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To evaluate queueing approximations based on a few parameters (e.g., the
first two moments) of the interarrival-time and service-time distributions, we
examine the set of all possible values of the mean queue length given this
partial information. In general, the range of possible values given such partial
information can be large, but if in addition shape constraints are imposed on
the distributions, then the range can be significantly reduced. The effect of
shape constraints on the interarrival-time distribution in a GI/M/1 queue was
investigated in Part II (see “On Approximations for Queues, II: Shape Con-
straints,” this issue) by restricting attention to discrete probability distribu-
tions with probability on a fixed finite set of points and then solving nonlinear
programs. In this paper we show how one kind of shape constraint—assuming
that the distribution is a mixture of exponential distributions—can be exam-
ined analytically. By considering GI/G/1 queues in which both the interarrival-
time and service-time distributions are mixtures of exponential distributions
with specified first two moments, we show that additional information about
the distributions is more important for the interarrival time than for the
service time. '

. INTRODUCTION AND SUMMARY

Many approximations for the mean steady-state queue length in the
GI/G/1 queue are based on the first two moments of the general
interarrival-time and service-time distributions. To evaluate these
approximations, it is natural to compare the approximations with the
set of possible values of the mean queue length given this limited

. * AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with-
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

163

S P T R b S e R R R AT SR T e B W w4 - S © e R A rem L AT -



moment information. For several special cases, the minimum and
maximum values of the mean queue length are attained by simple
two-point extremal distributions. In Part I the extremal distributions
were used to calculate the extreme values of the mean queue length in
the GI/M/1 queue and show how they depend on the traffic intensity,
the second moment of the interarrival-time distribution, and an upper
bound on the distribution.! Extremal distributions were also used to
compare different parameters for approximations.

Unfortunately, the range of possible values of the mean queue length
in the GI/M/1 queue given this limited moment information can be
very wide. However, since the extremal interarrival-time distributions
are quite unusual, this still leaves the possibility that the range would
not be too wide for typical distributions. Part II showed that the range
of possible values for the mean queue length in the GI/M/1
queue can indeed be reduced dramatically by imposing shape con-
straints such as unimodality and log-convexity on the interarrival-
time distributions with given first two moments.”? This was done by
restricting attention to discrete distributions with all mass on a fixed
finite set of points and solving nonlinear programs. _

Unlike Part I, the approach in Part II was computational, based on
nonlinear programs. However, the extremal distributions obtained
from the nonlinear programs exhibit regularity that suggests the
possibility of an analytic treatment similar to Part I. This paper sets
out to treat analytically one kind of shape constraint. We show that
the theory underlying Part I also applies to mixtures of exponential
distributions. Within this class of distributions there are extremal
distributions with respect to the same partial orderings based on
Laplace transforms used in Part I. The extremal distributions in this
class of mixtures are obtained by using the extremal distributions of
Part I as the mixing distributions. These extremal distributions yield
the minimum and maximum mean queue length as interarrival-time
distributions in the GI/M/I queue and as service-time distributions in
the K3/G/1 queue (with interarrival-time distributions having a ra-
tional Laplace-Stieltjes transform with a denominator of degree 2, see
Section V of Part I and Section VII here).

The rest of this paper is organized as follows. In Section II, we
briefly review the theory yielding distributions that minimize or max-
imize the Laplace-Stieltjes transforms for all arguments. In Section
III, we show that this theory applies to mixtures of exponential
distributions, and in Section IV, we apply the results to the H/M/1
queue, having interarrival-time distributions that are mixtures of
exponential distributions. In Section V, we examine the case of H,
interarrival-time distributions (mixtures of two exponential distribu-
tions) in more detail. In Section VI, we indicate how some of the
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results for H/M/1 queues extend to GI/G/1 queues with interarrival-
time having increasing mean residual life (the service-time distribution
is general instead of exponential and the interarrival-time distribution
can be more general than a mixture of exponentials). Finally, in
Section VII, we indicate how the ordering of transforms can be applied
to compare different service-time distributions in Ky/H/1 queues.
There, Table III gives a good picture of the way the mean queue length
can vary in a large class of GI/G/1 queues with the first two moments
of the interarrival time and the service time specified.

