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MULTIPLE CHANNEL QUEUES IN HEAVY TRAFFIC. 1

DONALD L. IGLEHART!, Stanford University
WARD WHITT2, Yale University

1. Introduction and summary

The queueing systems considered in this paper consist of r independent
arrival channels and s independent service channels, where as usual the arrival
and service channels are independent. Arriving customers form a single queue
and are served in the order of their arrival without defections. We shall treat
two distinct modes of operation for the service channels. In the standard
system a waiting customer is assigned to the first available service channel
and the servers (servers = service channels) are shut off when they are idle.
Thus the classical GI/G/s system is a special case of our standard system.
In the modified sysicm a waiting customer is assigned to the service ¢hannel
that can complete his service first and the servers arenot shut off when they
are idle. While the modified system is of some interest in its own right, we
introduce it primarily as an analytical tool. Let A; denote the arrival rate
(reciprocal of the mean interarrival time) in the ith arrival chanmel and y;
the service rate (reciprocal of the mean service time) in the jth service channel.
Then A = X [_,4 is the total arrival rate to the system and g = Xj_,u; is
the maximum service rate of the system. As a measure of congestion we define
the traffic intensity p = Afu.

‘We shall restrict our attention to systems in which p 2 1. Under this con-
dition the systems are of course unstable (a proof of this fact is an easy by-
product ‘of our resulis). Our principal objective will be to obtain functional
central limit theorems (invariance principles) for the stochastic processes char-
acterizing these systems after appropriately scaling and translating the processes.

There has been a growing literature on gueues in heavy traffic beginning
with Kingman ((1961), (1962)); see Kingman (1965) for a summary of his
work. We use the term heavy traffic in a broader sense than Kingman. While
he considered queueing systems with traffic intensity less than but close to
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one, we now let heavy traffic include both single queueing systems with p = 1
and sequences of queueing systems with p, — p = 1. We shall only mention
a few of these papers which are most relevant to the present work and refer
the reader to Whitt (1968) for a comprehensive discussion of this literature.
There have been essentially two avenues of attack in heavy traffic theory.
The first begins with the sequence of waiting times of successive customers
which is easily related to a sequence of partial sums in the case of a single
server. This method was used by Kingman ((1961), (1962)), Prohorov (1963},
and Whitt (1968). Unfortunately, this method has drawbacks in a general
multiple channel queve. The second method begins with the queue length
process which is (not as) casily related to renewal processes characterizing
the arrival and departure processes. The second method has been championed
by Borovkov (1965) and used to a lesser extent by Whitt (1968). Most of the
work in heavy traffic has dealt with the single server case, the principal ex-
ceptions being Borovkov (1965) and Presman (1965).

The natural setting for the limit theorems obtained in this paper is the weak
convergence of probability measures on the function space D[0,1] (= D).
Since an excellent treatment of this subject was recently published by Bil-
lingsley (1968), we shall only make a few remarks here about our terminology
and notation. The stochastic processes characterizing the queueing system
give rise to sequences of random functions in D, the space of all right-con-
tinuous functions on {0, 1] having left limits and endowed with the Skorohod
metric, d; in Billingsley this metric is denoted by d,. With 4, D is a complete,
separable metric space. Let £ be the class of Borel sets of D. Then if P, and
P are probability measures on £ which satisfy

im | fdp, = f fdp
JD

n-reo J D

for every bounded, continuous, real-valued function f on D, we shall say that
P, converges weakly to P as n — oo and write P, = P. A random function
X is a measurable mapping from some probability space (Q, %, %) into D
having distribution P = #X~ ' on (D,92). We say a sequence of random
functions {X,} converges weakly to the random function X, and write
X, = X if the distribution P, of X, converges weakly to the distribution
P of X . A sequence of random functions {X,} converges toc X in probability
if X, and X are defined on 2 common domain and for all £ > 0, P{d(X,, X} = ¢}
— 0. When X is a constant function (not random), convergence in probability
is equivalent to weak convergence. In such cases we shall write d(X,, X) = 0
or X,= X.If X, and ¥, have a common domain, we also write d(X,, ¥,} = 0
when for all & > 0, P{d(X,, ¥,} > &} — 0. We shall also use the uniform metric
p which is defined by p(x, y) = supos.sy [¥() — y(®)| for x,yeD.
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Qur analysis begins in Section 2 with a study of the modified system. While
this modified system is different from our standard system, in heavy traffic
it is essentially the same and has the virtue of being easy to analyze. This idea,
due to Borovkov (1965), is the key to our analysis. Let O°(f) denote the number
of customers in the modified system at time ¢ and let {Q;} be the corresponding
sequence of random functions in D:

0, =[Q'(n) —(A—pnijjen*, 05151,

where ¢ is a constant to be specified later. (The letter ¢ will be used to denote
a generic constant.) For p = 1 (A = i) we show that @, = f(&). where & is
a standard Wiener process and f: D — D is a continuous function which acts
as an impenetrable barrier at the origin. (Borovkov showed this for a single
value of ¢.) Throughout the paper Wiener processes will be denoted by &
with and without subscripts or superscripts. The process f(£) has the same
distribution as ]5], the one-dimensional Bessel process. For p > 1, we show
that @, = £. In Section 3 we obtain comparable results for the standard
system when p = 1.

In Section 4 we study the departure process, D(f)[D'(t)], defined to be
the total number of customers which depart from the standard [modified]
system in the interval (0,¢]. Let {D,} [{D;}] be the corresponding sequence
of random functions in D:

D, = [D(nf) — (A A\ pnt][ent, 0=st=1.

We use a/A b for min(a,b) and a\/ b for max(a,b). For p>1, D, = ¢.
For p = 1, D, converges weakly to a functional of two independent Wiener
processes. For p < 1, we shall show in a forthcoming paper that D, = €.

In Sections 5, 6, and 7 we restrict our attention to the case p = 1. Section 5
deals with the weak limits of a sequence of random functions induced by the
process Q) which is defined to be the number of customers in the system

. at time t which will be processed through the ith service channel. We show

that the appropriate sequence of random functions converges to (,u,-[,u)]:f].
Section § treats the virtual waiting time, the Ioad at the ith service channel,
and the total load in the system, when the servers are identical. All these pro-
cesses when appropriately scaled converge weakly to ]§| Section 7 is con-

‘cerned with embedded sequences obtained by looking at the processes above

only at arrival points or only at departure points. We give a general method
for obtaining weak convergence theorems for sequences of random functions
induced by such embedded sequences. As a particular example we freat the
sequence of waiting times of successive customers. Again we find that the
appropriate sequence of random functions converges to |§[

In Section 8 we discuss limit theorems for the time of the ath arrival and
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the time of the nth departure. Finally, in Section 9 we discuss limit theorems
for the busy period. Since such theorems may be obtained by applying an
appropriate functional, this last section illustrates one of the major advantages
of the weak convergence.

