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In this paper we focus on networks of infinite-server queues with nonhomogeneous Poisson
arrival processes. We start by introducing a more general Poisson-arrival-location model
(PALM) in which arrivals move independently through a general state space according to a
location stochastic process after arriving according to a nonhomogeneous Poisson process. The
usual open network of infinife-server queues, which is also known as a linear population pro-
cess or a linear stochastic compartmental model, arises in the special case of a finite state space,
The mathematical foundation is a Poisson-random-measure representation, which can be
obtained by stochastic integration. It implies a time-dependent product-form result: For appro-
priate initial conditions, the queue lengths (numbers of customers in disjoint subsets of the
state space) at any time are independéent Poisson random variables. Even though there is no
dependence amorig the queue lengths at each time, there is important dependence among the
queue lengths at different times. We show that the joint distribution is multivariate Poisson,
and calculate the covariances. A unified framework for constructing stochastic processes of
interest is provided by stuchastlcally integrating various functionals of the Iocatmn _process
with respect to the Poisson arrival process. Weuse this approach to study the ﬂows in the queue-
ing network; ¢.g., we show that the aggregate arrival and departure processes at a giver queue
(to and from other queues as well as outside the network) are generalized Poisson processes
(without necessarily having a rate or nnit jumps) if and only if no customer can visit that qucue
more than once. We also characterize the aggregate arrival and departure processes when cus-
tomers can visit the queues more frequcntly In addition to obtaining structural results, we
use the stochastic integrals to obtain explicit expressions for time-dependent means and covar-
iances. We do this in two ways. First, we decompose the entire network into a superposition
of independent networks with fiked deterministic routes, Second, we make Markov assurnp-
tions, initially for the evolution of the routes and finally for the entire location process. For
Markov routlng among the queues, the aggregate arrival rates are obtained as the solutiontoa
system of input equations, which have a unique solution under appropriate qualifications, but
not in general. Linear ordinary differential equatxons charactenze the time-dependent means
and covariances in the totally Markowan case.

Keywords: Nonstationary queues, time-dependent arrival rates, infinite-server queues, queue-
ing networks, Poisson random measures, stochastic compartmental models, Pmsson-a.mval—
location model, dependence among queuelengths at different times.
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1. Introduction and summary

Since real queuneing systems typically have arrival rates that vary significantly
over time, it is important to consider queueing models with time-dependent arrival
rates. There have been some notable advances, as can be seen from Asmussen and
Rolski [1], Bambos and Walrand [2], Duda [20], Green et al. [29], Hall [30],
Lemoine [42], Newell [52], Ong and Taaffe [54], Rolski [61] and references cited in
these sources, but certainly more needs to be done.

INFINITE-SER VER MODELS

To contribute, we have been reexamining what seems to be the easiest case —
infinite-server models with nonhomogeneous Poisson arrival processes. In Eick et
al. [21,22] we studied a single M,/GI /oo queue; here we study an open network of
infinite-server queues with a nonhomogeneous Poisson external arrival process.
We discuss previous work on infinite-server models below.

Infinite-server models represent the (usually) highly idealized situation in which
different customers do not interfere with each other. Infinite-server models are
obviously not appropriate to describe systems in which customers spend more time
waiting to begin service than being served. Nevertheless, networks of infinite-ser-
ver queues are of interest both in their own right and as approximations for net-
works of nght-to-moderately loaded multiserver queues, posmbly with finite
waiting space. The nice theory for infinite-server models with time-dependent arri-
val rates is a useful frame of reference for examining more difficult finite-server
models with time-dependent arrival rates. We can fruitfully view the time-depen-
dent beéhavior of the finite-server model in relation to the more tractable analytical
descriptions of its infinite-server couterpart; for further d1scuss1on see Eick et al.
[23]and section 10.

Networks of infinite-server queues arise in many different: contexts under differ-
ent names; e.g., see Kelly [37] and Whittle [72]. In “biological” applications, net-
works of infinite-server queues form special classes of population processes, see
Kingman [40], Chiang [13], Kurtz [41] and Ethier and Kurtz [24], and stochastic
compartmental models, see Sandberg [63], Faddy [25], Purdue [59], Brown [11],
Jacques [33], Garzia and Lockhart [27], Matis [46] and Matis and Wehrly [47].
Another example is the number of active colonies over time in a branching process
with immigration, se¢ Pakes and Kaplan [55].

‘A motivating application’ for us is wireless (or mobile cellular) telecommunica-
tions systems; e.g., see Lee [43]. A hlghly idealized model, which nntlally ignores
resource constraints, is the open network of infinite-server quenes we study here.
The different queues represent cells. Call originations are modeled as a nonhomo-
geneous Poisson process, with the nonhomogeneity capturing the important time-
of-day effect. The customer’s movement from cell to cell is represented by his route
through the network. The service times at each queue are the time intervals when
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the customer is in that cell while the call is in progress. The number of busy servers
at each queue represents the number of channels in use in that cell. We believe
that descriptions of this idealized network model can provide useful information
about the resources required to meet service demand.

The relevant theory for infinite-server models is quite well established in the the-
ory of stochastic point processes and random measures, as in chapters 5-7 plus
appendix 2 of Daley and Vere-Jones [17], Brémaud {8] and Serfozo [64]. Hence, a
significant part of this paper should be regarded as a review, as was intended for the
special issue. It is appropriate to draw on this theory, not only because it is rele-
vant, but because queueing problems played a significant role in its development,
through the groundbreaking work of Palm [56] and Khintchine [39].

THEM,/GI/coQUEUE

A single M,/GI /oo queue is characterized by a deterministic arrival-rate func-
tion o = {e(s)}, a generic service-time random variable S with cumulative distribu-
tion function {cdf) G and the initial conditions. The arrival process is understood
to be a nonhomogeneous Poisson process. This means: (1) « is nonnegative and
mtegrable over every ﬁmte interval, (2) the number of arrivals in the interval (a, 5]
is Poisson with mean f a(s)ds and (3) the numbers of arrivals in disjoint intervals
are independent. For simplicity, throughout this paper, we will also assume that
the arrival-rate function e is actually integrable over the entire real line R.

Since we focus on the history up to a fixed time ¢, it actually suffices to have «
be integrable over the semi-infinite interval (—c, #]. Moreover, most results only
require that o be locally integrable, i.e., integrable over each bounded interval. The
extra integrability assumption ensures that all expectations and integrals are finite
and that the difference of two expectations (e.g., as in a covariance) are well
defined. This extra assumption is not a serious restriction for applications, because
it suffices to consider finite time intervals. Indeed, the integrability assumption
helps us change our thinking from the familiar steady-state setting to the time-
dependent transient setting considered here. (The stationary model can be consid-
ered as the limit of models with a constant arrival rate over a finite interval (a, ] as
a— —o0.) The mtegrabﬂ1ty assumption simplifies the theory, because it means
that we are considering a finite point process; see chapter 5 of Daley and Vcre-
Jones[17].

Time-dependent service tlmes can be treated as we mdlcatc later, but the GI
without a. subscnpt means that we are now assuming that successive service times
are i.i.d. and mdependcnt of the arrival process. We assume that E[S]<co.
- An important role is played by a random variable S, with the associated
Stationary — excess (or stationary-age) cdf

,Ge(t)EP(Seét)=E—[‘§1~/Oth(u)du, t=0, (1.1)
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where G°(t) = 1 — G(1).

General initial conditions can be treated by separating the new arrivals after
time O from the customers in the system at titne 0, since they do not interact. The
behavior of the customers in the system at time 0 depends on their residual service-
time distributions. To avoid this complication, we assume that the system started
empty in the infinite past. Of course, this includes the case of starting out empty at
time 0 (which is equivalent to focusing only on the new arrivals) as a special case,
but it includes more; see Thorisson [67] for additional discussion.

In this context, the fundamental result 1s:

THEOREM 1.1
In the M,/GI /oo model above, for each ¢, the queue length Q(f) (number of
busy servers) at time ¢ has a Poisson distribution with finite mean

m(t) = E[Q()] = E[ fs a(s)ds] — Blo(t - SJIE(S], (12)

and (1) is independent of the departure process before time ¢. The departure pro-
cess is a Poisson process with integrable time-dependent rate function

5(f) = Ela(t— )], teR. (1.3)

We use the integrability of o to imply that m(z) in (1.2) is finite and that § in
(1.3)is integrable. As reviewed in Eick et al. [21], theorem 1.1 can be traced to Palm
[56], Bartlett [4], Doob [19], Khintchine [39] and Prékopa [58] all before 1958, Pré-
kopa [58] provided an especially appealing “sample-path” proof based on Poisson
random measures; we use this same approach. Other relevant references are Mira-
sol [48], Newell [50,51], Renyi [60], Brown [9], Brown and Ross [10], Jagerman
[34], Daley [16], Collins and Stoneman [15], Jackson and Aspeden [32], Foley [26],
Blanc [6] and Carrillo[12).

In Eick et al. [21,22] we showed that additional insight can be gained by further
examining formulas (1 .2) and (1.3). First, since the mapping of & intom in (1.2) is
linear, we can invoke linear system theory; e.g., this is one explanation for simple
explicit expressions for m when & has special structure. For example, if « is quadra-
tic before time ¢ (1gnonng difficulties caused by o being not integrable and some-
times ncgatwe i.e., taking (1.2) as the definition), then m(f) is also quadratic;
moreover, m(t) coincides with the pointwise stationary approximation (PSA)
a(t)E[.S‘] except for a time lag and a space shift; i.e. if a(s) = a + bs + cs* for s<t,
then

m(f) = ot — B[S,))E[S] + cVar(S,)E[S], (1.4)

where Var[S,] is the variance of S, (which depends on the first three moments of
S); see theorem 3.1 of [21]. The PSA «(f)E[S] would be the mean queue length in a
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stationary model with constant arrival rate o.(f). Formula (1.4) can be a basis for
approximations for infinite-server and finite-server models; see [21-23].

A significant feature of nonstationarity is that the celebrated insensitivity of
the stationary M/GI /oo model is lost. Another example from [21] describes-the
effect of service-time variability, expressed via convex stochastic order, see Stoyan
[66]. If S1 and 5, are two candidate service-time distributions (associated with
M,/GI /oo systems which are otherwise identical} with E{f (S1)] <E[f(S,)] for all
convex real-valued functions for which the expectations are well defined, i.e., if S|
is less variable than S; in the convex stochastic order, denoted by S) < S, (which
implies that E[S1] = E[S3]), then m; (¢) <my(2) when e is decreasing before time ¢,
but m (£} >my(t) when o is increasing before time f; see theorem 2.1 of [21]. (For the
case in which « is decreasing before ¢, we would allow a not to be integrable or
require Sy and §; to have finite combined support.)

OPEN NETWORXS

It is significant that similar results hold for open networks of infinite-server
queues with nonhomogeneous Poisson arrival processes. From Kelly [37] and
Whittle [72], we know that a very nice theory exists for the stationary version of the
models we consider; i.e., the steady-state distributions of the vector queue-length
process in a -/GI /oo network with a homogeneous Poisson arrival process has a
product-form. It is significant that the time-dependent vector queue-length distri-
butions in the nonstationary models also have product form. Unfortunately, how-
ever, this result depends strongly on the infinite-server property. (This can be seen
by considering two -/M /1 queues in series with a Poisson arrival process, starting
empty; see the appendix.)

A natural nonstationary network model with all nonstationarity in the external
arrival process has N queues (or nodes) with independent stationary Markovian
routing according to a substochastic matrix P = {py}; here pj; is the probability of
going next to queuve j immediately after completing service from queue i. We
assume that y 27, pg'- <oo for all i and j, so that all arrivals eventually leave,
although this property is actually not needed for many results. As before, let the
external arrival process be nonhomogeneous Poisson. Let successive arrivals be
initially assigned to queue { with probability ;, with successive assignments being -
mutually independent. (Since independently thinned Poisson processes are Pois-
son, see p. 31 of Daley and Vere-Jones [17), this is equivalent to independent nonho-
mogeneous Poisson arrivals to each queue.) This model is more general than it
might appear, because the N “queues” do not actually have to be queues as we
usually think of them; they can be classes which include other customer attributes
as well as location. (This is a familiar device to extend the modeling power with sta-
tionary product-form queueing network models.)

In this basic model, the service times are mutually independent and independent
of the arrival process, with the service times at queue { being distributed according
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to the random variable S; w1th cdf G;. Consistent with the Kendall notation, we
call this model (M,/GI/oo)¥ /M; the final M indicates independent stationary
Markov routing. Moreover, the arrival process, service times and routings are
understood to be mutually independent.

Let a = {a(s)} be the deterministic external-arrival-rate function (which we
assume is nonnegative and integrable over R). We use the familiar symbol A to
describe the aggregate rates at each queue (fo and from other queues as well as out-
side the network). In particular, A] denotes the aggregate-arrival-rate function to
queue i , and A; denotes the aggregate-departure-rate function from gueue i, Since
we do not have stationarity, we need not necessarily have X} (1) = A7 (¥).

Again we assume that the network started empty in the infinite past. Other
initial conditions can be treated by analyzing the customers in the system at time 0
and the new arrivals separately. Considering only the customers initially in the sys-
tem makes the model a closed network of infinite-server queues, which we will not
discuss here. We remark that the (M,/GI/o0)" /M network becomes a special
case of the semi-Markov compartmental model of Weiner and Purdue [69] and Pur-
due [59] when their arrival processes are allowed to be nonhomogeneous. The
semi-Markov property allows transitions to depend on the completed service time
as well as the quene index. This extension is covered by our generalizations of theo-
rem 1.2 later.

In this context, here is the main resuit:

THEOREM 1.2
In the (M,/GI /oo)¥ /M model above, for each z, the queue Iengths 0Q:(?) at time
t, 1 <i< N, are independent Poisson variables random variables with finite means

m© =Bl0(0] B[ [ 3ea] ~EC-sIES], 09

where Af is the aggregate-arrival-rate function to queue i, defined as the minimal
nonnegative solution (or, equivalently, the unique integrable solution) to the sys-
tem of input equations

XH(1) = ety + f:E[A;‘(t - S)lpn, 1<i<N. (1.6)
j= :

In addition, for each ¢, the vector (Qi(2),. .., On(2)) is independent of the external
departure processes (from the network from each queue) before time ¢. The exter-
nal departure processes are independent Poisson processes with integrable time-
dependent rate functions

H()=E [A+(t—S)( Zpg) (<isN. (1)
j=1

Moreover, the aggregate arrival process to queue i (counting arrivals from other
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queues as well as from outside the network) and the aggregate departure process
from queue i (counting flows to other queues as well as to outside the network) are
Poisson processes if and only if no customer can visit queue i more than once.

From theorems 1.1 and 1.2, we see that, for each ¢, Q;(¢) in theorem 1.2 has the
same distribution as if queue / were an isolated M,/ GI /oo queue with Poisson exter-
nal arrival process with arrival-rate function A} determined by (1.6). However, as
in the steady-state product-form theory, see Disney and Kiessler [18] and Walrand
[68], the aggregate arrival process to queue i need not be a Poisson process. We
expand on this point later.

The product-form result in theorem 1.2 follows so quickly from theorem 1.1
that it should perhaps be considered an immediate corollary, but of course it is
important. In particular, as pointed out by Keilson and Servi [36], to prove the pro-
duct-form property in theorem 1.2 it suffices to do the route assignments in
advance, so that a probability is attached to each of countably many finite determi-
nistic routes. We can think of the different route assignments as independent thin-
pings of the Poisson process. Since independent thinnings of a Poisson processes
are independent Poisson processes, we can regard the model as a multiclass model
with independent Poisson arrival processes and deterministic finite routes for each
class. For each of these routes, we initially treat different visits to the same queue
as different queues. Then we can apply theorem 1.1 inductively to the resulting tan-
dem networks. Finally, we obtain the desired result because the sum of indepen-
dent Poisson random variables is Poisson, with the independence among queues
preserved.