1. EXTREME VALUES OF THE LAPLACE-STIELTJES TRANSFORM

As in Eckberg® and references there, we obtain the extremal distri-
butions for queues with specified moments for the interarrival times
and service times from extremal distributions for the Laplace-Stieltjes
transform. For the transform, the object is to find a cdf (cumulative
distribution function) F with support on the interval [0, bm;], b < oo,
to minimize or maximize the transform ¢(s}, defined by

ols) = J; e "dF(t), s=0, (1)

subject to moment constraints

m; = j tdF(t), (2)

forj=1,2, ..., n. The key idea is to apply the theory of Tchebycheff |

systems in Karlin and Studden,* which implies that the optimization
problem involving (1) and (2) has a very nice solution. First, the

minimizing and maximizing cdf’s are independent of the variable s in

the transform ¢(s). Second, the extremal distributions are discrete
distributions with positive mass on at most (n + 2)/2 mass points.
Finally, the points with positive mass and the associated probability
masses are obtained simply by solving a system of linear equations.
(See Section 2 of Eckberg® and Section II of Part I' for more discus-
sion.)

1. MIXTURES OF EXPONENTIAI. DISTRIBUTIONS -

Now we consider the optimization problem in Section II for distri-
butions that are mixtures of exponential distributions. It turns out
that the theory of Tchebycheff systems can be applied again because
the extremal distributions in this class of mixtures can be obtained by
using extremal mixing distributions. '

A cdf F is a mixture of exponential dlStl'lbUthIlS if it satisfies

QUEUEING APPROXIMATION—IIE 165



o

1—Flx) = J; e 'dG(t), x =0, (3)

for some mixing edf G. Densities of mixtures of exponential distribu-
tions are also called completely monotone; see Section 5.4 of Keilson.®
A density f has this property if and only if it has derivatives f™ of all
orders n and (—1)*f"™(x) = 0 for all x and n. Mixtures of exponentials
are log-convex (see Part II) and thus are DFR (have decreasing failure
rate).

It turns out that the moments and transform of F are easily
expressed via G:

mu(F) = J; t*dF(t) = k! jf; t"dG(t) = kimy(G) (4)

and

¢o(s) = J: e dF(x) = J; (1 + st)"dG(t). (5)

Moreover, the functions 1, ¢, 2¢%, - - -, (R)t*, (1 + st)™* form a complete
Tchebycheff system, so extremal distributions F within the class of
mixtures are obtained by using the associated extremal mixing cdf’s
G. If the first n moments of F are specified as m,, msg, - - -, m,, then
the first n moments of G are m;, my/2, - -+ , my/n!

First suppose that the two moments of F' are specified as m; and
ms. Let c? be the squared coefficient of variation of F, i.e., ¢ = (mp —
m3%)/m3. Also require that the mixing cdf G has support on the interval
[0, bmy], b < . Then the extremal distributions are:

1. Upper bound—the two-point mixture with mass (¢* — 1)/(c® +
1) on 0 and mass 2/(c? + 1) on the exponential distribution with mean
ma(1 + ¢%)/2, which has cdf

Fx) =1~ [2/(1 + e /mb+d 4 > (6)

and

2. Lower bound—the mixture of two exponential distributions, one
having mean bm, with probability (c® — 1)/(c* — 1 + 2(b — 1)*) and
the other having mean my[1 — (¢ — 1)/2(b — 1)] with probability
2(b ~1)%/(c® — 1 + 2(b — 1)*); the cdf is

FAx)=1—[c? =1+ 20— 1) (c? - 1)e~om=
+ 2(b — 1%l — € - DA =V . >

As b — o, the lower bound approaches (converges in law) to
3. Limiting lower bound—the exponential distribution with mean
my, having cdf Fr(x) =1 — e™¥, x = 0.

