. Let the length of
the jth stationary interval be ¢, 1 =<j =< n — 1. Hence, the
time of interest is £y + ... + ¢,_, + t. Let A, be the armival
rate fmd let H, be the service-time cdf in the jth interval.
Let 4, be the Laplace-Stieltjes transform of H, i.e.,

1<j=n.

h,(s) =J e ¥ dH, (x),
0
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Moreover, let the workload cdf and its transforms have
subscripts to indicate the stationary interval they are asso-
ciated with. Within each interval let time be measured
from the beginning of that interval. With this convention,
we want to compute W, (t, x), where it is understood that
W0, x)y = W,_,(t,~1, x), 2 =) =< n, and W(0, x) is the
initial workload cdf, which is specified as part of the model
data.

As mentioned in the introduction, the main idea is to

use the classical double transform for the transient work-
load distribution in the stationary M/G/1 model recursively
over the successive intervals. For the jth interval, the dou-
ble transform w,(§, s) can be expressed as
- _ w}—l(tjfl,s) —Sw)(ga 0)
W, (8 9) = E—s+ A —Nh(s) (6)
where t, = 0 and Ww(ty, s) = W (0, s) is the Laplace-
Stieltjes transform of the initial workload cdf W(0, x) =
Wi(0, x) and w,(¢ 0) is the Laplace transform of the
emptiness function in the jth interval, W(z, 0). Our result
in (6) is obtained from (15) on page 53 plus (9) on page 52
of Takécs (1962), which is (39) of Lucantoni et al. (1994).
Takacs gives greater emphasis to the single transform
w(t, s) in (1) in his (8) on page 51, but it is easier to
compute using the double transform in (6) since we have
an efficient double-transform inversion algorithm. (See
Abate and Whitt 1994 for more references and discussion
on the transient behavior of the M/G/1 queue.)

The emptiness transform w,(§, 0) in (6) can be expressed
as

w]—l (t]—la £+ )\] - A]g](g))
§+)‘} _)\)g}(g) ’
where §,(s) is the Laplace-Stieltjes transform of the busy-

period cdf, say G,, associated with the jth stationary inter-
val, i.e.,

W, (&, 0) = (7

3,(s) = j e~ 4G, (x), (8)
0

which satisfies the functional equation
9,8) =hy(s + A, = A, 6,(s)); (9)

e.g., see (10) on page 52 of Takics (1962), Abate and
Whitt (1992b), and (15) and (24) of Lucantoni et al. (1994).

For any desired integer j and complex s with Re(s) > 0,
we calculate the busy-period transform §,(s) by iterating
(9). As indicated in Abate and Whitt (1992b), when p, < 1,
where p, is the traffic intensity associated with the jth in-
terval, this iterative scheme always converges to the unique
solution of (9) for complex s with Re(s) > 0. Moreover,
upper and lower bounds can be obtained by starting the
iteration with 1 and 0 for §,(s) in the right side of (9).
When p = 1, the iteration still converges, but it has to start
with 0 to get the correct solution. In our numerical exam-
ples, we stop the iteration when successive iterates differ in
absolute value by no more than 1072,

Thus, we obtain the desired complementary cdf value
Wi (t, x) by applying two-dimensional numerical transform
inversion to the double transform w§(¢, s) in (5), which is
obtained from w,(§, s) in (6) by setting j = n. This requires
computation of the emptiness function from (7) and the
busy-period transform from (9), in each case setting j = n.
The computation requires the transform values W, _4(t,_;,
s) and w,_((t,,_, € + A, — A,0,(8)), which we obtain by
applying one-dimensional numerical transform inversion
with respect to the time variable £ to the double transform
Ww,,_1(§, 5), which we denote by

wn—l (tnvlu S) :Lg‘l(wn—l(gy S)) (10)

This last step requires that we go back to (6), but this
time with j = n — 1, and thereby starting a recursive
procedure.

In summary, we perform one two-dimensional numeri-
cal inversion of w;,(&, s) which requires calculating (¢, s)
for various (&, s) pairs. To calculate w, (&, s) we perform
(n — 1) stages of one-dimensional numerical inversions
with respect to the time variable £ of the form (10). For
these one-dimensional inversions, the second variable is
fixed at either s or § + A, — A§(§), 1 <j<n - 1 1In
Sections 4 and 5 we show that it is important to exploit this
special structure.

