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This paper continues the investigation begun in Part I of approximations
for queues that are based on a few parameters partially characterizing the
arrival process and the service-time distribution. Part I provides insight into
approximations for intractable systems by considering the set of all possible
values of the mean queue length in the GI/M/1 queue given the service rate
and the first two moments of the interarrival-time distribution. The distribu-
tions yielding the maximum and minimum values of the mean queue length
turn out to be quite unusual, e.g., two-point distributions. This paper shows
that the range of possible values can be reduced dramatically by imposing

"realistic shape constraints on the interarrival-time distribution with given
first two moments. We found extremal distributions in the presence of shape
constraints by restricting our attention to discrete distributions with all mass
on a fixed finite set of points and solving nonlinear programs. The results
strongly support the use of two-moment approximations in general queueing
systems when the interarrival-time and service-time distributions are not too
irregular.

1. INTRODUCTION AND SUMMARY

This paper continues the investigation begun in Part I' of the set of
possible values of the mean queue length L (number in system) in a
GI/M/1 queue given the service rate, u, and various parameters
partially characterizing the interarrival time cdf F (e.g., the first two
moments m, and my). As explained in Part I, we are not primarily
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interested in the GI/M/1 model itself; we wish to provide a basis for
evaluating approximations for more complex queueing models such as
the nodes in a non-Markov network of queues.? For such complex
models, the arrival process may be approximated by a renewal process,
partially characterized by the first two moments of the renewal inter-
val. Then the GI/M/1 model arises as an approximation and there is
no complete interarrival-time distribution for an exact solution. We
examine the GI/M/1 queue because it is tractable and because we
believe it is indicative of what happens more generally.
For the GI/M/1 queue,?

L=p/(1~-0), (1)

where p is the traffic intensity (p = 1/um,;) and ¢ is the unique root in
the open interval (0, 1) of the equation

¢[ﬂ(1 - U)] = o, (2)

with ¢(s) the Laplace-Stieltjes transform of the interarrival-time cdf
F:

o(s) = _!; e "dF(t). (3)

Unfortunately, given m,, m,, and u, the range of possible values of
L can be very wide. (See the example in Section I of Part 1.) This wide
range naturally raises doubts about the value of two-moment approx-
imations, but the particular distributions yielding the extreme values
of L suggest that the approximations may still be useful. As we
indicated in Part I, these extremal distributions are discrete probabil-
ity distributions with positive probability on just two points. These
two-point distributions are obviously very unusual. We would hope
that for typical (nice) distributions L would not vary much among
interarrival-time distributions with the same moments. In this paper,
we investigate how much the range is reduced by imposing regularity
conditions on the interarrival-time distribution. The regularity con-
ditions we consider are shape constraints such as unimodality and log-
convexity (a natural smoothness condition; see Chapter 5 of Keilson*
and Section II).

A major contribution here, we believe, is the method. To study the
effect of the shape constraints, we restrict attention to discrete distri-
butions with all mass on a fixed finite set of points. We then find the
range of the mean queue length L by means of nonlinear programming.

Since typical interarrival-time distributions are smooth (have den-
sities), some may distrust results based on discrete distributions.
However, continuity theorems show that there is no loss of generality,
at least in principle, in considering distributions concentrating on a
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fixed finite set of points; see Section 11 of Borovkov.®? With enough
points, such discrete distributions can be used to approximate an
arbitrary interarrival-time distribution arbitrarily well (in the usual
sense of convergence in distribution and convergence of moments). In
turn, the queue-length distribution and the mean queue length L
associated with finite-valued probability mass functions can be used
to approximate the queue-length distribution and the mean queue
length L associated with the arbitrary interarrival-time distribution.

The point is that we need not worry about the local behavior of the
interarrival-time distribution. For sufficiently small positive e, if we
change an interarrival-time density, say f(t), only on the interval [t,,
to + €], for example, by making

f(®) t & [to, to + €]
fn(t) = nf[to + n(t - to)], ‘ o<t<ty+ e/n
0 t0+6/n<t5to+6,

then the new density f,(¢t) will be very different from the density f(¢)
on [to, to + €] for large n, but the associated cdf’s will be close and the
behavior of the associated queueing systems will be virtually indistin-
guishable.