(7
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The upper bound cdf F, may not be considered a mixture of expo-
nential distributions because of the atom at 0, but the atom at 0 can
be thought of as an exponential distribution having mean 0. Alterna-
tively, F, can be realized as the limit in distribution of mixtures of
two exponential distributions having means A;* and A;* and proper
moments where A\;* — 0 and A\3! — m, (1 + ¢2)/2.

Let ¢(s), ¢-(s), and ¢,(s) be the transforms of the extremal cdf’s
F7, Ey, and F,, respectively. The theory of Tchebycheff systems
implies that

$2(s) < ¢r(s) = ¢(s) = duls) (8)

for all s and the transforms ¢ of cdf’s F of the form (3) having first
two moments m; and ma.

Remark: Tt is no doubt possible to study extremal distributions for
other kinds of mixtures, but we have not. Mixtures of exponentials
seem particularly appropriate for the queueing application.

IV. THE H/M/1 QUEUE

The results of Section III apply immediately to GI/M/1 queues in
which the interarrival-time distribution is a mixture of exponential
distributions; see Section II of Part I. Since the mixture of &k exponen-
- tial distributions is called hyperexponential and is denoted by H,, we
use H to refer to interarrival-time distributions that are general
mixtures of exponentials.

Note that the upper bound cdf F, in (6) as an interarrival-time
distribution corresponds to a batch Poisson arrival process with geo-
metrically distributed batches having mean mg = (1 + ¢%)/2 and
squared coefficient of variation ¢k = (ms — 1)/ma. Let M® represent
a batch Poisson arrival process. Of course, the limiting lower bound
corresponds to a Poisson arrival process with intensity 1/m;. What
we obtain is the ordering

M/M/1 < H/M/1 < MB/M/1, 9)

which means that the mean queue lengths (expected number in the
system, including any in service) are ordered and in fact the entire
steady-state queue-length distributions are stochastically ordered as
in (9), provided the traffic intensity p and the squared coefficient of
variation of the interarrival-time distribution, c?, are fixed. We obtain
these orderings because in the case of exponential service-time distri-

butions the entire steady-state queue-length distribution depends only

on the traffic intensity p, which is fixed, and the root ¢ in the interval
(0, 1) of the equation

¢lp(l — o)l =0 (10)
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It is easy to see that the queue-length distributions P(@; < k) are
stochastically ordered, i.e.,

P(th=k)=P(@y=Fk) forall k=0 (11)

if the roots satisfy o; < go. Moreover, it is easy to see that the roots
are ordered if the transforms are ordered in the sense (8).

Let o, and L, be the probability of delay and mean queue length in
the H/M/1 queue with interarrival-time distribution F,,, and similarly
for Frand F». Here are the main results:

Theorem 1: For an H/M/1 queue with traffic intensity p and interar-
rival-time squared coefficient of variation c?,

oz=p and o,=1-—2(1 —p)/(1 +¢%), -~ (12)
so that _
Ly=p/(1 —p), L,=Lrl+c%/2 (13)
and the maximum relative error (MRE) is
MRE = (L, — LA/Ly = (0. — ¢2}/(1 — a,) = (c? ~ 1)/2. (14)

Proof: Since ¢ = p for an M/M/1 queue, o7 = p. For o, follow the
proof of Theorem 2 in Part I, making the change of variables (1 —
) = (1 - g, {1+ c?)/2.

From Corollary 1 of Part I and Theorem 1, we see that the shape
constraint reduces the maximum relative error from ¢® to (¢? — 1)/2.
If ¢% is near its lower limit 1 for mixtures of exponentials, then of
course the MRE is very small:

Given the first two moments, the upper bound is hard and the lower

bound is soft: The upper bound depends on c? the lower bound does
not. The upper bound is not improved by specifying the third moment;
the lower bound is. From Section IV of Part I, we see that the extremal
distributions given three moments are two-point mixtures of exponen-
tials:
Theorem 2: For H/M/1 queues, specifying the third moment of the
interarrival-time distribution in addition to the first two does not change
the upper bound cdf F,, and makes the lower bound cdf Fzthe unigue
H, distribution (two-point mixing distribution) specified by these three
parameters.

