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Many approximations for queueing characteristics such as the mean equi-
librium queue length are based on two moments of the interarrival and service
times. To evaluate these approximations, we suggest looking at the set of all
possible values of the queueing characteristics given the specified moment
parameters. This set-valued function is useful for evaluating the accuracy of
approximations. For several models, such as the GI/M/1 queue, the set of
possible values for the mean queue length given limited-moment information
can be conveniently described by simple extremal distributions. Here we
calculate the set of possible values for the mean queue length in a GI/M/1
queue and show how it depends on the traffic intensity and the second moment.
We also use extremal distributions to compare alternative parameters for
approximations. The results provide useful insights about approximations for
non-Markov networks of queues and other complex gueueing systems. The
general procedure is widely applicable to investigate the accuracy of approxi-
mations.

1. INTRODUCTION AND SUMMARY

Queueing models are important tools for studying the performance
of complex systems, but despite the substantial queueing theory lit-
erature, it is often necessary to use approximations. The purpose of
this series of papers is to help develop a theory for evaluating queueing
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approximations. Devising appropriate queueing approximations no
doubt will continue to be largely an art, but we believe that there is a
need and a real possibility for more supporting theory.

In this series of papers we examine the accuracy of queueing ap-
proximations that are based on a few parameters partially character-
izing the arrival process and the service-time distribution. We use an
approach originally introduced by Holtzman' and Eckberg® at Bell
Laboratories and Rolski®*® in Poland. Since the approximations apply
to all arrival processes and all service-time distributions with the same
parameters, we propose evaluating the approximations by examining
the set of all possible values of the congestion measure consistent with
the specified parameters. To be specific, consider the GI/G/1 queue,
which has a single server, unlimited waiting room, the first-come first-
served discipline, and a renewal arrival process independent of iid
(independent and identically distributed) service times. Many approx-
imations for the equilibrium mean queue length in the GI/G/1 queue
are based on the first two moments of the interarrival-time and service-
time distributions; see Shanthikumar and Buzacott® and Whitt.” In
this context we suggest considering the set-valued function that maps
the four moment parameters into the set of possible values of the
mean queue length.

It should be clear that we are in an excellent position to develop
and evaluate approximations if we can identify such set-valued func-
tions. We can see if a candidate approximation is an element of this
set for all parameters of interest; then there always is a system for
which the approximation is exact. We can also see if an approximation
is in the middle of this set; then large errors are avoided and the
approximation usually corresponds to a typical system value.

There is also much to be learned without considering any specific
approzimation. The range of values indicates the possible accuracy of
any approximation. We can investigate how this range depends on the
parameters to determine how the possible accuracy depends on the
parameters. We can see how the range is reduced by incorporating
additional information, e.g., another moment. We can also compare
different parameter specifications by comparing the different set-
valued functions.

This approach has wide applicability in queueing and elsewhere,
provided that we can indeed identify the desired set-valued functions.
As one would expect, this task is usually difficult, but there is an
emerging methodology for attacking this problem. It is sometimes
possible to identify relatively simple extremal distributions that yield
the maximum and minimum values of the congestion measure given
the parameters. A major tool forthis purpose is the theory of complete
Tchebycheff systems in Karlin and Studden.® The idea of applying
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complete T'chebycheff systems and extremal distributions to conges-
tion models is due to Holtzman® and Rolski.? Eckberg? first used this
approach to compare alternate parameter specifications, primarily the
peakedness versus the variance as a second parameter in addition to
the mean in GI/M/s loss systems. Other relevant references are
Bergmann et al.,’ Daley and Rolski,’® Karr,'* Stoyan,'? and Whitt.!**

The principal focus in the papers here is the GI/M/1 queue, which
has an exponential service-time distribution. (We also have results for
more general GI/G/1 queues; see Section V of this paper and Sections
VI and VII of Part 111, a subsequent paper in this issue of the Journal.)
In Part I, we describe the set of all possible values of the mean queue
length in the GI/M/1 model given the service rate and various param-
eters partially characterizing the interarrival-time distribution, espe-
cially the first two moments. We obtain useful descriptions of the way
this set depends on the parameters (see Section II). For example, the
maximum relative error [defined in (4)] in the mean queue length
given the first two moments of the interarrival time turns out to be
precisely the squared coefficient of variation (variance divided by the
square of the mean) of the interarrival time; see Corollary 1. We also
evaluate alternate parameter specifications (see Sections III and IV).

We must emphasize that we are not actually interested in the
GI/M/1 model itself. Given a GI/M/1 model, it is obviously not
difficult to calculate the mean queue length exactly. We are actually
interested in more general models in which exact solutions are not
possible. Where GI/M/1 models arise, they arise as approximations,
e.g., the arrival process is approximated by a renewal process partially
characterized by the first two moments of the renewal interval >
Then there is no corresponding renewal-interval distribution for exact
analysis. ' :

We became motivated to conduct this study while developing the
software package QNA (Queueing Network Analyzer),'™® which cal-
culates approximate congestion measures for non-Markovian net-
works of queues, i.e., with non-Poisson arrival processes and nonex-
ponential service-time distributions. The procedure in QNA is, first,
to approximate each arrival process by a renewal process partially
characterized by the first two moments of the renewal interval and,
second, for each node to apply approximation formulas for the conges-
tion measures in a GI/G/m queue partially characterized by the first
two moments of the interarrival-time and service-time distributions.
It is natural to study these two steps separately. The first step is
studied in Whitt*® and Albin.»® The second step is studied here.

For the network of queues and other applications, we would actually
like to treat the more general GI/G/m model, but we are not yet able
to do this. Nevertheless, we believe that the GI/M/1 results here are
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important. They indicate what happens more generally. While the
exponential distribution is exceptional in its analytic simplicity, it is
rather typical in its degree of variability (in between deterministic and
highly variable). Moreover, the sharp analytic results available for the
GI/M/1 model will be useful theoretical reference points for other
cases that require relatively complicated numerical methods or simu-
lation. Even if an extremal distribution is identified for other
GI/G/m queues, it may be a nontrivial task to calculate the mean
queue length.

We emphasize that the relevance of the extremal distributions for
the GI/M/1 model was established before.’”® Here we apply this theory
to examine in detail the implications for queueing approximations.
We determine which parameters are best, how the quality of approx-
imations depends on the parameters, and how much additional infor-
mation helps.

As an important part of our results, we display the extremal distri-
butions yielding the extreme values of the mean queue length. These
extremal distributions are of interest beyond the GI/M/1 queue con-
sidered here because they are also extremal in many other settings.
(This will be evident from Sections Il and V.) Moreover, in settings
such as the GI/G/m queue in which the actual extremal distributions
are still unknown, the GI/M/1 extremal distributions can be used in
numerical methods and simulations to get an approximate range of
possible congestion values.

