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Efficiently Providing Multiple Grades of
Service with Protection Against Overloads
in Shared Resources

Gagan L. Choudhury
Kin K. Leung
Ward Whitt

Multiservice telecommunications systems require different grades of ser-
vice for different customers, including protection against overloads
caused by other customers. One way to provide multiple grades of ser-
vice, including overload protection, is by partial sharing using upper-limit
(UL) bounds, which specify an upper limit on the number of requests a
customer is allowed at any time, and guaranteed-minimum (GM) bounds,
which guarantee that there will always be space for a minimum number of

requests from that customer. These bounds achieve effective separation
with sharing and can be efficiently enforced and analyzed. Analysis is
made possible by a.new algorithm for computing blocking probabilities
based on numerical transform inversion.

Resource-Sharing Problems

An important feature of modern
multimedia telecommunications systems is
the need to simultaneously satisfy demands
from different customers who have very dif-
ferent quality and bandwidth requirements.
A fundamental problem is to find an effective
way to:
- Provide appropriate grades of service to

different customers,
- Protect against overloads caused by other
customers, and

~ Guarantee performance under normal loads.

Some customers will require high-
quality service—even in the presence of sig-
nificant overloads by other customers—
whereas other customers might accept
occasional degradation in service—provided
that the service is available at a lower cost.

This paper addresses the multiser-
vice problem by considering a mathematical
resource-sharing model, which is a general-
ization of the classical Erlang loss model.1'11
The resource-sharing model includes multi-
ple resources, each containing multiple
resource units that provide service to multiple
customers. Each customer is a source of a
series of requests, requiring a number of
resource units from each resource. This
number of units could vary from customer to
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customer, and from resource to resource.

If all network requirements are met
when a new request arrives, then the system
accepts the request, and all the required
resource units are held throughout the
request holding time. Otherwise, the request
is not admitted, and is said to be blocked.
(The mathematical model is described in
more detail in Panel 2.)

Clrcuit-Switched Networks. In a stan-
dard application to a circuit-switched
telecommunications network, the resources
are links, and the resource units are the cir-
cuits on these links. For example, each cir-
cuit might be a 64-kb/s line. The customers
subscribe to different classes of services,
such as voice, data, and video, and service
requests are made via dial-up calls. These
calls will require one—or more—such cir-
cuits simultaneously (often called N x 64
kb/s service) on several different links,
depending on the service and origin and des-
tination of the call. Thus, customer needs
may differ because of the type and grade of
service requested, and the routes required
through the network.

A simple circuit-switched telecom-
munications network is depicted in Figure 1.
This figure shows 5 nodes (A through E) and
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Table 1. Example of Network Routes and Links.

Route ID | 1 2 3 4 5 6

Link ID 1 2 L2 3,5 | 45 13,5

Figure 1. In a typical loss network, the criti-
cal resources are the links if the network is
circuit-switched, and both nodes and link~ f
the network is packet-switched.

5 links (1 through 5). (In a circuit-switched network, the
switches generally are sized to handle all traffic offered
by the links; thus we are not concerned here with any
blocking problems posed by the switch.) This network
serves multiple customers, with the customer being
characterized partly by the set of links or route that the
customer requires. For example, in the example of
Figure 1, there might be six routes requiring the subsets
of links shown in Table L.

Certain calls, such as dial-up video teleconferenc-
ing, may require up to six circuits on each link, while stan-
dard voice calls require only one circuit per link. Let’s also
assume that the network customers have subscribed to
one of two classes of service, video conferencing or voice
only (which can include low-speed data and facsimile) on a
particular route.

The customers on Routes 1, 3, and 6 all use Link 1,
and, thus, share the available circuits on that link. When a
video call is attempted on Route 6, it requires six circuits
each on Links 1, 3, and 5. If, at the time of the attempt, suf-
ficient free circuits are not available on any of these links,
then the call is blocked. Unless special measures are taken,
the video calls on Route 6 will clearly experience much
higher blocking than the voice calls on Route 1.

Or several video conferencing customers could
block many subsequent customers from the network
because of the high number of circuits and links they occu-
py, blocking even the single-circuit voice calls. Thus, the net-
work provider, in addition to providing the classes of service
customers need, will also want to provide each class of cus-

tomer protection against overloads from other customers.
Packet-Switched Networks. In a broadband inte-
grated-services digital network (B-ISDN) supported by
asynchronous transfer mode (ATM) technology, mes-
sages are broken up into small packets called cells. The
resources are both nodal switches and network transmis-
sion facilities, and the resource capacity (units) may be
the bandwidth available at these network facilities,
Therefore, both the ATM nodes and links are regarded
as critical resources. Figure 1 can also apply to this B-
ISDN example.
In contrast to a circuit-switched network, where
the request is a single dialup call to establish a dedicated
pathway and bandwidth, a B-ISDN customer submits »ul-
tiple requests for service during a connection, where the
bandwidth may vary over time. The customers’ requests
could be viewed at three levels:
= At the micro level, where each ATM cell to be transmit-
ted is regarded as a request;

- At a higher level, where each burst of ATM cells is
regarded as a request; or

= At the macro level, where the request is regarded as the
total required effective bandwidths associated with all
bursts of ATM cells within an established connection.”8
Because of this concept of multiple requests
per connection, the probability of a customer experienc-
ing blocking in a shared ATM network could be much
higher than in a circuit-switched network—unless the
system is properly engineered to support a variety of
different traffic characteristics and a variety of different
bandwidth requirements. :
Fundamental Problems. In any system of shared
resources, the resource provider is faced with two funda-
mental problems:
= The first is the obvious fact that resource units are
expensive to provide, so that it is important to have a
network designed with no more capacity than is neces-
sary.