Surprisingly, however, this time-dependent product-form result does not seem
to be very well known. We are unaware of any textbook treatment. Specific refer-
ences for parts of theorem 1.2 in addition to Keilson and Servi [36] are Bartlett {4],
Kingman [40], Faddy [25], section 5 of Purdue [59], and Harrison and Lemoine
[31]. We contribute to establishing theorem 1.2 by providing additional details;
¢.g., we construct an example (example 6.1) showing that the input equations (1.6)
need not have a unique solution; however we prove the existence of a minimal non-
negative solution to- (1.6). We also show that the input equations (1.6} have a
unique solution among integrable functions. (The stationary analog of (1.6) is
usually called the throughput equation, but a change of terminology is appropriate
in the nonstationary case because the arrival rates typically do not equal the depar-
ture rates.) We also analyze the arrival and departure processes (both external
and aggregate)

THEREST OF THISPAPER
In this paper we prove theorem 1.2 (see remark 7.2), but we go -considerably

beyond that-We start in section 2 by introducing a more general model, called a
Poisson-arrival-location model (PALM), and establish a product-form result for it
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(theorem 2.1). In a PALM a customer’s location is specified by a continuous-time
stochastic process with values in a general state space 8. We think of queues being
associated with subsets of §. We thus could have a countably or uncountably infi-

~ nite collection of queues. Any finite partition of § can be identified with a finite net-

work of queues. We primarily consider a network of N queues; then we focus on
the special case in which the state space 8 is {1,...,N, A,, A*}, where A, and A*
represent outside the network, with A, specifying not yet having arrived and A*
specifying having completed service. For this special case, we also stipulate that the
sample paths of the location processes be piecewise-constant with only finitely
many jumps.

The PALM is motivated by the wireless-telecommunication-system applica-
tion; then, without reference to any system of cells, the customer’s location within
the system may be his spatial coordinates in Euclidean space R3. When we focus on
a finite system of cells, the PALM reduces to an open queueing network. The
more general PALM facilitates studying the performance of the system as a func-
tion of the system of cells. Even for networks of infinite-server queues, the PALM
goes beyond the model in theorem 1.2 by allowing the routing (the sequence of
queucs visited) to be time-dependent and non-Markovian, and by allowing the
service times to depend on the route and be time-dependent and stochastically
dependent.

In section 2, we also examine the dependence among queues (disjoint subsets of
§). The product-form result implies that the queue lengths are independent, but this
is only true at each fixed . It is interesting to consider the dependence among the
queue lengths at different times. We determine the joint distribution of the queue
lengths at different times and calculate the covariances (theorem 2.2).

In the rest of the paper we focus on the open queueing network model. In section
3 we consider the general (M;/G,/c0)" /G, model. The symbol G denotes general
stochastic dependence; the symbol G/ for service times denotes i.i.d; the symbol M
denotes Markovian; the symbol D denotes deterministic; and the subscript ¢
denotes time-dependence. Stationarity is assumed when the subscript 7 is absent.
The symbols M, M, and GI are also understood to mean that the model component
(arrival times, service times or routing) is independent of other model components.
This is not assumed for G and G,. Our notational conventions are summarized in
table 1. The specific models we consider are displayed in fig: 1, with extra assump-
tions being added as we move down in the diagram. We obtain general structural
results for the more general models and explicit formulas and algorithms for the
less general models.

In section 3, we consider the flows in the (M;/G,/o0)” /G; model. Just as for
stationary product-form networks, the aggregate arrival and departure processes
at each queue in general do not have independent Poisson increments, even though
they do in an acyclic network (theorems 3.4 and 3.5). In general, disjoint
increments of the aggregate arrival and departure processes have what we call a
positive-linear Poisson distribution, from which it follows that the increments are
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Table 1
Modified Kendall notation for the open queueing network.
Queue characteristic Symbol Meaning
Arrival process G, General nonstationary point process
G General stationary point process
GI Renewal process
M, Nonstationary Poisson process
M Stationary Poisson process
Service times G, General nonstationary sequences, route-dependent
G General stationary sequences, route-dependent
GI Independenti.i.d. sequences, general distributions
M, Time-dependent exponential distributions
M Exponential distributions
D Deterministic
Routing discipline G, General, time-dependent
G General, time-independent
M; Nonstationary Markov chain
M Stationary Markov chain
b Deterministic

associated. We also calculate the’ first and second moments of the increments
(theorem 3.6).

In section 4, we focus on rates and reversibility. We determine necessary and suf-
ficient conditions for the arrival and departure processes to have well defined rates
or intensity functions (theorems 4.1-4.2). We also discuss notions of reversibility
for this nonstatmnary model. In particular, we show that a tlme-reversed
(M /G/oo)" /G, network with departure rates is again an (M,/G,/oo) ¥ /G, net-
work, typically with a different external arrival-rate function (theorem 4.4).

In section 5, we focus on deterministic routes. By the argument uscd for theorem
1.2, the (M,/G,/c0)" /G, model can be reduced to-an (M;/G;/co)” /D model with
fixed deterministic routing. Thus many results follow from theorem 1.1 and asso-
ciated results for a single M,/ G; /oo queue (theorems 5.1 and 5.2).

-PALM - e

l

(Mt/Gt/OO)N/Gt

N

(MefG[oo)N (G, (MG foo)N [ M,

~ SN

(M/GI[oo) (G, (M fGI[ooY" /M, (MifMcfoo)¥ M,

Fig. 1. Ordering the infinite server networks by gencrality.
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In section 6, we focus on the (M,/GI/oco)¥ /G, model, where the service times
are mutually independent and i.i.d. at each queue. The extra structure here allows

~ us to obtain nice explicit formulas. We show that if the external arrival-rate func-

tions are polynomtals or trigonometric polynomials, then so are the net arrival-rate
functions to each queue. Hence, we obtain network generalizations of the explicit
formulas in [21,22] (theorems 6.2 and 6.3). Polynomial arrival-rate functions may
seem unrealistic because they usually converge to +oo as time approaches —oo.
However, for any time of interest, usually only the relatively recent history of the
arrival-rate function is relevant. Hence, polynomial arrival-rate functions are in
fact natural candidates as approximations.

In section 6 we note that many of the comparison results in section 2 of [21]
hold for networks too. We also establish a new one (theorem 6.4). We conclude sec-
tion 6 by examining the dependence between two queues in series. We identify the
time lag which maximizes the covariance in the special cases of both exponential
and both deterministic service-time distributions. We call these times maximum-
dependence times. We believe that they will be useful in further analyses.

In section 7, we consider Markovian routing. We establish generalizations of
the input equations (1.6) for the (M;/G,/o0)" /M, model when rates may not exist
(theorem 7.1). In section 7 we also show that the input equations in (1.6) and in the
more general (M,/GI /oo)” / M, model have a minimal nonnegative solution (theo-
rem 7.2). For the case of (M,/GI/c0)” /M model of theorem 1.2, we show that the
input equations (1.6) have a unique solution among integrable functions (theorem
7.3). We also show how to solve the input equations in special cases (theorems 7.4
and 7.5).

In section 8, we consider the totally Markovian (M,/M;/co)" /M, model with a
time-dependent service-rate function and Markovian routing. For this model, the
vector of queue lengths is a time-dependent continuous-time Markov chain
(CTMC). We show how this CTMC can be constructed from homogeneous Pois-
son processes by uniformization. We also show that the vector mean and covar-
iance functions satisfy linear ordinary differential equations (ODEs) (thcorems 8.2
and 8.3).

In section 9, we bneﬂy discuss large-populatlon approxmatlons, the s1mplest
being the deterministic fluid model obtained by considering only the means.
Refined approximations are Gaussian-process approximations, as established for
stationary infinife-server network models in Glynn and Whitt {28]. Our covariance
formulas completely specify these approximating Gaussian processes. These deter-
ministic and Gaussian approximations are useful, not so much for the infinite-ser-
ver models themselves, but to provide insight into related approximation for more
complicated non-linear models. Here we make contact with the limit theorems for
population processes in Ethier and Kurtz {24] and references cited there and the
deterministic compartmental models in Sandberg {63], Brown [11], Jacques [33]
and Garzia and Lockhart [27].

We conclude in section 10 by briefly discussing how our results for networks of
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infinite-server queues with nonstationary Poisson input can be applied to approxi-
mately analyze finite-capacity networks of multi-server queues with nonstation-
ary Poisson input. We briefly outline network extensions of the approximations in
Eick et al. [23]. Thls concluding sectlon presents promising directions for future
work.

2. The Poisson-arrival-location model

We now introduce the Poisson-arrival-location model (PALM), which gener-
alizes the open queueing network model. As in theorem 1.2, we assume that custo-
mers arrive exogenously according to a homogeneous Poisson process
A = {A(s) : seR} with integrable nonnegative deterministic external-arrival-rate
Sfunction o; A(s) represents the number of external arrivals in the interval (—oo, 5].
We think of each arrival moving through a general state space § according to some
stochastic process. To account for arrival and departure, we let § = sy {A.,
A}, with the pre-arrival state A, representing that the customer has not yet entered
the system, and the post-service state A* representing that the customer did arrive
but is currently outside the system. With the PALM, we focus on a generalization
of the queue length, the number Q¢(#) of customers in a subset C of § at time 7.

An arrival at time s has an 8-valued location process L; = {L,(f) : teR}, with
L;(t) representing the location of this customer at time #, as depicted in fig. 2. We
typically use s to refer to an external arrival time and ¢ to an “observation™ time.
Figure 2 depicts three arrivals before time ¢. The arrival epochs are indicated by the
open circles appearing on the vertical time line and on the location-process sample
paths. The observation time ¢ is indicated by the dark circle on the time line and
the location-process sample paths. In fig. 2 we see that the three arrivals are all still
in the set 8° at time z, but only the second arrival is in the subset C. If this is the
full history up to time z, then Q¢(f) = 1 for this realization.

For the wireless-telecommunication-system application, it is natural to con-
sider customer location without reference to any specific cell system. To do this, we
can let 8° be either R? or R* with the Euclidean metric. With 8° = R?, the location
functions might be continuous R*-valued functions on [s, T;) with L,(#) = A, for
t<sand Li(t} = A* for t = T}, for some s and T with —oo <5< T; < 00. This makes
the customer be in the system for a nonempty finite time interval. Even in this wire-
less-telecommunication-system application, the state space $® might be more gen-
eral, representing additional attributes of the customers.

For the queueing networks, we let 8° = {1,..., N} and we restrict atténtion to
location functions with only finitely many dlscontmultxes, and L(f) = A, for all
t<s and L;(f) = A* for all =T, for some s and T, with —oo <s< Ty<oo. The
lengths of the piecewise-constant segments are the service times in the queues. This
formulation requires that the service times$ be strictly positive {(which is without
loss of generality in infinite-server systems).
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Fig. 2. A possible realization of a PALM.

THE POISSON-RANDOM-MEAsURE REPRESENTATION

We represent a PALM as'a Poisson random measure M on a product space
R x X, where R is the real line and Y is a general space, assumed to be a Polish
space, i.e., a topological space metrizable as a complete separable metric space
(CSMS); the specific metric does not matter; see chapters 5-7 plus appendlx 2in
Daley and Vere-Jones [1 7], section IX.6 of Bourbaki [7] and Parthasarathy [57].
(The model also can be described as a Poisson process on R x X or a marked Pois-
son process on R with mark space 5.) An element (s, o) of R x X specifies a custo-
mer arrival time s and his location (as a function of time) o.
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A Poisson random measure M on R x X' is specified by its intensity measure p,
which here we assume is of the form

b
n((a,b] x I') = ] a(s)P,(I)ds (2.1)

for measurable rectangles (@, 5] x I in R x X, where « is the external-arrival-rate
functions and P,(I") is a measure on X for each s and a measurable function of s for
each measurable subset I"in X. The full distribution of M is characterized by exten-
sion; see pp. 177, 204-206, 607-610 of [17].

The Poisson random measure M has a distribution specified by

PM(B1) =mny,...,M(By) =m) = He i ' | (2.2}

= hi

where
= BIM(B))] = j p(ds, do), | 23)

for any positive integer k, any & disjoint subsets By, . . ., B, of R %3’ and-any X non-
negative integers my, . . ., g; i.€., the numbers of points in disjoint subsets have inde-
pendent Poisson distributions with means specified by (2.1) and (2.3).

THE SPACE OF LOCATION FUNCTIONS

The general space X above represents a set of possible sample paths of a location
stochastic process. In particular, o represents a Jocation function depicting the loca-
tion of a customer at time ¢, To make this function space Polish, we let X be the
space D(R, 8) of right-continuous §-valued functions on R with limits from the left,
where the state space 8 is Polish and D(R, 8) is endowed with the usual Skorohod
[65} J; topology, which makes D(R, 8) Polish; see chapter 3 of Bﬂlmgsley [5], sec-
tion 2 of Whitt [70]:and chapter 3 of Ethier and Kurtz[24].

As indicated above, ‘to account for arrival and departure, we let- S $%U
{A,, A*}. If my is a tetric on 8% inducing its topology and making it Polish, then'a
metric m on § making it Polish, for which the relative topology on 8% i§‘the given
topology, is determined by having m(A,, A"} = m(s, A,) = m(s, A*) =1 for all
se8’ and

~?’?'¢(S.1;82’)?mo(sm‘-z)/(1+mo(sl,éz)), - (2.4)

fOl’Sl,SzEnS.’;0 s

The distribution of. a PALM is spec1ﬁed via (2 1} by-the extemal-arnval—rate
function o and the probability distributions P; on Z‘ .D(R, 8), which are the prob-
ability Jaws of the location processes L.
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Remark 2.1 . :
The specification above allows us to simulate M on a computer. In particular,
we can generate a Poisson total number of arrivals with mean & = [%_o(s)ds.
Then these arrivals are assigned times on IR according to i.i.d. random variables
with depsity «(s)/a. This produces a realization of the Poisson process 4. Alterna-
tively, assuming that « is bounded over a finite interval [a, 4], we can use a homoge-
neous Poisson process with arrival rate v, where o(s) <v,a<s<b. We simulate
points according to the homogeneous Poisson process and keep points at each time
5 by performing independent Bernoulli trials, keeping the point at time s with prob-
ability a(s)/, i.e., we perform independent random thinnings; see Lewis and
Shedler [44]. Then, for an arrival at time s, we simulate the additional location pro-
cess according to the law Py (I"). O

CONSTRUCTION VIA STOCHASTIC INTEGRATION

Another way to obtain the distribution of the Poisson random measure M is to
directly construct the random variables M((a, b] x I'} via stochastic integration
starting with the Poisson process A. In this construction, we use a sequence
{Zx : k= 1} of i.i.d. random elements of a Polish space X' that are independent of 4.
We then define afamily {L, : se R} of random elements of X' by letting . :

Ly = y(Zy(),5), —oo<s<oco, @)

where i : 2’ x R— Yis jointly measurable. Using (2.5), we can define the random
measure via the stochastic integral

t

M(,T) = M((-00,q x 1) = | 1,endA@)
| A1) %) o
= E I{ijEF} = Z l{ﬁks:,w(zk,ﬁk)er}' (2‘6)
k=1 k=1 : :

for any measurable set I" in D(R, §), where Ay denotes the kth point of 4 and 15 is
the indicator function of the set B. Note that the stochastic integralin (2.6) is just a
countable sum. Thus no elaborate theory of stochastic integration is needed. This
will be true throughout this paper.

Remark 2.2 L

_ In our model, X' = D(R, 8) and L, = {L,(?) : teR} represents the location pro-
cess of the customer arriving at time 5. It is natural to think of {L : seR} as an
uncountably infinite collection of stochastically independent random elements of
2 with time-dependent distributions. Such collections of uncountably infinite inde-
pendent random elements are well defined, see section III.3 of Neveu [50], but
they present measurability problems. Hence, we have instead defined {L, : seR}in
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terms of the Poisson process and the (countably infinite) sequence of random ele-
ments {Z;} asin (2.5).
The random elements L; in (2.5) are well defined for all s, but they are only rele-

vant when A has a jump at 5. The random elements Ly ,. .., L,, are typically not
independent, but they are conditionally independent given that 4 has points at
) E /N O

It remains to specify the function y and the sequence {Z;} appearing in (2.5).
One important special case is when the distribution of {L,(?) : teR} is equal to the
distribution of {Lo(¢ — s) : teR}. Then it suffices tolet £’ = 3 and let Z be distrib-
uted as Ly. Then we can bave y(o, s)(¢) = o(s + 1), 1€R, i.e., i can be the identity
map modified by a time transition, which can be shown to be measurable on
D(R, 8} x R (essentially because the projection maps are measurable; see p. 73 of
Whitt [70] or p. 127 of Ethier and Kurtz [24]).