There are a number of interesting problems, for which we have further
results, that have been omitted in an attempt to keep the length and complex-
ity of the paper within reasonable bounds. We mention these here in passing
and leave the details to further publications. Our entire analysis has dealt
with a single queueing system with p = 1. By taking a sequence of systems
with p, — 1 other limit processes can be obtained (cf. [2], [11] and [12]).
The weak convergence analysis was carried out in the space D[0, 1]. For
some problems, particularly first-passage times, it is more natural to work
in D[0, o). We have nsed D[0, 1] because its properties are well known, but
we could have done all our work in D[0, o). With an appropriate metric,
D[0, c0) is a complete separable metric space in which all our theorems hold.
The arrival processes at each of the arrival channels can be made up of quite
general dependent sequences. Some of this analysis for the single server case
was done by Whitt (1968). Having limit theorems for the departure process,
we can construct networks of systems such as ours and analyze those as we
do a single system in this paper. Furthermore, it is possible to handle certain
barriers on our processes which restrict them from above. One such barrier
might correspond to a finite waiting room. Finally, almost identical arguments
yield corresponding limit theorems for the stochastic processes arising in dams.

2. The modified queneing system

We follow Borovkov (1965) and begin by intreducing a modified multiple
channel queueing system. The modified system differs from the standard
system in two respects. First, the servers are not shut off when they become
idle. With each server (and not with each customer, as is usually done) we
associate a sequence of potential service times (random variables). If a server
faces continued demand for service, then the actual service times of his suc-
cessive customers.are just these potential service times; but if there is no de-
mand during any potential service time, then that potential service time is
ignored and there is no actuval service and no departure. After a server has
begun working in the absence of demand; then the next demand will in general
occur in the middle of some potential service time. Let the remaining portion
of that potential service time be that next customer’s actual service time.

The second difference in the modified system is that customers are served
by the server who can complete the service first, which is not necessarily the
first idle server. This means that customers will depart in the order they ar-
rived, Moreover, every completion of a potential service time will generate
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an actual departure as long as there is a customer demanding service some-
where in the system. This property allows us to work directly with the net
potential output process obtained by superimposing the potential outputs
from the separate servers, This modified server system is of imterest in its
own right. For us, it is a device.

Assume now that customers arrive one at a time in each of r channels and
then immediately join a single queue in front of the s servers. Equivalently,
each customer immediately upon arrival can be assigned to one of s separate
queues in front of the s servers. In this case, we look ahead and assign the cus-
tomer to the server who would eventually serve him. We are given as initial
data r -+ s independent sequences of non-negative, independent, identically
distributed random variables with finite variance: {uin = 1} (i=1,--,7)
and {v], n=1} (j=1,--,5) all defined on a common probability space
(Q,%,2). The variable u! represents the interarrival time between the (n — 1)th
and nth customers in the ith arrival channel and the variable v/ represents
the nth potential service time of the jth server. Assume that the system is
initially empty, although our limit theorems do not depend on this condition.

We now define renewal processes associated with each channel. Let

t

A
IA

) max{k: u), + - +uj < 1},
At = { ' -

0, uy >t

foral t+ =20, 1<2i<r, and

A

s Ll J i
S0 = {max{k. vi+- 4S8}, v

0, v >t

forall 1 = 0,1<j=<s. )
These processes represent the total number of arrivals or the total number
of potential service times in the appropriate channel in the time interval (0, ¢].
Because of the service discipline in this modified system, it is particularly
easy to express the queune length process, Q'(f), in terms of these basic renewal
processes. Throughout this paper all queue length processes count the cus-
tomers being served as well as those waiting. We also place no upper bound
on the number of waiting customers. For each weQ and ¢ = 0, we have

2.1) Q'() = X(n — inf{X(s), 0 = s < 1},

where

]

A{D)
5@ .

A+ + 47,
SUH + - + 5,

i

and
X)) = A(D— 8(1).
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Limit theorems for @'(f) in heavy traffic follow immediately from (2.1). As
we indicated in Section 1, we shall let &, = 1/Eul, u, = 1/Evi, A = X 1.1,
#= Xji-;, and p = Afu. Observe that the usual traffic intensity for the
GI/G/s queue is just a special case of p. Furthermore, we let o} = Ajo?[pi],
02 = pio’[v}], and y?2 = T/ e+ X . 0} Now let A (i=1,--,r),
Si(Gj=1,-,5, X,, and Q. be random functions in D[0,1] defined by

4, = [Ai(n1) ~ ant)jont,
Si = [8nf) — pntlfont,

X, = [X(u) — (A—pnd)fyn*,
0, = [Q'(n) — (A—mntlfynt,

where for each random function, t&[0,1]. The following lemma is easily
proved by appealing to the continuous mapping theorem. As we indicated
in the introduction, £ is a Wiener process. '

Lemma 2.1. X, = €.
Proof. Let D'*° be the product of r + s copies of D and let
{Ehi=1,2,,r+ s}

be r + s independent Wiener processes. Then form (£%,---, %), an element
of D'** with the product measure. Since the random functions

{dl, Si:i=1,-,r;j=1,,5}
are independent, we have
(22) (A:: “‘:A;’ S:,,S:,) = (§1>"'7§r+3)

if and only if 4} = & and S = &/ But this latter fact follows from the
functional central limit theorem for renewal processes (cf. [1], Theorem 17.3
with Theorem 16.1). Furthermore, (2.2) is equivalent to

1 1 +1 +
(alAm“':arA:: aisn:"';asSD = ('xlél,""arér: 0’16' ;'":asér s)

by the continuous mapping theorem ({1], Theorem 5.1).
Now apply the continucus mapping theorem once more with the function
g:D"** > D, defined for any (x, -, %4 }eD " by

g(x!.:"':xr'l's) = X3 + +xr—xr+l s P

Since o &' + - + 08" — 0y 8T — . — 67" has the same distribution as
(@ + -t a? 624+ 02 = 9&, for some new independent Wiener
process ¢, we obtain the desired result: X, = &.

To proceed now to our limit theorem for Q,, we introduce the continuous
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mapping f: D — D which corresponds to an impenetrable barrier at the origin.
For xe D, fis defined by f(x)(¢) = x(1) — infy¢,<,x(s), 0 < ¢ = 1. The limit
theorem for Q, when p = 1 is given next.

Theorem 2.1. If p =1, then Q, = f(&) for all initial queuve lengths. The
random function f(£) has the same distribution as [&|.

Proof. Assume first that Q'(0) = 0. Since p = 1, the franslation terms in
both X, and @, are zero. Therefore, from (2.1) we have Q. = f(X,), where
f: D — D is defined above. Since f is continuous, we may apply the continuous
mapping theorem and Lemma 2.1 to obtain Q, = f{£). The initial conditions
are easily handled with [1], Theorem 4.1.

Since ¢ is a Wiener process without drift, f(£) has the same distribution
as the reflecting Brownian motion or the one-dimensional Bessel process
(cf. [5], pages 40-42, 59).

For a single time point ¢ > 0, we obtain

Corollary 2.1. If p =1, then

t=ow

’ + * 2
lim p{Q (‘)§X}= {(2/‘“) L exp{~y*/2}dy, x20

ye 0, x < 0.

Proof. Apply the continuous mapping theorem again with the projection
n: D — R, defined for any x €D by n,(x) = x(1). Also use weak convergence
of the random elements @ where s goes to infinity in a continuous manner
(cf. [1], page 16).

The corresponding results for p > 1 are given in the next theorem and co-
rollary.

Theorem 2.2. If p>1, then Q, = £.