= The second is the probabilistic nature of the problem.
The submission of customer requests and their hold-
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Panel 1. Abbreviations, Acronyms, and Terms

ATM — asynchronous transfer mode

B-ISDN — broadband integrated services dig-
ital network

br — blocking ratio parameter, the ratio of the
conditional blocking requirement to the
nominal blocking requirement.

CP — complete partitioning

CS — complete sharing

customer class — category determined by
service, resource requirement, and possi-
bly quality of service

GM — guaranteed minimum

L — guaranteed-minimum bound

t — trunk reservation thresiold (see Table IT)

TR — trunk reservation

UL — upper limit

x — conditional overload parameter, the per-
centage of overload in the conditional
blocking requirement

ing times are uncertain events that fluctuate over time,
so the actual requirements of the customers cannot be
known in advance.

However, the pattern of customer requests
and request holding times can be predicted in a proba-
bilistic sense. Indeed, it is well known that probabilis-
tic models can be used to characterize customer
requirements.

In this uncertain environment, with limited
resources, some blocking of customer requests becomes
inevitable. It is thus customary to characterize the quality
of service received in terms of a customer’s request block-
ing probability, that is, the long-run proportion of requests
that are blocked in a particular operating regime. If a

request blocking probability is too high, then it fails to sat-

isfy a customer, who naturally wants the request blocking
probability to be suitably low. On the other hand, if a
request blocking probability is too low, then more capaci-
ty may have been provided than is needed, a cost factor
for the service vendor.

Upper-Limit and Guaranteed-Minimum Bounds
With different kinds of customers, it is often
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very important to protect each customer from the over-
loads of the others. If all customers are allowed full access
to the resource, one or more customers could actually
submit requests at rates higher than their negotiated
rates, which can cause other customers to experience
unacceptably high blocking probabilities.

One way to protect customers from overloads is
to partition the resources into separate portions dedicated
to each customer, but such a partitioning tends to be inef-
ficient, because the benefits of sharing are lost, a concern
which we will discuss later. However, there are ways,
without partitioning, to provide different grades of service
to customers sharing a resource—including protection
against overloads caused by other customers.

Trunk Reservation. One commonly used control
scheme is trunk reservation (TR), which depends on a
reservation parameter for each resource and customer.

A new customer request is admitted if, after admission of
the new request, the remaining free capacity of each net-
work resource would be greater than or equal to some
specified threshold, for example, five percent of the total
number of resource units. If the new request for
resources, when added to the existing customer resource
demands, would leave less than the threshold, then the
request would be blocked. The percentage parameter
would be different for different customers.

Upper-Limit and Guaranteed-Minimum Bounds. We
propose another method to protect against overloads—
each customer is assigned upper-limit (UL) and guaran-
teed-minimum (GM)- bounds on the number of requests
that can be in the system simultaneously at any time. The
UL bound puts an upper limit on the number of requests
from that customer that can be in service at any time. The
GM bound guarantees that there will always be resource
units available to serve a specified minimum number of
requests simultaneously from that customer. The UL
bound limits the possible overload from that customer,
while the GM bound protects that customer from over-
loads from all other customers.

In a simple network, where there are only two cus-
tomers, which might each be a class of customers, a GM
bound for one customer would act as an UL bound for the
other customer. In that setting, there are actually only two
distinct control parameters, either the two GM bounds or
the two UL bounds. However, for a more realistic example
with more than two classes of customers, the UL and GM
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bounds provide more sophisticated controls.

These UL and GM bounds provide what can be
called significant separation with sharing, which will be
referred to as partial sharing. It is easy to see that partial
sharing with UL/GM bounds can include as special cases
both complete partitioning (CP) and complete sharing (CS).
The CP case is equivalent to having separate resources for
each customer, while the CS case is equivalent to not hav-
ing any sharing bounds.

Thus, partial sharing with UL/GM bounds neces-
sarily can perform as well as either CS and CP. Indeed,
our object is to show that with appropriate UL/GM
bounds, partial sharing performs significantly better than
both CS and CP in many scenarios.

In order for the UL/ZM bounds to be effective,
the appropriate UL/GM bounds need to be identified in
any application. This problem is solved by the develop-
ment of two appropriate algorithms:
= First, we developed an algorithm to compute the block-

ing probability of each customer for any specific assign-
ment of UL/GM bounds. (See the section “Algorithm to
Compute Blocking Probabilities” towards the end of
this paper).

- Second, we developed a heuristic search algorithm to
find the UL/GM bounds that efficiently meet specified
blocking probability requirements. (See the section
“Search Algorithm for UL/GM Bounds” at the end of
this paper.) '

The concept of UL/GM bounds itself is not new.
Indeed UL/GM bounds were considered to analyze a
node in a store-and-forward computer network 15 years
ago by Kamoun and Kleinrock,? but the UL/GM bounds
have not received much attention since then. Our main
contribution is to show how UL/GM bounds can be easi-
ly enforced and analyzed. The UL bounds can easily be
enforced if the resource provider keeps track of the
number of requests from each customer in service. It is
not so obvious how to efficiently enforce the GM bounds,
but it can be done. Panel 3 shows how to efficiently
enforce both bounds.