More generally, we can take {Z;} to be a sequence of i.i.d. uniforms on [0, 1], not-
ing that any random element of a Polish space can be represented as f(Z;) for
some measurable f; see section 1.2 of Parthasarathy [57]. This means that given any
Poisson random measure M with intensity measure p based on the pair (¢, P) as
in (2.3) there exists a representation of M of the form (2.5) and (2.6). However, the
actual construction is not always easy. Of course, for a real-valued random vari-
ables with cdf G, it suffices to use the inverse cdf, i.e., to let Z; be uniform on [0, 1]
in (2.5) and let

!/t(er',s) = G = inf{u: Gs(u) >’} (2.7)

Explicit constructions can be done more generally by extending this idea, e.g., by
using conditional cdf’s, as we indicate below; see O°Brien [53]. (This specific con-
struction applies directly to the representation of customer experience via finite
queue sequences and service times, which we discuss in section 5.) Let & denote
equality in distribution.

LEMMA 2.1

Let {X,:n>1} be a sequence of real-valued random’ variables and let
Fxy|x1, . . .y %n1) = P(Xp<Xa| X1 = x1,.. ., X1 = X1} beconditional probabil-
ity dxstnbutlons Then {X nz1}4{X, :n > 1} where X, is defined recursively by

X, =inf{s: F(siXy,..., %) > Uy}
and{U,:n> 1} isan i.ifl. sequence of uniform variables on {0, 1].

We can now apply the Watanabe Poisson-process-characterization theorem on
p. 26 of Brémaud [8] to verify that the construction in (2.6) produces what we want.
(As before, we can use extension to construct the full Poisson random measure M
onR x ZfromM(¢, I') in (2.6).)
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For this purpose, we now establish the required martingale property. We do
this in greater generality than we need to characterize Poisson processes in order to
cover other applications later. We give a direct proof of the martingale property,
but it can also be obtained from the integration theorem on p. 27 of Bremaud [8].
(For this purpose, note that if s is a jump time of A4, then

A Z (), 5) = ¢(Za(s—)+1:5) »

so that the process is predictable with respect to the o-fields F; in lemma. 2.2
below.)

LEMMA2.2
Let {Z;} be an i.i.d. sequence of random elements of a Polish space X’ distribu-
tedas Z. Let ¢ : ' x R->R be ameasurable function such that

f " BlI6(Z, 5)l|a(s)ds<co for all ¢. (2.8)
Then the process
My(t) = Zy(2) - B[Zy(1)], 1€R, (2.9)
where _
A(f) . :
Zy(1) = Z &(Zi, Ar), (2.10)

is a martingale with respect to the o-fields 5, generated by {A(s) s<t} and
{2 k< A1), and

—0Q

Bz = [ BsE e @D

Proof
Itis easy to see that Zy(¢) in (2.10) is adapted to F,. For all s <1, we have

A()—A(s)

E[Z4(0]Fs] = Zo(s) + E[ Y N Zierais) Arra)|Fe
=1

= Z4(s) + ElZ4(0)] - BIZy(s)]. (212)

The second equality in (2.12) holds because the sum inside the conditional expecta-
tion is independent of ¥, This follows from the fact that. {Ak+ A St}
= {A(t) — A(s) =k}. Consequently, the resulting conditional expectation is-a con-
stant. By taking expectations on both sides of the equation, we see that this con-
stant must equal E[Z,(7)] — E[Z4(s)).
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Now we evaluate E[Z4(2)]. Since ¢~ Z, is a linear mapping, it is sufficient to
let ¢ be a nonnegative function, We then have

EZ(0)] = 3 Blg(Z A); A<
ke=]

=3 / B2l = Pt ds)
k=1 v~

=3 [ B62,9)- alo)P(a() =k~ 1)

k=1

— [ B(z, s)ds)ds. (2.13)

—00

* The second to last step follows because {4 <s} = {4(s) >k} and
%P(A(s) 2k) =ofs) - P(A(s) =k —-1), ' (2.14)

which allows us to replace the measure P(4;eds) by afs)P(4(s) =k — 1)ds.
Finally, from (2.13) and (2.8}, we see that E[| Z,(#){] <oo forall 1. [}

As in (2.6), our main application of lemma 2.2 is when ¢ is an indicator func-
tion. The following combines lemma 2.2 with the Watanabe theorem on p. 26 of
Brémaud [8].

LEMMA 2.3

Let A be a nonhomogeneous Poisson process on R with integrable arrival-rate
function e, let {Z; : k>1} be an ii.d. sequence of random elements of a Polish
space X' and let I', ... ., I'x be disjoint subsets of another measurable space X. If L,
is defined by (2.5) for some jointly méasurable function y : Z° x R— X, then
{M(s,I') : teR},...,{M(¢, I't) : teR} defined by (2.6) are independent Poisson
processes determining the full random measure M on R x X. The arrival-rate func-
tion of M(¢, I';) is a(t)P(Lse ;). Moreover, M(co,I'), ..., M(oo, I'x) are inde-
pendent Poisson random variables with mean

BM(oe, 1) = [ P(Lue Ma(s)és. 215)

—00

Below we apply lemma 2.3, not just for constructing the random measure M
but for treating other stochastic integrals; then L, in (2.5) need not be the location
process. _

We now apply lemma 2.3 to obtain a useful covariance formula. For random
variables X; and X3, let Cov[Xj,X3] be the covariance of X and X3; ie.,
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Covl[X}, X5] = E[X1X3] — E[X1]E[X;]. As with lemma 2.2, we give a direct proof
using the Poisson property, but lemma 2.4 also follows from the product theorem
for square integrable martingales; see pp. 79, 280 of Ethier and Kurtz [24].

LEMMA 2.4
If the assumptions of lemma 2.2 hold for two functions ¢, and ¢,, and
| B4, 90a(2,9)llats)ds <o, @16
then
H
CovZa®). Ze) = [ BbZI0EZNe@ds.  @17)
Proof

It is sufficient to prove (2.17) for nonnegative integer valued functions ¢; and
¢z because the covariance is bilinear and general ¢;(x) can be approximated by
|ngi(x)] /n, where | x| is the greatest integer less than x. Given nonnegative-integer-
valued ¢;, we express Z¢,(t) as linear functions of integrals of indicator functions,
ie.,

) 1
Zy () = Z Zm / 1{'251(ZA(:)J)=m,¢1(ZA(:).S)W}M(S) (2.18)
m=0 n=0 -
and
Z¢z (t) = Z Z / 1{451 (ZJ(:) ,Y)—m,t;bz(zA(:) r’)—"}dA(s) (2‘19)
m=0 n=0

By lemma 2.3, the mtegrals are 1ndependent Poisson processes for different pairs
(m,n). Hence

, . 8@ e . 1 oat _ .
COV[Z¢1 (1), Z¢2 (t)] = Z zmnVar l: / 1{¢1(Z Sy =ma(Zay ,s)=,_,}dA(S)] .

m=0 n=0 =
- Z Z mnE [ [ 1 {$ (24(1)15)—”1,452(24(:) J)""}dA (S)}
m=0 n=0
1
— [ BigZug )62 Zas Ns)ds. (2:20)

. : O
THE PRODUCT-FORM RESULT '

- For any measurable subset Cin 8, let Q¢(¢) be the random number of customers
inthe set C'attime ¢. It is easy to see that
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0c(f) = / :1{L,(,)Ec}dA(s) — M(g(t, O)), (2.21)

where
g(t,C) = {{s,))eR x D(R,8) : {(t) e C}. (2.22)

We typically think of customers being in the system only after their arrival, but
note that this is not required above. :
We now state our product-form result.

THEOREM 2.1

Consider the PALM specified above (with integrable external-arrival-rate func-
tion o). For any positive integer k and any disjoint measurable subsets Cj, ..., C;
of 8, the random variables Qc, (?), - . ., Q¢ (¢) are independent and Poisson-distrib-
uted for each ¢, with finite means

mi() = B[Qc,(f)] = EIM(g(z, C))] = /_ " L) eClals)ds.  (2.23)

Proof

Working with the Poisson random measure M we note that g(z,Cy), ...,
g(1, Cp) in (2.22) are disjoint subsets of R x D(R,8) when Ci, ..., C; are disjoint.
Alternatively, working with the stochastic integrals, we apply the last statement in
lemma 2.3. Note that, for any fixed ¢, the stochastic integral in (2.21) is a special
case of (2.6); in (2.5) weuse iy, : 2’ x R—§with '

Wi(Zags), 8) = w(Zags),8)(1) = Ls(2) .

Fmale, the means in (2.23) are necessanly finite because we have assumed that «
isintegrable. , O

Remark 2.3
Tt is significant that the mean formulas (2.11), (2.15) and (2.23) do rot dépend
on 4 being a Poisson process, as can be seen form (2.13). For the mean formula
(2 13), we do use the fact that the conditional distribution of ¢(Zy, Ax) gwen that
"Ap=s depends on s but not otherwise onk or Aie.,

E[¢(Zi, 5)| A = 5] =E[¢(Z,s)].

We also use the fact that we have an external-arrival-rate function o
t

B[4()] = f ofs)ds,

. ~00 - .
as can be seen from (2.14), but this can be relaxed. We can replace the external-arri-
val-rate function a(s) by an external-arrival-intensity measure c(ds). In contrast,
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the martingale property in lemma 2.2, the covariance formula in lemma 2.4 and
the distributional result in theorem 2.1 do depend on 4 being a Poisson process.

Remark 2.4

.In many applications customers simultaneously use multiple resources, e.g., a
call might use one circuit on each of several links connecting the source to destina-
tion; see Kelly [38]. The PALM encompasses this, because the space 8° could be a
set of subsets of some other space, say 2. Indeed, the PALM provides a network
generalization of the infinite-server version of the model in [38], because customers
may successively hold different subsets. In this framework, for each we §2, we can
let Q.3 (#) be independent sum of Q,)(7} for those se8” for which wes. Hence,

Q4. () has a Poisson distribution for each w and ¢ as a consequence of theorem 2.1,
but Qy,,}() and Q. (#) are not necessarily independent. (This marginal Poisson
property is noted by Keilson and Servi [36].) Indeed, the covariance is easily com-
puted; Cov[Qy.,}(£), Qp.,}{f)] it is the sum of the means E[Qy) (t)] overallse 8 such
that w; €s and w; 5. A similar analysis applies to the covanance between queue
lengths at different times in a PALM, as we show below.

DEPENDENCE AMONG THE QUEUE LENGTHS

By theorem 2.1, there is no dependence among the queue lengths at each time ¢,
but there is interesting dependence at different times. (This is also true for the classi-
cal stationary product-form queueing networks.) We now determine the joint dis-
tribution of the queue lengths in a PALM at different times. For this purpose, we
say that a k-dimensional probability distribution is multivariate Poisson distribu-
tion if it is the distribution of a random vector (¥, ..., ¥i) where, for each i, ¥; is
the sum of the variables in a finite subset of a collection {Z;, ..., Z,} of mutually
independent Poisson random variables; see pp. 298-300 of J ohnson and Kotz [35]
and p. 137 of Barlow and Proschan [3]. Since sums of independent Poisson vari-
ables are Poisson, it suffices for nto be at most 28 — 1.

The Poisson-random-measure representation of our PALM implies that the col-
lection of random variables M(B},..., M(B;) for subsets By,..., By of Rx X
necessarily has a multivariate Poisson dlstnbutlon with dependencc determined by
nonempty intersections of the subsets By, ..., By. For example, given two random
variables M(B,) and M(B;) for méasurable subscts BiandB,inR x X,

M(B;) = M(B; N By) + M(By N B),

where B is the complement of B, and similarly for M(B,), so that M(B;) and
M(B;) each are sums of two'independent Poisson random variables, with one in
common. A corresponding representation as sums of subsets of 2 — 1 independent
Poisson random variables holds for random variables M(B,), .. ., M(Bx).

To express the consequences of this structure, recall that a b1vanate probability
mass function p(j, k) is totally pos:rwe of order 2 (TPz) if for all mtegers J1<j»and
k} <k2
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pl, k1)plia, k) Zp(i, k2)p(ia ki) 5

see p. 92 of Barlow and Proschan [3]. Recall that two random variables X7 and X3
are associated if Cov|f(X1),g(X3)] =0 for all nondecreasing real-valued random
variables f and g for which the expectations are well defined; see p. 29 of [3]. It is
known that a multivariate distribution which is TP; in pairs is nccessanly asso-
ciated; see p. 149 of [3].

The following is the key lemma describing dependence between two random
variables in our PALM; we omit the easy proof. Léta A b = min{a, b}.

LEMMA?2.5 '

Fori=1,2,3, let ¥; be independent nonnegatlve-mtegcr-valued random vari-
ables with probabﬂlty mass functions p;(k). Then (Y14 Y32, Y7 + Yg) has ]0111t
probability mass function

ink .
pi,k) = an (m)pa(j —m)ps(k —m), - (2.24)
o .

which is 7'P; and thus as_sociatéd. Morcover,
Cov[Y; + Y2, ¥) + ¥3] = Var[¥y]. (2.25)

If, in addition, p; is Poisson foreach i, then pin (2.24)isa bivariate Poisson distribu-
tion and .

Cov[Y; + Y3, Y; + Y3) = Var[Y;] = E[Y}]. ) (2.26)

‘We now describe the joint distribution of Q¢ (#1),..., Qc,(t,). The result for
one queue (8° = {1}) is theorem 1.2 of Eick et al. [21].

THEOREM 2.2 S

Consider the PALM and. let Ci,. .., C, be (not necessarily disjoint) subsets,of 8
andlet#,...,1, be time points. Then (Q(;l (t1),- .., Oc,(tn)) has a multivariate Pois-
son dlStl’lbllthIl Consequently, QOc, (tl) ., Qc,(t,) are associated random vari-
ables with : :

Cov[Qc,(11), Qc,(12)] = E[M(q(11, C1) Naqlt2, C2))]
- f_ P(Ly(1) € Ci, L) € la(s)ds. ~ (2.27)

Proof .
Note that Q¢ (%) = M(g{#;, C;)), 1 <i<n. The multivariate Poisson property
follows by the remarks before lemma 2.5. Then apply lemmas 2.4 and 2.5, noting

that
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00
M(g(t1, C1) Ng(ta, C3)) =/ 1, (e L(n) e cydA(s) - O

MODELING

We conclude this section with a brief discussion of modeling with PALMs. As
should be clear from the above, to obtain useful PALMs for applications, the chal-
lenge is to obtain realistic location processes for which we can compute the time-
dependent probability distributions, e.g., P(L(#) € C) in theorem 2.1.

A natural approach is direct sampling from a function space. This is most easily
done starting with a finite or countably infinite set Xy of location process sample
paths {(¢) : teR},r = 1,2,.... We then stipulate that an arrival at time s has loca-
tion function {I"(¢ +5) : te]R} with probability p,(r). The PALM is then specified
by the set Xy of sample paths, the assignment probabilities p;(r) and the external-
arrival-rate function a(s).

Another natural approach is to treat the location processes as Markov. Then
we can specify the location processes by their transition probabilities given the cur-
rent state. This is illustrated by the (M,/M;/oo)¥ /M, model in séction 8. The loca-
tion processes are specified there by initial state probabilities m;(f), transition
probabilities py(#) and individual service-rate functions p,(¢). In applications these
functions might be regarded as piecewise-constant functions of . As indicated in
section 8, the means and covariances can be found for this model by solving linear
ODEs. Thus, this totally Markov (M,/M,/cc)" / M, model is relatively tractable.

We can also consider PALMs with Markov location processes, but without
finite state spaces. For example, the location processes might be time-dependent
Brownian motions in R* or time-dependent reflected Brownian motionsin.Rﬁ-.

Motivated by the wireless-telecommunication-system application, we intro-
duce a new Markov location process for a PALM. This model has linear motion
with random jumps; we call it a Markov linear PALM. A state s for each customer
consists-of his location x (a point in R?), velocity v a point in [0, co)) and direction
d (a point in R? withnorm 1). Thus the state space 8° can be regarded as R”. In addi-
tion, there is a jump-transition intensity function 7(x,v,d, f) a collection of initial-
state probability measures n(t;-) and a collection of probabzlzty transition kernels
Pt (x,v,d),).