The formula for calculating H, parameters given the first three

moments is given in (3.5) and (3.6) of Ref. 6.
Example 1: Consider an interarrival-time distribution with moments
my = 2.00, mgz = 12.00, and my = 119.01, which are the moments of
Prototype Distribution I in Part II. With mixtures of exponential
distributions, the upper bond cdf is
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F(x) =1 — 0.6667e~%%  x=0,
and the lower bound cdf is
Fr{x) = 1 — 05146670264 4 (),4854¢ 18386 x = 0.

From Theorem 1, given just the first two moments, o = 0.6667 and
0. = 0.7778 for p = 0.6667 and s, = 0.9000 and ¢, = 0.9333 for p =
0.9000. From Theorem 2, also specifying the third moment changes
the lower bound to ¢z = 0.76705 for p = 0.6667 and o, = 0.93252 for
p = 0.9000. To get these, we solved the appropriate Ha/M/1 queue.
Imposing the shape constraint in addition to the first two moments
reduced the MRE from ¢* = 2.0 to (¢® — 1)/2 = 0.50. Also specifying
the third moment further reduces the MRE to 0.048 when p = 2/3 and
0.011 when p = 9/10.

V. MIXTURES OF TWO EXPONENTIALS: H, DISTRIBUTIONS

Mixtures of two exponential distributions, i.e., H; distributions, play
a key role in many approximations. This is a three-parameter distri-
bution with density

Flx) = piae™" + padge™, x>0, (15)

where p; = 1 — p,. Instead of the three parameters p;, A;, and A,, one
may choose to work with the first three moments m;, ms, and mj or
the mean m,, the squared coefficient of variation ¢, and the proportion
of the total mean in the component with the smaller mean r, defined
by

— /M
(p1/As) + (po/A2)

where A\; > As. Given the parameters ps, A1, and XA, it is easy to calculate
any of the other parameters. The formulas for p;, Ay, and X, given the
first three moments appear in (3.5) and (3.6) of Ref. 6. Given m,, %,
and r, me = mé(c® + 1), py = rmuhy, Ae = {1 — rmyA)/(2 — rym,; and

M = (=B + V¥B* — 4AC)/24, (17)

where A = rmymy/2, —B = (mo/2) + (rmy)® — (1 — r)?’mi, and C = rm,.

For two-moment approximations based on H, distribution, one of
the three parameters is often eliminated by setting r = 1/2; see Section
3.1 of Ref. 6. The range of all possible values given the first two
moments is indicated in Section IV since both the upper and lower
bounds are H, distributions. Since this range is pretty wide, it is
natural to ask how the distribution and the GI/M/1 queue character-
istics vary with the third parameter—either r or ms. For what values
of r is the approximation by r = 1/2 reasonable?

r

(16)
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In order to answer this question, we have calculated the third
moment mg and the queue characteristics ¢ and L for two values of ¢?
(2 and 12}, three values of p (0.3, 0.7, and 0.9), and thirteen values of
r {ranging from 0.001 to 0.999). The results appear in Tables I and II.

For ¢? = 2.0, the approximation by r = 1/2 appears quite robust.
For r in the interval [0.2, 0.8], the maximum relative error is 15.8

Table I—The possible third parameters and queue characteristics for
an Hx/M/1 queue given ¢? = 2.0 with p = 0.3, 0.7, and 0.9

Proportion of Key Root, Probability

Total Mean in Skewness, of Delay o Mean Queue Length, L
Component Third

With Smaller Moment

Mean, r my/mi p=03 p=07 p=09 p=03 p=07 p=09
Upperbound 135  0.5333 0.8000 0.9333 0643 3.500 13.500
0.001 135 05323 0.7999 09333 0.641 3.499 13.499
0.01 13.6 05230 0.7992 09333 0629 3486 13.486
0.10 146  0.4627 0.7933 09327 0558 3386 13.381
0.20 15.4 0.4280 0.7885 09323 0.525 3.309 13.291
0.30 162  0.4059 0.7842 09319 0505 3.244 13.210
0.40 171 0.3894 0.7801 09314 0491 3183 13.127
0.50 18.0 0.3757 07757 09310 0481 3121 13.036
0.60 19.2 0.3633 0.7707 0.9304  0.471 = 3.053 12.924
0.70 209 03512 0.7643 0.9295 0462 2970 12771
0.80 239 0.3382 0.7552 09281  0.453 2860 12522
0.90 32.1 0.3226 0.7394 09248 0.443 2.686 11.966
0.99 1679 03029 070656 0.9074 0.430 2385  9.715