To describe the situation for the GI/M/1 queue, let u be an inter-
arrival time, v a service time, p the traffic intensity (p = Ev/Eu), c?
the squared coefficient of variation of an interarrival time, and L the
expected equilibrium queue length (number in system) at an arbitrary
time. For the GI/M/1 queue,'®

L=p/(1—a), ‘ (1)
where o is the unique root in the open interval (0, 1) of the equation
#[u(l ~ 6)] = 0, (2}

with ¢ = 1/Ev and ¢(s) the Laplace-Stieltjes transform of the inter-
arrival-time cdf, say F, -

#(s) = fo e dF(t). (3)

The root ¢ in (2) is also of interest itself because it is the probability
that a customer will have to wait before beginning service. It is clear
from (1) and (2) that ¢ and L depend on the entire cdf F, not just its
first two moments. )

So, what about the range of possible values for ¢ and L in the
GI/M/1 queue? Unfortunately, the range can be very wide. For ex-
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ample, let Eu = 2, Eu® = 12 (so that Var(u) = 8 and ¢* = 2), and Ev
= 4/3 (so that p = 2/3). The possible values of ¢ range from 0.417 to
0.806 and the possible values of L range from 1.14 to 3.44, giving a
maximum relative error of 200 percent (Table IV).

This wide range naturally causes us to question the value of the
various two-moment approximations. However, the particular distri-
butions yielding the extreme values of L suggest an explanation. These
extremal distributions are two-point distributions, so they are ob-
viously very unusual. We would hope that for typical (nice) distribu-
tions ¢ and L would not vary much among interarrival-time distribu-
tions with the same moments. In Parts II and II[,** we investigate
how much the range is reduced by imposing various shape constraints
on the interarrival-time distribution. Part II by Klincewicz and Whitt*
presents a new approach. Since the theory of complete Tchebycheff
systems no longer applies with shape constraints, Part II uses nonlin-
ear programming to identify the extreme values of L and the associated
extremal interarrival-time distributions given various shape con-
straints. We believe that Part II is the first investigation of extremal
distributions in the presence of shape constraints.

The numerical results in Part II are strikingly similar to the theo-
retical results in Part I, suggesting that a theory corresponding to Part -
I can be developed for many kinds of shape constraints. Part III shows-
how this can be done in one important special case. Part III shows
that the theory of complete Tchebycheff systems can be applied again.
for one important kind of shape constraint; assuming that the distri-
bution is a mixture of exponential distributions.

Overall, this study indicates that two-moment approximations can
perform poorly, but if the distribution is not too irregular then they
should perform reasonably well. At any rate, numbers are provided so
that we can reach our own conclusions, which may depend on the
circumstances.

Here is how the rest of this paper is organized. In Section II we
study the extremal distributions with the first two moments fixed. In
Section ITI we do a similar analysis with the mean and the peakedness
(the transform evaluated at the service rate) fixed. In Section IV we
investigate other parameter specifications, including the first three
moments. Finally, in Section V we briefly discuss extremal distribu-
tions in other models such as the GI/G/1 queue and the GI/M/1 loss
system. It is significant that the theory of extremal dlstrlbutlons is
not limited to the GI/M/1 model.

Ii. EXTREMAL DISTRIBUTIONS GIVEN THE FIRST TWO MOMENTS

Consider the set of -all probability distributions on the interval [0,
bm;), b < o, having first two moments m; and m, (and no mass at
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infinity). This is a convex set depending on the three parameters b,
m, and c?, where c? is the squared coefficient of variation: ¢® = (my —
m3)/m2. The set is nonempty provided that b = 1 + ¢ Two distribu-
tions in this set are of particular interest; we call them the upper and
lower bounds because they yield the maximum and minimum mean
queue lengths, respectively, among interarrival-time distribution in
this set. The upper bound is the two-point distribution with mass
c%/(1 + ¢?) on 0 and mass 1/(1 + ¢*) on my(1 + ¢?), having cdf denote
by F,, and the lower bound is the two-point distribution with mass
c%/[c? + (b — 1)?] on bm, and mass (b — 1)%/[c?® + (b — 1)} on my[1 —
c2/(b — 1)], having cdf denoted by Fs As b — =, the lower bound
approaches (converges in law) to the limiting lower bound, which is
the one-point distribution with mass 1 on m;, having cdf denoted by
Fgz.

Note that the limiting lower bound is not actually in the reference
set because it has zero variance. These distributions are especially
useful because they are minimal and maximal elements for a partial
ordering of the distributions based on the Laplace-Stieltjes transforms.
Definition 1: Fy < F, for two cdf’s on [0, ®) if ¢1{s) < ¢2(s) for all
s = 0, where ¢; is the Laplace-Stieltjes transform of F; defined in (3}.

Since the transform ¢(s) is the expectation of a decreasing function,
the smaller c¢df in the ordering <; tends to have what we would

"normally think of as the stochastically larger distribution; in fact, in
Section 1.8 of Stoyan,'? F, <; F, is said to hold if ¢:1(s) = ¢(s) for all
s = 0. However, smaller interarrival times mean more arrivals and
more congestion. We use this definition because the upper-(lower-)
bound distribution yields the maximum (minimum) mean queue
length. '

Let F = F(m,, ¢, b) be the set of all edf’s with parameters m,, c2,
and b. Let F, and Fsbe the cdf’s in F associated with the special
extremal distributions, and let F/ be the associated limiting lower-
bound cdf. The following proposition is just a restatement of 2.1.1 of
Eckberg,? which in turn is an elementary consequence of the theory
of complete T'chebycheff systems.?

Proposition 1: ForallF € F,F7 <, Fp<s; F<, F,.

It is a simple matter to check the following property.

Proposition 2: Fy decreases in <, as b increases and ¢z(s) — ¢/ (s) for
all s as b — o,

As noted by Holtzman,! Rolski,®® and Eckberg,? the ordering <;
and the extremal distributions have immediate application to queues.
Consider the GI/M/1 queue with fixed service rate g and interarrival-
time distributions in-F. Without loss of generality, assume m; = 1.
Now it is natural to work with the three parameters p, ¢ and b. Let
L and ¢ in (1) and (2) be indexed to indicate the extremal interarrival-
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time distributions. As an immediate consequence of Proposition 1 and
(2), we have
Proposition 3: Foral F€ F(p,c%, b), 0/ <osr<o<o, and Ly < Ly
sL=sl,.
Remark 1: More generally, if F, <; I; for two interarrival-time cdf’s,
then o, < oy in the associated GI/M/1 queue with common service
rate. This in turn implies not only that L; < L, but also that the
associated steady-state queue-length distributions are stochastically
ordered; see Theorem 5.2.3b of Stoyan.!?

For approximations, it is interesting to know about the maximum
relative error (MRE) in L, defined by

MRE = MRE(p, %, b) = (L, — L/)/Le. (4)

From (1), we see that MRE = (o, — ¢7)/(1 — 0,).

- Now we show how the extremal queue characteristics (a4 Lg etc.)
and MRE depend on the parameters p, ¢, and b. We first describe
how ¢/ depends on p, the only relevant parameter for the limiting
lower bound.