We will also compare trunk reservation to partial
sharing with UL and GM bounds. In some scenarios, TR
performs significantly better than the UL/GM bounds, so
it is an important control to consider. In other scenarios,
however, the UL/GM bounds perform significantly better.
A major advantage of the UL/GM bounds over TR is the

ease with which one can calculate the exact customer
blocking probabilities for UL/GM policies, even when
there are many classes of customers.

Specifying Grades of Service. We also propose a
new way to specify customer grades of service. The
grade of service is partly specified by stipulating the UL
and GM bounds, but as indicated above, the actual per-
formance is usually characterized in terms of request
blocking probabilities.

Nominal Blocking Requirements. 1he customary
procedure is to specify nominal blocking requirements
on customer requests under normal conditions. Normal
conditions imply that no customer is in overload—that
is, no customer is submitting requests at a higher rate
than was established when the customer subscribed to
the service.

Conditional Blocking Requirements. The pI‘OpOSEd
new procedure is to specify, in addition to nominal block-
ing requirements, conditional blocking requirements on
customer requests, which are blocking requirements
conditional on the other customers being in some pat-
tern of overload. For example, a conditional blocking
requirement could be imposed if a condition exists
whereby any one other customer is submitting requests
at x percent above its nominal rate. For another example,
there could be a conditional blocking requirement
imposed because all other customers are in overload—
that is, each other customer is submitting traffic at a rate
of y percent above its nominal rate.

In our previous example, the two classes of cus-
tomers—video conferencing and voice calls—were
based on the service provided. However, a customer
class also could be based on the quality of service.
Thus, the service quality that the customer subscribes

" to and pays for could determine the degree of blocking

that the customer can experience.

The use of conditional blocking requirements,
as well as nominal blocking requirements, may make it
necessary to provide protection for each customer
against possible overloads caused by other customers. It
is important to note that this feature is not provided by
trunk reservation. For example, with two customers,
trunk reservation protects only one of the two customers
against overloads by the other.

Next, we consider numerical examples to show
how the UL/GM bounds perform.
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Comparing Sharing Policies: Symmetric Examples

This section and the next present numerical
examples to illustrate the value of partial sharing with the
UL/GM bounds. These examples—made as simple as
possible to focus attention on the sharing policies—have
only a single resource and two customers (each of which
could actually be a class of customers), whose requests
require only a single resource unit. Since the case of two
customers typically corresponds to two classes of cus-
tomers—such as voice and dial-up video—here we refer
to two customer classes.

Let’s assume the resource has a capacity of 100
resource units and all the holding times have mean one
time unit. (In actual applications, there is a wide range of
possible time units, from milliseconds to seconds to
hours—or even months.)

For those who wish to examine much larger
examples that illustrate the power of the inversion algo-
rithm, see two other papers.!0.11 There, the authors dis-
cuss a single resource with a capacity of 106 resource
units, 3 x 104 customers, state-dependent service rates
corresponding to finite multiserver queues, and cus-
tomer requests that require multiple resource units. In
contrast, the examples in this paper are sufficiently small
that they can be solved for any sharing policy by solving
the global balance equations of the Markov chain
(exploiting sparsity).

The literature available on different sharing poli-
cies assumes only nominal blocking requirements or that
the objective is to maximize the long-run average rev-
enue in one specified operating regime (see Chapter 4 of
Ross?®). In contrast, we consider conditional blocking
requirements, and show that the UL/GM bounds are
especially useful for efficiently satisfying the conditional
blocking requirements.

The comparisons in this section are for symmetric
examples: The two classes of customers have common
traffic parameters and common blocking requirements,
and all requests require only a single resource unit.

The purpose of the experiment was to deter-
mine the maximum possible total arrival rate that satis-
fies the blocking requirements for each sharing policy.
The two customer classes always contribute equally to
this total rate—that is, the arrival rate of each is one
half the total rate.

For symmetric examples, the optimal TR sharing
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Figure 2. The maximum permissible arrival rate is shown as a
function of the percentage of conditional overload for the CP,
CS, and UL/GM sharing policies in the symmetric example.
The nominal blocking requirement Is 104 and the blocking
ratio is equal to 10 or 100 for both customers.

policy always coincides with the CS sharing policy. This is
intuitively reasonable, since trunk TR gives preference to
one class over the other and, in a symmetric example,
there is no reason to give such preference. Moreover, for °
symmetric models, the optimal CP policy is always an

even split of the 100 resources.

With two customer classes, the two UL bounds
are equivalent to the two GM bounds, so that there are
only two relevant control parameters. Moreover, for
symmetric models, the optimal GM parameters are
equal. Hence, in this example, the UL/GM control is
specified by a single GM number L, which is applied to
each class. The number of resource units being shared
is, thus, 100 - 2L.