Proof. Using Lemma 2.1 and Theorem 4.1 of [1] it suffices to show that
d(Xn: Q:x) = 0. Since d(-Xm Qr:) ._S_ P(X,,, Q:.l) = —infogsén{x('s)/?n-}}: we have
only to show that for each &> 0

2.3) P[ — inf {X(s)fyn!} <e]—1, as n— c0.
0sSssSn
We begin by recalling that X()/t 5 (1 — p) > 0 by the strong law of large

numbers for renewal processes (cf. [4]). Thus, for any & > 0, there exists a
tp > 0 such that

P [sup

to St

—)'{g)—"(l—ﬂ)léﬂ]él—a-

Hence, the
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P[ sup {—X(s)fyn*} <] 2 P[ sup {—X(5)} S 0] 21—

tnE535n tgSs

for n 2 [t,]+ 1. On the other hand,

sup {~X(s)jyn?} = p Als) +f ®) = Alto) +‘}S(t°)
0535ty 0sssitg b0 n

which converges in probability to 0, Since

sup {—~X(s)fyn*} and  sup {—X(s)iyn'}
0=ssi, toSsEN
both converge to 0 in probability, we have (2.3).
The proof of the result for a single time point ¢ > 0 is the same as in Corol-
lary 2.1,

Corollary 2.2. If p>1, then

lim P{—u-ﬂ } = (1/2n)*fxexp{—y2/2}dy.

t+ao W*

3. The standard queueing system

We now investigate the standard multiple channel queueing system in which
customers are served in the order of their arrival by the first idle server. The
classical GI/G/s queue is the special case arising when there is only one arrival
channel and s identical servers.

The central idea, due to Borovkov ([2], Section 5), is to define the standard
system in terms of the same basic sequences of random variables already
used for the modified system. We then show that the two queue length pro-
cesses differ very little in heavy traffic. In fact, by applying Theorem 4.1 of
[1], we show that the two corresponding sequences of random functions in
D{0,1] converge to the same Jimit. We obtain stronger results than Borovkov
with simpler arguments by applying weak convergence theory.

In order to define the standard system, we must generate the actual service
times from the given sequences of potential service times. For each server,
we let the actual service times be a subsequence of the potential service times,
chosen so that this subsequence is also i.i.d. If there is still demand for service
after a server has just served a customer, then let the next actual service time
be just the next random variable in the basic sequence of potential service
times. If there has been no demand before receiving a customer at time ¢,
let the next actual service time be the first unused random variable occurring
after time ¢ in the basic sequence of potential service times; that is, let the index
of the potential service time which is to be the actual service time of the next
customer be 1+ max{k, S°(t)}, where k is the index of the potential service
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time which was the last actual service time. It is easy to see that this selection
procedure provides a subsequence of iid. random variables.

The standard system is now defined. As before, customers arrive onec at a
time in each of the r channels and then immediately join a single queue in
front of the s servers. They are then served in the order of their arrival, but
by the first idle server. Their service times have been specified above.

In preparation for our main theorem and the arguments in later sections,
we give two lemmas which clarify the relationship between the function spaces
C and D. As is demonstrated in [1], analysis is much easier in C, but many
processes of interest are not continucus and must be regarded as elements
of D. The standard procedure has been to consider linearly-interpolated
versions of such processes, which will be in C, but it recently has become
clear that such devices are unnecessary in most cases; the analysis in C may
often be used for processes in D. We state a lemma communicated orally
to us by T. Liggett and B. Rosén. (For a proof, see [12], page 46.)

Lemma 3.1. (Liggett and Rosén). Let {X,} be a sequence of random
functions in (D,d), {¥,} a2 sequence of random functions in (C,p), and X
a random function in (C,p). If d(X,, ¥,) = 0, then X, = X in (D, d) if and
only if ¥,= X in (C,p).

As an easy consequence of Lemma 3.1, the functional central limit theorems
for random functions induced in D by sequences of partial sums or renewal
processes are equivalent to the corresponding theorems for the linearly-
interpolated random functions in C.

In the same spirit, we prove a lemma which gives us C-tightness for sequences
of random functions in D. Knowing that a sequence of random functions
converges weakly in D, we shall want to use the resulting tightness for other
arguments. In a sense, we want a converse to Theorem 15.5 of [1]. The char-
acterization of tightness in € is much easier to use than the characterization
in D (cf. [1], pages 55, 125).

The main condition for C-tightness is expressed in terms of the modulus
of continuity, w(d): C —+ R, defined for any xeC by

wd) = sup |x() — x(s)].

0Zs 51
|s—t] <3

Lemma 3.2. Let {X,} be a sequence of random functions in (D,d),
and X a random function such that P{XeC} = 1. If X, = X, then {X,}
is C-tight: for all positive & and #, there exists a é (0 < § < 1) and an integer

ne such that
Plwy @)z e} =7

for n = n,.
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Proof. The modulus of continuity is a measurable mapping of D into R
which is continuous almost everywhere with respect to X . Theorem 5.1 of
[1] implies that

wx (8) = wx(6),

but wy(d) = 0 as 6 | 0.

Before returning to our main argument, we state one more lemma. It gives
various sufficient conditions on 2 sequence of random variables {X,} in order
to have max, §k§,,{|Xk|/n*} = 0. Such conditions are well known, but we
include them becaunse the result is so frequently used in weak convergence
arguments. The statements are somewhat stronger than we need in this paper,
but the generality is important for extending the weak convergence theorems
to include dependent sequences. The almost-sure convergence will not be used
fater. (For further discussion, see [12], pages 41-43, 71.)

Lemma 3.3. Let {X,} be a sequence of random variables.

a) If {X,} are identically distributed (not necessarily independent) ‘with
finite variance, then max, §,‘é,,{[X,CI/n*} -0 as.

b) If there exists a random variable X with finite variance such that for
alln 2 1andalla>0, P{|X,|>a} < P{|X| > a}, then max, c.<.{|X|/n}
=0 as.

¢) If ¥,= Y in D with P{YeC} = 1, where ¥, = S[,,,]/n , 02t 1,
and 5; = X, + --- + X, — kv for some constant v, then maxlé,‘é"{lX,‘[/n’-‘} =0.

We now return to the standard multiple channel queueing system. Let
@(t) denote the number of customers either waiting or being served at time ¢
Define the corresponding random function in D by

= [Q(nt) — (A—pnt]fynt, 0=t 1.
Our main result is
Theorem 3.1. If p =1, then @, = f(£); if p>1, then @, = &.

Progf. We shall show that d(Q,, Q") = 0. Theorems 2.1 and 2.2 together
with Theorem 4.1 of [1] then give us the desired result.

We now follow Borovkov ({1965), Section 5) quite closely. We first deter-
mine the time between the occurrence of a random variable in the basic
potential service time sequence and the occurrence of that same random
variable as an actual service time in the corresponding service channel. We
call this time the shift; let 0,(¢) denote the shift in channel j at time:z. The
shift can be expressed in terms of the idle periods and the unused- potential
service times. If the jth server is serving a customer at time ¢, If,---,I{
are the idle periods in service channel j up to time ¢, and {vm‘} is the sub-'
sequence consisting of the unused potential service times, then. -’
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0/) = (], + - + o) —(H + - + 1),
where
oot zH 40
but
B vh < TP+ I

In other words, if the server is actually serving someone at time ¢, then 0,(¢)
is the residual lifetime of the renewal process generated by the subsequence
{v!}, evaluated at time ¥ + --- 4 I]. If the server is idle at time ¢, then we
shall define 8,(f) = 6,(t"), where ¢" is the last time before ¢ the server was
busy. The following diagram helps make these ideas clear.

unused
‘n ¥n Yo, 'n potential
ml m2 m3 " service times
potential
iov2 % Y4 Ys Y vy Vao Y9 Yo Yn1 {ser‘vice
times
T N
'/fﬂq\},f"Nw f’ y f] J’/-H\P"‘\”—\}fp‘} A
ooy P Hooy i
T ry 7 Heoy I
T Py /If / ! n!’
/¢ / / ¢
QD%QG! Ny %ﬁ@ {
S?I"\HCE
" . -] 0 . times
1 ej(to) 2 3

Figure 1

Now we establish bounds on the difference between the two queue length
processes, Q'(¢) and Q(t). We shall show, for all weQ and ¢ = 0, that there
exists a fy, = t such that

G 00 < QO +5+ 3 [Sito +0,t0) — St0)]
. 2

and that

G2 QO S 0) + TS+0,0) - SO

We first verify (3.1}, If Q(¢) < s, then the inequality holds trivially. Suppose
then that Q(f) 2 5. Let :

t, = sup{t < t: O(t) < s}.