Theorem 1: For0<p<1, 6/ < pand

doj _ p7(1 = of)e~Umot Vs

dp 1= e > O
Proof: Consider eq. (2) for F/ . The functien
fla)=x—e e )

is positive for 0 < x < ¢/ and negative for o/ < x < 1, so to show that
o/ < p it suffices to show that f(p) = p — e~*#* is negative for 0 <
p < 1. Make the change of variables y = (1 — p)/p to obtain f(y) =
(1 + y)™* — e™, which is clearly positive for all ¥ > 0. To verify the
inequality for the derivative, differentiate f{x) in (5). Use o/ < p to
show that the denominator is always positive:

p—xe—(l—w Mo < ple~oe <,

We now show that all results for ¢/ immediately imply results
for o,. '
Theorem 2: o,=1— (1 — a7)/(1 + ¢?).
Proof: For the upper bound, eq. (2) is

c? 1 ~Gra)+edp 7
7 + = = g,.
¢cc+1 ¢ +1
Multiply both sides by ¢® + 1, subtract ¢® from both sides, and then

make the change of variables 1 — ¢/ = (1 — ¢, }{1 + ¢?) to obtain eq.
(2) for the limiting lower bound. :
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Corollary 1: L, = L7 (1 + ¢%) and MRE(p, ¢* =) = c%
Remark: Theorems 1 and 2 together with (1) imply that ¢, and L, are
increasing in p.

We now turn to the lower bound when there is a bound on the
distribution (b < ). Straightforward but tedious calculations (differ-
entiation) verify the expected monotonicity properties:

Theorem 3: (a) The lower-bound characteristics oz and Lyare increas-
ing in p and c? and decreasing in b. (b) MRE(p, ¢ b) is increasing in
b.

Combining Theorems 2 and 3b, we obtain
Corollary 2: MRE(p, c? b) < c2

Numerical evaluation of MRE(p, ¢2 b) for 14 values of p, 4 values
of ¢, and 5 values of b support the following conjecture.

Conjecture 1: MRE(p, ¢ b) is decreasing in p.

In Table I we display MRE(p, c?, b) for three values of p, four values
of ¢2, and four values of b. These specific cases show that MRE(p, c2,
b) is strongly affected by each of the parameters p, c2, and b. The
bound b can make a big difference, especially for larger p and c? see
the case p = 0.9 and ¢® = 4. These specific cases demonstrate that
MRE(p, ¢ b) is not monotone in c2. In fact, when c? increases with b
fixed, the lower-bound distribution Fyeventually coincides with the
upper-bound distribution F,, becoming the two-point distribution with
mass b~ on b and mass 1 — b on 0 (m; = 1). Of course, as ¢2— 0, Fy
and F, both approach F/, so that MRE(p, c?, b) — 0 too as ¢ — 0.
The numerical results also support the following conjecture:
Conjecture 2: MRE(p, c2, b) is unimodal in c%.

‘We now investigate how the extremal queue characteristics and

Table I—Values of MRE(p, c?, b) for the GI/M/1 queue*

Bound on Interarrival-Time Distribution in

Traffic Sq_uared Coef- Multiples of the Mean
Intensity, ficient of Vari-
P ation, c? b=5 b=10 b=20 b=40
0.5 0.5 0.373 0.442 0.472 0.487
1.0 0.604 0.833 0.924 0.964
‘2.0 0.627 1.40 175 1.89
4.0 0.000 1.28 3.01 3.59
0.7 0.5 0.231 0.350 0.424 0.462
10 0.290 0.583 0.791 0.897
2.0 0.185 0.699 1.33 1.68
4.0 0.000 0.349 1.56 2,86
- 0.9 0.6 - 0.070 0.143 0.248 0.3563 -
1.0 0.072 0.174 0.365 0.610
2.0 0.043 0.143 0.374 0.858
4.0 0.000 0.071 0.232 . 0.712

* The maximum relative error in the steady-state mean queue length L given the traffic
intensity p, the interarrival-time squared coefficient of variation c? and the bound on
the interarrival-time distribution b (in multiples of the mean); see Section IV.
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MRE(p, c%, b) behave in light and heavy traffic, i.e., as p — 0 and p —
1. As an easy consequence of (2}, we obtain

Theorem 4: As p - 0,
o, — ¢Z/(1 + ¢?), ars — 0, and MRE(p, c2, b) — c%

We describe the behavior as p — 1 for & < « in more detail. The
following result provides an interesting refinement to the classical
heavy-traffic limit theorem,” from which we can deduce that (1 —
p)L — (1 + ¢?)/2 as p approaches A from above for any fixed renewal
arrival process.

Theorem 5: For all b,
1— _2(1—p)i4(1—P)2
w2« T 142 31+ )

,d
and, for b <o,

+0(1 - pp® (6)

20 —p) + 40 —p)*  mg

S e |
}_,-——E-\/ 1 + C2 3(1 + C2) (1 + 02)2 + 0(1 p) R (7)
where '
c’b® ® - 1 — c?)°
e = 2+ (b—1)° + (b — 1)(c® + (b — 1)?’ (8
so that, for b < oo, ~
. MRE(p, c* b) 4 ma .
1o, 3 ((1 + 92 ) @)

Proof: Let x = (1 — a7)/p. To find the derivative of x with respect to
p, differentiate with respect to p in eq. (2}, i.e.,
! 2 3

1—px=TAe—"'=1-—x+%—%+O(x")
Tt
or
2
X X
—p == —=+0(x%.
P=5"% (x%)

After successive differentiation with L’Hospital’s rule, this yields
x’(1) = =2 and x”(1) = — 8/3. From Taylor’s theorem and Theorem
1, we obtain (6). The calculation for the lower bound in (7) is similar.
Remarks: It is possible to check the consistency of (6) and (7} because
they must agree as b — 1 + ¢ It is not possible to do a consistency
check as b — o because the two iterated limits involving b — « and
p — 1 are not equal.

We conclude this section by displaying in Table II the extremal
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Table l—The extremal GI/M/1 characteristics for fixed traffic
intensity, p, squared coefficient of variation, ¢, and bound on the
distribution b:.Case of c2 = 2.0

Bound on Interarrival-Time Distribution in Multiples of

Traffic Upper-Bound the Mean
Intensity, Characteris-
o ties b=5 b=10 b=20 b=40

0.2 g, = 0.669 ar= 0.092 or= 0.022 ar=0.012 ars=10.009
L.=0.604 Lr,=10.220 Ly=0.204 Ly,=0.202 Ly=0.202

0.5 o, =0.734 o= 0.594 or=0.361 ar= 0.269 ar=0.233
L.=188 L,=123 L,=0.783 Ls=10.684 Ly=0.652

0.7 g, = 0.822 gr= 0.790 or=0.698 ar=0.585 ar=10.524
L,=394 Ls=23.32 Lr,=232 L,=1.69 L,=147

0.9 g, = 0.936 or= 0933 or= 0.926 ar=10.912 ar=0.880

L.=13.98 L,=1341 L,=12.23 L,=10.17 Ly="152

K

characteristics 64 Lg and o, and L, for the cases in Table I with ¢2 =
2. The associated maximum relative errors for p = 0.5, 0.7, and 0.9 are
given in Table I. These will be compared with other parameter speci-
fications in the following sections.