If there are only nominal blocking requirements—
that is, if there are no conditional blocking requirements,
then CS is obviously optimal. Suppose that we set the nomi-
nal blocking requirements at 104, that is, 10+ is the allowed
blocking probability. Then we find that the CS policy sup-
ports a total rate of 69.3 arrivals per time unit, while the CP
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Figure 3. The maximum permissible arrival rate Is shown as a
function of the blocking ratio (br)—the ratio of conditional to

nominal blocking requirement, the same for both customers—

for the CP, CS, and UL/GM sharing policies in the symmet-
ric example. The nominal blocking requirement is 104

and the conditional overload is equal to 50 percent, 100 per-
cent, and 200 percent in the different cases.

policy supports a total arrival rate of 57.7. As indicated
above, without conditional blocking requirements, the opti-
mal UL/GM policy coincides with CS.

Now suppose that we introduce conditional block-
ing requirements. The question is: What arrival rates can
the resource support between 57.7 for all conditional
blocking requirements with CP, and 69.3 for CS without
conditional blocking requirements?

In addition to the nominal blocking requirement
of 104, we now require a conditional blocking probability
for each class when the other class is in overload. In par-
ticular, let’s assume that the blocking probability for each
class must be at most when the other class has an arrival
rate 100 percent above its nominal arrival rate.

There are now two constraints, nominal (104)
and conditional (10-2). As indicated above, we find that CP
still supports a total arrival rate of 57.7, because the nomi-
nal constraint is binding, but CS now admits an arrival rate

of only 56.0, which is a reduction of 19.2 percent from the
previous CS value of 69.3.

On the other hand, the UL/GM policy with a
GM bound L of 43 supports a total arrival rate of 67.2,
which is only 3 percent below the CS value of 69.3 with-
out the conditional blocking requirements. In this case,
partial sharing with the UL/GM bounds permits a 16.5
percent higher arrival rate than CP and a 20.0 percent
higher arrival rate than CS.

More generally, the advantage of UL/GM over
CS and CP depends on two parameters: the blocking ratio
(b7) and conditional overload parameters (x). The block-
ing ratio is the ratio of the conditional blocking require-
ment tc the nominal blocking requirement; normally b7
is greater than 1; here br = 10-2/104 =100. The overload
parameter is the percentage overload allowed for the con-
ditional blocking; here x = 100.

Assuming that the conditional blocking
requirement is greater than the nominal blocking
requirement, the CP policy is independent of the condi-
tional blocking requirement. On the other hand, the
total arrival rate supported by both CS and UL/GM
decreases as the conditional overload increases and the
blocking ratio decreases. Figure 2 shows how the CS
and UL/GM policies depend on the conditional overload
parameters for two values of the blocking ratio, 10 and
100. Figure 3 shows how they depend on the blocking
ratio for three values of conditional overload, 50, 100,
and 200. It should be noted that the optimal GM para-
meter L changes as well, also increasing in conditional
overload and decreasing in the blocking ratio, but the
change is not fast.

When the blocking ratio is very large or the con-
ditional overload is very small, UL/GM behaves like CS.
When the blocking ratio is very small or the conditional
overload is very large, UL/GM behaves more like CP.
However, as the conditional overload moves to infinity,
UL/GM can perform much better than CP, because the
GM bound alone can provide adequate protection against

"infinite overload from other customers. Indeed, the case

of 500 percent conditional overload in Figure 2 closely
approximates infinite conditional overload.

Figures 2 and 3 clearly show that there is a sub-
stantial region where UL/GM is significantly better than
the best of CS and CP. Since CS coincides with the best
TR policy for these symmetric examples, we see that
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Table 2. Maximal Permissible Arrival Rate as a Function of thev Sharing Policy and Overioad

Parameters.
Overload
parameters Resource sharing policy
50 % conditional overload CS cCp [ TR ty | UL/GM Ly L, UL/GM
(41,53)
Blocking 1 48.6 353 | 55.4 4 56.8 40 4 35.9
ratio br 3 500 | 553 | 575 4 585 4 54 575
10 51.7 55.3 | 605 5 59.9 39 23 9.4
30 53.3 553 | 64.5 5 61.3 38 2 99.7
100 55.4 953 | 68.3 5 61.5 38 51 59.8
100 % conditional overload
Blocking 1 40.5 55.3 | 46.1 4 559 43 35 53.8
ratio by 3 47 | 553 [ 481 4 | s 0 54 55.8
10 43.1 533 | 50.8 4 8.1 41 53 38.1
30 44.5 553 | 54.0 4 60.0 40 53 59.6
100 46.2 553 | 58.9 4 61.4 38 51 99.6
200 % conditional overload
Blocking 1 30.4 55.3 | 349 3 55.3 44 56 525
ratio br 3 33 | 553 | 364 3 | 569 85 54.7
10 323 553 | 384 3 58.5 42 54 7.2
30 334 55.3 | 40.7 3 60.0 40 53 59.7
100 34.6 55.3 | 445 3 61.6 38 52 59.5

br — blocking ratio parameter

CP — complete partitioning

CS — complete sharing

TR — trunk reservation

UL/GM — upper limit/guaranteed minimum

UL/GM can be significantly better than TR as well.

Comparing Sharing Policies: Asymmetric Examples

This section considers the two-customer-class
single-resource example introduced in the last section,
but with different blocking requirements for the classes.
In particular, the nominal blocking requirements are 10-3
for one class and 10+ for the other. Various values are
considered for the blocking ratio (again, the ratio of con-
ditional-to-nominal blocking requirements), keeping this
ratio the same for both customers.