We assume that customers changé their position continuously and linearly
according to the current velocity v and direction d, except at special jump transi-
tions. Thus, if there are no jump transitions in the interval [s, 7] and if x(¢) denotes
the customer location at time 7, then we have

x(8) =x(s) + vd(t -5, _ {2.28)

where d is a direction vector with norm ||d|| = 1. The jump transitions occur
according to the jump-transition intensity function .
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As with any PALM, external arrivals occur according to the nonhomogeneous
Poisson process A with external-arrival-rate function c. Upon arrival at time s, a
customer 18 assigned an initial state (x, v, d} according to the probability measure
w(s;-). (We assume that n(s, C) is a probability measure on §° for each s and a mea-
surable function of s for each measurable subset C in 8°.) Starting at time s in state
(x,v,d), the customer moves from the initial location at constant velocity v in the
direction d. However, jump transitions occur at rate n(x, v, d, 7) in state (x, v, d) at
time ¢. If a jump transition occurs in state (x;,v1, d;) at time ¢, then (as an approxi-
mation to the laws of physics) an instantaneous transifion is made to state
(x2,v2,d2) according to the transition probability kernel ot (x1,v1,dy), ). (We
assume that p(z; (x, v, d), C) is a probability measure on 8 for each (#;x,v,d) and a
measurable function on R x $° for each measurable subset C on 8°.) With probabil-
ity p(t, (x1,21,d1), {A*}) the customer leaves the system at this jump transition
point. This Markov linear PALM and variants seem to have the potential of realis-
tically representing real systems, but it remains to effectively analyzc these loca-
tion processes.

For the open queueing network models considered below, the Markov property
can be relaxed by assuming only that the successive transitions from queue to
queue are Markov A relatively simple model within this framiework is the
(M,/GI[o0)™ | M, model, which we discuss in section 7, in which the service times
at the queues are mutually independent with general distributions depending only
on the queue index. The model is then specified by the external-arrival-rate func-
tion @, the initial-state probabilities m;(z), the probability transition function py(7)
and the scrv1ce-t1me cdf’s G;, 1 <i<N. The model specification is the same as for
the (M,/M,/oo)” | M, model except that the service-time cdf’s G; replace the indivi-
dual service-rate functions p;(f). The cdf's allow greater generality by getting
away from the Markov property (the exponential special case), but they do not

incorporate time dependence. As in theorem 2.1, the (M,/GI/00)" /M, model can
be solved by iteratively solving the input equations, so that this model is also rela-
tively tractable. . -

3.The (M,/G;/o0)" /G, open queueing network mo’del

The (M,/G/o0)" /G, open queueing network model is a speclal case of the
PALM in section 2 in which 8° = {1,. .., N}, the location functions / are piecewise
constant with only finitely many Jumps and

I(t) = A, for t<sand I(1) = A" for t>T; (3.1)

for some s and T with —co<s< T, <00. Alth‘ough it is not essential to do so, we
will assume that the time s in (3.1) is the external arrival time. In this framework we
write 0i(Z) for Qg (¢). Hence we have, by section 2,



206 W.A. Massey, W. Whitt / Networks of infinite-server queues

o) = / 12,9 dA(5)

and

(0 = EiQ(0) - [ " PUL(Y) = a(s)ds,

withan analo gous formula for Cov[Q,(tl) 0i(12)].

A concrete example of the (M,/G,/0)” /G, model that illustrates the generahty
is a nonstationary geperalization of the semi-Markov compartmental models of
Weiner and Purdue [69] and Purdue [59]. Then the location prbcesses may be non-
stationary semi-Markov processes. The transitions from queue to queue can
depend on the length of the most recently completed service time as well as the
queue index and the transition time, '

With this additional structure, we can discuss the external arrival and departure
processes, and the aggregate arrival and departure processes. We discuss these in
turp. Our terminology is illustrated in fig. 3. The external arrival process A is the
arrival process to the network from outside the network. The external arrival pro-
cess to queue i, A;, is the arrival process to queue i from outside the network; i.e., 4;
counts the arrivals in A that visit queue i first. Similarly, the external departure pro—'

A —D> N

) — _g -A:(t)—)-l Qi A'i'm_‘)‘
L<
A0S =

Al —=> Qi Al —D
(-..

AN T s &
> Ot A =D
<~

Dy —»

Fig. 3. Flow diagram for the processes related to infinite server networks.
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cess D is the departure process from the network. The external departure process
Jrom gueue i, D;, is the departure process from the network from queue i. In other
words, D; counts those departures in D who visit queue ¢ last.

In contrast, “aggregate” expresses the perspectwe of the mdlwdual queues.
The aggregate arrival process to queue i, A}, counts the arrivals to queue i from
other queues as well as from outside the network. Similarly, the aggregate depar-
ture process from gueue i, A;, counts the departures from queue i that go to other
queues as well as outside the network. Note that, in general, customers that are
aggregate arrivals and departures may reappear again later as subsequent aggre-
gate arrivals and departures, whereas this cannot happen for external arrivals and
departures (under our model assumptlons)

The processes A, 4;, D, Dy, Af and A; are all understood to be countmg pro-
cesses; e.g., AT (f) counts the number of aggregate arrivals to queue 7 in (—oo, f].
Since the external-arrival-rate function « is integrable, 4(c0), 4;(c0), D(c0) and

D;(o0) are necessanly finite w.p. 1, but we need to make extra assumptions to have
Af (00) and A (co) be finite.

Under our assumptions, the external arrival processes 4 and 4; have well
defined rate or intensity functions « and «;, but in general the other processes do
not. When they do, the rate functions of D ]D,,A+ and A" w111 be denoted by
8,6, AF and X", respectively.

For some of the results Below, we use the followmg consequence of lemma 2.3,
In the following lemma and its applications later, the counting processes fail to be
Poisson processes only because the intensity measure need not be absolutely contin-
uous; e.g., there can be multiple points at fixed times. The processes still have inde-
pendent Poisson increments; we call these processes generalized Poisson processes.
We give examples showing that the external departure process in an M,/G;/co
queue can be a generalized Poisson process without being a Poisson process after
theorem 3.3. These examples apply to the following lemma too: In section 4 we give
conditions for generalized Poisson processes to be Poisson processes. '
LEMMA 3.1 : N

Let {Z;} be an ii.d. sequence of random elements of a Pohsh space X, let
¢ : X' x R x R—§ be a measurable function with values in a Polish space 8 and let
Xi(t) = ¢(Z (5,5, 1). I£Cy, . . ., Caredisjoint subsets of § and if 1y« ¢y is nionde-
creasingin t forall sand i, then

i o | , .A .A . | o , | | . _-l.lJ _,;‘.,{
MG E [ Mnead ) =Y Ly gy 1SI<E,  (2)

—o0 k=1 T

areindependent generalized Poisson processes with means

EBM(1,C)) = f_ :P(X;(I)Q_Ci)a_(s)ds. . ..(33)
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Proof

Apply lemma 2.3 to show that the increments of M(¢, C;) for disjoint time inter-
vals and different { are independent Poisson variables. In particular, for any posi-
" tive integer mand time points 5 = —0o <f; < ... <f, <00, consider

—00

M(, i) — M(t;1, C)) = f Lxn), () e €3 dA(S) 5 (34)

where Cj; is the product set having the first j — 1 components equal to Cf and the
last m—j+1 components equal to ;. Note that, by hypothesis,
{X:(tj—1) e G} = {X:(#;) € Ci} for all i and ;. Hence, for each i, these m product sets
are disjoint, and so the km integrals in (3.4) for 1 <i<k and 1 <j<m are indepen-
dent Poisson random variables. Finally, (3.3) is a special case of (2.15). 0

To immediately illustraté lemma 3.1, we give an extension of theorem 2.1. Let
Q¢(t, ) be the number of customers at queue i at time ¢ that will depart before time
t+T.

THEOREM 3.1
For each t, the processes {Q?(,7) : 720} for 1 <i< N are independent general-
ized Poisson processes. ‘

Proof
Note that .
o
o Q?(t: T) = / Y7, <opr L, ()= dA(s)
—oo
for T;in (3.1) and apply lemama 3.1. 7 O

A similar result holds for Q%(z, 7), the number of customers at queue i at time ¢
that arrived after time t — 7. In fact, the processes {Q?(¢; 7) : 720} are Poisson pro-
cesses.

EXTERNAL ARRIVAL AND DEPARTURE PROCESSES

We first consider the queue where the arrival enters the network. Let A.- be the
external arrival process to queue # in the (M;/G,/oc0)" /G; model, which can be
defined by

A= [ 100m046). ' (35)

The following is an easy application of lemma 2.3; it just shows that independent
thinnings of a Poisson process yields independent Poisson processes.
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THEOREM 3.2
The external arrival processes Aj,..., 4, are independent Poisson processes
with external-arrival-rate functions

ai(s) = P(Ly(s) = Da(s) . (3.6)

The external departure process D can be defined as

2() =M@ 18N = [ 1pigeaydds) = [

L+ o]

i, <qdd(s). (3.7)

Similarly, the external departure process from queué i, D;, can be defined by
o0
Di(f) = _/ L (r,-)=i1,<nd4(s) - (3.8)
~00

The following is an extension of theorems 1.1, 2.1 and 2.2, which can be proved
by applying lemmas 2.3 and 3.1 to (3.7), (3.8) and (2.21).

THEOREM 3.3

In the (M,/G,/00)" /G, model, the vector external departure process before
time ¢, {(D1(s), ..., Dn(s)) : s<t}, is independent of the vector (Q1(1), ..., On(?))
for each . Morcover, Qi(f), 1 i< N, are independent Poisson random variables
and D;, 1 €i< N, are independent generalized Poisson processes with means

BD(0) = [ PUAT-) =i To<dal)ds (39)
for Ty in (3.1). |

EXAMPLE3.1

The external departure processes D and D; need not be Poisson processes, even
when there is only one queue, because their intensity measures need not be abso-
lutely continuous, so that they need not be either simple or orderly (see p. 28 of
Daley and Vere-Jones [17]). To quickly see that the process D could have multiple
points at a fixed time, consider a single queue with a(s) =1 for 0<s<1 and
a(s) = 0 for s <0. Let there be time-dependent deterministic service times, so that
T.=1,0 << 1. Then D(1) — D(1-), the number of departures at time 1, is Poisson
withmean fo a(s)ds. Think of an infinite-capacity trainthat departsat time 1. 0
EXAMPLE3.2

In fact, the intensity measure of the departure process from an M;/G/co0 queue
can be even more complicated. It need not be either absolutely continuous or dis-
crete; it can be singular but continuous; see chapter 1 of Chung [14]. To see this,
with « as above, let the departure times be 7; = 1 4 F~1(s) for any cdf F on [0, 00),
where F1(s) = inf{r>0: F(f)>5},0<s<1. As in (2.7), F~(U) has cdf F when
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U is uniformly distributed on {0, 1]. Since the unordered arrival times in [0, 1] are
distributed as independent uniform random variables over [0, 1] conditional on
A(1),

E[D(1 4 £)|A(1) = k| = kF(¥), 120,
sothat
E[{D{1 +1)] = B[A()]F(¢) = F(£), t=0.

Thus, E{D(1 + t)] may have a singular continuous component as well as discrete
and absolutely continuzous components. O

THE AGGREGATE ARRIVAL AND DEPARTURE PROCESSES

We now describe the aggregate arrival and departure processes A7 and A;. Hen-
ceforth, where the results are similar, we only state results for AT. Let V;t (s, ) and
V; (s, 1), respectively, be the number of visits to queue i (arrivals to queue 7) and
completed visits to queue i (departures from queue i) up to time ¢ by an arrival at
time s. These processes are formally defined as in lemma 2.2. The processcs Af and
A; are then defined as

50 = [ vieoue wa 50=[" Ve, 6o

Let A™(z) and A%(f) count the number of customers who have come to queue i
exactly n times and at least n times, respectively, by time . Let @ denote the sum of
mutually independent random elements; we use the familiar summation sign >
when there need not be independence of the summands. Thus we could reexpress
resultsintheorems2.1,3.2and 3.3 as

A= EBA,,D @Di and Q(t) = 69 0:(z) for each t.

i=1

When the argument ¢ is not included, we mean that the stochastic processes being
added are mutually independent.

THEOREM 3.4
Inthe (M;/G;/c0)" /G, model,

A9 —ZA"(r) ~Pntrs), ()
n=1

where

00 _ o pm _
A1) = / pryondd(s) and A2 = f L enendd() . (312)
_w L.

—0g
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Moreover, the processes [i‘;‘ are generalized Poisson processes, with means
- (+0]
BUEO= [ PO (s ) >malds<oo, (.13)
—-00

and, for each ¢ and for n> 1, A7(¢) are mutually independent Poisson random vari-
ables with means

' !
B0 = [ PV (s,0) = mafs)ds<co. (3.14)
—00 .
Proof
To treat A" note that Ly (s9n) is nondecreasing in ¢ for all 5,  and n; then apply
lemma 3.1. To treat A7 (1) for each fixed f, apply lemma2.3. O

We now state the consequences of theorem 3.4 for A} for A . It is important to
note that so far we have not made assumptions strong enough to imply that A7 (¢)
and A; (¢) are finite. For this purpose, and to have finite variances, we assume
that. -

-/?0 E[V} (s, 00)]es)ds <00 . : (3.15)

Note that V; (s,t)<V;(s,#), so that no separate assumption is needed for
Vi (s, b).

THEOREM 3.5 _
Assume that (3.15) holds. The following eight statements are equivalent:

@ P(V;H(s,00)<1) =1foralmostalls;

(i} P(V;(s,00)<1)=1foralmostalls;

(iii) A isa generalized Poisson process;

{v) A isa generalized Poisson process;

() Var[A+ (O] = E[4A] (1)] forall1;

(vi) Var[A; (1)] = E{4; (s)} forally;

(vii) Cov[Qi(1), A"“(oo) Al ()] = 0forall 4

(viii) Cov[Q;(2), A7 ()] = Oforall 2.

Proof
First, (i) and (ii) are equlvalent because ¥} (s,00) = V; (s, 00) for all 5, by virtue

of (3.1). Properties (i) and (ii) in turn 1mp1y (iii) and (1v) by theorem 3.4, because
then Af = Al Obviously (iii) unpllcs (v) and (iv) implies (vi). Next, to show that \s)
implies (i), note that, by(2.11) and (2.16), (v) isequivalent to '

E[A4F ()] = ] " B[V (s D]als)ds

= / ” E[V;(s, :)2] ofs)ds = Var[AF (1)) - (3.16)

—00
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Since V' (s, t) is integer valued, we must have V" (s, £) equal to 0 or 1 for all £ and
almost all s with respect to the measure a(s)ds. This implies that V¥ (s, 00) <1 for
almost all s, and so {v) implies (i). Similarly, (vi) implies (ii). Finally, we consider
(vii) and (viii). Note that (ii1) implies (vii) and (viii), because under (iii), queue /
behaves like an M,/G/co queueinisolation, except that the arrival process need not
have an intensity. Thus, we can apply theorem 3.3 extended to this case. Now,
(viii) implies (ii) because

[+ ¢]

Covl0(0, 4701 = | BV (5,0 L) = dals)ds

-

for all £, by lemma 2.4. If Cov[Q;(¢), A; (¢)] = Ofor all ¢, then
E[V; (5,0 Ls(f) = 1 = 0

for all ¢ almost everywhere with respect to a(s)ds. This implies for almost all s
with respect to a(s)ds that ¥ (s,#) = 0 on {L,(¢) = i}, i.e., there are no completed
visits from i by a customer at queue 7, which implies (ii). To see that (vii) implies (i),
weuse lemma 2.4 to obtain

CovlQ(1), AF(00) ~ 410 = [ BIV (5,00) = ¥ (5, Ls) = a(s)ds.

Since V' (s,00) = V;+ (s, 1) forall sand ¢, (vii) is equivalent to
E[V;(s,00) = Vi (s, )i L(f) = ] = 0

for almost all s with respect to the measure a(s)ds. This says that any arrival that
visits node i at any time #, never revisits node i. This is then eqmvalent to (i), which
completes the proof. _ O

We now describe the aggregate arrival processes Af when custorhers can visit
the queues more than once. A similar result holds for the aggregate departure pro-
cesses A; . For this purpose, we introduce a new class of multivariate distribu-
tions. We say that a k-dimensional discrete distribution is a positive-linear
multivariate Poisson distribution if it is distributed as a vector (Y1, ..., ¥x), where -

o0
Y, = Zm,}Zj 1<i<k, (3.17)

{Zj:j=1}isa sequence of mutually independent Poisson random varlables and
my is a nonnegative integer for each 7andj. The multlvanate P01sson distribution in
theorem 2.1 is the special case in which my; isequaltoQ or 1 foralliandj.