0,999 1518.0 0.3003 0.7007 0.9009 0420 2339 9.080
Lower bound o 0.3000 07000 0.000 0.429 2333 . 9.000

Table ll—The possible third parameters and queue characteristics
for an Hp/M/1 queue given ¢? = 12.0 with p = 0.3, 0.7, and 0.9

Proportion of
Total Mean in Skewness,  Key Root, Probability
Component Third of Delay « Mean Queve Length, L
With Smalley Moment
Mear, r mo/mi  p=03 =07 p=09 =03 p=07 p=09

Upper bound 2535 0.8923 0.9539 09846 2789 1517 5850
0.001 2538 0.8921 09538 0.9846 2.779 15.16 58.49
0.01 256.1 0.8897 0.9536 09846 2.721 15.10 58.43
0.10 280.7 0.8590 09516 0.9844 2.128 14.48 57.80
0.20 312.6 0.8006 (0.9488 0.9842 1.505 13.68 56.99
0.30 3516 0.7114 09451 0.9839 1.040 12,74 56.01
0.40 401.2 0.6142 (.9396 0.9836 0.778 11.59 54.76
0.50 468.0 0.5311 09311 0.9831 0.640 10.16 53.10
0.60 565.1- 04650 09163 0.9823 0.561 8.36 50.73
0.70 722.7 0.4120 0.8881 0.9808 0.510 6.25 47.00
0.80 1081.7 0.3686 0.8380 0.9776 0.475 4.32 40.20
0.90 1346.0 03319 0.7708 0.9646 0.449 3.05 25.39
0.99 18,287, 03030 0.7070 0.9089 0.430 2.39 9.88

0.999 181,638. 0.3003 0.7007 0.9009  0.429 2,34 9.08
- Lower bound oo 0.3000 0.7000 0.8000  0.429 233 9.00
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percent, 15.7 percent, and 6.1 percent for p = 0.3, 0.7, and 0.9. Very
large values of r greatly extend the range.

On the other hand, for very large values of c® such as 12, the
approximation by r = 1/2 is not robust: two moments do not pin down
the H, distribution well. Using r = 1/2 as an approximation works
better as p increases and c? decreases. Of course, by Theorem 1, p

. plays no role in the MRE over all r, but if we bound r, then p plays a

role. We interpret these results as providing support for H, approxi-
mation based on r = 1/2, but large values of m, or ms are clear danger
signals.

Example 2: Example 1 was based on Prototype Distribution I from
Part II. Since Prototype I is a discrete probability mass function it is
not a mixture of exponential distributions, and is thus not entirely
satisfactory. Suppose we use the H: density with balanced means (r =
0.5) as a prototype instead. With m; = 1 and ¢? = 2.0, the prototype
H, density is

-f (x)’ = piAe M + podge ™, x=Q,
where
P = 0.78867, A\; = 1.577, and A; = 0.42265.

Given the first two moments with o = 0.7 and 0.9, ¢, can be obtained
from Table II of Part I and ¢ can be obtained from Theorem 2 there.
The values are 07 = 0.466 and o; = 0.822 for p = 0.7 and ¢ = 0.808
and o; = 0.936 for p = 0.9. The corresponding extremal characteristics
among H, densities are ¢» = 0.700.and ¢, = 0.800 for p = 0.7 and o=
0.900 and ¢, = 0.933 for p = 0.9,

The third moment 18.0 (see Table I) pins down the H; distribution,
but among all H densities it is a lower bound. Among H densities with
mg = 18.0, o= 0.7757 for p = 0.7 and ¢7 = 0.9310 for p = 0.9. The
MRE given only two moments is 200 percent for p = 0.7 and 0.9.
Working with mixtures of exponentials reduces the MRE to 50 per-
cent. Specifying the third moment too reduces the MRE to 12 percent
for p = 0.7 and 3 percent for p = 0.9.