Ifl. THE SECOND PARAMETER: VARIANCE VERSUS PEAKEDNESS

The first two moments are natural parameters if two parameters
are to be used to partially characterize an interarrival-time or a service-
time distribution, but it is not clear that these are the best two
parameters. Of course, the chosen parameters should be easy to
estimate and easy to use in approximations for queues. Also, the
parameters should have power determining descriptive queue charac-
teristics; 1.e., there should be a small MRE or a small range of possible
values of L. In this regard, Eckberg® has shown that the peakedness
of a renewal arrival process is a much better second parameter in
addition to the mean than the variance for GI/M/k loss systems and
also, to some extent, for GI/M/k delay systems. The peakedness is the
ratio of the variance to the mean of the steady-state number of busy
servers in an associated GI/M/« system; see Holtzman,! Eckberg,?
and references there. Knowing the peakedness of a renewal process,
say z, is equivalent to knowing ¢(u), the transform evaluated at the
service rate u:

dlu) =1 — (2 4+ Mu)™ (10)

The peakedness is an important parameter to consider because it is
often available as an approximate characterization of overflow proc-
esses via the equivalent random method.**? Since Eckberg’s results?
suggest that the mean and the parameter ¢(u) might be much better
than the mean and variance, we investigate this new parameter pair
here. o '
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However, before examining this new parameter pair, we explain why
the variance might be a better second parameter for single-server delay
systems. Knowing the mean and variance (i.e., c?) is equivalent to
knowing the first two derivatives of the transform ¢(s) at 0. It is
intuitively reasonable that we might pin down the transform ¢(s)
better by fixing the value at u, ¢{x) than by fixing the second derivative
at 0, ¢”(0). However, this depends on the way the queue characteristics
depend on the transform. For the GI/M/k loss system, the relevant
parameters are ¢{ju) forj=1, 2, - . - , k, with the parameters tending
to be of less importance as j increases. These parameters are values of
the transform ¢(s) evaluated at points s such that s = u. For approxi-
mations, it is clearly better to specify ¢(u) and ¢'(0) than ¢”(0) and
$’(0). '

For the GI/M/1 delay system the key parameter in (2) is the
transform value ¢[u(l — ¢)]. Of course, we do not know ¢ in advance,
but the argument is always less than u. Since ¢ tends to be near p, the
argument tends to be near p(1 — p}. Clearly, for large p, knowing ¢”(0)
should be better than knowing ¢(u). On the other hand, for small p,
knowing ¢ () should be better than knowing ¢”(0).

Our results substantiate this intuitive reasoning. In marked contrast -
to GI/M/k loss systems, for GI/M/1 delay systems the parameter ¢(r)
is not uniformly better than the variance as a second parameter.
Which second parameter is better depends on the traffic intensity,
with the variance improving as p increases. Consistent with the
intuitive discussion above, we shall show that asymptotic behavior of
the maximum relative error as p approaches 0 and 1 is strikingly
different given ¢(x) instead of ¢%. Moreover, the variance does better
for the upper bound, whereas ¢(u) does better for the lower bound.

It is also appropriate to mention that we are considering the peaked-
ness of the renewal arrival process as a single parameter, which by
(10) can be represented as the transform ¢ evaluated at the service
rate p. If, instead, we knew the peakedness as a function of the service
rate as in Eckberg,?? then we would know the entire transform, which
is equivalent to knowing the entire interarrival-time distribution.
Moreover, if we could choose one argument of the transform, then we
obviously could do better by picking a value less than z. For example,
there would be no error for the GI/M/1 queue if we could guess ¢ and
make the argument u(1 — ¢). If we could choose one argument given
only thé arrival rate and service rate, then a natural choice would be
(1l — p). (This parameter is considered here in Section IV.) In
applications, however, we typically have no choice. Then the arrival
process (which may not be renewal) may be partially characterized
(by the equivalent random method and related techniques) by rate
and peakedness. Moreover, the given peakedness might be with respect
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to a different service rate (or even a different service-time distribu-
tion®). In the context of the GI/M/1 queue, this peakedness parameter
will lead to better approximations if the argument of the transform,
after using (10), is close to u(1 — o). The parameter ¢(u) considered
here should give some idea about what will happen in general.

The new parameter pair involving ¢(x) leads to new two-point
extremal distributions and a new partial ordering of the distributions.
Now consider the set of all probability distributions on the interval
[0, bm,], b < o, having first moment m, and transform ¢(u) at s = &
(and no mass at infinity). This is a convex set depending on the
parameters b, m,, and ¢{u). The extremal distributions here are the
upper bound, which is the two-point distribution with mass p = (b —
1)/(b — x} on xm; and mass 1 — p on bm,, where x satisfies '

pe™* + (1 — ple™" = $(u); (11)

and lower bound, which is the two-point distribution with mass 1 —
x7* on 0 and mass x* on xm,, where

x=(1—p™)/(1 - $(1/p)). (12}

Unlike Section II, the upper bound here depends on b while the

lower bound does not. As b — e, the upper bound converges in law to -

a limiting upper bound, which is the one-point distribution with mass

1 on ~(log ¢{x))/p. Note that the limiting upper bound is not actually.
in the reference set because the mean is not m,. These distributions. .

are minimal and maximal elements for another partial ordering of the
distributions based on the transform.

Definition 2: F; <, Fy for two cdf’s on [0, ) if
i(s) < ¢ofs), s=p,  ond ¢i(s) = dls), s=p
Let G = G(ma, u, ¢(u), b) be the set of all cdf’s with parameters m;,

u, ¢(r), and b. Without loss of generality, let m; = 1. Let G,., G4 and -

G be the cdf’s associated with the special extremal distributions. From
Section 2.2.3 and (5) of Eckberg,? we obtain
Proposition 4: ForadlGE G, Gr<,6G<,G,<, G,

It is easy to see the effect of changmg b:

Proposition 5: G, increases in <, as b increases and b.{s) — qbw(s) for
each s as b— .

Here are the implications for the GI/M/1 queue. A tilde is used to
indicate that the extremal distributions are from this section (because
we want to relate them to those in Section II).

Proposition 6: For all G € G,

~ .

Gs<o<o,<9d, and LysL s, <sL;.
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Using the same change of variables argument as in Theorem 2, we
can express oy in terms of o /.
Theorem 6: 67,=1— {1 — ¢/ )/x for x in (12).
Remarks As a consequence of Theorem 6, Ly = xL/ for z in (12)
Since x'is a probablllty, 6/ < ¢ and L/ < Lz Moreover, 5, and L,
are decreasing in ¢(u) for fixed u and p. Finally, we can combine
Theorems 2 and 6 to obtain ¢+ < a, and Ly < L ; use the fact that x™*
<1<1+4c?

‘We now consider the upper-bound characteristic ¢,.. Let o7(p) be
the limiting lower bound in Section II as a function of p.
Theorem 7: If ¢{u) = e, then the GI/M/1 queue based on G; is
unstable and ¢; = 1 is the only root. If ¢(u) < e, then

oz = o/ (—1/log ¢(u)). (13)

Remarks: As a consequence of Theorems 1 and 7, if ¢(u) < e™?, then
oz < — log ¢(u} and g; is increasing in ¢(u).