Let Z, be the set of nonnegative integers.

LEMMA3.2
If ¢y,...,¢, are Z,-valued, measurable functions in the setting of lemma 2.2,
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then (Zy, (c0),. . ., Z4,(00)) has a positive-linear multivariate Poisson distribution.

Proof _ .
Letm = (my,...,my}andd= (¢1,...,¢,). Then
Z4,(c0) = Zz: ;- f ” 14(Z00.9)=m)dA () (3.18)
meZ] o0 :
foralli, 1 <i<n. Tocomplete the proof apply lemma 2.3. O
THEOREM 3.6

Consider the (M,/G;/o0)" /G, model and suppose that (3.15) holds. Then the
increments of A7 for 1 <i< N have a positive-linear multivariate Poisson distribu-
tion. Consequently, the increments are associated with

Bl4f () - 4} (1)) = [ BV (o)~ V(s )laMds<oo,
Varla} (4) - A ] = [ B (s,) = V(s 1) lats)ds<oo,
and h
CoviA} (1) — AF (), AF(t6) = A3 (1)
= [ B 5 0) ~ Ve ) (75,10 = V7 (5 ) os)ds<oo
for# %tz and 13 <14.

Proof
Apply lemma 3.2, noting that Af (#111) — Af (1) = Z,(occ), where

¢'1(ZA(.:)7 $) =V (sti) = Vi (s, 11)

for 1 <1<N and 1<i<m, wherc HE ... Slnet. Smce independent random vari-
ables are associated and increasing functions of associated random variables are
associated, the increments are associated; see p. 30 of [3]. The formulas now follow
from lemmas 2.2 and 2.4 or by direct calculation using (3.18). - |

4, Rates and reversibility

We say that a counting process (point process) has a rate if its intensity measure
is absolutely continuous with respect to Lebesgue measure; e.g., we say that the
external departure process Dhas a rate §if :

mmm=fﬁ@u (e, @19

—0d
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for an integrable function &; then we call § the external-departure-rate function. In
examples 3.1 and 3.2 we saw that the external departure process D need not have a
rate, even in a single M,/G,/oc queue. In this section we determine necessary and
sufficient conditions for the external departure process and other processes to have
rates. Then we show that the (M;/G,/c0)¥ /G, model has a dynamic reversibility
property when the external departure process has a rate.

RATES

By (3.7) and lemma 2.3, we can express the mean number of departures up to
time zas

BD@)] = [ Pt<hal)ds. 42)

The following elementary result expresses standard definitions in the context of
(4.2);e.g.,seep. 104 of Royden [62].

THEOREM 4.1
(a) The intensity measure associated with E[D{#)] has an atom at zif and only if

oo
E[D(1) — D(t-)] = f P(t, = Ha(s)ds>0.
—Q
(b) The intensity measure associated with E[D(f)] is absolutely continuous, so
that (4.1) holds if and only if for all a, b with 0 <a<b<oco and >0 thereis a 6>0
such that

S EIDE) - D) = [ Y Pla<Ti<h)al)ds<e
k=1

09 k=1

for every finite collection {{%,2,) : 1<k<n} of nonoverlappmg submtervals of
[a, bl with 3y (5 — ) <&

Recall that not having an atom is necessary but not sufficient for absolute conti-
nuity. As illustrated by example 3.2, to have absolute continuity we also need to
rule out the singular continuous case. The following expresses convenient sufficient
conditions for absolute continuity. Condition (i) is used in the totally Markov
case in section 8, while condition (ii) is used to treat (M,/ G/oo) /G, models since
they can be reduced to (M;/G/c0)" /D models.

THEOREM 4.2

The following are each sufficient conditions for the external departure process’
Dtohavearate: 7 :
(i) Ifthereexists a jointly measurable function f;(¢) such that
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i
PT<) = [ filwdn (43)
for almost all 5, then D has an integrable rate function
5(t) = / fD)a(s)ds, teR.
—o0

(i) If the customer sojourn-time distribution P(i’} —s<1),teR, is independént
of the customer arrival time s, then D has an integrable rate function

8(t) = Ela(t — Tv)].

Proof
For (i), combine (4.2) and (4.3) to get

2] = [ | [ saatas

which is finite because « is integrable, and then apply Tonelli, p. 270 of Royden
[62], to interchange the order of the integrals. For (ii}, apply the proof of theorem
1.1, noting that to treat the external departure process D we can regard the entire
network as a single M;/GI /oo queue with service times distributed as T,. Once
again, the integrability of & implies that § is integrable. O

We have seen that the existence of a rate for the external arrival process D can
be determined by considering a single M,/G,/oco queue with service times T; — s,
where T, is the departure time. In the same way we can treat the aggregate arrival
and departure processes A} and A7. We only discuss A7; a similar result holds for
A7 . Therole of T, isnow played by

T(i,m) = inf{t : V;F(s,0) 2}, (4.4)

with the infimum equal 4-co when it is not attained. Since the analysis is the same,
we do not present further details.

We state some consequences for (M,/G/c0)Y /G models We apply theorems
3.3 and 3.4 with the analysis above.

THEOREM 4.3

For the (M,/G/oo)N /G model, the external departure processes D; and the
counting processes A; all are Poisson processes Their {(integrable) mtenmty func-
tions are, respcctlvely,

80 =Elo(t— TPEo(To-) =)~ . - - (45)
and _'; _ ' —_—
X)) =Bla(t — 7 (G,m)], (46)
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where a{ —oo) = O and T} (i, n) is defined in (4.4).

We can combine theorems 3.3 and 4.3 to conclude that the aggregate arrival pro-
cesses A have well defined intensity functions. -

COROLLARY
In the (M,/G/oo0)™ /G model, if E[V; (0, 00)] < oo, then

BlAr@] = [ A(s)ds<oo,

—0Q

where
w —~
X => %@
n=l1

for X in (4.6). Moreover, the processes A are Poisson processes if and only if
‘P(Vi+(0:°°)€1) =1

Proof
From theorems 3.4and 4.3, we have

B[4 ()] = E A”(:)]_Z / (s)ds,

n=1

which ﬁelds the result after interchanging the sums and integrals. The moments
are finite because

B4} O)<EV} 0.00)] [ ads<oo.

Finally, theorem 3.5 implies that A} is a generalized Poisson process if and only if
p({s: Vit (s,00)<1}) = 1. Here with ii.d. location processes this condition is
equivalent to P(¥;(0,00) <1) = 1. The absolute contmulty provides the remzunmg
property to havea Poisson process. ' a

Remark4.1 -

Even though A; and A; in the (M,/G/c0)" /G queue are in general not Poisson
processes, they are well studied processes, in particular Poisson cluster processes,
see p. 236 of Daley and Vere-Jones [17]. A customer’s first Visit to queue { deter-
mines the cluster-center process, while subsequent visits to queue i provide the
remaining points in the cluster. O

REVERSIBILITY

For stationary queueing network models, reversibility notions play a prominent
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role, so it is natural to look for nonstationary analogs here. First, note that theo-
rems 2.1, 3.2 and 3.3 imply a form of network dynamxc-quasz reversibility for
(M,/G:/ oo) /Gy models, see p. 90 of Walrand [68], in that the future arrivals, past
departures and current state are mutually independent; ie., for each ¢,
{A1(s) — Ay (2} : s>}, ..., {An(s) — AN (t) : s>}, O (D), - - -, QN(t) - and
{Dy(s) : s<t},...,{Dn(s) : s< 1} aremutually independent (without any stationar-
ity). However, in general this property does not hold for the aggregate flows at
each queue; i.e., in general,

{Af (s} — AF(2) : s> 1}, {A; (5) : (s) <1} and Oi(7)

are not mutually independent. This is easy to see, because of the possibility of multi-
ple visits. If a queue can be visited only once by each customer, then this dynamic
quasi-reversibility property holds for that queue too. This is essentially just theo-
rem 1.1 again.

Given an (M,/G,/00)" /G, model for which the departure process D has a rate,
form an associated reverse-time model with external arrival process A* and exter-
nal-arrival-rate function o* defined in terms of the original external departure pro-
cess D and its external- departurc—rate functlon 5 by setting

A*(s) D(oo) — D((=s)-), teR. | (4.7)

Then A4* is a Poisson process w1th intensity o* (.s') = §(—s).

We construct the rest of the reverse-time system by continuing to reverse time.
Given the arrival times s,.. ., s, and the departure times Tsy---i T, ‘associated
with the original system w1th external arrival process 4, we have let the arrival
times associated with A* be —Tj,,...,—T;,. We now let the respective departure
times be —sy,...,~5. Then, for lgmék, we let the reverse-time location pro-
cesses be

L'y (-0=L,(H, teR. - (48)

However, note that the arrival times A} associated with A* are the times
—T4 - .+ — Ty, arranged in increasing order From the above construction, we have
the followmgresult : - : .

THEOREM 4.4

The reverse-time system assoc1ated with an (M, /G,/oo) /G, system with a
departure rate is another (M,/G/c0)" /G system with a departure rate for which
A*(co0) = A(co). The number of busy servers in the two systems is related by
0:(t) = Oi(—1t) for all { and . The reverse-time system associated with the reverse-
time system is the original system.

Remark4 2. .
We have assumed that the departure process D has a rate in theorem 4.4 only
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so that the reverse-time arrival process 4* has a rate. We could have reversibility
without this condition if we allowed the external arrival process to be a generalized
Poisson process. The theory can be extended to this case. O

Remark4.3 .
The reverse-time construction above makes

(0} (—1), L<i<N,reR} = {Qi(r) : 1<i<N,teR}, (4.9)

but the arrival processes A* and A typically have different external-arrival-rate
Junctions. Indccd inthe (M,/G/oc)" / G model,

*(s) = 6(—s) = E[a(—s —Ty)]- (4.10)

However, if T, is deterministic and e is symmetric about 0 and periodic with period
T, then

| a*(s) = Elaf—s — Tq)] = a(—s; — To} = a{—s) = afs). | (4.]1)

An example of such an arrival-rate function is a(s) = a + bcos{ys).

Not only are the arrival-rate functions o* and « typically different, but so are
the distributions of the location processes L} and L;. However, it is possible for L
and L, to have the same distribution. For example consider the (M;/GI /co)¥ / D
model with routing by a deterministic finite queue sequence. If the reversed queue
sequence is the same as the forward queue sequence then L} = L. Con31stent with
prcvmus terminology, we can say the (M,/G;/o0)" /G, model with a departure
rate is fully reversible if & = « and L}4 L for all 5, but the ‘weaker notion in theo-
rem 4.4 seems worthwhile.. _ g

5. Decomposition into deterministic routes

We now discuss the reduction of the (M,/G,/o0)"/G, model to the
(M,/Gy/o0)Y /D model by focusing on customers following different routes (queue
sequences) separately. As discussed after theorem 1.2, this is a convenient: device
for proofs, but it also can be exploited in modeling. It is natural to think of the over-
all model as a multiclass model in which each class follows its own deterministic
route. We might specify the model by identifying the relevant routes and mdlcatmg
the time-dependent external-arrival-rate function for each. -

LOCATION PROCESSES VIA ROUTES AND SERVICE TIMES
Since it is matural to specify the location functlons {I(t) : 120} in the

(M,/ G/} /G, model via the finite sequence of queues visited and the servlce
times at these queues, we could let X be the set of (2k)-tuples (ny, .., mg; v1,:. ., o),
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where #; is the index of the ith queue visited and v; is the service time there. We
alsolet A, and let A* be elements of . We then topologize X by making it the coun-
table topological sum over the positive integers & of the product spaces
{1,..., N}* x R* with their usual topologies and {A,, A*}. By propositions I'and 2
on pp. 195 196 of Bourbaki [7], this makes X' Polish. Indeed, X' défined this way is
equivalent to the location-function representation. This is made preclse by the fol-
lowing result; we omit the easy proof.

LEMMA 5.1

The mapping of piecewise-constant location functlons lin D(R, ) with ﬁmtely
many jumps and I(f) = A, for t<s and /(t) = A" for 1> T, for some s and T with
~00 <5< Ty < o0, where D is endowed with the Skorohod [65] J; topology into the
space of queue sequences and service times with the topological-sum topology
above is a homeomorphism.

Moreover, we can decompose the arrival process 4 into a sequence of indepen-
dent Poisson processes each with its own finite deterministic route (sequence of
queues visited). To do this, we can index the finite queue sequences (1, ...,m) by a
unique route r and let A" be the arrival process for route r, P{({L;» = r) be the condi-
tional probability of route r being initiated at time s given that there is an arrival
at time s, and let 0}(¢) be the number of customers following route r that are at
queue i at time 7. Let R be the (at most countably infinite) set of all routes. For each
route r, we can use (2.5) and lemma 2.1 to construct the service times. Using lémma
2.3 once again, we have the following resuit.

THEOREM 5.1

The (M,/G:/ oo) /G; model can be expressed as the superposition of indepen-
dent (M,/G,/oo)” /D models, i.e., the arrival processes A" associated with deferent
routes r are independent Poisson processes with arrival-rate functions :

o/ (s) = a(s)P((Lsy = 7) - '(5.1)

Moreover, for 1 <i<N and re R, the queue lengths Q’ (¢) are independent Poisson
random variables, and the external departure processes D} are mutually mdcpcn—
dent generalized Poisson processes.

Remark 5.1

It should be noted that the fixed routing in the (M 1/ Gif o) /D model is not a
special case of Markov routing, because a fixed route may visit a given queue more
than once and go to a different L queue after each visit. However, the analysis can
be reduced to the (M;/G/c0)" /M model with homogeneous Markov routing,
because we can always regard different visits to the same queue as defercnt queues
by convention (as discussed after theorem 1.2). Thus, the (M,/G;/c0)” /G, model
actually goes beyond the model of theorem 1.2 only by allowmg stochastic depen-
dence and time dependence in the service times. O
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. To efficiently express the results in this multi-route framework, we introduce
some additional notation. First, let 7| be the length of route r. At the same time, let
r be a mapping from the set {1,. .., |¢|} of site indices to the set {1, ..., N} of queue
indices, so that r(k) is the index of the queue at the kth site on route r, and r~1(i) is
the set of sites on route r that are queue , e.g., if the sequence of queues visited on
routeris (7, 1,4, 1),then |r| = 4,r(1) = Tand r*(-1) = {2,4}.

For a given route r, let A} = {4;(¢) : teR} be the departure process from the
kth site of route r, with Aj the external arrival process for route r. Let 8;(R) be the
set of all routes that szart at queue i, and let #( R) be the set of all routes that termi-
nate at queue iie.,

6:(R) = {reR: (1) =1} and #(R) = {reR: r(}r]) = i} (5.2)

Once again, let @ and > denote sums for which independénce is, and is noft,
assumed for the summands, respectively.

THEOREM 52 .
The counting processes Ak are generalized Poisson processes and the following

decompositions hold for the external processes:

A= @ AE and D,= @ ir"'-"

refd:(R) ’ red(R)

Moreover, the aggregate arrival and departure processes decompose as

4;:@( > A’,’c_,) andA;:@( 3 A,’;).

reR \ kerL{j) reR \ker (i)

Proof )
First, observe that

4500 = [ 14epmndd®

and
A0 = f 1z, y=r,1. <y d4(s) .
Nowwe _h,a;vd -. . ' ' ‘
14 ’ . ! -
4:(t) = f Lz, (9=nd4(s) = @(f - 1{£:(:)=i,(L;>=r}dA('§'))
et —ca reR —co )
C= @ (f 1{(L,)—r}dA(s)) @ AO(I)
redi(R) red(R)
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and

Di(t) = f e, (7,-)=i, T, < dA(S)

= @( / 1{L,(I}—)=f.(lc>=f.T:éf}dA(S))

reR
= @D ( f 1{<L,>=r,r,sr}dA(S)) D 4,0
red/(R) \W %0 7e8(R)

If Vi(s,t) equals one when the arrival at time s has left its kth site before time ¢
and zero otherwise, we then have

40 = [ Vi) = [ Vo d1cermndAls),

with

Vi) = D Vialsdlwy=

rER_ker—ir‘(f)

and

Vi =D > Vils,)wy=n-

reR ger-1(j)

Here, it is important to observe that V'*(s, f) can be written as an indicator function
soitis immediate that A; is a generalized Poisson process. The final two decomposi-
tion results hold because

10 = [ vrte.ouae) =@ [ v otismatan)

ek

( / Vi (s, I)dAB(S)) =€B( > Ar—l(t))
reR \ ker (i) réeR \ker-1(i) .