2. TRANSFORM INVERSION ALGORITHMS

We saw in the last section that we need to invert the
double transform wg(¢, s) and, in the recursive procedure,
we need to invert w,(§, s) for j =n — 1,n — 2,...1 only
with respect to the & variable. We briefly state the inver-
sion algorithms.

Let f{(t;, t,) be a real-valued function of two nonnegative
real variables ¢, and ¢, with a proper double Laplace trans-
form

f(slas2)=J J' f(f],tz)er(sltl‘*—szt:)dt] dtz. (11)
0 Jo

Simplifying Equation (2.11) in Choudhury et al. (1994a),
we get the double-transform inversion formula
[, 1)

:eXP(Al/zll)lz(Al >

~ b
2ty ’

L
+2 —1y
o 22

1=1n=0

.e A .
gm\. A1 gw
.R -2 R A
e[“"( I, )f (211:1 I

el
—— .|| e
f 2 d

(12)

where i = V-1,
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(13)

and e, represents the aliasing error in the inversion. Since
f(t,, t;) represents a probability in our case, it can be
shown that e, is bounded by

(e~A1+e“A:_e*(A1+Az)) _ _q
A—e ey T Fe™ a8

The parameters 4, A,, [, I, are for error control and will
be explained in Section 3.

Next, let f(f) be a complex-valued function with a
proper Laplace transform

leq] <

fis) = f fo)e " dt. (15)

0

Modifying the Euler algorithm in Abate and Whitt
(1992a), we get the inversion formula as

i - SR 4 09

EAV A

The parameters A and / in (16) are for error control and
will be explained in Section 3. In (16), ¢, is the aliasing
error, which is bounded by

A(A ik iklw)]
—€y.

-A

ce _
ledlsl_e_A:ce 4, (17)
where ¢ is a constant such that
|f()| <c forallz. (18)
In the current context
f@e) =w,(t,s) = J e d, Wy (¢, x), (19)

0

so that
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®

)] = f e~ dy Wiy, %)

0
= j de W,_1{(t,x) =1 forRe(s) > 0. (20)
0

Therefore, we get the error bound in (17) with ¢ = 1.

Equations (12), (13) and (16) contain infinite sums of
the form s = 37_y (—1)*a, where a, is real or complex.
Such a sum may be efficiently approximated by the Euler
sum where

mi

Emy,n)=> (”;{1)2""'Sm+k, where (21)
k=0
J
S, =2 (—1)*a,. (22)
k=0

The total number of terms considered is K = m, + n,.
Using (21) we can accurately estimate each of the infinite
sums appearing in (12), (13), and (16).

3. ERROR CONTROL AND PARAMETER CHOICE

The parameters A;, A,, 1}, I, in (12), (13), A, ! in (16), and
my, ny in (21) are for error control. We briefly explain
their role and prescribe their numerical values for good
accuracy. See Abate and Whitt (1992a) and Choudhury et
al. (1994a) for further explanation. First, unless the
service-time distribution has discontinuities, the choice
ny = 39, m; = 11 and hence K = 50 typically computes
cach infinite sum pretty accurately (with errors below
10~'"). This would not be true with deterministic or dis-
crete service-time distributions, and much bigger K would
be needed for good accuracy. However, in Choudhury and
Whitt (1997) we describe a smoothing procedure that ef-
fectively eliminates the discreteness problem.

Next, the aliasing error bounds given by (14) and (17)
may be controlled by choosing 4, 4>, and A large. How-
ever, this increases the round-off error. The round-off er-
ror may be reduced by increasing the parameters /,, [,, /.
In fact we introduced the parameters [, [,, [ for the ex-
press purpose of round-off error control in the M,/G /1
model, but have reported it since then in Choudhury et al.
(1994a). As mentioned in Remark 5.8 of Abate and Whitt
(1992a), the one-dimensional Euler algorithm with / = 1
would retain only 2/3 of the precision. Thus, after (n — 1)
stages of recursion and a final double transform inversion,
roughly about (2/3)"*! of the precision will be retained in
the final answer. With [, = [, = [ > 1, we roughly retain
p"*! of the precision in the final answer, where p may be
made pretty close to 1. Choosing suitably large [, L,, [
thereby allows accurate computation even with large ».