Paralleling Thecrem 7, we have (omitting the proof}

Theorem 8: (a) The characteristics &, end L, are decreasing in ¢(u)
and increasing in b. (b) MRE(p, u, ¢(u), b) Is increasing in b.

We now consider limits as the traffic intensity p approaches 0 and
1. Here we assume the transform is based on a fixed interarrival-time
cdf and that p changes by changing u. :
Theorem 9: As p — 1 (p — 1), 6, — 1 and 67 — as(1) < 1, where
a7 (1) is the root ¢ in (0, 1) of

1-1/x + (1/x)e” 4% = (14)
and

x=(1—e™)/(1— ¢(1)). (15)
Proof: For g,., use Theorem 5 and the fact that o < g,.. For the lower
bound, note that u — 1 and ¢(u) —> ¢(1) as p — 1, so that x in (12)
approaches (15) and eq. (2) approaches (14).
Corollary 3: As p — 1, MRE(p, p, ¢(), b) — o.

We have not yet been able to treat all cases when p — 0. Several

possibilities are covered by the next theorem.
Theorem 10: If p —> 0 (p —> ), then (a) 67— 0; (b} 6, — 0 when
Fle=0 for some ¢ > 0; (¢) 0, = ¢.(0) when F(0) > 0, where c.(0) is
the root o in (0, 1) of

(b= 1)/b)°F(0)' " = o. (16)

Proof: (a) Us;e Theorems 6 and 4. Note that x — 1 as g — for x in
(14). (b) Note that ¢(u) < e™ s0 x = ¢/A for sufficiently large u. Hence,
from (2), &, — 0. (c) Note that ¢(u) — F(0) and e™* — 0 as u — o, 80
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that x — 0 for x satisfying (11), x/p — —log[bF(0)/(b — 1)] and &, —
0..{0) as claimed.

Corollary 4: If p — 0, then MRE(p, g, ¢(u)}, b) — 0, when F(¢) = 0 for
some e > 0 and MRE(p, u, ¢{u), b) — a for some constant a > 0 when
F(0) > 0.

In Table III we display the extremal characteristics ¢~ and &, and
MRE(p, 1, ¢(u), b) for four values of p and four values of b. In each
case, .the given transform values ¢(g), which are also displayed in
Table II1, are calculated for the prototype distribution used in Part II
with m; = 2 and ¢? = 2. Since the mean interarrival time is 2, g =
1/2p.

It is interesting to compare Table III with Table II and the ¢ = 2
case of Table I. The main conclusion from Tables I and III is that the
MRE is always smaller with ¢? than with ¢(x). For p = 0.9 it is smaller

by a factor of ten.
From Tables II and 1il, we see that o, < g, in all cases except p =

0.2 and b = 5. Also o tends to be better (bigger) than ¢~ as p increases
and b decreases, but neither characteristic is uniformly better.

From Table III and additional cases, it is apparent that the MRE is
quite insensitive to changes in p, varying very little from p = 0.2 to

p = 0.9. Table III also shows that MRE(p, i, ¢(u), b} is not monotone

in p. The data suggest the following conjecture,
Conjecture 3: MRE(p, ., ¢(u), b) is unimodal as a function of p with a
maximum that increases with b (assuming ¢(u) is calculated for a

fixed interarrival-time distribution).
Finally, note that ¢(u) > e~ = 0.3678 for each p in Table III, so the

queue based on G is unstable, ¢, — 1, and MRE(p, g, ¢(p), b} — o as

b— oo,

Table lli—The extremal GI/M/1 characteristics and maximum
relative error MRE(p, u ¢(u), b) for fixed mean and transform value
#(u) based on the prototype distribution in Part Il having mean 2 and
¢? =2 (so that p = 1/2p)

Bound on Interarrival-Time Distribution in Multiples of the

Traffic Transform Mean W
Inten-  Value and
sity, p Lower Bound b=5 b=10 =20 b=40

0.2 $(u) = 0377 a., = 0.607 .= 0.705 a, = 0.783 o, =0844

ds=0.381 MRE=0573 MRE=110 MRE=185 MRE=6381
05  ¢(u) =0.466 5, = 0.737 . = 0.832 . = 0.900 7. = 0,944
. ors=0.563 MRE=0664 MRE=161 MRE=338% MRE=4681
0.7 4(u) =0.518 7. = 0834 5. = 0.898 7. = 0942 5. = 0.969

o,=0648 MRE=0648 MRE=168 MRE=3.74 MRE="1172
09  4(u)=0562 7, =0942 5, =0965  5,=0981 5. =0990

0,=0905 MRE=0625 MRE=169 MRE=2384 MRE=815
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IV. ADDITIONAL PARAMETER SPECIFICATIONS

We now consider several other parameters in addition to the first
two moments [m;, ms] and the mean and the transform value [m;,
¢(u)]. We consider two different three-parameter specifications: the
first three moments [m;, ms, mg], and the first two moments and the
transform value [m,, ms, ¢(n)]- We also consider two-parameter spec-
ifications involving the transform value ¢{u(1 — p)), combining it with
the mean and ¢(u). Each parameter specification is considered with
and without an upper bound on the distribution.

In each case the extremal distributions can be obtained from the
theory of complete Tchebycheff systems by solving systems of equa-
tions. The general formulas for the extremal distributions are either
displayed explicitly in Eckberg® or can easily be obtained from the
theory there.

To obtain the parameter values themselves, we use the two prototype
distributions described in Section II of Part IL* Prototype I is more
variable with ¢ = 2.0 and Prototype H is less variable with ¢* = 0.8.
We also consider two values of the traffic intensity; p = 2/3 and p =
9/10. Finally, we consider both an upper bound of 20 on the distribu-
tion and no upper bound. Since the means for Prototypes I and Il are
2.0 and 4.0, respectively, the upper bounds are b = 10 and b = 5 times
the mean, respectively. The value 20 was chosen for the bound to be
consistent with the prototype distributions. All the prototype param-
eter values are given in Tables IV and V. The extremal probability
distributions themselves are displayed in Tables VI through IX. These
are probability mass functions with all mass on one, two, or three
points. The points are often the distribution boundary points 0 and
20. In the case of two transform values {¢(u), ¢[u(l — p)]} the
distribution is defective (positive mass at infinity) in the lower bound
for Prototype I and the upper bound for Prototype II.

The following is a list of conclusions drawn from the numerical
results in Tables IV through IX. These conclusions represent clear
tendencies indicated by these (and other) data, but they are not
theorems. For example, with respect to the results in Section II, the
first conclusion is supported in part by Corollary 1, but is limited by
the observation before Conjecture 2.

1. For all parameter specifications, the MRE is much less with less
variability; it is much less in Table V with ¢ = 0.8 than in Table IV
with ¢2 = 2.0.