AT(f) = f_ : Vi (s, )dA(s) = @( ] V- (s,t)l{<L>_,}dA(s))

reR

and

reR reR \ker (i)

69( [ ne r)dAﬂ(s)) @( > A,;(t)). 0
ker ()

We now see what is gained with additional structure. In particular, we now
assume that there is no time dependence in the service times. In this framework, let
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S}, be the sojourn time (sum of service times) at the first k sites of route r and let
K ={kk+1,...,|r]}. Letx* = max {x, 0}.

. THEOREM3.3

For the (M,/G/o0)" /G, model, the arrival process at the kth site of route r, A,
is a Poisson process for each r and k. The aggregate arrival and departure rate func-
tions are

NXO=S"3 El(-3)

reRker! @

and

XM= > El@-3) (5.3)

reRker(i)

The queue lengths have means

m =Y > E[ f: . a’(s)ds] (5.4)

reRker(s) 5
and covariances
_ (-5 IN5L) T
covig(),a@l=3" Y. 3 E f Ty was| . (59)
reRker-1()) ler (inks (1=Spv(e—5S)) 1

Proof : .
The formulas in (5.3) follow from theorems 1.1 and 5.2. Formulas (5.4) and
(5.5) hold because

Blo0l = [ P = Dal)ds

~X

=3 [ P = ike) = et

reR

> f ;P(§,§_1<t—s$§£)_a’(s)ds

reRkeri(n~—

33 e (9)ds
= E

k

and
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Cov[01), ;)] = f P(L(t) = i, L,{u) = j)a(s)ds
j PUL(D = 20) = KL =) 0
reR

:
“Y X > [ A<t sS85 <u-s<H)
reRker\(fyler\({ink v —

x o (s)ds
+

(-5, N5
- ZE[/(_ CMaes| . o

reRkeri(f) ler-L{jink =S v(u—5])

UNIFORM ACCELERATION

We conclude this section by descrlbmg an asymptotic expansxon for the
(M,/G/c0)" /G network. This extends results for the M,/GI/co queue in section 3
of Eick et al. [21]; see remark 3.4. For additional background, see Massey [45]. In
particular, we construct a family of systems indexed by positive eand let € | 0. This
speeds up the rates, so that the behaviour at time ¢ is increasingly determined by
the local behavior (near {) of the model data.

For each e>0 let (Q5(1), ..., Q%(r)) be the vector queue-length process in an
(M /Gloo)N /G unetwork, where the arrival rate is a(t) /e and, for a given route r, the
sojourn time from the arrival to site 1 until the departure from site k is €S}. Since
we are using G routing, the quantity P({L;)> = #) is independent of the arrival time
s, and so the “accelerated” version of the rate o’(¢) is simply o' (f)/e. Making use
of the Taylor series cxpansmn results from Eick et al. [21], we get the followmg
expansion for the mean.

THEOREM 5.4
Consider an (M;/G/oo)” /G network, where o is an (n + 1)-times continuously

differentiable function of compact support on (—oo, #]. If E[(S7)"** <oo for all
reRandk =1,...,|r], then

m(e ) =EIGO) =3 (-ef - T 3 EEHBIE - (L]

reR ker1(i)

+0(&) aselo,
where DV is the jth derivative of . In particular,

llmm,(t €} = Zcx’(t) Z

~ reR kerl(f

where S, = S — ST, equals the amount of time spent at site k along route r.
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6. The (M,/GI/oo)" /G, model

In this section we make the additional assumption that the service times of each
customer at the successive queues are mutually independent with a common distri-
bution at each queue. A service time at queune i is §; with cdf G;. We assume that
E[Si] < oo for all i, which makes the associated stationary excess variable Sj, in (1.1)
well defined. By theorem 5.1, we can reduce this model to an (M,/GI /co)" /D net-
work. The upshot is that the (M;/GI /oo)" |G, model reduces to a single M,/GI Jco
gueue, essentially as described after theorem 1.2 for the special case of M routing.

Moreover, for phase-type service-time distributions the (M;/GI/c0)" /G,
model can be reduced to the totally Markovian (M,/M/o0)” /M model, with all
time-dependence in the arrival process, for which additional results are given in sec-
tions 7 and 8 below. First, we focus on individual queue sequences, as indicated
above, to obtain the (M,/GI /co)” /D model. Then we regard the different visits to
the same queue along the route as different queues. This produces a tandem net-
work without repeated queues, which is a special case of Markovian routing with-
out time-dependence, i.¢., a special case of the (M;/GI /oo)” /M model. Finally, we
make separate queues for each of the exponential service phases in the phase-type
distribution at each queue {as described on p. 174 of Whitt [71]).

SIMPLEFORMULAS

We gain from restriction to the (M;/GI /co)” /G, model by obtziining simple for-
mulas. In particular, the model reduction implies that the network can be
described by a minor modification of theorem 1.1.

THEOREM 6.1
For the (M,/GI/o00)” /G, model, in addition to the results of theorem 5.3, we
have

N =EN@E-8)], (6.1)
m(t) = E[ [:S A;f(s)ds] =B\t — SL)E[S], (6.2)

and

A (u—Si—T7) 7 +
covign. 0=y > ¥ E|f 6|, (63
reRker (i) ler (inkr (- SV(e~Si—T5—-5))
where T7, = S]_, — ST.

From theorem 6.1, it is apparent that most of the structural results for a siﬁgle
M,/GI /oo queue in Eick et al. [21,22] carry over immediately to the queues within
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an (M,/GI /)" /G, network. From (5.1) and (5.3), we see that the role of the arri-
val-rate function A in theorem 1.1 is replaced by the route-r arrival-rate function
o with o(s) = a(s)P({L;)) =r). In particular, o'(s) depends on a(s) and
P({Ls)> = r) through their product. For example, o/ might be increasing without o
increasing.

Asin[21], for the structural results, we take (5.1), (5.3) and (6.1)-(6.3) as the defi-
nitions, without worrying about the arrival rate having to be negative sometimes,
as occurs when we postulate that o’ is a polynomial. To consider what happens
when the arrival-rate function is a polynomial, let 7(z) be the mean number of
route-r customers at queue 7 at time ¢, and let §(r) be the external route-r departure,
rate at time . The following is the generalization of theorem 3.1 of [21]; it expresses
m’(t) and & (1) as the PSds o' (1)E[S;] and o/ () modified by both time shifts and a
space shift.

THEOREM 6.2
In the (M,/GI/o0)¥ /G, model, if o is a polynomial of order k before time #,
then so are m} and &". In particular, if o' (s) = a, + bys + 8% for s< ¢, then

m(f)= Y o(t—E[S] - E[S)E[S]

ker(d)

+ C; (Val'(Sie) + Z Var (S';c—l)) E[S)]

keri(i)

and
& (1) = o/ (¢t — B[S]) + &, Var(Sp)) -

Note that the conditions on o in theorem 6.2 reduce to conditions on the exter-
nal-arrival-rate function & in the (M,/GI/co)" /G model (when P((L;) =7r) is
independent of 5). We can then add over routes r containing queue i to obtain corre-
sponding results for queuei. -

COROLLARY
In the (M,/GI /oo) / G model with o/ (s) = pra(s) 1f afs) = a+ bs + cs® for
s<t,then

m:(t)—zmr(f) Z Z pro(t ~ E[S{] - E[S:])E[S]

rER rERker"l(]) _

+c(Var(S,e +30> p,Var(s,g))E[S]

reRker'(i)

and
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o) =380 =3 palt—EIS) +c3_pVar(Sp).

relR reR reR

An analog of theorem 6.2 holds for sinusoidal arrival rate functions. The follow-
ing is the natural generalization of theorem 4.1 of Eick et al. [22], which is provided
in the same way. Let N7 be the number of times queue fappearsonrouter.

THEOREM 6.3

In the (M,/GI/ 0)¥ /G, model, if the route r arrival-rate function o is sinusoi-
dal, ie., if o/ (s) = & + B, sin(y,s) for positive constants &, 8, and +, and all s<¢,
then

mi(t) = N;a/E[S]] + (sin(%t) > Elcos(%[Sf + Sie])]
ker-i{i)

— cos(y,1) Z E[Sin('}’r[sl; + Sit])]) E[Si]
keriy)

and

§(t)=a+5 (Sin(’y,t)E[COS(’y,_frI)] - COS(’yrt)E[Sin('y,S'ﬂ])]) .

Remark6.1

As in [22], we can apply the sine and cosine addition formulas to express ()
and &°(¢) in theorem 6.3 in terms of sums of products of terms of the form E[f(¥S})]
and E[f (yS;)] where f is the sine or cosine. O

COROLLARY
In the (M,/GI/ oo) /G model with o/ (5) = p,o(s), if afs) =&+ ﬁsm(fys) for
alls<t, then

mi(t) = A + Bsin(yt) — Ccos(vt),

where

reR reR

A=) N&E[S] --—a(Zp, )E[S,

B= ﬁz Z 2:Elcos(v[S, + Si))E[SH];

reRker (i)

C=8Y_ > pElsin(+[5 + S)IE[S],

reRker-\(i)



W._A. Massey, W. Whitt / Networks of infinite-server queues 227

and
5(t) = &+ Dsin(vyt) — Ecos(v1),
where
D=pY "pEfcos(vy8})] and E = 8 _ p,Elsin(yS},)].
reR reR
STOCHASTIC COMPARISONS

As mentioned in section 1, theorem 2.1(b) of [21] describes the effect of service-
time variability, as expressed via convex stochastic order. This resulf takes a
slightly different form here, involving increasing convex stochastic order. We say
S is less than or equal to S in the increasing convex stochastic order, and write
S1 <8, if B[f(S1)] €E[f(S,)] for all increasing convex real-valued functions. As
in [2ﬁ it is notable that the effect of the service-time variability depends on the
shape of the arrival-rate function, which hereis o”.

THEOREM 6.4
Consider two (M,/GI/co)™ /G, models indexed by subscripts 1 and 2 which dif-
fer only in their service times at queue /, one being S;; and the other Sp, and sup-
pose that Sy < Sa
(a) If queue i appears only once on route » and o is increasing (decreasing) before
time ¢, then m, () = (<)my(1).
(b) If queue i appears more than once on route r and ¢ is increasing and concave
(decreasing and convex) before time ¢, then mf; (1) = (< )mf,(2).
(c) If o is convex (concave) before time 7, then & (f) < (=)65(¢) and at queue

kk # i,mi, () < (=)m,(1).

Proof

For part (a) apply the argument in theorem 2.1(b) of Eick et al. [21] with (6.2),
ie., Si<.Sp implies that §j, S SiZe (ordinary stochastic order), so that
E[f(S,le)] < E[f(Si)] for all i increasing real-valued functions f. By (5.3) and theo-
rem 2.4(a) of Eick et al. [21], A} is increasing (decreasing) before time ¢. For part
(b), note that §; < Sa implies that S,‘;1 & S,Z,_ forall kand S, < Sg.. Since € and
< Dboth imply s 5 We have the conclusion because o/ (t — x) as a function’ of x
ha¥ the required structure. Finally, for part (c) simply apply the convex stochastic
order. O

Remark 6.2
The stochastic comparisons in theorems 2.1a, 2.2 and 2.4 .of Eick et al. [21]
extend easily to the network setting.



228 W_A. Massey, W. Whitt / Networks of infinite-server queues
DEPENDENCEIN TANDEM QUEUES

We have described the dependence among the queues at different time points in
theorems 2.2, 5.3 and 6.1. We now examine the consequences of this &cneral result
by considering the special case of a two-queue tandem (M,/GI/oco)” /D network.
Then

S1—(u~S2)*
Cov[Qi(1), Os(t + )] = E [ f oft — x)dx]

(S1—u)*
o0 utx
= f ot — x) f P(S;>u+x—p)P(S1edy)dx. (6.4)
0 x
Of interest is the maximum-dependence time upy,y = u;nax('a, t, Gy, G,), which is
the value (or values) of ¥ maximizing (6.4). In general, ., depends on the exter-

nal-arrival-rate function o, the time 7 and the two service-time cdf’s G; and G,.

EXAMPLEG.1
If S) and S; are both exponentially distributed with means p;' and p;!, where

iy # pa, then |
N e R e
= ./(; - ot — x)eHalut) f - el dydx
.
— / ™ (e — %) el _ oliamn)®) [l — i )dx
0

= [ ot = )[R - e~y — )]
0
i a— N[00 ’
= (E___.__e_) f o:(t . x)'u’le—ﬂlxdx
0

H2 — H
g AW _ gt
= —— A7 (1),
( 2 = i ) v

where A7 is the aggre gate-deparmre-rate functlon from queue 1. The value £* max-
imizing A (£) is characterized by theorem 2.6 and corollary 2.8 of [21].
For all external-arrival-rate functions o and for all times ¢,

~logpy —log uz
Uppgx = ——————— -«
1 — 2
By the mean-value theorem, we have
min {E[S1], B[S2]} <#imax < max {E[S$1], E[Sy]} .
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If 41 = ps = p, then by the same reasoning
Cov[01(?), Qa(t + u)] = ue™Af (1)
and umay = p' = E[S1] = E[S)]. ]

EXAMPLE®6.2 ‘
If S1 and S, are both deterministic with means uy! and 5!, then

Cov[0i (1), Oa{t + u)] = j:o ot — x)P(Sl + S2>u+ x> 8 >x)dx
- /0 " aft - x) fx O P(Sy>u+ 3~ y)P(S) edy)dx

S )
— f ot —X)P(Sy>u + x — S1)dx
(S';—u)"' ’ ’ ’

S[ —(R—Sz)+ +
= / a(t—x)dx | ,
(S1—)*
and the maximal value for the covariance will be

S.—(u-—Sz)+ +
sup{(f ce(t—x)dx) SIASSusS; VS;_}. (6.5)
(

5 —-u)+

For the case of S; <5, the supremum in (6.5) will be ' a(¢ — x)dx, which can
be attained by any value of » within the given range; this is easy to see in fig. 4. The
arrival rate function « is integrated from ¢ — S) + (u — S)F tor— (S1 — )+f0r
fixed u. Graphing these two functions with respect to », the region of integration for
« is represented as a vertical line segment whose endpoints touch these piecewise
linear curves. Here it is clear that some « such that $; <u<S; gives the maximal
integral for o, and in this case, any such u generates the line segment. On the other
hand, if S;>S,, then by fig. 5 the choice of » that maximizes the integral will
depend on the choice of function . O

In summary, we note that the value of # which maximizes the covariance is inde-
pendent of the external-arrival rate function o and the time ¢ when the service distri-
butions are both exponentially distributed, as well as when the service times are
both deterministic with Sy < S, but not when the service times are both determinis-
ticwith S; > Ss.

7. The (M,/G,/c0)” | M, network: Markovian routing

In this section we consider Markovian routing. Here we consider the special
case of the (M,/G,/oc)” /G, model in section 3 with M, (time-dependent Marko-
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t-S4+{(u-S,)*

o — 2 — et = ¢ 0 .

t-S
1 ] 1
! I
I 1 o
81 82 S1+32 u

Fig. 4. Graph of integration intervals for tandem network with §j <$,.

t-S

O —

=

Sz 91 S1+82 u

Fig: 5. Graph of integration intervals for tandem network with §; > 53,
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vian) routing. This means that the queue sequence is determined by initial-state
probability ;(¢) and the transition probabilities p;;{¢), independently of the arrival
process and service times. We first allow the service times to have general time
dependence and stochastic dependence, but later we restrict attention to the GI spe-
cial case.

GENERALIZED INPUT EQUATIONS WITHOUT RATES

Asnoted in section 3, the processes AT and A7 donot necessanly have rate func-
tions, but since E[A’r (1)) and E[{A[ (£)] are well deﬁned by theorem 3.3 and nonde-
creasing in ¢, we canlet A} and A" be nonnegative measures such that

f t
EAf ()= | X(ds)and BIA7(5)] = [ X7 (ds), (7.1)
—0Q —00 -
where these expectations may be infinite. In order for these integrals to be finite,
we assume that (3.15) holds for all {, where E[ V' (s, co)] depends on the initial state
probability m;(s) and the transmon probablllty pii(t) for t=5 in a rather compli-
cated way.