The asymmetry now makes trunk reservation a
more attractive alternative, so that our main objective is
to compare TR to UL/GM, although CS and CP also are
considered as before. The UL/GM policy is now specified
by giving the two GM parameters L, and L,. In our
example, the number of resource units being shared is,
thus, 100-L, - L.
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Just as for UL/GM, a search algorithm is used to
find the optimal TR parameter. For TR, there are two
thresholds such that a request from each customer class
can be admitted only if the number of free resource units
after admission is at least the threshold for that class.
Necessarily, the threshold should be zero for one class; oth-
erwise, resource units would be wasted. When the thresh-
old for both classes is zero, TR coincides with CS. Hence,
the optimal TR policy always performs at least as well as CS.

For this simple example, in which the require-
ments and service rates of the two classes are identical,
the TR blocking probability is easy to compute, because it
is not necessary to keep track of the customer identity of
requests in service. Hence, the model is what is called a
birth-and-death process, which is readily solvable. For
more general models, calculating the TR blocking proba-
bility can be much more difficult.

The experiment consists of 15 cases, with all




Table 3. The Proportions of the Four Blocking Requirements Realized
for Different Policies

Proportion of blocking requirement realized
Sharing Nominal Conditional
policy 100 % conditional overload, br = 1
CS 0.13x 107 0.13x 10¢ 0.98 x10° 0.98
Cp 1.00 0.74 1.00 0.74
TR 0.13x 10" 0.70 1.00 0.38
UL/GM 0.73 0.49 0.87 0.95
100 % conditional overload, br = 10
CS 0.41x 10° 041x 10° 1.00x 10° 1.00
CP 1.00 0.74 0.10 0.074
TR 0.013 0.11x 10° 1.00 0.57
UL/GM 0.55 042 0.20 0.84
200 % conditional overload, br = 100
S 0.25x 10° 0.25 x 10" 1.00x 10° 1.00
Cp 1.00 0.74 0.10 0.074
TR 0.10x 10° 020x 107 0.98 1.00
UL/GM 0.96 0.89 0.22 0.93
50 % conditional overload, br = 100
CS 0.20x 10 0.020 0.97x 10° 0.97
cp 1.00 0.74 0.01 0.0074
TR 0.84 1.00 0.65 0.58
UL/GM 0.58 0.93 0.015 0.39
br — blocking ratio parameter

CP — complete partitioning

CS — complete sharing

TR — trunk reservation

UL/GM — upper limit/guaranteed minimum

combinations of three values of the conditional overload
and five values of the blocking ratio: the percentage of
conditional overload is 50 percent, 100 percent, or 200 per-
cent, and the blocking ratio (the same for both cus-
tomers), is 1, 3, 10, 30, or 100.

The maximal total arrival rates as a function of the
sharing policy chosen for these 15 cases are given in Table
2. The optimal control parameters ¢, for TRand L, and L,
for UL/GM are also given in Table 2. Also displayed in
Table 2 are the maximal arrival rates for a fixed UL/GM
sharing policy with GM parameters L, = 41 and L, = 53.
These are the optimal GM parameters for the “middle” case
of 100 percent conditional overload and a conditional-to-
nominal ratio of 10. This fixed UL/GM sharing policy
demonstrates the robustness of the UL/GM bounds. Even

though this sharing policy is not optimal in the other 14
cases, it performs pretty well overall.

In this asymmetric case, the best CP policy is
no longer an even split. Now for the best CP policy, the
capacities of the two separate resources are 44 and 56.
As in the previous section, the performance of the CP
policy is the same for all 15 cases. In the case of a 200
percent conditional overload and a blocking ratio of 1,
the best UL/GM policy coincides with the CP policy. But
in all other cases, the best UL/GM policy performs bet-
ter than the CP policy.

Necessarily, in all these other cases the UL/GM
policy allows for some sharing. In the 15 cases, the num-
ber of resource units shared with the UL/GM bounds
ranges from 0 to 10. The maximum advantage of UL/GM
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over CP is 11.4 percent, occurring in the case of most
sharing, with a 200 percent conditional overload and a
blocking ratio of 100 for both customers.

With one exception, where the difference is neg-
ligible, CP dominates CS in all these cases. Thus, TR also
dominates CS. However, TR can be much inferior to CP,
and thus also to UL/GM. In the case of a 200 percent con-
ditional overload and a blocking ratio of 1, the best
UL/GM policy produces a 58 percent higher arrival rate
than the best TR policy. However, in the case of only a 50
percent conditional overload and a blocking ratio of 100,
the best TR policy produces an 11 percent higher arrival
rate than the best UL/GM policy. Evidently both UL/GM
policies and TR policies, and possibly other policies not
considered here, are useful controls in this context.

Table 3 displays the proportions of the blocking
requirements realized by the different policies. The better
policies realize proportions relatively close to one for all
four requirements listed in the table. The policies that per-
form poorly tend to have some very small proportions.

In summary, the examples demonstrate the

value of the UL/GM bounds. In many cases, partial shar-

ing with the UL/GM bounds significantly outperforms
CS, CP, and TR.

Applications of the Algorithms

The algorithms for calculating customer request
blocking probabilities with UL/GM bounds, and finding
appropriate UL/GM bounds, make it possible to address
several important engineering problems.