2. As noted in Section II, two moments and a bound on the distri-
bution are sufficient for approximations with high traffic intensities
(here MRE = 8 percent for p = 0.9), but not for all traffic intensities.

3. An extra moment helps significantly. Three moments and a
bound are good enough for approximations in all cases (MRE < 10
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Table VI—Extremal interarrival-time distributions for the Gl/M/1
queue with various parameter specifications: Case of Prototype |
(my, =2, c? = 2) with p = 2/3

Extremal
Given Parameter Character-
Values istics Extremal Probability Mass Function, Mass p, on x
Upper Bounds o, D1 x D2 X D3 %3
[m,, ¢{n)] 1.000 1.000 0.90 — —_ — —
[, ¢lu), B 0.887 0.9381 081 0.0619 20.00 — —

[mi, mgl, [mi, ms 0806 06667 000 03333  6.00
m.'!]& and [mb ’n2:

[my, @{u(l — p)), 5]  0.802 09583 122  0.0417 20.00 — —
[(u), ¢(p(i — pP]  0.793 0.4565 0.00 05435  3.09 —_ —

and [¢(p), ¢ln(l

—-p)b .
[my, ma, ¢(x)] and 0787  0.8060 061 01940 797 — —

[mls Mg, d’(#): ]
[y, s, ms, b] 0.776 05760 0.00 04132 432 0.0107 20.00
Lower Bounds 73 M Xy P Xz Da X3

[m, mp, ms] and  0.754 0.906 1.09  0.094 10.79 — —

[mls Mg, M3, b]
[my, #(u(l — p))] 0754 05787 000 04213 475  — —

and ginx, $lu(l —
),
[qsg)g), ¢u(l — p)), 0747 0.8311 059 0.1689 20.00 — —

[m, ma, @(n), b] 0.747 0.4628 0.00 0.5208 3.20 0.0167 20.00

o), dlu(l—pP] 0730  0.8330 0.65 — —
[y, @(@)], [mi, 0.698 04810 000 05190 385 — —

¢{n), b] and [m,

iz, (ie)]
[y, mg, 6] 0.645 09759 156 0.0241 20.00 - —
[, ma) 0.417 1.000 200 = — _ —_ —

percent). The third moment reduces the MRE by approximately a
factor of 10.

4. The upper bound on the distribution can make a big difference.
It matters when the extremal distribution has mass on the upper
bound, which occurs for either the upper or lower extremal distribution

- but not for both. :

5. As noted in Section III, overall the second moment is better than
the transform value ¢{u) as a second parameter in addition. to the
mean. However, for lower traffic intensities and no bound on the
distribution, ¢(x) is better for the lower bound. The second moment
is always better for the upper bound. Similarly, the third moment is
always better than the transform value ¢{u) as a third parameter in
addition to the first two moments. However, for lower traffic intensi-
ties and no bound on the distribution, ¢(u) is better for the upper
bound. : , g '

6. The transform value ¢(u(l — p}) is. always better than the
transform value ¢(u) since ¢(u(l — p)) is closer to u(1l — ). Even
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Table VII—Extremal interarrival-time distributions for the GI/M/1
queue with various parameter specifications: Case of Prototype |
{(m=2,c¢c*=2)withp=09

Extremal
(Given Parameter Character-
Values istics Extremal Probability Mass Function, Mass p, on x,
Upper Bounds g m x D2 X2 Ps X3
{m,, PYRY 1.000 1.000  1.04 — — — —
m;, ¢{u), b] 0965 09442 094 00558 20.00 — —

[6(r), o(u(i — p))] 0945 05024 0.00 04976 383
and [d’gn), dlu(l

_.0)),
[ma, mg), [my, m,,  0.936 0.6667 0.00 90.3333 6.00 — —

gna] and [m, ms,

]
[ma, ¢(u(l — ), b] 0935 09716 147 00284 2000 — —
[my, ma, ¢(u)] and 0934  0.8060 0.61 01940 776  — —

[mh Mz, ¢(.u)! b]
[my, ma, m, b] 0.933 05760 0.00 0.4132 4.32  0.0107 20.00

Lower Bounds o D1 X D Xz Pa X3

[my, ms, my] and 0932 0.906 1.09 0.094 10.79 —_ —
[m4, mq, my, b}

[my, ¢lu(l — o)} 0.931 0.6438 0.00 0.3562 5.62 — —
and [mls ¢(PL(1 -

)},
[ma, mo, ¢(u), b 0.931 0.484 0.00 0.500 3.37 0.016 20.00
my, My, 0.926 0.9759 1.56 0.0241 20.00 —_ —
[qbgp.), o(u(l — p)), 0918 0.9248 0.90 0.0752  20.00 — —

[{u), Pl — o] 0.908 0.9538 0.95 — — _
[my, ¢()l, [ma, 0.900 0.4812 0.00 0.5188 3.855 — —
#(n), 0] and [my,

mz, ¢(1}]
[, ma) 0.807 1.000 2.00 —_— — . -

better is ¢(u(l — &), where & is the Kraemer and Langenbach-Belz?
approximation for the root ¢. The parameters ¢{(u(1 — p) and ¢{p(1 —
7)) do not appear very useful, however, because if it is possible to
calculate them, it should also be easy to calculate the root ¢ itself. On
the other hand, an approximation for ¢{(u) might be available from
the peakedness without knowing the distribution or even without
actually having a renewal process. Given the peakedness z, we obtain
¢(x) for a renewal process from (10).

7. For each parameter specification, one bound (either the upper or
the lower) is “soft” and the other is “hard”; the soft bound can be
greatly improved by adding an additional parameter, while the hard
bound cannot. The hard bound also tends to be much better than the
soft bound. For example, consider the parameter pair [m,, ms]. The
lower bound is soft because .it can be improved substantially by
specifying b or ms. On the other hand, the upper bound is hard because
no improvement is obtained by specifying b or m,. Moreover, the hard
upper bound is clearly much better than the soft lower bound (as
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Table Vill—Extremal interarrival-time distributions for the GlfM/1
quetie with various parameter specifications: Case of Prototype Il
(my =4, ¢ =0.8) with p=2/3

Extremal
Given Parameter Character-
Values istics Extremal Probability Mass Functions, Mass p, and x,
Upper Bounds G D X D2 X2 Da X3
[my, ()] 1000 1000 252 — — — —
{ma, ¢(u), b] 0.733 09012 2325 0988 2000 — —

[, mal, [m, ma, 0.676 0.444 0.00 0.556 7.20
mg], and [m,, ma,
b

[y, mo, ¢(p}] and  0.651 0.6886 1.60 0.3114 9.32 — —

[mh ma, d’(”’): b]
[m, ma, ms, b] 0.660 0357t 000 0.6229 578 0.0199 20.00

{d(u), plu(l —p))]  0.850 0.8585 2.12 — —
[cﬁgu), d(u(l — p)), 0.648 0.8317 2.03 0.1683 20.00 — —

[my, d(u(l — p))] 0645 03908 000 06092 657  — —
and [my, ¢(p(l —
)8
Lower Bounds as D x fo) X2 D3 X3