We clearly have
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00 = Qo) + Z [0~ At9] =  [5-+ 0,0) = ST + 0]

Ss+ ‘\t-: [4'() - 4(t)] — i [S/(t + 0,(8) — St + 0,(2o))],
i=1 i=1
while

Q0 2 QU0 + X [40) - 4]~ 3 [S6) - 5]

2 3[40 - 4] - T [S0+0,0)~ S0l

These two inequalities imply (3.1).
We now verify (3.2). If @'(¢) = 0, then the inequality holds trivially. Suppose
then that Q'(f) > 0. Let t;, = sup{t < t: Q'(r) = 0}.
We clearly have
(= .21 [4i(D) — 4] - _21 [S%(5) — 7)1,
i= ji=
while

o) 2 X [40— 4]~ X [S+0,0) - 5],
= i=
which together imply (3.2). Therefore,

40w 0 S (@ QD) = sup loe) — '@ |

021 'J’"i~

s+ i [S(nt + 0,(n0)) — S¥(nt)]
i=1 ‘

A
n
=
2=

0=l ?"*

In order to complete the proof, it thus suffices to show for all ih1=2j= s,
that

S¥(nt + 8(nH)) — S(n1)
sup =

o.
nt

(3.3)

011

Now let us obtain a handle on the shift. Observe that

sup O(nf) < max o,
osts1 kS Sim+1
where §°(2) is the renewal process generated by the subsequence, {v,.}, con-
sisting of the unused potential service times. Note that the subsequence {v, }
is ii.d. and independent of the idle times. Since §;(nf) < §(m), 05t <1,
and §n)fn=pu i, in order to have supoé,él{ﬂj(nt)/n*} =0, it suffices to show
that max, zx<,{s 1%} = @, which holds by Lemma 3.3.
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We complete the proof by verifying (3.3). We use the tightness associated
with the sequence of random functions {S}. Since S/ = ¢, we have C-tightness
for {S;:} in D by virtue of Lemma 3.2. Thus, for all positive & and #, there
exists a ¢ (0 < J < 1} and an integer n, such that

P{ sup | S0 =509 — pnts S)'ga}gn
0sSsa51 on
{s—1] <8

for n = ny. This in turn implies, for all positive ¢ and 5, there exists a
8 (0 < § < 1) and an integer n, such that

J, —_ — s

Pl sup S(n[t + s f(nt) Hihs
oSts1 o;h

' 0=Ss5<d

Izs}én

for n = n,. Instead of the constant s, we have in (3.3) &;(nt)/n, but
SUDoss1 8(nt)/n* = 0. Thus, for any positive # and &, there exists an in-
teger r, such that

P{ sup O nt)>nd} <y
0sts1

for n > n, . Furthermore, the translation term in the tightness characterization
goes to O:

nig. 0.
sup w0 nin] ’(n;)/n] = sup ____ujﬁj(:z) = 0.

0=l a;n osisy1 O

Consequently, the C-tightness of {S7} implies (3.3) and the proof is complete.

Corollaries 2.1 and 2.2 also hold for Q(¢).

4. The departure process

Let the departure processes for the standard and modified queuneing systems
be denoted by {D(z),¢ = 0} and {D'(¥),t = 0} respectively. In this section
we seck weak convergence theorems for these processes when p = 1. As
usual we assume Q(0) = Q'(0) = 0, but other initial conditions can be handled
by Theorem 4.1 of [1]. o '

From the definitions of the departure processes, D(¢) = A(¥) — Q(f) and
D(H) = A(H) — Q'(¢). From the definition of Q'(f), we have

D) = A — (X~ inf X()}
’ 0Ssst
= S(+ inf [A(s)— S()].
0=sst .

Now define the random function D; by

D, = [D'(nty -G Apnt, O0<tsi1,
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and the continuous mapping g: D{0,1] x D[0,1] — D[0,1] by
g, (@) = ¥y + 0;112 [x(s) ~y()], O0=t=1.
Ss5t

The process D, is defined exactly like D with D(nt) replacing D'(n?).
First we use the old trick of showing that D, and D) are essentially the same
if pz=1.

Lemma 4.1. If p = 1, then d(D,,D;) = 0.

Proof. Since D,— D, = Q, — @,, the result follows from the proof of
Theorem 3.1.

Now since (xA,,oS,) = («€,,0,), we can apply the continnous mapping
theorem and Lemma 4.1 to obtain

Theorem 4,1. If p=1, then D, = g(afy,cf,) and D, = g{aé,,0&;).
On the other hand, for p > 1 we use the fact that d(X,, 0.} = 0 from
the proof of Theorem 2.2, which gives us d(D,,S,) = 0. Thus we have

Theorem 4.2. If p>1, then D, = ¢f and D, = ¢&.

This completes the limit theorems for the departure processes in heavy
traffic. '

For p <1, we shall show in a sequel to this paper that D, = o and that
D! = af.

The other open problem for the departure processes is to obtain the dis-
tribution of g{wé,,¢f,} in a more useful form. For the M/M/1 queue with
p = 1, we have been able to calculate a limit theorem for D(t) using the com-
binatorial ideas of Champernowne (1956) (cf. [9], page 11}, Using the in-
variance principal idea implicit for all functional central limit theorems, this
gives us the distribution of g(af,, ¢f,)(¥) when « = o. However, the process
seems to have different properties when o <o, ¢ = ¢, and o > o. A simpler
characterization of g(x€;,of,) as a process is still needed. We remark how-
ever, that for a fixed ¢ > 0, g(eé, 6&,)(¢) is distributed as

inf  {o£,(t — 5) + uy(5)}.

O0=s=st
5. The quepe length process at the ith service channel

Let QY(#) be the number of customers in the standard system at time ¢
which will be processed through the ith service channel and let {Q!} be the
cotresponding sequence of random functions in D where

Qi = Qimt)lym*, 05t=1.

We shall show that @ = (u;/15)f(€) when p = 1.
Our analysis begins with the process I{(f) which we define to be the work
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load (future service time required for all customers in the system) at time ¢
which will be processed through the ith service channel. Define the corre-
sponding sequence of random functions {L} in D by

L",? = L(ndfynt, 0<t1s1.
The first lemma is an immediate consequence of the queue discipline.
Lemma 5.1. If p 2 1, then p(Li, I} =0, i,j=1,--,s.