Real-Time Customer Admission Control. A successful
scheme for efficiently providing multiple grades of ser-
vice should address the problem of real-time control of
customer admission. For given limited resources, the
resource provider needs to be able to determine whether
or not each prospective new customer can be admitted.
The algorithm can be used to quickly determine whether
the new customer can be given the desired grade of ser-
vice, while ensuring all previously admitted customers
still receive their grades of service.

Capacity Adjustment. Over time, the level of cus-
tomer demand often changes, making it necessary to
adjust the resource capacity. The proposed algorithm can
be used to determine this required capacity.

Demand for service may grow or decline, or
there also may be a temporary reallocation of demand
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due to a resource failure. In some such resource failure
situations, customers can be assigned to alternative
resources, although this may increase demand on those
resources to the point where the resource provider has to
add capacity to these alternative resources.

However, in some emergencies, additional capacity
may not be provided quickly enough, requiring the
resource provider to provide the best possible service in the
face of a reduced resource capability. If customers who were
using a failed resource can be assigned to alternative
resources, then ways are needed to protect the original cus-
tomers on these alternative resources from the newly divert-
ed demand, while protecting the diverted customers as well.

There are many methods to identify alternative
resources available to serve customers that had been
using a failed resource. In some situations, the alternative
resources may be evident. For example, the system may
contain only two resources, with each serving as a backup
for the other. In other settings, automatic procedures
could be used to dynamically reallocate demand to new
resources, as is the case with schemes for alternative
routing of blocked calls, as in AT&T's telephone network.
Another possibility is using a special procedure invoked
by a central controller. Where there is no centralized con-
trol, a distributed algorithm may be needed to first inform
all resources that a failure has taken place, and then to set
up appropriate alternative routes.

Regardless of the method used to generate alterna—
tive resource assignments, there is a need to provide some
protection for both the original and diverted customers on
the remaining resources. Here the use of UL/GM bounds,
perhaps applied to classes of customers, would be a solution.
The algorithm can be used to help determine the UL/GM
bounds and the amount of traffic to divert.

The Costs of Providing Service. When considering
potential schemes for providing multiple grades of service
with protection against overloads, the resource provider
may want to assess the costs of providing given grades of
service, so that an effective pricing scheme can be devel-
oped. There are several possible ways to determine the cost
of providing service to a new customer, even if one focuses
only on the capacity used on each resource. Clearly, the
minimum capacity used is the GM bound, and the maxi-
mum capacity used is the UL bound. Thus, one should look
for a notion of expected capacity used by a customer, which
necessarily will fall between these two extremes.




Marginal Expected Cost. One expected cost expres-
sion is the marginal expected cost, which is the cost for the
extra capacity required beyond what is required for all
other customers who submit requests according to their
specified parameters. The marginal expected cost can be
determined by first finding the minimum capacity of the
resource required to meet all current customer require-
ments, and then finding the minimum capacity of the
resource to meet all current customers’ requirements plus
those of the new customer. The marginal expected cost
for the new customer is the difference between these two
capacity levels. The algorithm can be used to determine
the two critical capacity levels, just as in the capacity
adjustment procedure.

First-Customer Expected Cost. Another expected cost
is the first-customer expected cost, which is the average
capacity used if that customer were the only customer
using the resource. This cost can be determined by find-
ing the minimum capacity of the resource needed to meet
the customer’s requirements, assuming that no other cus-
tomers are present and that this customer submits
requests according to its agreed-upon traffic parameters.

The first-customer expected cost will typically be
higher than the marginal expected cost, because there is
less sharing. The first-customer expected cost also can be
determined by invoking the algorithm, just as with the
marginal expected cost. The calculation, of course, is easi-
er with only a single customer.

Algorithm to Compute Blocking Probabilities

Now let us discuss—at a high level—the numeri-
cal transform inversion algorithm used to compute the
blocking probabilities. The basic theory for resource-shar-
ing models with the UL/GM bounds implies that a steady-
state distribution of the number of requests in service for
each customer in the model has a tractable product-
form.1.28 The basic theory is reviewed in Panel 2. An
important point is that the UL/GM bounds constitute a spe-
cial case of a coordinate-convex sharing policy, which has a
product-form steady-state distribution just like the com-
plete-sharing policy.!28 (TR is more difficult to analyze
because it is not a coordinate-convex policy and does not
have such a product-form steady-state distribution.)

The product-form property for partial sharing
with the UL/GM bounds implies that the steady-state dis-
tribution is readily available except for a normalization

constant (or partition function). Moreover, the desired
customer-request blocking probabilities can be
expressed simply as ratios of two normalization con-
stants. Unfortunately, however, because the models get
large, the normalization constants themselves quickly
become difficult to compute. Various approaches have
been proposed for resource-sharing models, including
recursive algorithms,2438.11 Monte-Carlo algorithms, and
approximations,>”8 but none of these have addressed
models with UL and GM bounds.