While there is no loss in generality in restricting attention to discrete
distributions, it is not clear how many points are enough and where
they should be located. We have not made a systematic investigation
of this question, but we believe that we have used enough points in
our study. It is important to recognize that extra points are not free
because the nonlinear programs typically become harder to solve.

Throughout this paper, we use 21 points on the integers {0, 1,
2, .-+, 20}. By comparing the programming results without shape
constraints here with the theoretical results based on the complete
Tchebycheff systems in Part I, we can see the effect of the discreteness.
This effect can be seen in Tables II and V. The upper bound 20 on
the support of the distribution (which might not be regarded as an
essential aspect of the discreteness) can have a significant impact, but
otherwise the discreteness matters little.

Do the shape constraints help? For the GI/M/1 example, with p =
2/3 and ¢2 = 2, assuming a log-convex probability mass function
reduces the maximal possible error in L from 200 percent to 8 percent.
If the third moment is fixed as well, the maximal possible error is less
than 1 percent.

These results indicate that two-moment approximations can be very

- useful, provided the interarrival-time distribution is actually not un-
usually irregular. In this paper we only study the GI/M/1 queue, but
we believe the results are indicative of what happens in GI/G/1 queues
and more general systems.
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On the other hand, even for the GI/M/1 queue, the results do not
imply that the two-moment approximations will work well in all
circumstances or that they should be used blindly. If it is known that
the interarrival-time distribution has an unusual shape, then the
approximation should probably be modified. If additional information
is known that would permit working with a third parameter such as
the third moment or the peakedness, then better results can be
expected. As noted by Kuczura® in a related context, a third parameter
seems to offer the possibility of significant improvement, but addi-
tional parameters are rarely worth the effort.

This paper is organized as follows. In Section II, we define prototype
distributions, introduce the shape constraints, and formulate the
mathematical programs. The prototype distributions are intended to
be typical interarrival-time distributions, which we use to generate
parameter values and the “exact” queue characteristics ¢ and L. In
Section III, we discuss the computational results for shape constraints
with the first two moments fixed. In Section IV, we discuss the results
for shape constraints with other parameters fixed. In Section V, we
compare our results to other bounds and approximations. Finally, in
Section VI, we discuss mathematical programming issues. It turns out
that solving the nonlinear programs was not routine. These queueing
problems may be interesting test problems for nonlinear programming
codes. : :

We conclude this introduction by mentioning an interesting out-
come of our experiments. Unlike Part I, the approach here is primarily
numerical, being based on nonlinear programs, but the extremal
distributions yielding the minimum and maximum values of L obtained
from the nonlinear programs exhibit regularity that suggests the
possibility of an analytic treatment similar to Part I. The extremal
distributions we obtain on the set {0, 1, - - - , 20} have special structure
and evidently do not depend on the traffic intensity. Hence, it may be
possible to obtain analytic characterizations; this is a promising direc-
tion of research. (In fact, an analytic approach to shape constraints is
carried out in Part III,” but not for discrete distributions and not for
the shape constraints considered here.) Also, the robustness of the
extremal distributions suggests that, just as with the extremal distri-
butions in Part I, they should be useful in other contexts, e.g., to study
the quality of two-moment approximations for inventory and reliabil-
ity models as well as other queues.

. PROTOTYPE DISTRIBUTIONS, SHAPE CONSTRAINTS, AND
NONLINEAR PROGRAMS

2.1 Prototype distributions

To compare alternate parameter specifications and shape con-
straints in a consistent and meaningful way, we introduce two “pro-
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totype” distributions. The specified parameter values, e.g., the mo-
ments, will be the parameter values of one of the prototype distribu-
tions. The specified shape constraints also will be satisfied by one of
the prototype distributions. In this way, we guarantee that there is at
least one reasonable probability mass function satisfying all the con-
ditions.