Proof. Since a waiting customer goes to the first available server, If (nf)
and I{(nt) can differ at most by a potential service time. Hence, we have

p(L, L) < ( max Ufc/?n*) V ( max oyfyn* ) .
1 Sk SSi(n+0i(m)) ) 1SRESI(n+0(n)
Since 8(n)/n = 0, S (n){n = u;, and max ¢,<.vifyn* = 0 for any ¢ > 0 and
all j (j = 1,---,5), we have p(Ii, ) = 0.

Lemma 5.2. If p =1, then P 0L, 10D = 0, i, =1,-,5.

-Proof. First we relate Q'(®) to L(2). Let B'(¢) be the total number of cus-
tomers which arrive in (0, ] and are processed through the ith service channel.
Then it is easy to see that

Bl
(5.1) L@y = oo+,
k=B -0 —~1]1" +1

where ri(t) is the residual service time of the customer being served at time ¢,
and {vi} are the actual service times in the ith service channel. Since

sup r(nt) £ sup o},

) 0551 - 1ZkZBi(n)
and
f
By _ A0 _
n n

the maximal residual service time will be killed by the factor n—*, so we omit
it' from here on. We thus can write

Bi(nt)

E(nfyn* = (1/yn?) Z W= 1 )+ Ay [Q1(nd) - 1T i .

k= Bnt)—[Q{n)— 13* +1

After dro.pping_ some terms of order n—*, this leads via the triangle inequality to

L ) . , Bi(at) e
P 0L 110D < p(L, By +  sup [I(lhm*) | by W~ w1
. . 0se=1 k=Bin)—[Qi(nt)}— 1]+ +1
] . Bt(nt) i g
—apy T of-u)-
k=BNrt)y=[Q/(nt)—1]1*+1
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The first term on the right converges in probability to 0 by Lemma 5.1. Thus
it will suffice to show that

Bi{nt) .
(1/pnt) > (vk — o ")

k=Bi(nt)—[Q}(nt)— 11+ +1

sup = 0.

O0=sr=s1

This we shall do by exploiting the C-tighiness of the partial sums of
X! =9l —u ' (k=1,2,---) which holds by virtue of Donsker’s theorem
(cf. [1], page 137) and Lemma 3.1. Now define events 4,,, B,, C,;, and D,
as follows:

Bi(nt)
. . -1
4, = |2 sup [(tpmd) X Gh-aze,
05l k=B'(nf}—Q'(n1)—l]++l

051

g

sup [Q'(nt) — 117 = ms],

0=rs51
= 8},

where S; = Xi + - + Xi, X = vl — p7", and S} = 0.
Observe that 4,, € B, U-C,; U D,;, for all n, § and ¢, so that

and

B, = [co: sup B'(nf) = 2/111},
{ ISE.m] — S;-m»]

Dnﬁz =

w: sup ;
. osts21 ! Vils

We now show that, for any positive ¢ and #, there exists an n, such that
P(A,,) <7 for n = ny. Since supyg, < Bi(nt) = Bi(n) < A(n), and A(n){n = 1,
there is an n, such that P(B,) <#/3 for n = n,. Using the tightness of the
random functions induced by the sequence of partial sums {S;}, we
know that there exists-a § (0 <& < 1)-and n, such that P(D,,) <#/3 for
n 2 n,. Since Q, = f(&) by Theorem 3.1, we may apply the continuous map-
ping theorem to assert that sup,<,< O(nf){ynt converges to a non-degenerate
timit. Hence, supg<,<,Q(nt)/n = 0. Therefore, for any fixed § > 0 (that needed
above), there exists an n, such that P(C,;) < nf3. Finally,if ng = n, V n, V n,,
P(4,) <n for n = ny. '

Lemma 53.. If p =1, then p[(u;/)Q,, Q5] =0, j=1,-,s.
Proof. It suffices to show that p[Q,, (u/1)QF] = 0, but

o [ oGl = ofot 4+ 00 (E)ote -+ (E)o!

1A

by Lemma 5.2
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Finally, we have our desired result.
Theorem 5.1. If p =1, then Q) = (u/)f(€}, i=1,-,s.
Proof. Apply Theorem 3.1, Lemma 5.3, and Theorem 4.1 of [1].

6. The load and waiting time processes

In Section 5 we introduced the load at the ith service channel, I(7). The
total Ioad for the entire system, L(f), is obviously just I}(f) 4 - + (). In a
single-server queue Ii(f) = L(f) is just the virtual waiting time, W(t), the
time a potential customer arriving at time t would have to wait before reaching
the server. Here W(f) = min, ¢;fZ/(#)}. In this section we obtain functional
central limit theorems for L(t), L(z), and W(f) when p = 1 and all servers
are identical.

The total load can be expressed as

A® s
L{t) = Zuy + X rfn,

i=A—[G(N—5s1t+1 F=1
where the {y;} are actual service times and rgz) is the residual service time
of the customer being served by the jth server at time ¢. Clearly the
[Q(r) — s]* complete service times are independent of [Q(f) —s]*, but if
we allow different servers, as we have so far, then the {s;} are in general
neither independent mor identically distributed. If we look at IXf) [see
(5.1)] instead, then the [Q'(f) — 1]* complete service times are iid., but
these service times are not independent of [Q'(f) — 1]+ - Therefore, we restrict
our attention to the case in which all servers are identical; then, the [Q() — s]*
complete service times in L(f) are ii.d. and independent of [Q(f) — s]*. As
we have seen before, the residual service times will be killed when we normalize
by n™%, hence we shall ignore them. :
- In the usual way, define the sequence of random functions {L,} induced
in D by L(t) by :

L, = L(n)/yn*, 0=¢=1.

Theorem 6.1, If the service channels are identical and. p = 1, then

L, = (/) (®). |
We shall break up the proof of this theorem into a number of lemmas.
First we show convergence at a single time point.

Lemma 6.1. If the service channels are identical and p = 1, then

. L(nt)lyn* = su~ Y (€)(D) for all te[0,1].

Proof. If Q(nt) > s, then we can write



Multiple channel gueues in heavy traffic. I 167

Lin)) _ Q) [0mo)—s]* . Lint)
wnt yn*fL Q(nt) [0ty —s]+

From Theorem 3.1 we know that Q(nf)/ynt = f(£)(t) through an application
of the continuous mapping theorem with the projection #,: D — R, defined
for any xeD by n(x) = x(¢). For t = 0, L{0)/yn* = 0 = su=*f(&)(0) for
ail n. Thus, it suffices to consider from here on only ¢ > 0. Since f(&)(¥) has
no atom at zero, Q(nf) = + oo which implies that [Q(nt) — s]+/Q(nt) = 1.
Furthermore. the weak law of large numbers implies that L(nf){[Q(nt) — s]*
= sp~'. Using Theorem 4.4 of [1], we obtain

(o)~ 51" Lo ]
(omommt, D=L, 2B ) = GOO, L.

Finally, an application of the continuous mapping theorem with the function
h:R* - R*, defined for any (x,y,z)eR? by h(x, y, z} = xyz, yiclds the re-
sult.

We now turn to the convergence of the finite-dimensional distributions of

L

ne

Lemma 6.2. If the service channels are identical and 'ph =1, then
[L(nt)fynt, -, L{nt)yn] = [su~'f(®) (Il),---,sp".ff(ﬁ) ()] for all

0=n=t, =2 1.