VI. THE H/G/1 QUEUE

The assumption of exponential service-time distributions played a
crucial role in Section IV. With exponential service-time distributions,
the mean queue length L depends on the transform of the interarrival-
time distribution, so that we can apply the ordering in (8). However,
it turns out that the ordering in (9) also applies for the mean queue
length with general service-time distributions, i.e., we have

M/G/1 = H/G/1 = M®/G/1, (18)
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by which we mean that Lry< L < L; (but not the more general
stochastic order) for all systems with common service-time distribu-
tion and given first two moments of the interarrival-time distribution.

To obtain (18), it suffices to observe that known formulas for L in
the MB/G/1 and M/G/1 systems agree with previously established
lower and upper bounds for L in GI/G/1 queues having interarrival-
time distributions with increasing mean residual life and with the first
two moments of the interarrival times and service times specified.
(See Ref. 7 for more details.) This result dramatically demonstrates
that these papers have applicability beyond the special case of the
GI/M/1 model. ,

VIL. THE Ko/H/T QUEUE

Whenever the interarrival-time distribution or the service-time
distribution in a GI/G/1 queue has a Laplace-Stieltjes transform that
is a rational function, then the steady-state distribution can be char-
acterized in terms of the roots of an equation involving the transforms
of the interarrival-time and service-time distributions; see 11.5.10,11
of Cohen.® When .the interarrival-time distribution has a rational
transform with a denominator of degree 2, denoted by K, the mean
queue length and the probability of delay depend on the service-time
distribution only through its first two moments and a single root of
an equation involving the transforms of the interarrival-time and
service-time distributions; see p. 330 of Cohen,® Section V of Part I,
and Ref. 9. ’

Hence, for Ko/G/1 queues it is possible to find extremal service-
time distributions using the ordering of transforms in (8). Let GE;
denote the convolution of two exponential distributions (an Erlang,
E;, is a special case)}, which is K;. An H; distribution is also K.
Paralleling Section V of Part I, we obtain from the analysis in Ref. 9

that
GE,/MPB/1 < GE,/H/1 < GE,/M/1 (19)

and

H,/M/1 = H,/H/1 < H,/MP/1, (20)

by which we mean that the mean queue lengths are ordered as
indicated. A significant feature of (19) and (20} is that the maximizing
distributions are different for the different K, interarrival-time distri-
butions. (This is explained in Ref. 9.) By M, we mean the extremal
service-time distribution Fzfor large b. As b — o, the distribution
approaches the exponential distribution, but the fixed variance of
F7is lost in the limit. As b — oo, the key root in the equation for the
K:/G/1 queue approaches the root for the Ko/M/1 queue, but the
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mean queue length also depends on the variance of F7. The mean
queue length in the K;/M/1 system is the limit as & — o of the mean
queue length in the Ko/G/1 system with service-time distributions
Fz. This limiting mean queue length can be computed by using the
fixed service-time variance together with the root for the Kz;/M/1
system.®

As in Section V, if we specify three service-time moments instead
of two, the M® bound is unchanged, but the M bound is replaced by
the H, distribution uniquely determined by the three moments, i.e.,
with the interarrival-time distribution and three moments of the
service time specified, we get

GE./MB/1 = GE,/H/1 = GE,/H,/1 (21)
and
H,/H,/1 < Hy,/H/1 < Hy/MB/1. (22)

We conclude by exhibiting the mean queue length, L, for several
Ks/Hs/1 queues. We consider five different H; service-time distribu-
tions with a common mean 0.7 and a common squared coefficient of
variation ¢ = 2.0. (We use subscripts “s” and “a” to indicate that
parameters are associated with the service-time dlstribution or the
interarrival-time distribution.) As in Section V, the H; distributions
are characterized by the parameter r.. We consider distributions close
to the two extremal distributions MB (r, = 0.01) and M (r, = 0.99), as
well as the intermediate values r, = 0.1, 0.5, and 0.9. The case r. = 1.0
differs from the exponential distribution because the small mass at a
large value, necessary to have ¢® = 2.0 instead of 1.0, still has an effect.
(This is not the case for the Hy interarrival-time distributions.)