602, oe(l — p))] 0.640  0.2869 000 0.7131 521  — -
and [(blgu), #u(l

- p 7
[m, ¢lu(l — p)), b] 0.638 09329 285 0.0671 20.00 _— =
[, me, ms] and  0.637 0.7811 2.11 0.2189 10.75 — —
[, mq, ma,
[ma, ma, ¢(g), b] 0.631 0.2783 0.00 0.6913 491 0.0304 20.00
[, @(n)], [ma, 0.602 03094 0.00 0.6906 5.79 — . —
¢{u}, b}, an
[ms, ma, #(u)]
my, mz, b] 0.571 0.9524 3.20 00476 20.00 — —_
my, ma) 0417 1000  4.00 — — — —

measured by the distance from the actual value of the prototype
distribution). Similarly, for the pair [m;, ¢(u)], the upper bound is soft
and the lower bound is hard. Of course, all these bounds are tight:
they can either be attained for a given distribution or, for any ¢ > 0,
the bound can be attained within ¢ by a given distribution. This notion
of limiting tightness is needed, for example, for the lower bound when

specifying [m,, mz]. it

V. OTHER MODELS :
We have used the GI/M/1 model to study extremal distributions

because the model is analytically tractable and because we believe that

similar results will hold for more complicated systems. For example,
Bergmann et al.? have shown that the variance and higher cumulants
of the equilibrium delay in a GI/G/1 system, given the first two
moments of the interarrival time and service time, are maximized and
minimized using the extremal distributions in Section II for the
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Table IX—Extremal interarrival-time distributions for the GIfM/1
queue with various parameter specifications: Case of Prototype il
{(my=4,c?=0.8)withp=09

Extremal
Given Parameter Character-
Values istics Extremal Probability Mass Function, Mass p; and x;
Upper Bounds o it x . P2 Xz Ps X3
[my, d(u)] 1.000 1.000 2.78 —_ — — —
my, ¢lu), & 0.920 0.9120 245 0.0880 20.00 — —_
dlp), d(p(l — o))} 0.898 0.9683  2.67 — — — —
{¢g,]:), o{u(l — p)), 0.B93 0.8999 241 01001 20.00 — —_
[my, mal, [mi, ms, 0893  0.4440 000 0.5560 7.20 — —
gna], and [my, my,
[my, ms, ¢(z)] and 0.891  0.6886 1.60 - 03114 9.32 — —
Imb rnﬂl ¢(F-): b]
my, dlu(l —p)), ]  0.800 0.4319 0.00 0.5681 7.04 — —
My, ms, Mg, b] 0.890 03571 000 0.6229 578 0.0199 20.00
Lower Bounds as D x P2 Xz Pa x3
[m, ms, ms) and 0.890 07810 211 02190 10.75  — —
[ml: Mg, Mg, b]
m, olu(l — p)), 8]  0.889 09480 3.12 0.0520 20.00 — —
my, Mg, $lu), bj 0.888 0.2978 0.00 06740 5.09 00282 20.00

[6(x), d(u(1 — p)}] 0888  0.3307 0.00 06693 588 — —
and [¢;§f‘)’ #(u(l

- Pl

[, ma, b 0.885 09524 320 0.0476 20.00 — —
[m1, ()], [ma, 0.868 0.3163 0.00 (0.6837 5.85 — —
qb(»u)! b and [mh

Mg, ‘p(ﬂ)]

(4, ma] 0.807 1.000 4,00 — — — —_

interarrival times and service times. Using F,, for the interarrival time
and Fy(actually the limit as & — ) for the service time yields the
maximum, while the reverse yields the minimum. As a consequence,
Daley conjectured that related extremal properties held for the mean
delay (or, equivalently, the mean queue length); see Bergmann et al.,’
Open Problem 5.2.4 at the end of Section V in Stoyan,'? and Daley
and Trengove.?* In particular, Daley conjectured that for GI/G/1
queues with the first two moments of the interarrival and service
times given, the steady-state mean queue length L would be maxzimized
and minimized using the extremal distributions in Section II for the
interarrival-time and service-time distributions. Moveover, these ex-
tremal properties should still hold if only one of the distributions is
allowed to vary, and the other is fixed arbitrarily.

Unfortunately, we now know that neither part of this conjecture is
correct in general, but the principle does apply for some systems. Of
course, the GI/M/1 results in Section II are consistent with the
conjecture. Daley and Trengove® showed that the limiting extremal
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distribution Fsfor the interarrival time yields the minimum mean
queue length for all service-time distributions. Another system con-
sistent with the conjecture is the K;/G/1 queue, which has an inter-
arrival-time distribution with a rational Laplace-Stieltjes transform
with a denominator of degree 2; see p. 329 of Cohen.’® As with the
GI/M/1 queue, L depends on a single root of an equation involving
the transform in addition to the-specified parameters; see (5.205) on
p. 330 of Ref. 19. Paralleling the GI/M/1 case, we have

Theorem 11: For any Ko/G/1 queue with fixed interarrival-time distri-
bution and service-time distribution partially specified by the first two
moments, L is maximized and minimized by using the extremal distri-
butions in Section II for the service-time distribution. _

We do not give the proof of Theorem 11; related results for K,/G/1
queues are obtained in Whitt* and discussed in Part I11.2! However,
the analysis there also disproves the part of Daley’s conjecture claiming
that the same extremal service-time distributions should yield the
maximum (minimum) mean queue length for all fixed interarrival-
time distributions. The analysis in Whitt'* shows that the extremal
distribution maximizing L depends on the interarrival-time distribu-
tion. For example, if the interarrival-time distribution is the convolu-
tion of two exponential distributions, then L is minimized by letting
the service-time distribution be the upper-bound two-point distribu-
tion with mass ¢2/(1 + ¢2) on 0. On the other hand, if the interarrival-
time distribution is the mixture of two exponential distributions, then
L is maximized by letting service-time distribution be this upper-
bound two-point distribution. (See Section VII of Part II1? for further
discussion.)

We also succeeded in disproving the first part of the conjecture by
identifying a service-time distribution that produces a smaller mean
queue length than either extremal distribution in Section II for the
D/G/1 queue. Since the D arrival process obtained via the limiting
extremal distribution ¥/ was shown by Daley and Trengove™ to yield
the minimum given any service-time distribution, this counterexample
applies to the global minimum as well as the minimum given a fixed
interarrival distribution. The particular service-time distribution we
used for our numerical example had all mass on multiples of the
constant interarrival time. Daley (private communication) subse-
quently observed that recent results of Ott® for the D/G/1 queue
imply that these special service-time distributions are in fact extremal
for the D/G/1 queue. '

The extremal distributions for the different parameter specifications
in this paper should also be useful to give an indication of the range
of possibilities in more complicated models. Even if the extremal
distributions here are not actually exireme for the descriptive char-
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Table X—The extreme values for the blocking probability in a
G1/M/1 loss system, which is the transform value ¢{g), given the
service rate, g, and the moments of the interarrival time

Given Parameter Prototype Distribution Prototype Distribution
Values Ic*=20 I c*=08
Upper Bounds p=2/3 p=9/10 p=2/3 p=9/10
[my, ma), [my, ma, B] and [my, me,  0.670 0.678 0.481 0.519
ms
fma, ma, ma, b] 0.592 0.613 0.428 0.482
The actual blocking probability 0.510 0.562 0.388 0.461
Lower Bounds p=2/3 p=9/10 p=2/3 p=9/10
[m, ms, ms] and [my, ma, mg, b] 0.400 0.495 0.358 0.446
{m,, mg, b] 0.304 0.411 0.287 0.392

(111, ma) 0.223 0.329 0.223 0.329

acteristics of the more complicated model, these distributions should
give a good idea of the range for the given parameters.