Proof. From Theorem 3.1 we have [Q(nt))/yn?,---, Qnt)[yn?t] =
[FE @), . f (&) (1)), using the projection n,l,..'.,k:D — R*, defined for any
x€D by 7,0, (X) = [%(2,), -, %(8)]. From Lemma 6.1, L{nt)/[Q(nf)—s]*
= sp~* and {Q(nt) — s]*/Q(nt) = 1 for any ¢ > 0, which implies that

{Lnt){[Q(nt)) — s1* -+, L{nt)/[Q(nt) — 517} = (sju'1 yorysp)

and {[Qnt;) — s1*/Q(nty), -, [0(nt) — s1*/Qt)} = (L,--,1) for £, > 0.
Since L(O)/yn* = 0 = f(£)(0) for all n, the case t, = 0 can be handled sepa-
rately without any difficuity. Theorem 4.4 ‘of [1] again implies convergence
of the appropriate joint distributions in R**. The proof is completed by ap-
plying the continuous mapping theorem with the function h: R* = R*, defined
for any (xia 3 Xgs Y177 Ve 215 "'!zk)ERak by h(xb"':xk: Vi7" Ve 21, "'!zk)
= (X1P1Z1s " BdicZa) -

The remaining step in the proof of Theotem 6.1 is to show that {L,} is tight;
(cf.'[1], Theorem 15.1). From. Theorem 15.5 of [1], it suffices to show that,
for any positive € and 5, there exists'a § (0<5< 1) and an ny such that
Plw (B ze}snfornzng.

We shall use an argument similar to that used in Lemma 5.2.

Lemma 6.3. The sequence {L,} is tight,
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Proof. Begin by using the representation
Atn)

Lint) = z @ — s + [Q(nt) — sTHsu™ "
k=A(m)—[Q{n) =51+ +1
Thus
: Linf)— L <0 -
sup | HO_LOD | oo qup [ty S )
DETRES] m 0stst k=A(nt)—[Q(nt)—s1+ +1 :
lz—¢t189
—1 | Q)= Qnr) | | 2sp7!
+ sup s 1' + .
og:.gﬂ . ynt ynt
[t—t}=s8

The last term on the right goes to zero and we ignore it. Since Q, = f(&) with
f(®eC, Lemma 3.2 gives C-tightness for {Q,}; that is, for any positive ¢
and 7, there exists a §; (0 < &, < 1) and an n, such that

Qnt) — O(nr)
P{f;:;%; ¥ ’ = 5/2] < nf2

for n = n,. Furthermore,

A(ne) ) '
Plasp |mh 3 (=5 [z o2 | sz
O=ses1 k=A(nt)=[Q(n)~s]+ +1

for n = n,, for sufficiently large n,, by an argument exactly like that used
to prove Lemma 5.2. Thus P{w,(6) Z &} <y by taking & =6, and
ng =n;V n;. .
Combining Lemmas 6.2 and 6.3 yields Theorem 6.1. From here it is easy
to obtain the f.c.lt.’s for L(#) and W(?). Define the random function W, by
W, = Watfyn*, 0=2t£1.

Theorem 6.2. If the service channels are identical and p =1, then
L, = i f(€) and W= u~'f(£).

~ Pfoof. From Lemma 5.1 we know that p(Li, L) = 0 for i,j = 1,---,s.
Since

disi, LYy X d(L, ) £ X oL, L),
=1 i=1

d(sL!, L) = 0 and the first result follows. On the other hand,

dW,, L) £ max d(I[,L)=0,

T1siss

and the second result follows,
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7. Embedded sequences

A standard method of analysis in queueing theory is to study certain em-
bedded sequences which are obtained by looking at the continuous-time
queueing processes only at arrival points or only at departure points (cf. [9],
page 38). Usually this is done to provide a more tractable process than the
original one, in particular, a Markov process. For example, in the GI/G/f1
queue the waiting time of the nth customer, W,, is often studied because
{W)} is a Markov process while W(t) is not. Although our analysis makes
no use of such Markov properties, we shall indicate in this section how f.c.L.t.’s
can be obtained for embedded sequences. We illustrate the idea by considering
the waiting time of the nth customer, W, in the standard queueing system.

We begin by introducing the notion of an inverse random time change.
The notion of a random time change is discussed in Chapter 17 of [1]. As
in [1], page 144, we let D, consist of those functions ¢ in D that are non-
decreasing and satisfy 0 = ¢(#) < 1. It is easy to show that D, is a closed
subset of D. Therefore, D, is a complete separable metric space with the
Skorohod metric d of D. The function ¢ represents a transformation of the
time interval [0,1]. .

Assume that {X,} is any sequence of random functions in D and {®,} is any
sequence of random functions in Dy, with X, and @, defined on a common
domain for each n. Assume that the prospective limits X and @ are also
defined on a2 common domain. Billingsley ([1], page 145 and Theorem 4.4)
has shown

- Lemma 7.1. (Billingsley) If X, = X with P{XeC} =1 and d(®,,¢) = 0,
where ¢ is a constant function in C M Dy, then X 0 ®, = Yo ¢, where

X,00, = X, (@), 0=t=21,

M

and
Xo¢= X)), 0=t=1.

We shall find a converse of sorts to Lemma 7.1. We want to show under
appropriate conditions that X, = X if X, 0®, = Xo ¢. For this purpose,
we introduce the inverse random time change ®~', defined for any random
function ®eDy by

it

i inf[¢ = 0: @) = 7, 0 < ¢t = 1], if the set is non-empty,
O (7)) = { o

1, otherwise,
for 0 = 7 £ 1. For each o, this function will be left-continuous with right
limits. For each 7, ® '(z) is a random variable so ® ! is a legitimate random
function in D§ (cf. [1], page 128), where D§ is just D, with left-continuity
instead of nght-contmulty for all functions. We could define a nght-contmuous
version @1 €D, by

©
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() = lim @7 's), O0=Zts1,
slt
but it is not necessary; we can use ®"*eD§.

Before we state our results, we remark that we shall requlre the limiting
constant function ¢ to be stricily increasing with ¢(0) = 0 and ¢(1) = 1.
This enables us to say that ¢! is of the same form and ¢(¢~'(£)) = ¢ for
all t€{0,1]. Our first tool is

Lemma 7.2. If d(®,,¢) =~ 0 in Dy with ¢ e CN Dy and ¢ strictly increasing,
then p(®; 1,6~ 1) = 0.

Proof. Since ¢ eC, d(D,,¢) = 0 implies p(®,, ¢) = 0. By looking at the
graph of ¢, it is easy to see that, for any sample point w, if p{(®,,¢) <e,
then |®;7'(x)— ¢ '@| < | [r+e]AD—¢ ([zr—elV0)| for any
t€[0,1], so that

(7.1) p@; 1 ¢7h < OSSHEIM"I([T +e]AD— ¢ [z ~el VO

Since ¢ ! is uniformly continuous with ¢ as above, the right side of (7.1)
converges to 0 as ¢ —» 0. Hence, p(®,;',¢™!) = 0 as claimed.
Our main result is

Theorem 7.1. letX,eD, ®,eD,, and ¢ be a strictly increasing constant
function in € with ¢(0) = 0 and ¢(1) = 1. i (D, ) = 0, X,0®, => X0 ¢,
{X,} is C-tight, and P{XeC} =1, then X, = X.

Proof. Let I:[0,1] — [0,1] be the identity function: I(f)y = ¢, 0 2t = 1.