We now determine generalized input equations for this model. Note that we do
not obtain a simple expression for the departure measure X;” in terms-of the arrival
measure A} at this level of generality.

Our starting point is the obvious sample-path conservation relation

AF () = A1) + ZN:A; (1), (7.2)
J=1

where A (¢) counts the number of departures from queue 7 by time 7 that go next
to queuc J- Foreach teR, and i, | <i<N, let {I7;(¥) : 1 <f< N} be a collection of
disjoint subintervals of [0, 1] for which JT;;(r) has Lebesgue measure p;(1).

THEOREM 7.1

In the (M;/G,/00)¥ /M, model with assumption (3.15) for k = 1, the process
Aj can berepresented as

50=[ m( [ ¥t g et )40, (13

where {U},, : 1<i<N,k>1,m>1} is a countable collection of i.i. d uniform ran-
dom vanagics on [0 I] mdependent of A, sothat
B4 () = )\ (d“)Pu(”) : (7.4)

and we have the generahzed input equations
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o0

r e N ot
BafO)= [ w0 = [ @i+ [ Nme. 09

Proof

The generalized input equations (7.5) follow easily from (7.2), (7.4) and theo-
rems 3.2 and 3.4. The inner integral in (7.3) expresses the fact that the conditional
probability of the kth transition from queue i being to j given that the kth transition
takes place at time u has probability p;;(1) independent of the history up to that
time. To justify this inner mtegral let A‘ be the kth aggregate departure epoch
from queue i for an arrival at time s, with Ak = +ooif Vs, 00y <k. Then

f Vil dully Vit S Ty} = Zl{f‘k ‘-'} L (s),tEHu(Ak)}’ (7-6)

where /11:+1 in general depends on Aj;..., A and UAM 17 U A(s) e We thcn
obtain (7.4) by taking expectations in(7.3). By lemma 2.2 and (3 15)

!

Bl = [

(eo]

E[ f Vi (s dilg, r(ﬂjem,,)}] afs)ds. (1.7)
By (7.7), (7.6) and Tonelli, plus conditioning and unconditioning on fl,: ,

BlA; 0= [ S Bl copiADlats)ds

o0 L1

= f_ _ /S E[V}"(s,du)pg(u)]a(s)ds

- f_ ; ( /_ :0 E[V7 (s, du)]a(S)dS)Pij(u)

=f-_t-z\;(du)pa(u)- | - Fl

Lo 0]

INPUT EQUATIONS FOR THE (M, /GI/c0)" /M, MODEL

- We now. assume that the service times only depend on the queue index.. This
model is a special case of the (M, / GI/o0)" /G, model studied in section 6, which
can be reduced to the (M,/GI /oo)™ /D model. Hence, the results of sections 2--6 all
applytoit.

Paralleling theorem 3.4, let A” be the aggregate arnval process at queue # asso-
ciated with customers making thelr nth transition:(visit to a queue); i.e., /1l is the
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external arrival process to queue i, 4;. Let X}’ be the arrival rate at queue i asso-
ciated with customers making their nth transition.

THEOREM 7.2 _
In the (M,/GI/o0)" / M, model with the assumptions above, the aggregate arri-
val rate functions are well defined and satisfy the input equations

/\f'(t) = a,-(r) =+ ZN:E[A.;’-(I - S})]pjj(t), for 1<i<N. (78)
=1

The aggregate arrival-rate function A} can be defined as

M= > X<wae, - (7.9)
n=1 .
where {7} can be defined recursively as A} (1) = &;(#), and, forn>1,
N .
X0 =3 BN - S)lea(n) - (7.10)
) =1

The aggregate arrival-rate functions A can be characterized as the minimal nonne-
gative solution to (7.8). Moreover, the mean number of busy servers at queue i is
given by (1.5).

Proof .
By theorem 3.2, 4;is a Poisson process with intensity ;(f). By (3.15) and the cor-
ollary to theorem 4.3, the intensities X} (£) and \; (7) are well defined with .

/ ¥ ar(hde< f : XH(n)dt = f " BV (s, co)]a(s)ds <00 .

~00 - —00

Formula (7.9) holds because A7 = 52, fl:.'. We obtain (7.10) by applying theorem
1.1 and Poisson thinning of the departure processes recursively. We then obtain
(7.8) by appropriate summing (7.10), e.g., -

X () =D B - 5] =B (- 5)].

n=}l

- We now show that A} is the minimal nonnegative solution to (7.8). For this pur-
pose, we introduce the operator & mapping N-tuples of nonnegative measurable

functionsx = (xi, .. .,xy) into themselves by
N )
&i(x) = o)) + 3Bt — Slpa(r),  1<i<N, (7.11)
i=l1 .

i.e., by substituting x for A in the right side of (7.8). Note that ¢ is monotone with
the usual partial order: x < yif x;(¢) < y:(r) for alli and . Moreover, "(8) converges
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monotonically to the solution specified by (7.9)(7.10) when 6 = (@, ..., 8y) with
8:(t) =0,teR. Suppose that A" is a second nonnegative solution. Since
0<A", 2"(0) <&*(L") = A" for all #. Since &"(8) = A as n =00, A<A" too. Hence, A
is indeed the minimum nonnegative solution. Finally, we establish (1.5) by using
the decomposition in (7.9)-(7.10) and theorem 1.1. In particular, let #7(z) be the
mean number of customers at queue i at time ¢ who have made n transitions. Then

oQ
mi(t) =y m(t)
n=1
and theorem 1.1 applies to 71}(¢) because A%is a Poisson process. 0

We now show that the input equations (1.6) as well as (7.8) do not necessarily
have a unique solution.

Ll

EXAMPLE 7.1

Here we show that the input equations (1.6) need not have a unique solution. In
this case of homogeneous Markov routing, A + v satisfies (1.6) when A does if and
onlyif

Y o
w0 = Y Byt - o, 1<i<N. (7.12)

=1

To obtain a simple example, suppose that N =1,P(S;=1) =1 and P;; = 1/2.
‘We now seek solutions to (7.12) of the form «;(#) = 7;(|z]) for all t, where |¢] is the
greatest integer less than or equal to . Hence, (7.12) reduces to the equation
m(k) = 7i(k — 1)/2 for sequences {v (k) : keZ}, where Z is the set of integers,
which has the positive finite solution v; (k) = 2% forall k. O

UNIQUENESS AMONG INTEGRABLE FUNCTIONS

We now retuitn to the (M,/GI/oo)" / M model of theorem 1.2, We have Marko-
vian routing with all time-dependence in the external arrival process. The routing
is determined by the initjal-state probabilities 7; and the transition probabilities py.
Now we assume that

o0
Zpg') <oo for all i and f, : (7.13)
n=I : :

which is a necessary and sufficient condition for (3.15) for homogeneouis Markov
routing. '

We first show that the input equations (1.6) have a unique solution among inte-
grable functions in this case. (Note that the second solution in example 7.1 is not
integrable.} Then we show how to solve the input equations in special cases.

As in the proof of theorem 7.2, we use the right side of the input equations to
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define an operator. In particular, here let F be the space of N-tuples

x = (x1,...,xy) of integrable real-valued functions on R with the L; norm
N 00
Il = [ pacolar. (7.14)
f=] ¥ %0

Let & : F —F be the operator defined by
N
&(x)(2) = eusf) + ) _ By (t — S)lps- (7.15)
=1 ' L

As before, the operator ¢ is monotone with the usual partial order, i.e., x <y if x;(¢)
< y;(2) for all i and ¢. Since o is integrable and ||$#(x)|| <] a || + ||x!|, # indeed maps
F into F. Note that the input equations (1.6) are simply the fixed-point equation

X= di(x) . _ {7.16)
We shall show that the fixed point equation (7.16) has a unique sclution by show-

ing that @ is an N-stage contraction, and applying the Banach—Picard fixed point
theorem. Let 7 be the n-fold iterate of &.

THEOREM 7.3 _ . o
Consider the (M,/GI/oco)¥ /M model with assumption (7.13). For all x,yeF
andn>1,

16 (x) — 2Py <[lx — I (7.17)
and there exists v, 0 <~y <1, such that |
16M(x) — 8™ ()| <7ix - ]I, (7.18)

so that the. fixed-point equation (7.16) (equivalently, the input equations (1 .'6))
has a unique solution Lin F. Moreover,

BI<ilel )

and
180 (x) — A<y lIx — M- (7.20)

Proof _ o - o ,
We have noted that  maps F into itself. Note that

JICECE o) g( [ b~ ot

—Co

By induction onn,
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N

o) - #< >3 ( [ bt - 0k} <nlix -1,
f=1

i=1 j

where

()
n ~ IglaéxN{ ijl } *

Since 7, < 1 for all # and there exists v such that vy <v<1by(7.13), we have estab-
lished (7.17) and (7.18). For (7.19), note that

2@ @) <llall + | aP| +...+ [ aP",

sothat
n—1
_ o gy < el -+ [[aP™ ) NIIuII
Ml = lim [|677(8)f < e 1_
For (7.20), apply (7.18) withd = szsfﬂ”)(x). ' - O
Remark7.1

Theorem 7.3 above also applies to models with time-dependent routing if the
tlme-dependent probabilities are appropnately dominated by fixed transition
probabilities, i.e., if

py(t)<py _ (7.21)
foralli, jand 7, where {p;} satisfies (7.13).

Remark7.2
Theorem 1.2is provedby combining theoremsZ 1,3.3,3. 5 4 3,7. 2and7.3.

Remark 7.3
In theorem 7.3 we could work with functions that are only required to be inte-

grable over {—oo, ¢]. The bound in remark 7.1 also only need hold over (—co, 1.
SOLVING THEINPUT EQUATIONS IN SPECIAL CASES -

We now indicate how to solve the input equations (1.6) in special cases. Qur first
result supplements theorem 6.2. As before, we ignore difficulties conoermng o
being sometimes nonnegative; we take (1 6) as the definition.

THEOREM 7.4 ' __
In the (M,/GI/oo0)" /M model with assumption (7.13), if afs) = ag + ais+
.. + a,s™ for s<¢, then there is a solution of the input equations (1.6) of thie same
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form, i.e., At (t) = aip + ant + . . . + ap,t™, where the coefficients satlsfy the system
of linear equa‘uons

Ak —akfr,-i-ZZaﬂ(—l)l_ ( ) [LS';"’flpj;, i . (7.22)

j=1 1=k

for 1 <i< N and 1 <k<m. The equations (7.22) have a unique solution, which can
be found by solving m systems of ¥V linear equations recursively, going backwards
ink.

Proof
Substituting the polynomial form into (1 .6), we get
za,ktk Zak'rr,tk + Z Za,kE (t—S)) ]p,, . (7.23)
k=0 j=1 k=0

Collecting coefficients of * in (7.23)', we obtain (7.22). Considering these equa-
tions recursively backwards in %, starting with & = m, we see that they have a
unique solution. In particular, the kth equation is of the form

N
ax=hbg+ Y aupi, (7.24)
=1
where
2 & 1k f1 I
by = apm; + I;I Zl:aﬂ(—l) (k) E[,S}._klpj,- y (7.25)

which is known when we consider the kth equation. In matrix notation, (7.24} is

A =By + AP, (7.26)
sothat
. ) Ay =B (i-P) - (127)
with (I — P)~! existing by (7.13). - = g
Remark 7.4 ' S '
In matnx notatlon we can express Bk in (7 26)as
By =G+ E '(_'1)’-"( ) (A o E[S""])P, o (7.28)
I=k+1 ' B '

where (A; o E[S/4)) ; = aj;E[Sj’.,‘.k]. : : O
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We now consider the case of sinusoidal external arrival rate functions, and thus
supplement theorem 6.3. Hereleti = v/ —1.

- THECREM?7.5

In the (M,/G/oo)¥ /M model with assumption (7.13), suppose that we have a
Fourier-series expansion for the external arrival-rate function ¢, i.e.,

o | _ o
afs) = Z ne?™S for s<t. , (7.29)
H=—o0
Then there is a solution to (1.6) of the same form, i.e.,

o) ) '
M=) ane®™, 1N, (7.30)

H=—00

where the coefficients A, in (7.30) are obtained for each n as _fhe unique solution
of the linear equations

. |
An =0+ > MaEle?™Spy, 1SN, (7.31)
k=1

Proof
Substitute (7.30) into (1.6) to obtain

00 o N 00
D €™ =" 0™+ > D MBI (7.32)

n=—oco n=—c0 k=1 n=—o0
Now collect coefficients of e in (7.32) to obtain (7.31). By (7.13), (7.31) has a

unique solution (Ayy, . . ., Avx) foreachn, just asin (7.27). a

8. The totally Markov (M,/M,/oo)" /M, model

In this section we consider the Markovian (M,/M,/co)" / M, model in which ser-
vice completions at queue i at time ¢ take place at rate y;(f) for each busy server.
This is the case in which the location processes {L;(t) : &R} are Markov. Here the
vector queue-length process (Qi, ..., On) = {(Q1(D), ..., On(?)) : teR} is a non-
stationary continuous-time Markov chain (CTMC) determined by the functions
a(t), m;(), py(t) and p;(¢). There is substantial related literature for-this special case
under linear Markov population processes and linear Markov compartmental
models; see Kingman [40], Faddy [25], section 5 of Purdue [59], Kurtz [41] and
Ethier and Kurtz [24].

In this section, we first show how to construct this CTMC and then we show
that the mean and covariance functions satisfy linear ordinary différential equa-
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tions (ODEs). The linear ODE for the mean function is standard, but the linear
ODE for the covariance function seems to be new.

CONSTRUCTION VIA UNIFORMIZATION

We indicate one way to construct the nonhomogeneous CTMC (@, ..., Ox).
Asbefore, weassume'thata = [ a(s)ds <oo. Now we assume in addition that
| B =sup{p(t) - teR, 1 <igKN}<o0. (8.1)

We start by generating a Poisson number of arrivals with mean &. Given this
number, we let the times of these arrivals be i.i.d. with density a(s)/&. This pro-
duces a realization of the external arrival process 4. If there are & external arrivals
at times 5y, . . ., 5, then we assign them to their initial queues independently, with
the probablhty of queue i being selected at time s; being m;(s;).

Given that there is a total of k external arrivals, generate all other events using
a homogeneous Poisson process M = {M(¢) : e R} with rate kg for Zin (8.1). Let
the k external arrivals be labeled. We start at the time of the first external arrival.
At each point from M after this first external arrival, we generate our transition or
no transition. We consider the successive external arrivals in turn. If the jth exter-
nal arrival is in the system at queue i, then that customer has a transition with prob-
ability p;(f)/kii. We let the transitions for different external arrivals be mutually
exclusive events. Thus, the remaining probability is the probability of no transition
at that point -of M. Given that a customer at queue { has a transition at time ¢, that
transition is treated as an independent event, leading to queue J with probability
pi(t) and outside the network with probability 1 — Z;—1 pi(f). Without making
any assumptions on py(f), the number of customers in the network at any time is at
most k, given that k external arrivals have been generated. As a consequence, we
have

N ,
Zm,—(t) <& forallz. (8-2)
=1

Given that a customer arrives at queue 7 at time £, that customer has a service
time S; which is independent of the history of the network up fo time 7. Moreover,
the distribution of S; is a time-dependent exponential, i.e.,

P(Sy>x) = J 4% x5, (83

Note that we have not made assumptions implying that P(Sy<o0) =1. From
(8 3),itis apparentthatP(S,,<oo) = Iforalliand t1f andonlyif -

/ " )i = oc Y

forsometandall:.
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Assumption (8.1) implies that
P(Sy>x)=e™™, x>0, (8.5)

i.e., Sy is stochastically greater than or equal to an exponential random variable
with mean g!

We now show that the aggregate arrival-rate and departure-rate functions A}
and A7 are well defined. For this purpose, let f(ny,. .., m; 11, - . - , f41) be the prob-
ability density of an arrival at time ¢, following routc (m,-. nk) being at queue
n; in the interval [t;, #;;.1 ) and leaving the network at time tk,,.l. From the construc-
tion above, we can characterize this joint density.