There is a trade-off between error control and computa-
tion time, since whenever /,, I,, or / is increased the com-
putation time increases proportionally, and increasing A4,
A, or A requires a corresponding increase in I, L, or I
Also, tighter error control is needed as the number of
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Table I
Parameter Values Required as a Function of the
Number of Intervals in Order to Achieve (7-10)-digit

Accuracy
Numfber Parameter Values
[8)
Intervals A=A, = h=L=1
1-2 22 2
3-5 24 3
6-8 26 4
9-12 26 5
13-16 26 6
17-21 26 7

intervals increases since more intervals means more nested
inversion and each inversion introduces error.

We have observed (based on a wide range of service-
time distributions) what parameter values are required to
get seven- to ten-digit accuracy. First, as stated earlier, we
need n; = 39 and m, = 11. The remaining parameters
depend on the number of intervals (starting from the be-
ginning until the current one and are given in Table L
(There is no dependence on future intervals.)

Table I shows only one parameter value for all parame-
ters. In fact, it can be advantageous to use different param-
eter values for the different levels of the recursion. We can
get by with less stringent error control in the outer levels
of the inversion procedure. Specifically, we get a speed-up
by a factor of about 2 to 3 in the seven-interval and 21-
interval examples, without affecting accuracy, using this
procedure. See Section 8 for the actual parameter values
used.

4. INITIAL DIFFICULTIES WITH THE ALGORITHM

A straightforward implementation of the algorithm leads
to serious numerical difficulties for a large number n of
stationary intervals, both in terms of the computation time
and the precision of the final answer. We first give an
intuitive explanation for these difficulties and then give
quantitative details.

We not only need to do a two-dimensional transform in-
version, but as part of computing the double transform we
need to perform (n — 1) stages of single transform inversion
of the form (10). Moreover, the single transform inver-
sions are nested, i.e., the jth single transform inversion
depends on the (j — 1)st single transform inversion for
j=2,3,...,n — 1. Therefore, at first glance, it appears
that the problem is as difficuit as an (» + 1)-dimensional
transform inversion problem, where the computational re-
quirement grows geometrically with » and precision is
quickly lost. The difficulty is further compounded by the
fact that the busy-period-transform values g,(§) are not
directly available and have to be computed iteratively. The
difficulty with precision has already been discussed in Sec-
tion 3. Now we quantify approximately the difficulties with

Table II
Estimated Computational Complexity of the Direct
Inversion Algorithm Without Enhancements

Computations Estimated number

w,(& $) N, N, 2KF

_ . NNy :
w(&s),j # n 3 - (4KD)" "

. : NN, .
w(t,s),] #n 2 (4K
o . . NN,

iterations for §,(§),1 <j < n 2 (AKn"*

computation time. For simplicity, we assume that the same
values of 4, = A, = A and I, = [, = [ for each inversion.

Suppose that we want to compute W, (¢, x) for £ = 7,
Tos vy Ty, and fOT X = x4, X5, .., Xy, (for N, - N, differ-
ent values) by inverting the double transform w,(¢, s) in
(6). Note that computation of W, (¢, x) requires about
2K*? computations of w,(£, s), where K is the number of
terms from the infinite series required for Euler summa-
tion, i.e., K = m; + n, in (21). Each computation of w, (¢,
§) requires one computation of §,(£) and two computa-
tions of w,_,(¢,_1, $1), one at s; = s and another ats; = §
+ Ay = XG,(8) (see (6) and (7)).

Each computation of the busy-period transform §,(§)
requires a number of iterations on the busy-period func-
tional equation (9). In general, the number of iterations
for §,(¢§) depends on £ and other system parameters for
interval j. However, for the purpose of characterizing
computational complexity, we assume I to be the number
of iterations required for all cases. Therefore, each compu-
tation of W, (&, s) requires [ iterations of §,(£).