Clearly ¢~ is of the same form as ¢ and ¢ o ¢~ ' = I. Using Billingsley’s
argument ([1], page 145) and Lemma 7.2, we have

X, 09,00, = Xodpogp™* =X
and
D00 > o™t =1

To complete the proof, -we-show that p(X,0 ®@,0 ®"', X)= 0 and apply
Theorem 4.1 of [1]. For all n, § and ¢,

{w: p(X,0 D0 ¥, X) 2 8} <

{w: sup |X,0®,0®;'(1)—X,0®,00,'(s)| =}
s

(JHo: sup | @, 0@, () — t| > 8).

Since IeC, p(®,0®,*,I) = 0. By assumption, {X,} is C-tight. Hence,
o X,0®,0®1, X)) = 0.
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We now return to our queues. Define the random functions ¥, induced
in D by the sequence of waiting times of successive customers, {W,}, as

I’n = W}l.:;t]/}'n*a Oét_s_l-

In the single-channel queue a random time change was used to obtain weak
convergence theorems for W, from known results for ¥, {(cf. [12], page 125).
We now go the other way. Define a random time change ®, based on the
arrival process A(t) as follows.
= _ A
d)rl = (Dn(t) - nl
Since A,=-¢, ®, = I. Thus, by Theorem 7.1, in order to demonstrate the con-
vergence of {Y,},it suffices to show that {¥,}is C-tightand ¥,0 &, = Yo I =Y
for some ¥ such that P{Ye C} = 1. Now observe that if A(n) < }_.n, then
¥,,0®, = A-*Z,, where

Zn = H?:{I(nl)/?néa 0 g f é 13

Al, 0=,

and
Kln = mant]l?(ln)&.s 0 é t é 1 3

but since A(n)/nd = 1, rather than some number less than 1, we cannot fol-
low [1], page 149 and assert that ¥,,0 ®, = 1-*Z, for all sufficiently large n.
However, we can show that p(Y,,0 ®,, 2-*Z)) = 0. Finally, we show that
p(Z,, W) = 0 and complete the proof using Theorem 6.2. In this manner,
we obtain

Theorem 7.2. If the service channels are identical and p =1, then
Y, = Q).

Proof. By Theorem 6.2, W, = u~'f(£). If we can show that p(A"* W,, Y;,0®,)
= 0, then by Theorem 4.1 of [1], ¥;,0 ®, = (u~#) f(£) (recall that 1 = p},
so that Theorem 7.1 can be applied to give ¥, = u~¥f (&), which in turn
implies that ¥, = u~1f(£). The necessary C-tightness for {¥,,} is obtained
with the relation

{Wy,,(36) = &} = {p(®@,.1) > 8} U {Wy, 00 () 2 ¢}

Therefore, it suffices to show that p(A-*W,, ¥;,0 @) = 0. We shall show
that p(W,,Z,) = 0 and p(A-*Z,, ¥,,0 ®,) = 0. Define events A4,,, B, and

C,s as follows. :
Ay = {a): sup I %| = 8},
™

0sts1

W{nt) — W{ns)

= 8} )
ynt '

B = {m: sup
05551
1s—t] <8

and

O
I

{w: sup |nt— A(nt)| 2 nd}.

o=si=1
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Observe that, for all n, 4, and &,

Anz C Bm’r: U (f‘mS
so that
P(Anz) é P(Bmﬁe) + P(Cnﬁ)

For any & > O, P(Cm,) — 0 since

sup |nt~A(nt)| £ max { max u;’}
0si=1 18jsr  isAlm)t+1
which goes to 0 in probability when divided by n*. On the other hand, P(B,;,}
can be made small by employing the C-tightness of {W,}.
Finally, we show that p(A-*Z,, Y;,0 ®) = 0. Since

p(A- *Zm Y, 0®,) = [1/}’(1")*] S“P ] W;x(nr) — WA(nr)Anil

the result follows easily from the C-tightness of {Z,} (in the nelghborhood
of t = 1) and the fact that A(n){An = 1. This completes the proof of the
theorem.
Clearly, other embedded sequences can be handled in the same way. We
could work with other continuous-time processes, such as Q(t) or the de-
arture points mstead of the arrival points.

8. Time of the nth departure

In this section we obfain functional central Iimit theorems for the time
of the nth arrival and the time of the rth departure. We show that weak con-
vergence for a sequence of random functions generated by a counting process
(a renewal process or more general counting process) implies weak- conver-
gence for the corresponding sequence of random functions induced by the
partial soms from the sequence of times between cvents in the counting process.
In particular, we obtain a converse to Theorem 17.3 of [1]. |

Let {u,} be a sequence of positive random variables (not necessarily in-
dependent or identically distributed) and define the- cquntin'g_ process

: max{k:u, + - kU S ], uj £t
No) = | -
¢, 0, >t

We shall assume the existence of positive constanis v and ¢ (not the same
o used in Section 2) such that N, = Y, where Y is any random function in
D and . ‘

N, = [N(nt) = v 'n)j(»~3 2n)* 0=t=1.

Smce N(t) has unit Jumps it is easy to show that ¥e C. The random functions
i, DI, A,, and D, corresponding to the counting processes in each channel
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or for the entire system are examples of such random functions N,. In those
cases the limit ¥is always the Wiener process &, or a function of two Wiener
processes. This will usually be the case, but we allow for slightly greater
generality.

Qur object is to establish a fic.L.t. for X, where

Xn = S[m]{O'ﬂ*, 0 _i:._ H _—<. 1,

and S, =uy + - +u; — kv, So = 0.

The simplest case involves {u,} i.i.d. with finite variance so that N(t) is an
ordinary renewal process. We already know X, = £ in this case. Our aim
is to obtain limit theorems based on more general counting processes. For
example, the net arrival stream is the superposition of r renewal processes

and the net departure process is even more complicated. Our main result is
Theorem 8.1. If N, = Y then X = —Y.

Proof. Observe that

N, = [Nt — v 'nt))(v"?c*n)¥, 0211,
= (=vh [nt—vf\i(nt)]., 0<t<i,
an
= —viB,,
where - nt - vN(nt)
B"E["—'_—an* ] 0st=1

Since N, = ¥, B, = —v~*Y, Define the random function Z, as

N{nt)
Z, = ZA{u—vfent, 0=Zt=1.
i=1
The proof is completed by showing that 4(B,,
time change (Theorem 7.1).

Observe that
d(B,,Z,) £ p(B,,Z,) = 1/(on?)

Z,) = 0 and applying the inverse

sup
1SiSN(m+1

u‘- = 'Un, 5a

Since Ye C, we have C-tightness for {N,} by Lemma 3.2. It is easy to show
that this C-tightness for {N,} would be violated if U, did not converge to 0
in probability. For edch n 2 1, there are time points t; and ¢, in [0,1] such
that |1, —t;| = oU,/n* and N(ntz }— N(nt,) = 0. Thus

U, -

sup N(nt) -—,-N(ns); n{t—s)y=* > n*s A ,
05,051 n . Vv N
js=1] <5
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so that U, must converge to O in probability. Hence Z, == —v—*Y by Theorem
4.1 of [1]. :
Now we apply the inverse random fime change. Let ®,€ D, be the random
change induced by N(f) where
o, = 1 osigi

" n

Since N, = ¥, p(®,,I) = 0. Let
Xo= S o —_n 0=t £

We cannot assert that

VZ, = X,00,,
v

but it is easy to show that p(viZ,, X0 ®,) = 0 because
PO Zy Xy 0 @) = v sup | Z,(0) — Z,(z,)|

T.5¢t=1
inf{s = 0: N(ns)>[nfv], N(@n)>[nfv]
= {1, N(n) = [nfv].

where

The desired result is obtained from C-tightness of Z, and the convergence
of {r,} to 1 because p(®,,1)= 0.