Numerical Transform inversion. We propose a new
approach: numerical transform inversion. 1011 It turns out
that it is possible to construct the generating function
(or z-transform) of the normalization constants in a
remarkably compact form. We calculate the normaliza-
tion constants by numerically inverting the generating
function using our recently developed variant of the
Fourier-series method,!2.13 along with special scaling for
error contro].10.11

Unfortunately, however, the numerical inversion
algorithm can also have high computational complexity,
tending to be exponential in the dimension of the gener-
ating function. Hence, the current upper limit on the
dimension amenable for computation is about five. It
thus might appear that there is little hope for the inver-
sion algorithm, because with UL and GM bounds for
each customer, the dimension of the generating function
is p + 27, where p is the number of resources and 7 is the
number of customers. (See Panel 2)

Dimension Reduction. The key to successful inver-
sion with large models is reducing the effective dimen-
sion. Because of the way the UL/GM bounds affect the
generating function structure, the effective dimension
can always be reduced fromp +27t0 p+2,p + 1, or p by
inverting the variables in a good order.10.11 Thus, it is
always possible to solve a resource-sharing model with
only a few resources, even if there are hundreds or thou-
sands of customers.

Moreover, with more resources, it is often possi-
ble to further reduce the effective dimension by:

- Doing an initial approximate analysis to eliminate very
lightly loaded resources,!! and

- Takmg advantage of partial independence in the generat-
ing function structure, just as for the UL/GM bounds.10

Other Measures. Even after the effective dimen-
sion has been reduced to a manageable size, there are
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Panel 2. The Mathematical Resource-Sharing Model

We briefly describe the mathematical resource-
sharing model, including the productform steady-state
distribution, the normalization constants, and the block-
ing probability expressions. For more details, see the ref-
erences. 1011 Let there be p resources and r customers.

Let the resources be indexed by 7 and the customers

by 7. Let resource  have K; units, 1 <7< p,and let

K = (K,,..., K») be the capacity vector. (Let vectors be row
vectors or column vectors; it will be clear from the con-
text.) Each customer j request requires a; units on
resource {, where a; is a deterministic nonnegative inte-
ger. Let A be the p x r requirements matrix with elements
a;. Let the system state vector be n = (ny,..., #,), where n;
is the number of customer+ requests in service.

In order to treat the GM bounds, we assume
that a; is either b; or O for all . Let 6 ;=1 ifa;> 0, and
let 8 ;= 0 otherwise. Let L; be the guaranteed-mini-
mum bound (L for lower bound) on the number of
requests for customer j. Let N; = b, L; and let
N=(N,,..,N,). Let U; be the upper ilmit for customer-j
requests and let U = (U,,..., U,).

The state space, the space of allowable states, is a
subset of Z ', the -fold pioduct of the nonnegative inte-
gers. Let S(K, U, N) be the state space, reflecting its
dependence upon the vector (K, U, N). Itis

SK.UN)=(ne Z:n<U, D (apn,;vE,N) SK,1<i< p)
je=t

where x v y = max {x,y}. The first set of constraints
n < U represents the UL bounds; and the second
set of constraints,

Y an,v8,N)SK,1<i<p,

represents the GM bounds. Note that the GM con-
straints also include the basic CS constraints An< K.
Without the UL/GM bounds, the state space reduces to
S(K) with only the constraints An <K

We now specify the stochastic arrival and ser-
vice processes. We assume that the stochastic process
{N@) :t >0}, where N(t) gives the system state at
time ¢, is an irreducible finite-state continuous-time
Markov chain. This Markov chain is specified by giving
the arrival and service rates for all customer requests.
We allow general state-dependent arrival and service
rates. In particular, if there are k customery requests in
service, then the arrival rate of customer+ requests
is A;(k) and the service-completion rate of customer-/
requests is #;(k). The standard case is A;(¢) = A;and
ui(k) = k;lj , which corresponds to Poisson arrivals and
exponential service times with all admitted requests
entering service immediately upon arrival. Our numeri-
cal examples are all for this special case. State-depen-
dent arrival and service rates greatly increase the power
of the model; for example, statc-dependent arrival rates
can be used to approximate non-Poisson overflow traffic
arising in alternative routing schemes.!t

We assume that each request is admitted if all
desired resource units can be provided, without violat-
ing any constraints; otherwise the request is blocked
and lost. We do not consider retrials. All resource units
used by a customer request are released at the end of
the request holding time. (Continued on next page.)

additional steps that are taken to reduce the computation-

al complexity of the inversion algorithm.10.1! The algo-

rithm is made more efficient by:

- Selective truncation of large sums without loss of accu-
racy when the resource capacities are large,

- Efficiently treating multiple customers with identical
parameters, and

= Sharing computation of normalization constants when
there are many customers and large capacities.

Thus, many customers and large capacities do not pose

great problems for the algorithm.

If we have a large, highly connected network of
fully utilized resources, then it may not be possible to
reduce the effective dimension sufficiently for the inver-
sion to apply directly. In that case, we can apply reduced-
load fixed-point approximations to calculate the blocking
probabilities approximately.>$ With the fixed-point
approximation, the inversion algorithm can be applied
as a subroutine to solve the single-resource models with
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UL/GM bounds exactly. Moreover, the inversion algo-
rithm makes it possible to base the fixed-point approxi-
mation on larger subnetworks, each containing two or
three resources.

Search Algorithm for UL/GM Bounds

The inversion algorithm just described makes it
possible to calculate request blocking probabilities, given
customer traffic parameters and UL/GM bounds. To
address important engineering applications, however, the
appropriate UL/GM bounds must first be determined.
For this purpose, a heuristic search algorithm is used. Its
effectiveness depends on being able to solve relatively
quickly the request blocking probabilities for any given
set of traffic parameters and UL/GM bounds. With the
aid of the inversion algorithm, one can locate the most
effective UL/GM parameters by solving, via fine tuning,
many instances of the model.