Each computation of w, (¢, i, s} using (10) requires
about 2KI computations of W, (£, s). For j = n — 1,
n — 2,..., 1, each computation of Ww(& s) requires I
iterations of §,(£) and two computations of W,_(¢,,, 5,) at
s;=sandats, =&+ N\ — Ag(§). Forj=n—1,n—
2,..., 2, each computation of W, _(¢,_,, §) requires about
2Kl computations of #,_ (&, s).

From the above, we get computational requirements as
depicted in Table II. The first row of Table II represents
the basic computational requirements for two-dimensional
transform inversion given that the double transform is di-
rectly computable. The last three rows of Table I repre-
sent additional computations due to the recursive scheme for
obtaining the double transform.

Note that the basic computations are independent of »
and are proportional to K*°. In contrast, the additional
computations grow geometrically with n and become or-
ders of magnitude bigger than the basic computations as n
grows. Both the basic and the additional computations are
proportional to the product of N, and N, and hence, as N;
and N, increase, both types of computation increase in the
same proportion.
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Table I1
Estimated Numerical Values for the Number of
Computations as a Function of the Number n of
Stationary Intervals in the Unrefined Algorithm
when Ny =N, = 10and K = [ = 50

Number of Stationary Intervals

Computation n=2 n=235 n=10
W,(&, 5) 20x10°  45x10° 13x10°
W& 5),j #n 80x10° 58x10"7 13x10*
w,(t,$),j #n 1.6 X 10° 1.2 X 10 25 x 10%
iterations for g,(£), 4.0x10° 29x10" 64 x10%

lsj<n

The quantity [ is typically between a few tens and a few
hundreds. Therefore, we anticipate that the most time-
consuming parts of the algorithm are the iterations for §,(£).

Table III depicts typical numerical values for the num-
ber of computations with the unrefined algorithm as a
function of the number n of intervals when N, = N, = 10,
K =1 = 50 and the values of / are taken from Table 1. Our
experience indicates that this is a representative case.
From Table 1II, it is evident that the computations are
already pretty high for n = 2 and are practically out of the
question for n = 5.

5. SPEEDING UP THE COMPUTATION

We speed up the computation by making two basic obser-
vations. First, not all computations of w,(¢, 5) and g,(s) are
at distinct values of s. So, if we identify all the distinct
values, compute w,(¢, s) and §,(s) only at those values,
store these computations and use these stored values as
needed, then a substantial saving in overall computation
results. Furthermore, storage efficiency may also be im-
proved by discarding quantities whenever they are no
longer needed.

Second, busy periods and workloads are real valued, so
that the following relations hold:

9,5)=g,(s) and W, (¢, 5) =W, (1, 5), (23)

where § represents the complex conjugate of s. Therefore,
wherever §,(s) and Wz, s) are needed at complex conjugate
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values of s, only one of them need be computed and
stored. We remark that these ways to streamline the algo-
rithm are similar to the efficiencies gained through the fast
Fourier transform even though the actual algorithms are
quite different; see Abate and Whitt (1992a, p. 21) and
Rabiner and Gold (1975, p. 51 and 357).

We now describe the computational requirements with
these changes. Our conclusions are summarized in Table
IV. Suppose, as in Section 4, that we intend to compute

W,(t,x)fort =7, 1,..., Ty and X = xq, Xg .., XN
Le., NN, values in all. Then w,(¢, s) is needed at
£ A imj _ A ik (24)

T 21,0 0 T T 2l x,0

forp=12,..N;j=0,1,... ., KI-1,m=12,...,
Ny and k = 0, =1, £2,..., =(KI ~ 1). As before, these
are about N, - N, - 2K*? distinct values. Next, §,(£) is
needed at £in (24) forp =1,2,...,Nsand j =0,1,...,
(Kl — 1). These are N, - Kl distinct values requiring N, KII
iterations. Also, w,_,(t,_;, s) is needed at s in (24) for
m=12,...,N;yk=0,1,...,(KI—1);and ats = £ +
Ay — AG.(6) for €in 24y withp = 1,2,...,N;j =0,

1,..., (KI — 1). Hence, there are (N; + N,)K! distinct
values.