LEMMA 8.1
Thedensity f(n, . .., 1 b, - - -, tes1 } is well defined, being

POy B 1y o) = (8 (1) exp(- / ” (u)du) i (12)

Iet1 N
X Py (2‘2) ... €Xp (_ f ”ﬂk(u)du) My, (tk+l) (1 - ankj(tk+l)) . (86)
t . =

THEOREM 8.1

The aggregate arrival-rate and departure-rate functions A} and A; are well
defined with

N
M) = alm(t) + > A7 (Omu(®) (8.7)
j=1
and
() = mle) ] | Ao Ly, (8:8)

Moreover, A} and \; are integrable over finite intervals.

Proof

To show that A} is well defined, it suffices to sum (8.6) over all routes
(m, ... ; ng) such that m; = i for some / and sum over all visits to queue 7. If n; =1,
then we integrate over the set of (#1,...,%+1) such that —co<t; < ... <fi_1 <y
= 1<t < ... <txy1 <oo. This yields X} (¢). Similarly, we can construct y; and
showitis wcll defined and equal to (8.8), Formula (8.7) is aconsequenoe of theorem
7.1 with the extra properties here. Finally, since E;— Ar(fy<ap and
M@<a() + 37, M7 (8), X and A; areintegrable over finite ntervals. O
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LINEAR ODEs

We now show that the mean and covariance functions satisfy linear ODEs. For
this purpose, we first show that the mean function is differentiable.

LEMMAS8.2
For each i, m;(¢) is differentiable in # almost everywhere and
dm;
T(t)— =2 (t) — A (1) ae. (8.9)
Proof
Note that, for any e>0,

Qi(t+e)— Qi) = AF(t+€) — AT (1) — A7 (¢ + &) + A7 (1),
so that

mi(t + €) — m;(¢) = E[Qi(t + €)] — E[Q:(1)]
= BIAf (1+€) ~ AFH ()] — B4 (t+ &) — 47 (1)]

+e e
=/ Mwdu— [ X (wdu
I3

t

by theorem 8.1, so that indeed (8.9) holds. ]

THEOREMS.2
The mean functions m; are the unique bounded solution of the linear ODE

d";(’) ,(:)+ZmJ(rJu,(r)pﬂ(r) mi(p(t), 1<isN, - (8.11)

which necessarily has the property that m;(£) ~0asz— — co.

Proof '
To establish existence, note that -

A () = mi)pil1) - (812)

Then combine (8.7), (8.9) and (8.12). Uniqueness is immediate by direct construc-
tion if a(f) = 0 for t<ty for some t,. More generally, since [°_ o(u)du—0 as
t— — oo, we must have m,(t) ~>0 as t— — o0; i.e., the solution is the limit as
n—> oo of the sequence of unique solutions associated w1th the sequence of external
arrival-rate functions {a, : n>> 1}, where'a® (f) = oft) for t> —nand a(f) =

for t< — n. As n increases, o™ increases and m™(¥) increases. Since m(r) <a
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m{"}(£) converges to a proper limit as n— co for all i and t. This establishes the
uniqueness. |

Let m;;(s, £) be the nonstationary transition probabilities for each customer, i.e.,
the probability of being at queue j at time ¢ given that the customer was at queue i at
time s, where s < £. The following is proved like lemma 8.2,

LEMMA 8.3
Under (8.1), {my(s, £) : 1>>s} is the unique solution to

I8 Zm(s, 1) pse()pig (1) — s, Dty (1) ®.13)

foralls,iandj.

We now show that the covariances c;(s, £} = Cov[Q;(s), 0i(7)] also satisfy a lin-
ear ODE.

THEOREM 8.3 |
The covariance functions can be expressed as
cy(s, 1) = mi(S)my(s, 1), s<t, (8.14)

for my(s, £) in (8.13), so that c;(s, 7) is the unique solution to the ODE

d N
gl = D cals, Du(O)pi (1) — cyls, Hiy(2) - (8.15)
k=1 o
Proof
Formula (8.14) is an easy consequcnce of the Markov and mﬁmte-scrver proper-
ties. Formula (8.15) is obtained by multiplying (8.13) by m;(s). |

We conclude this section with a uniform acceleration expansion in this Marko-
vian setting. Paralleling the treatment in section 5, we let the arrival and departure
rates in the model indexed by € be o;(#) /¢ and p;(2)/€, but we keep the transition
function p;(r) fixed. As before, let m;(t, €) = E[Q;(¢)]. For a vector x, let A(x) be the
diagonal matrix with elements of x on the diagonal.

The following result holds by essentially the same argument as in Massey [45].

THEOREMB4

Consider an accelerated version of an (M,/M,/o0)" / M, network, where oy, t;

and p; are (n+ 1)-times differentiable functions of ¢ If m(t,e) = (2, €),
.,ymp(t, e)) thenase | 0,
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m{t,e) = Z ¢m%W () + o),
=0

where

m©() = a () - (1 P() " A@w() ™
and forn >0,

m® () = — (%m(n}(t)) a- P(r))-lg(u(t))-l :

9. Large-population and fluid approximations

Given that the number of busy servers in each queue at time ¢ is Poisson, approx-
imations are not greatly needed for this model, but the performance of approxima-
tions for this model can provide insight into the performance of similar
approximations for more complicated models, because the approximations are so
easy to understand in this setting.

Here by “large-population approximation” we refer to the natu:al approxima-
tions when the mean number of busy servers at queue 7 at time ¢, m;(¢), is large.
Since the distribution is Poisson, the variance equals the mean and the standard
deviation is its square root /m;(¢). Hence, when the mean is large, the full distribu-
tion tends to concentrate closely about the mean {in a relative sense). This provides
support for the first-order deterministic approximation

0:() ~m,(z) t=0, : (9. i)

and indicates that the error in (9.1) is of ordcr 0(\/m, (t ). This deterministic
approximation has wider applicability, because (as noted in remark 2.3) the for-
mula for the mean m;(t) does not depend on the Poisson property; i.e., it is valid for
(G,/ Gy/o0) /G, networks.

It should be noted that the determmlstlc mean—value approxxmatlon ©.1 can
also be obtained directly as a deterministic fluid approximation. Instead of discrete
customers, we assume that a continuous fluid arrives according to the external-arri-
val-rate function . The fluid flow within the system is then described by the exter-
nal-departure-rate functions & and aggregate-arrival-rate. and aggregate-
departure-rate functions A\ and A;, while the. fluid contents at the queues are
described by. the mean functions m;. It is significant that these deterministic fluid
quantities actually coincide with their expected-value counterparts in the stochas-
tic model (due to the linearity of the stochastic model). They are also asymptotl-
cally correct as the populations grow.

Moreover, it is well known that the Pmsson dlstrlbutlon approaches the normal
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distribution as the mean grows. Hence, we also have the second-order normal
approximation

0i(2) = my(t) + /m;(£)N(0,1), (9.2}

where N(0, 1) is a standard (mean 0, variance 1) normal random variable.

We have also characterized the joint distribution of {Q;(f) : 1<i<N,teR} in
theorem 2.2. From the multivariate central limit theorem, we obtain a full Gaus-
sian-process approximation when the means are large, i.¢.,

(D), ... Ov(D) : 120} m {(Ki (), -, Xn (D) : 120}, (93)

where {(X;(1),...,Xn () : 10} is a Gaussian stochastic process with the exact
means and covariances determined here; i.e., for all positive integers k& and all A-
tuples (1, - - -, #), the joint distribution of

(Xl(tl), e ,XN(tl), X (1‘2), ol ,XN(fz), e X (tk), . ,Xﬁ(tk)) (9.4)

has a kN-dimensional Gaussian (normal} dlstnbutlon which is completely spem-
fied by its means

E[Xi(1))] = E[Q:«(%)] ' (9.5)
and covariances

CoviXi(&), X;{tn)] = Cov[Q:(te), Qi{tm)] (9.6)

as determined by theorems 2.1 and 2.2.

In summary, there are three significant points about the Gaussian-process
approximation: First, it characterizes all the joint distributions (over multiple
queues and multiple time points); second, it has the exact means and covariances;
and third, it is asymptotically correct as the means grow.

For the Markovian (M,/M;/co)” /M, model, we saw in section 8 that the time-
dependent means are characterized by a linear ODE. In this context, the determi- -
nistic fluid approximation (9.1) thus reduces to the linear ODE. This corresponds
to the linear compartmental models in Sandberg [63], Brown [11], Yacques [33], and
Garzia and Lockhart [27]. (The connection between the deterministic linear com-
partmental models and their stochastic:.counterparts seems to be quite well known;
e.g., see Purdue[59].) This is a natural framework for introducing other modcl fea-
tures that make the model nonlinear.

The full Gaussian-process approximation can also be developed by dxfferent
methods, e.g., as in Kurtz [41], Ethier and Kurtz {24] and Glynn and-Whitt [28].
These alternative methods are important to treat models that cannot be solved
exactly. For example, the approach in Glynn and Whitt [28] yields full Gaussian
approximations for open networks of infinite-server queues with non-Markovian
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arrival processes. Glynn and Whitt [28] consider only stationary models, but their
approach also applies to (G,/G;/c0)” /G, models. For the (M,/M,/co0)¥ /M,
model, we obtain the covariances for the Gaussian-process approximation by sol-
ving a second linear ODE, asindicated in theorem 8.3.

Since (M,/GI/oo)" /G, models with phase-type service-time distributions can
be reduced to (M,/M/oo)Y /M models, the totally Markovian model has wide
applicability.

10. Approximations for loss networks

We have been studying networks of infinite-server queues with nonstationary
Poisson input largely because we believe that the results will help us approximately
analyze nonstationary networks of queues with finitely many servers. In this sec-
tion we briefly describe how the two basic approximation methods for computing
blocking probabilities in single-station loss models described in Eick et al. [23]
(which have a long history; see Palm [56], Newell [52] and Jagerman [34]) can be
extended to loss networks. These and other related approximations remain to be
more carefully studied.

To be concrete, we consider the (M,/GI/s/0)" /G, loss network; i.c., now we
assume that each queue has only finitely many servers without extra waiting space.
We assume that customers who find all servers busy at any queue upon arrival
immediately leave the network without affecting future arrivals. Moreover, we
assume that the service times are mutually independent and i.i.d. at each queue. As
before, we assume that the external arrival process is a nonhomogeneous Poisson
process with integrable external-arrival-rate function. Our object is to approxi-
mately determine the time-dependent blocking probabilities at each queue in the
(M,/GI/s/0)" /G, model.

Recall that in the stationary M /GI /s/0model the Erlang blocking formulais

. B(n,x) = (¥/nl) / S M, C(10.0)
k=0 .

where n is the number of servers and x is the offered load, i.e., x = XE[S] where X is
the arrival rate and E[S] is the mean service time.

THE POINTWISE-STATIONARY APPROXIMATION

The idea of the pointwise-stationary approximation (PSA) is to use the steady-
state Erlang blocking formula in (10.1) associated with the time-dependent instan-
taneous arrival rates. To implement this idea with (M,/GI/s/0)" /G, loss net-
works, we can apply one of the infinite-server methods here to determine the time-
dependent aggregate-arrival-rate functions A} at each queue in the associated infi-
nite-server model; e.g., by theorem 5.3 or theorem 7.2. The simple direct approach
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is then to use the Erlang blocking formula (10.1) at each queue with these time-
dependent aggregate infinite-server arrival rates.

A natural refinement is to use the computed time-dependent blocking probabll—
ities to modify our estimate of the time-dependent aggregate arrival rates in the
loss model. For example, we can introduce an exira time-dependent probability of
leaving the network (going to A) at each queue equal to the blocking probability.
We then iteratively calculated time-dependent aggregate arrival rates and time-
dependent blocking probabilities, hopefully arriving at a stable solution, as in the
Erlang-fixed-point and reduced-load approximations in Kelly [38].

THEMODIFIED-OFFERED-LOAD APPROXIMATION

Just as with PSA, the idea of the modified-offered-load (MOL) approximation
is to use the steady-state Erlang loss formula associated with an instantaneous arri- -
val rate but with MOL we use the time-dependent mean number of busy servers in
the infinite-server model for the instantaneous offered load (arrival rate times
mean service time). As with PSA, this is exact in the stationary M/GI/s/0 model;
see Jagerman [34].

To implement this idea with loss networks, we can apply one of the infinite-ser-
ver methods here to determine the time-dependent mean number of busy servers at
queue i, m;(t), for each i. The simple direct approach is then to use the steady-state
Erlang blocking formula in (10.1) at each queue with these time-dependent means
m;(t) serving as the offered loads. As with PSA, it is natural to consider iterative
refinements in which the estimated time-dependent blocking probabilities are used
to modify our estimates of the time-dependent offered loads.

Remark 10.1

As noted in remark 2.4, the infinite-server results extend to cover models in
which customers simultaneously use multiple resources, as in Kelly [38]. In that set-
ting, a natural candidate for PSA is based on the time-dependent Erlang fixed-
point approximation as described in [38] associated with instantaneous time-
dependent arrival rates. If customers do not move within the network, then these
instantaneous -time-dependent arrival rates are the given external arrival rates.
Otherwise, we can determine the aggregate infinite-server arrival rates and then
apply the Erlang fixed-point approximation to them. A natural candidate for MOL
is the time-dependent Erlang fixed-point approximation as described in [38] asso-
ciated with the time-dependent offered loads, which are estimated by the time-
depcndcnt means m;(t) from the infinite-server model.

Remark 10.2

A principal contribution of Eick et al. [23]is to dcvelop a refined hybrld approx-
imation for M,/GI/s/0 models that combines PSA and MOL. It is natural to look.
for such refinements in the network setting. :
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Remark 10.3
The infinite-server covariance formulas developed in this paper seem promising
for developing refined approximations for loss networks.

Appendix: A product-form counterexample

The product-form resuits in theorems 1.2 and 2.1 depend sirongly on the infi-
nite-server property of our networks. To demonstrate this, we now show that the
time-dependent queue-length distribution is in general not product-form even in a
stationary Markovian open J. acks on network model that starts empty. In particu-
lar, we consider an (M/M/ 1) /M network containing two single-server queues in
tandem,; i.e., the routing probabilities are p; = 1 and p; = 0 otherwise.

Let this model have external arnve-rate function a(t) =) t20, with A<1, and
exponential service times with means p7' = 1and yi;! = € for small e. Hence, it suf-
fices to consider the service rate at the second queue as being 0, and we do in our
calculations under this assumption. It is then not difficult to show that in general
wedo not have

P(Oi(t) = O)P(Qz(t) =0) = P(Q1(1) =0, 02(z) = 0). (A.1)
To see this, we 1nd1cate how to calculate the three quantities in (A.1). First,
P(Qi(1) =0) = 1-)B(y), - - (A2)

where B(f) is the M/M/1 busy-period cdf; see corollary 4.2.3 of Abate and Whitt
[73]. Second,

P(Q:(t) = 0) =P(no arrivals to queuel) :
+ P(at least one arnval to queue 1, who does not go to queue 2)

=N + /0 Ae e dy = ¢~ + 2e” ‘(1)\__:;(“1)‘) (A3)
and, third, | . L
PO = Q) =0)=e™ . . . (A9
Formulas (A.1){A.4) would imply that _ '
P f) = t} =0 :
- (28 82)
l-e¥ - (A5)

N A+ (A + l)e(l_’\)’ - ,\e—.(A—H‘)t -;"‘

which does not hold. Hence, (A.1) does nothold,
One might object to this example because the long—run arrival rate at the second
queue (greatly) exceeds the service rate, so that it is an unstable model. An alterna-
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tive demonstration without unstable models is via light-traffic asymptotics, as in
Whitt [74]. Then we let both service rates be 1, but we make the arrival rate be very
very small, so that the probability of at least k external arrivals by time ¢ is of order
O(€¥) as e — 0. It suffices to consider only the cases of 0, I or 2 arrivals. Then

P(Q1(1) =0) = 1 — aje — ;e + o(eY),
P(Q2(1) =0) = 1 — bie — bye® + o(€%),
P(O1(8) = 02(1) =0) =1 — c1e — ey + o(€2)..

Inorderto have (A.1), weneed

(1 - a1e — 226 + o()))(1 = bre — bae® + 0(e))
= (1 — (a1 + b1)e — (a2 + by — a1b1)€ + o()
= (1 — c1e — 2€? + o). _ (A.6)

Detailed calculations show that ¢; =aj +&;, but we need not have ¢; = a;
+by — a1by.
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