For example, suppose that we wish to determine




The steady-state probability vector 7 has the
simple product form

() = gK,U,N)-1 f(n),
where
f)=11_, f;(n),

fin)=A,(n) M,(n,),

=1
A (n) =L &),

&

Mj(nj) = l'Ik=1/.tj(k),

and the normalization constant or partition func-

tion is
gKUN= Y fm
ne S(K,UN)

The term product form refers primarily to the
product form of f(n ).

It is significant that the request blocking
probabilities can easily be expressed in terms of
the normalization constants. However, it is
important to distinguish between request block-
ing and time blocking. Request blocking refers
to the blocking experienced by arrivals, which
depends on the state at arrival epochs, while

time blocking refers to the blocking that would
take place at an arbitrary time if there were an
arrival at that time.

Since the steady-state distribution & refers
to an arbitrary time, blocking probabilities
computed directly from it involve time block-
ing, but it is not difficult to treat request block-
ing, as well as time blocking. With Poisson
arrivals, the two probability distributions at
arrival epochs and at an arbitrary time agree,
but not more generally.14 The probability that a
class- request would not be admitted at an
arbitrary time (time blocking) is

_g(K—Aej,U—ej,N—Aej)

2K, UN)
where e; is a vector with a 1 in the j th place and
0’s elsewhere. It turns out that the customer- ,
request blocking B; is just the time blocking B j
for the modified model in which the customer+
arrival-rate function is changed from

A; (m) to X, (m) = A; (m+1).10

Hence, in order to calculate the desired block-
ing probabilities, it suffices to calculate the normal-
ization constants g(K,U,N) for various vector argu-
ments (K,U,N). For this purpose, we construct the
generating function of the normalization constant as
a function of (K,U,N) and invert it.10.11

how much demand can be satisfied by resources with
given capacities. This problem can be addressed by try-
ing to maximize the customers' request arrival rates—
subject to all the blocking requirements—assuming that
the proportions of the total arrival rates from the differ-
ent customers are known. The first step is to use a bina-
ry search to find the maximum feasible total arrival rate
with a complete-sharing policy, that is, with no bounds.
Then, a local search algorithm is used to look for the
appropriate UL/GM bounds for each customer class that
would allow a further increase of the arrival rate by a
suitably small incremental change, usually by-1 percent.
The total arrival rate can continually be increased incre-
mentally in this way until no further improvement is pos-
sible by modifying the UL/GM bounds.

Similarly, for a single resource, we may be inter-
ested in minimizing the capacity of that resource, sub-
ject to a given set of users with specified traffic parame-
ters and blocking requirements. As discussed above, we
start by using a binary search to find the minimum fea-
sible capacity with the CS policy. We then use a local
search to find UL/GM bounds that allow us to reduce

the capacity further, until no further reduction in
capacity is possible.

Conclusion

We have shown that the UL and GM bounds
make it possible to efficiently provide multiple grades
of service with protection against overloads in shared
resources. We have focused on shared resources aris-
ing in multimedia telecommunications systems, but
there clearly are many other possible applications
as well.

We have compared the UL/GM bounds to the
traditional controls of CS, CP, and TR. Numerical exam-
ples show that UL/GM can significantly outperform
these other alternatives, although in some scenarios
TR is a better control.

The key to the effectiveness of the UL/GM
bounds is the ability for them to be efficiently enforced
and analyzed. Efficient analysis is made possible by a
new algorithm for computing blocking probabilities
based on numerically inverting the generating func-
tion of the normalization constant.
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Panel 3. Enforcing the Bounds

Providing multiple grades of service with the
UL and GM bounds requires that these bounds be
enforced on an ongoing basis. We describe a proce-
dure for efficiently enforcing these bounds using the
notation of Panel 2.

Key variables are the number #; of active
requests for customer 7 and the number F;offree
units in resource 7 . The initial numbers for an empty
system are n, Oand ~

=K, - zLa

When a new customer-/ request arrives, the
new request is admitted if both n; < U;~1 and, for
each i such that a;> 0,

(n; + D2y =

If these conditions are not satisfied, then the
request is not admitted. If the customer request is
admitted, then the variables are updated by first
increasing #; by 1 and then, for each i such that

>0, decreasmg F; by a;;if n;> L; and making no
cdange otherwise.

When a customer-f request service comple
tion occurs, these variables are updated by first
decreasmg n; by 1 and then, for all i such that a;; > 0,
increasing F by a;; if n;> L;, and leaving it unchanged
otherwise.

When the system starts with some initial
numbers of requests in service, the initial number of
free resource units must be computed for each 7 using

F =K - Zmax{Lau,

= F,' +L]‘d,'l'.

" The overall computatlonal complexity of the
above expression is O(rp). However, at each subse-
quent customer+ request arrival-or-departure epoch,
the computational complexity is only O(g), where g;
is the number of resources used by customer ;. In
applications r and p may both be large, while g; is
small for all /. Accordingly, there may be the one-time
large substantial start-up computation, but at each
subsequent request arrival-or-departure epoch the
amount of computation is low, being of the same
order as for other simple request admission policies
such as complete sharing.
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