It can be shown that for j =n — 1,n = 2,..., 1, W(¢,
s) is needed at

_ A _imk A _iTky
T A I o A (25)
fork=0,=1,..., 2Kl - 1);m=1,2,...Ny,and k, =
0,1,..., (KI = 1). In addition, w,(& s) is needed at the
same £ as in (25) and at

S:§q+)\”‘q~)\n*q9n~q(§q)’ (26)
forg=10,1,...,(n — 1 —j), where

_ A _imf
S P A 7

forp=12,...,N;j=0,1,..., (Kl — 1) and, for ¢ >
07

A ik,
.

(28)

Table IV
Estimated Computational Requirements for the More Efficient Implementation of
the Inversion Algorithm

Computation

Estimated Number

w’l(g’ S)

W& s)j # n
W, s),j # n

§@.1<j<=n
iterations for §,(¢), 1 <j <n
total storage requirement

(N,N,)2K??
—2)(n—~1
{(N1 + Ny — 1) + ("—)Z(L—)]zxzﬂ
(n—bn
[(N‘ Ny — }Kl

(N, + n — DKI
(N, + n — D)KII
(3N, + 2N, + 3(n — 1))KI
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for &, 0, 1,..., (Kl — 1). These are about
2Kl- (N, Kl + N,KI + (n — 1 — j)-Kl) distinct
values.

Also,for j=n—1,n~2,...,1, §(&) is needed at ¢ in
(25) for k = 0, 1,..., (KI — 1). These are K distinct
values corresponding to KiI distinct iterations. Finally, for
j=n—2,n~3,...,1,0,W,(t, s) is needed at s in (25)
form=1,2,..., Nk, =0,1,..., (Kl — 1) and at s in
(26) where g = 0, 1,..., (n — 1 — ), & in (27) for p, =
1,2,...,N;j=0,1,..., (Kl - 1); and, forg > 0, £, in
(28) for k, = 0, 1,..., (Kl — 1). These are (N; + N, +
n — j)KI distinct values.

The reduced computation is accompanied by the re-
quirement of some additional storage. We need to store
only the quantities §,(§) and w,(¢,, 5). The total storage for
g(& for j = 1,2,...nis about [N, + (n — 1)KI. The
storage requirement for w (¢, s) is (Ny + N, + n — 1 —
J)KI. Since W, _,(t,,, s) may be discarded after computing
W,(2,, 5), at any time we need to store W(¢,, s) for only two
successive values of j. This gives a maximum storage of
about 2(N; + N, + (n — 1)KI. So the total storage for
g,(&) and W (1, s) is [3(N; + n — 1) + 2N,]KI. The com-
putation and storage requirements are summarized in Ta-
ble IV.

In summary, the first row of Table IV represents the
basic computation requirement for two-dimensional trans-
form inversion, which is no different from the unrefined
algorithm in the first row of Table II. From Table 1V, see
that some of the additional computations in rows 2-5 grow
linearly and others grow quadratically with »#. This is to be
contrasted with the exponential growth in Table IL

Note that basic computations are proportional to the
product of N; and N,, whereas the additional computa-
tions are proportional to the sum (N, + N,) (rows 2 and
3) or just N, (row 4). Therefore, as N; and N, increase, the
ratio of additional computations to basic computations
decreases.

It is significant that the number of iterations needed for
the busy-period transforms g,(§) is drastically reduced
compared to Table 1I. Therefore, unless N, is small and /
is too large, the computational requirement for g,(£) re-
mains small compared to the overall computation require-
ment. Finally, the total storage requirement given in Table
IV is not much and increases linearly with n.

We conclude this section by giving the computational
complexity of the refined algorithm for the numerical ex-
ample in Table III. The new numerical values are given in
Table V. These numbers clearly indicate that, with the
more efficient algorithm described in this section, the amount
of computation and storage remains manageable even with
n = 10.

6. THE ALGORITHM

In this section we provide a step-by-step description of
how to implement the algorithm. For simplicity we assume

Table V
Estimated Numerical Values for the Number of
Computations and the Storage Requirement as a
Function of the Number n of Stationary Intervals
in the Refined Algorithm when N, = N, = 10

and K =1 = 50

Number of Stationary Intervals

Computation n=2 n=>5 n=10
w,(&, 5) 20%10° 45x10° 1.3 x 10°
w(&s),j#n 40x10° 3.9x10° 2.8 x 107
wit,s),j#n 42x10° 1.7 x10* 6.0x10*
iterations for §,(£), 56x10° 1.1%x10° 24X 10°

1=j=n

total storage requirement 5300 9300 19,250

all the inversion parameters are the same, but it is easy to
make them different.