Hence,
X%O(I),,:?- —¥Y = —-Yol,
so that by Theorem 7.1,
X,V,=>- —Y and X, => -7
as claimed.
The necessary C-tightness for {X,,} is obtained by virtue of the relation
{wy.;,(30) Z 8} = {Wx ) ,0(8) = g} W {p(®,, 1) > ¢}.
Corollary 8.1. If N, = £, then X, = .

Proof. From the symmeiry of the Wiener process, —& ~ &.

We now apply Theorem 8.1 to the standard multiple channel queueing
systern. Let ©4 be the time of the nth arrival (from all incoming channels)
and let T2 be the corresponding random function in D where

T4 = [tfg— A7 nt)j(PPo®n)¥, 0=t =1.
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Recall that

I

A, = [A(nt) — Anf]fant, . 0= t=1,

so that v = 1/1 and ¢? = A%«?. Also let ¢4’ be the time of the nth arrival
in the ith arrival channel and let 7' be the associated random function in
D[0,1] where

T4 = [ofy — A 'ni]f(R2edn)t, O0=i<1.
Theorem 8.2. In the standard multiple channel queue, T/ = £ and T % £.

Proof. Since Af, = ¢ and A, = &, the theorem is an immediate conse-
quence of Theorem 8.1.

Now let 70 be the time of the nth departure from the entire system and
let T2 be the corresponding random function in D[0,1]. We have

T? = [thy — £ ndj(@Pa’n)t, 0s5t<1,

since D, = [D(nt) — pni]in*, 0 St < 1.
Also let D] be the random function corresponding to the departure process
from the jth service channel where

Di = [D(nf) — pn)}n*, 0=t=1.

Let 2’ be the time of the nth departure from the jth service channel and
let T2 be the corresponding random function in D where

T = [ton— u; 'niliwieln)®,  0s:g1.

Theorem 8.3. If p>1, then D} = g, TP = ¢ and T? » ¢,
J=1,s.

Proof. In Theorem 4.2 we showed that D, = of. Since p > 1, it is easy
to show that p(DJ, 6,5} = 0 for j = 1,---,5. Therefore, D, = o;¢. The rest
follows from Theorem 8.1.

Now consider the case p = 1. By Theorem 4.1, we know that D, = g(af,,0f,).
Hence, Theorem 8.1 gives us

Theorem 84. 1If p =1, then T,” = —g[(#/o)¢y,&.].
We have not obtained the limits for D and T when p = 1,

9, Related functions

Perhaps the most important feature of the weak convergence theorems
is that they lead immediately to limit theorems for other related quantities
of interest as a consequence of the continuous mapping theorem. In fact,
Theorem 5.1 of [1] provides a limit theorem corresponding to each measurable
function f on D which is continuous almost everywhere with respect to the
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limiting measure: if X, = X in D, then f(X,) = f(X). In this section we
exhibit a few useful functions and the resulting weak convergence theorems.
It is also possible to obtain limit theorems corresponding to a sequence of
measurable functions {f,} on D which converges to another function f, so
that f,(X,) = f(X)if X,, == X in D, but we shall only consider a single function
here.

For any k and any set of & time points 0 = ¢; £ --- =1, = 1, the pro-
jection m,, _, : D — R*, defined for each xe D by =, __, (x) = [x(t,), -, x(t)],
is a -measurable function on D which is continuous on C. Since the limits of
all our weak convergence theorems are in C, this gives us convergence of all
finite-dimensional distributions as an immediate consequence of our weak
convergence theorems in D. Corollaries 2.1 and 2.2 are special cases of this
result,

One is often interested in the maximum number of customers in the system
during some time interval or the maximum waiting time of the first n cus-
tomers. When p = 1, limit theorems for such quantities are easy to obtain
using the weak convergence.

Theorem 9.1. If p = 1, then
(pifyn®) max {W;} = sup |&(B)],
15ksn ozest

and
(llvn*)ozlrlsp {00} = ossutgllﬁ(t)l,

where

P{ sup |&®)| € x} = 1.— (4/m) E [(= D¥(2k+ D)]exp{ —[n*(2k + 1)?/8x*]}.
0=r51 k=1 .

Proof. Use the continuous functional h:D — R, defined for any xeD
by h(x) = supo<.<x(£). Since f(&) ~ |&|, ALF(E)]~ h[|&|]. The distribu-
tion of the limit is displayed in [1], page 79. :

Many queueing quantities of interest, such as the time until the system
first becomes empty or the number of customers served before the system
first becomes empty, can be expressed in terms of first passage time functions.
Such functions are measurable on D and continuous almost everywhere with
respect to Wiener measure. Hence, we can obtain limit theorems for these
quantities. Let D, be the (closed) subset of D consisting of those x € D with
x(0) = a. Let T,: D, — R be the first passage time to 0; that is, for any xe D,
let To(x) = inf{z 2 le(‘t) < 0} where we assume the infimum of an empty
set is one. We can use this function to obtain
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Theorem 9.2. If p=1, then for any a>0and any t, 0 =t <1,

lim P{(1/n)inf[z = 0: Q(z) = 0] < t{Q(0) = aynt}

n—a

= lim P{(1/n)inf[k 2 0: W, = 0] < t|W(0) = ayu"int}

n-too

(2fmtyt f - exp{— y?/2t}dt.

a

Proof. The theorem says that Ty(Q, + a) = To(€ + a) and To(ulY, + a)

= To(f + a). Observe that @, +a, ptY¥, +a, and & + a are all random
" functions in D,. Since Q, = f(&) and ¥, = u~ (&), 0, + a = f(E) + a and

1Y, +a =>f(E) + a. Finally, T,(f(&)+ a)) ~ To(£ + a)so that thé proof is
finished using Theorem 3.1 of [1]. (For the passage time disiribution of the
Wiener process, see [5], page 25. For further discussion, see [12], page 157.)
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MATHEMATICS IN THE ARCHAEOLOGICAL
AND HISTORICAL SCIENCES

The Royal Society and the Academy of the Socialist Republic of Romania *

have agreed in principle to arrange an Anglo-Romanian Conference with inter-
national pérticipati on on Mathematics in the Archaeological and Historical Sciences,
to be held in Bucharest in September 1970 (Opening Session: 16 September).
Excursions to archaeological sites near Bucharest and on or near the Black Sea
Littoral will be organised.

The principal themes of the conference will be as follows:
(a}) Typology and Taxonomy;
(b) Chronology and'-Seriation;

(c) the mathematical problems common to Population- Genetics, Historical
Demography, and the Linkage of Manuscripts, etc.

A First Communication giving preliminary details will be sent to those interesied,
who -are now invited to contact

either
Dr. F. R. Hodson, Scientific Secretary, MATH. ArcH. HisT. CONF., Institute
cf Archaeclogy, 31-34 Gordon Square, Lonpon, W.C.1., UK.
or '

Dr. P. Tautu, Organising Secretary, MATH. ARcH. HisT. Conr., Cenfre
of Mathematical Statistics, 21 Calea Grivitei, BUCHAREST 12, Romania,

as soon as possible.
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