We consider six interarrival-time distributions: the same five H,
distributions and the Erlang (E;} distribution. All the interarrival-
time distributions have mean 1.0, so that the traffic intensity is always
p = 0.7. As with the service-time distributions, the H, interarrival-
time distributions have squared coefficient of variation c% = 2.0.

The results for the 30 cases are displayed in Table III. For the
extremal H interarrival-time distributions, MP and M, the mean queue
length, L, does not depend on r, because L depends on the service-
time distribution only through its first two moments.” The range of L
values over r, increases for Hy interarrival-time distributions as r,
moves away from the endpoints 0.0 and 1.0. The range is bigger for ¢2
= 2.0 (H;) than for ¢% = 0.5 (E;) when r, = 0.5, but obviously not for
all ra.

Table III gives an indication of the quality of two-moment approx-
imations for GI/G/1 queues when cZ = ¢2 = 2.0 and p = 0.7. A natural
two-moment approximation would be based on the H,/Hi/1 queue
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Table 1ll—The mean queue length, L, in several KzfH,/1 systems
with traffic intensity p = 0.7

Service-Time Distribution
(MB) Hyperexponential (Hy) ™)
r.= 0.01 re=0.1 r=05 r.=09 r. = 0.99
= 2.61 2.62 2.63 2.63 2.63
<
—|
alZ1 3.15 3.15 3.15 3.15 3.15
-% L8
2| R
e od [
T 3.60 3.60 3.59 3.56 3.52
Bl < |
Elg| =
ZIEl T 4.02 4.01 3.99 3.96 3.94
S8
Hi g
8| 3]
g n% 0 4.23 4.23 4.21 4.21 4.20
i 2
| =
&l < 4.32 4.32 4.32 4.32 4.32
R I

Notes: 1 The hyperexponential (H:} distributions all have squared coefficient of
varmtxon c* = 2.00, 2. The Erlang (E») distribution has squared coefficient of variation
¢® = 0.5. 3. The M service-time distribution differs from an exponential distribution
because of the small mass at a very large value. This causes the H,/M/1 values of L to
differ from the H,/M/1 values of L in Table L.

with ¢2 = ¢2 = 2.0 and r, = r, = 0.5. The range of Hy/H,/1 values as
. and/or r, varies indicates the possible deviations from the approxi-
_ mations when the distributions are required to be mixtures of expo-
nential distributions. The maximum relative error is (4.32-3.15)/3.15
or 37 percent, but would be much less if we restricted r, and r, to some
reasonable interval, e.g., {0.2, 0.8].

Table III enables us to compare the effect of addltlonal information
about the interarrival-time and service-time distributions. Table III
shows that, given two moments, other properties of the distribution
are much more important for the interarrival-time distribution than
for the service-time distribution in determining the mean queue length.
This phenomenon was previously noted by Sahin and Perrakis.’®

The program for calculating the mean queue length and the proba-
bility of delay in a K;/G/1 queue used to obtain Table III is being used
‘as part of a three-parameter procedure for approximating general
G/G/1 queues with bursty, possibly nonrenewal arrival processes.™
The general bursty arrival process, is approximated by a renewal
process with an H, interarrival-time distribution, which is character-
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ized completely by the first three moments of the renewal interval.®
Then the expected queue length and probability of delay are calculated
exactly for the resulting Ha/G/1 model. Additional descriptions of the
H:/G/1 queue, such as an entire waiting-time distribution, are ob-
tained using approximations similar to the ones in the software pack-
age QNA (see Section 5.1 of Ref. 12). This approach is part of a new
three-parameter algorithm for QNA.
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