Step 1. 1dentify the input parameters; i.e., determine
the number of intervals n; the number of time values in the
last interval at which the workload distribution is needed
(t = 7y, T, . .. Ty,); the desired workload values X1, X, 0 XN
the arrival rate A, and service-time transform £ (s) in each
interval; and the Laplace-Stieltjes transform of the initial
workload CDF, (1, s).

Step 2. Identify the parameters n,, m, K, A;, A5, A, 1,
15, I of the inversion algorithm, as in Section 3.

Step 3. Compute and store §,(£) for j = 1,2, ... n using
the busy-period functional equation recursion (9) at all
required distinct values of & For j = n, the required £
values are as in (24) withp = 1, 2,...N; and j = 0,
1,..., (Kl ~ 1). For j < n, the required & values are as in
(25)withk =0,1,... (Kl — 1).

Step 4. Compute W (¢, 5) at all required distinct values of
s starting with j = 0 and proceedingas j =0,1,...,n —
1, using formulas (10) and (6). The distinct s values are as
in(25)form =1,2,...,N; k;=0,1,... (Kl — 1) and
also as in (26) withg = 0, 1,...(n — 1 ~ J), & in (27)
withp =1,2,...N;;j=0,1,...(KI — 1); and, forg > 0,
¢, in (28) fork, = 0, 1, ... (Kl — 1). Some of the distinct
s values depend on the §,(£) values which are already com-
puted and stored. For j = 0, wy(t,, s) is the same as the
initial workload transform and is part of input specifica-
tion. For j > 0, w (¢, s) is obtained by single transform
inversion of W (&, 5) using Equation (16). Computation of
the transform value depends on the already stored values
of §,(¢) and w,_(¢,_y, 5) or their complex conjugate. Once
W,(t,, s) is computed at all required s values, W, (t,_1, 5)
may be deleted, freeing up storage space.

i

Step 5. Compute the complementary CDF of the
workload, Wi(t, x) at all required values by applying
two-dimensional transform inversion formula Wy, (&, s) in
(12) and (13). The transform value is obtained using (5), (6),
and (7). The computation requires the already stored values
of §,(£) and W, _,(¢,,_,, s) or their complex conjugates.
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7. A DEGENERATE CASE CAUSING NUMERICAL
PROBLEMS

In Equation (6) with n = j, suppose & and s are related as
follows:

E=5— A + Ak (s). (29)
Using (9) it can be shown that the above also implies
s=E+ A — 20,00 (30)

Inserting (29) and (30) into (6), we see that both the nu-
merator and denominator are zero, causing indeterminacy
and numerical problems.

In general, it is unlikely for (29) and (30) to hold, but
there is an interesting special case in which (29) and (30)
hold with certainty. Section 5 shows all the distinct argu-
ment pairs for which (&, s) needs to be evaluated and
from that it becomes clear that (29) and (30) hold if either:
@ty =t Aoy = A, fz,,_q( ©) = ftl( - ) and the inver-
sion parameters 4, and /, used in intervals n — g and j are
the same for some g in the range 1,..., (n ~ 1 — j); or
b) 7, =1,A, =4, ho(+) = fzj( - ) for some p and j and
the inversion parameters A, and /, used in intervals n and j
are the same. Roughly speaking, the degeneracy occurs if
two separate intervals become indistinguishable from each
other.

While it is important to be aware of the degeneracy
condition, it is very easy to avoid it. First, making the
inversion parameters A, or /, slightly different in different
intervals will most likely avoid it; e.g., instead of setting
A = 24 for all intervals i, set it to 23.5 + (i/n) on interval
i, where n is the total number of intervals. Second, we can
simply check to see if there is degeneracy. All the required
¢ and s values are computed in the initial part of the
algorithm. At this stage it is possible to check explicitly to
see if the condition (29) is satisfied or almost satisfied.
Since all computations are done in double precision, (29)
has to be satisfied very closely to cause any problem. We
need to check only on a small subset of all possible (& 5)
pairs since the inversion formula only considers values of s
and & with constant real parts. If the outcome of checking
is positive, then one of the inversion parameters can be
slightly changed and the computation can be redone. Since
this checking can be done in a very small fraction of the
overall computation time, there is not any significant im-
pact on the overall computation time.