It should be remembered, however, that the model affects which
parameters are most useful. For a central-server closed network of
queues, Lazowska® found percentiles much better than moments. Our
GI/M/1 delay system results are also very different from Eckberg’s®
GI/M/k loss system results. The GI/M/k blocking probability depends
on the k parameters ¢(ju), j =1, 2, -- ., k. Hence, all the extremal
distributions are extreme for this descriptive characteristic given the
various parameter sets. However, ¢{u) strongly dominated ms as a
second parameter in addition to the mean.

To make a specific comparison, we consider the GI/M/1 loss system
{no waiting room). For this system the blocking probability is just the
transform value ¢(u). By Proposition 1, the extremal distributions in
Sections II through IV are extreme for ¢(u). In Table X we display
the extreme values of the blocking probability given the first two and
first three moments, with and without the upper bound on the distri-
bution. It is evident that the absolute and relative errors for ¢(u) are
much greater than for ¢ and L.

V1. ACKNOWLEDGMENT

I am grateful to John Klincewicz for writing programs to obtain the
data in Tables I through III and for many helpful discussions.

REFERENCES

1. J. M. Holtzman, “The Accuracy of the Equivalent Random Method with Renewal
Inputs,” B.8.T.J., 52, No, 9 (November 1973), pp. 1673-9.

2. A. E. Eckberg, Jr., “Sharp Bounds on Laplace-Stieltjes Transforms, with Applica-
tions4téo Various Queueing Problems,” Math. Oper. Res., 2, No. 2 (May 1977), pp.
135-42.

QUEUEING APPROXIMATION—! 137



75}

. T. 41:§ol73ki, “Some Inequalities for GI/M/n Queues,” Zast. Mat., 13, No. 1 {1972), pp.

. T. Rolski, “Some Inequalities in Queueing Theory,” Colloquia Math. Soc. Janos
Bolyai, 9 {1974), pp. 653-9.

. T. Rolski, “Order Relations in the Set of Probability Distribution Functions and
Their Applications in Queueing Theory,” Dissertationes Mathematicae, Polish
Scientific Publishers, Warsaw, 1976. .

. J. G. Shanthikumar and J. A. Buzacott, “On the Approzimations to the Single
Server Queue,” Int. J. Prod. Res., 18, No. 6 {1980), pp. 761-73.

. W. Whitt, “Refining Diffusion Approximations for Queues,” Oper. Res. Letters, I,
No. 5 (November 1982), pp. 165-9.

. S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis
and Statistics, New York: John Wiley and Sons, 1966,

. R. Bergmann, D. J. Daley, T. Rolski, and D. Stoyan, “Bounds for Cumulants of
Waiting-Times in GI/GI/1 Queues,” Math. Operationsforsch. Statist., Ser. Op-
timization, 10, No. 2 (1979), pp. 2567-63.

10. D. J. Daley and T. Rolski, “A Light Traffic Approximation for a Single-Server

Queue,” Math. Oper. Res., 3 (1984), to be published.

11. A. F. Karr, “Extreme Points of Certain Sets of Probability Measures, with Appli-
cations,” Math. Oper. Res., 8, No. 1 (February 1983}, pp. 74-85.

12. D. Stoyan, Comparison Methods for GQueues and Other Stochastic Models, New York:
John Wiley and Sons, to be published. (English translation edited by D. J. Daley
of Qualitative Abschazungen Stochastischer Modelle, 1977.)

13. W. Whitt, “Untold Horrors of the Waiting Room: What the Equilibrium Distribu-
tion Will Never Tell about the Queue Length Process,” Management Sci., 29, No.
4 (April 1983}, pp. 395-408.

14. W. Vg{}itl;:;, (i‘Minimizing Delays in a GI/G/1 Queue,” Oper. Res., 32 (1984), to be
published.

15. W. Whitt, “Approximating a Point Process by a Renewal Process: Two Basic
Methods,” Oper. Res., 30, No. 1 (January-Feburary 1982), pp. 125-47.

16. 8. L. Albin, Approximating Queues with Superposttion Arrival Process, Ph.D. dis-
sertation, School of Engineering Science, Columbia University, 1981.

17. W. Whitt, “The Queueing Network Analyzer,” B.S.T.J., 62, No. 9, Part 1 (November
1983), pp. 2779-2815. _

18. W. Whitt, “Performance of the Queueing Network Analyzer,” B.S.T.J., 62, No. 9,
Part 1 (November 1983}, pp. 2817-43.

19. J. W. Cohen, The Single Server Queue, Amsterdam: North-Holland, 1969.

20. J. G. Klincewicz and W. Whitt, “On Approximations for Queues, II: Shape Con-
straints,” AT&T Bell Lab. Tech. J., this issue.

21. W. Whitt, “On Approximations for Queues, III: Mixtures of Exponential Distribu-
tions,” AT&T Bell Lab. Tech. J., this issue.

22, A. E. Eckberg, “Generalized Peakedness of Teletraffic Processes,” Tenth Int.
Teletraffic Cong., Montreal, 1983, 4.4b.3.

23. W. Kraemer and M. Langenbach-Belz, “Approximate Formulae for the Delay in
the %%eueéng System GI/G/1,” Eighth Int. Teletraffic Cong., Melbourne, 1976,
pp. 235-1-8. '

24. D. J. Daley and C. D. Trengove, “Bounds for Mean Waiting Times in Single-Server
Queues: A Survey,” Department of Statistics, the Austriahan National University,
1977.

25. T. J. Ott, unpublished work.

26. E. D. Lazowska, “The Use of Percentiles in Modeling CPU Service Time Distribu-

tions,” Computer Performance, eds. K. M. Chandy and M. Reiser, New York:

North-Holland, 1977, pp. 53-66.

[ LI -

w e -1 >

AUTHOR.

Ward Whitt, A.B. (Mathematics), 1964, Dartmouth College; Ph.D. (Opera-
tions Research), 1968, Cornell University; Stanford University, 1968-1969;
Yale University, 1969-1977; AT&T Bell Laboratories, 1977—. At Yale Uni-
versity, from 1973-1977, Mr. Whitt was Associate Professor in the depart-
ments of Administrative Sciences and Statistics. At AT&T Bell Laboratories
he is in the Operations Research Department. His work focuses on stochastic
processes and congestion models.

138 TECHNICAL JOURNAL, JANUARY 1984