8. NUMERICAL EXPERIENCE

We have checked the algorithm using several numerical
examples with several values of the number of intervals, n,
and several variations of arrival rates and service time dis-
tributions. One concern we had was to make sure that the
workload distributions being computed are correct. A sim-
ple sanity check is to compare with the steady-state work-
load distribution, computed by a separate algorithm, when
the last stationary interval is quite long. Our algorithm
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Table VI
A Comparison of Numerical Results for the 7-interval
and 21-interval Cases

Time ¢ Tail Probability P(W(r) > x)
Since the Workload @~~—rr—+-7"-—"—-""""
Origin X 7 intervals 21 intervals
66 1 0.769456620 0.769456602
70 1 0.727309000 0.727309017
66 10 0.47234728205  0.47234728210
70 10 0.42607030889  0.42607030883

passed this test. For the steady-state distributions, we ap-
plied the algorithms in Abate and Whitt (1992a).

The one-dimensional and two-dimensional inversion al-
gorithms also have a built-in accuracy check in that the
same computation may be done with many different values
of 4, and /, parameters. If the computations are inaccurate,
then it is extremely unlikely that the results will match, We
verified that the results did match up to seven-to-ten deci-
mal places. Also, by dividing any piecewise stationary in-
terval into more than one intervals, we can produce a new
equivalent model with different inversion calculations but
the same workload distributions. We verified accuracy by
this method as well.

One set of examples we considered had up to n = 10
intervals and K = 50. In each interval, the arrival process
was Poisson, the service-time distribution was gamma with
SCV (squared coefficient of variation) in the range 1/16 to
16, and the server utilization was in the range 0.1 to 0.9.
We always obtained (7-10)-digit accuracy using the values
of [ in Table 1.

In the introduction we gave some numerical results for a
concrete example with seven stationary intervals. There
are eight layers of inversion (the six recursive one-
dimensional inversions and one final two-dimensional in-
version). We used {l,} = (2, 3, 3, 3, 4, 4, 4, 4) and {4,} =
(22, 24, 24, 24, 26, 26, 26, 26) going from outermost to
innermost layers to obtain (7-10) digit precision. The run-
time was three minutes to compute five points in the last
interval for two values of x.

Next, to really stress the algorithm, we also considered a
21-interval example, obtained by dividing each of the seven
subintervals into three subintervals. We let the lengths of
these subintervals be 2, 3, and 5 in each case to avoid the
degeneracy discussed in Section 7. The arrival rate and
service-time distribution in each subinterval is the same as
before, so that the time-dependent workload distribution is
unchanged. We used

i} = (4,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7),

and 4, = 26 for all i.

In Table VI we display the workload tail probabilities
P(W(t) > x) for x = 1 and 10 for two time points in the last
interval ¢+ = 66 and t = 70. (Here ¢ is the time since the
origin.) At x = 1, we obtain agreement to seven digits,
while at x = 10 we obtain agreement to nine and ten
digits. The run time was 26 minutes. Notice that three
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times as many intervals required approximately nine times
as much computation time, so that the computation indeed
grows approximately as the square of the number of
intervals.

Even though we were successful in this pretty large ex-
ample, we believe that our algorithm should primarily be
regarded as being for ten or fewer intervals. Then the
algorithm runs in at most a few minutes and the errors are
tightly controlled. Many practical situations satisfy this re-
quirement of ten or fewer intervals; e.g., overload controls.

9. COMPARISON WITH SIMULATION

It is appropriate to compare our numerical inversion algo-
rithm to simulation, because simulation is a readily avail-
able alternative algorithm for calculating the tail
probabilities P(W(¢) > x). With simulation, we would per-
form n independent replications of the workload process
over the time interval [0, ¢] and estimate the tail probabil-
ity P(W(t) > x) by the proportion of the n sample paths
for which W(r) > x; i.e., if i indexes the replication and
HW, (1) > x} = 1if W,(¢) > x and 0 otherwise, then our
estimate is

POV() >x) ~nL S 1{W, () > x}. (31)
=1

In some sense, simulation and the inversion algorithm
are not directly comparable, because the required compu-
tations depend on different features of the model. The
simulation run time tends to be linear in the number of
events, and thus in model time ¢, but is independent of the
number of subintervals in a piecewise-constant representa-
tion. Indeed, simulation does not require the piecewise-
constant structure. In contrast, the inversion algorithm is
essentially independent of model time, but quadratic in the
number of intervals. Thus, the two algorithms tend to be
complementary, with the inversion being superior for a
model with only few intervals.

The performance of simulation also depends critically
on the size of the probability we want to estimate and the
statistical precision we want to achieve. It is easy to ana-
lyze the performance of the simulation estimator, because
for any fixed ¢ and x the estimator is just the sample mean
estimator for the probability p = P(W(f) > x) in n Ber-
noulli trials. The expected value of this estimator is p and
the standard deviation is Vp(1 — p)/n. Since we typically
are interested in relatively small tail probabilities, it seems
natural to use a criterion of relative standard error (RSE),
which we define as the ratio of the standard deviation to
the mean. Clearly, the relative standard error is

RSE = V(1 — p)/pn =~ 1/vpn, (32)

with the approximation holding for p suitably small
Hence, if we desire an RSE of ¢, the required number of
replications in the simulation is approximately

n=1/pe>. (33)

If the desired probability p and the target RSE e are not
small and the run time for one replication is not long, then
simulation will be effective. For example, if p = € = 0.1,
then only n = 1000 replications are required, which is
often feasible. The 1000 replications can well be competi-
tive with the inversion for a problem that is difficult for the
inversion, but for a piecewise-constant model with only a
few intervals (e.g., one to three), the inversion will require
only seconds and thus tend to dominate even with this low
precision requirement. Simulation is clearly prohibitive at
the high accuracies of 107! easily achievable by the inver-
sion algorithm when there are only a few intervals. For
instance, for p = 10~ and € = 107% n = 10%°. Practical
examples might well have p = € = 1072, for which n =
10°. As the target probability and RSE get smaller, the
inversion algorithm begins to dominate simulation. More-
over, it is often possible to greatly speed up the inversion
algorithm when there are many subintervals and we re-
quire only moderate accuracy by judiciously introducing
approximations, as we now indicate.

10. EXPLOITING APPROXIMATIONS TO SPEED UP
THE COMPUTATION

Since the inversion computation becomes difficult when there
are many intervals, it is natural to consider ways to effec-
tively reduce the number of intervals by making various ap-
proximations. The idea is quite simple: If we want to
calculate a tail probability P(W(¢) > x) at time ¢, then we
might approximately determine the distribution at some time
to with 0 <ty < t and consider a new problem on the
time interval [, ¢] using the transform of the approximat-
ing distribution at time f, as the initial distribution. If ¢, is
not t0o close to ¢, then we should still attain good accuracy
at time ¢ based on less accuracy at ¢,

One way to do this is to use the inversion algorithm over
[0, ty] to calculate the cdf P(W(z,) = x) for several values
of x at time #,. (A similar procedure might also be used at
other time points before time ¢; i.e., we need not use only
one internal point.) We use these calculated values
P(W(t,) = x,) to determine an approximate distribution
and transform at ¢,

Another general way to accomplish this goal is to exploit
simulation. As discussed in the last section, simulation can
be quite effective in obtaining a rough estimate of the distri-
bution at #,, We can use the empirical transform, i.e., the
transform of the empirical distribution at time ¢, We can
then use the inversion algorithm to obtain a more precise
estimate of the probability distribution at the later time ¢.

In addition to the two methods just described, there may
occur natural decoupling points where we know the distri-
bution at least approximately. Two kinds of decoupling points
come to mind: (1) steady-state and (2) light traffic. First, if
there is a very long interval for which the model in that
interval is stable, then we can approximate the distribution at
the end of the interval by the steady-state distribution as-
sociated with that interval. Second, if there is a long period
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of very light traffic, then we can approximate the distribu-
tion at the end of that interval by a unit point mass at 0.
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