Since mixtures and convolutions of two exponential distributions
are frequently used in queueing, we use the discrete analogues: mix-
tures and convolutions of two geometric distributions. The mixture of
two geometric distributions has probability mass function

pp=v1l-a)*+ 1 -7)1-88" k=20, (4)

for probabilities «, 8, and . As is often done with mixtures of
exponential distributions,® we assume balanced means; i.e., we assume
that ya/(1 — a) = (1 — v)8/(1 — B). The convolution of two geometric
distributions, on the other hand, has probability mass function

k
pr= X (1 - a)a’(1 — B)p*~ (6)
j=0

for probabilities « and 8.

To have finite support, we truncate the distributions, and work with
the conditional distribution given that the upper bound is not ex-
ceeded. We truncate at 20, so that the support is the set of 21 integers
{0, 1,2, - .., 20}. In each case the upper bound 20 is at least 5 standard
deviations above the mean.

Mixtures of exponential and geometric distributions are relatively
more variable with squared coefficient of variation ¢ > 1, while
convolutions are relatively less variable with c2 < 1. Hence, we consider
one prototype distribution of each type. Prototype I is a truncated
mixture of two geometric distributions, having ¢? = 2.0; Prototype II
is a truncated convolution of two geometric distributions, having ¢ =
0.8. ,

To obtain the specific prototype distributions, we start with the first.
two moments. For Prototype I, m; = 2.0 and m, = 12.0 (¢ = 2.0) and,
for Prototype II, m; = 4.0 and m, = 28.8 (c2 = 0.8). To obtain a
Prototype I distribution with the chosen values of m; and m,, we
numerically solve a system of three nonlinear equations in the three
unknowns «, 8, and . Two of these equations are the formulas for
the moments m; and m. of the truncated distribution; the third is the
“balanced means” equation. To obtain a Prototype II distribution with
the chosen values of m; and m,, we solve the system of two nonlinear
equations in « and 8 corresponding to the moments m; and m, of the
truncated distribution. The two prototype distributions are displayed
in Table 1. Additional parameters (the third moment, ms, and trans-
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Table |—The two prototype distributions: probability
mass functions with p; on k

Prototype I Prototype II

k P Pre/Prent P Dr/Prnt
0 0.3572 1.58 0.1215 0.79
1 0.2262 1.58 0.1536 1.04
2 0.1435 1.57 0.1475 1.16
3 0.0912 1.57 0.1272 1.22
4 0.0583 1.56 0.1040 1.26
5 0.0374 1.54 0.0825 1.28
6 0.0243 1.52 0.0642 1.30
7 0.0160 1.49 0.0494 1.31
8 0.0107 1.45 0.0377 1.32
9 0.0074 1.40 0.0286 1.32
10 0.0053 1.34 0.0217 1.32
11 0.0040 1.27 0.0163 1.33
12 0.0031 1.21 0.0123 1.33
13 0.0026 1.15 0.0093 1.33
14 0.0022 1.11 0.0070 1.33
15 0.0020 1.08 0.0053 1.33
16 0.0019 1.05 0.0040 1.33
17 0.0018 1.04 0.0030 1.33
18 0.0017 1.03 0.0022 1.33
19 0.0017 1.02 0.0017 1.33
20 0.0016 — 0.0013 —
mean m, 2.00 mean m, 4.00
c? 2.00 c? 0.80

form values, e.g., evaluated at the service rate w) are given in Tables
IVand V of Part 1.

2.2 Shape constraints

Mixtures and convolutions of exponential and geometric distribu-
tions have many nice properties; see Chapter 5 of Keilson.* Mixtures
of exponential and geometric distributions are log-convex and thus
are DFR, i.e., have decreasing failure rate. For discrete distributions
with probability mass functions p, on the nonnegative integers, log-
convexity means

P} < Dr-1Pw+1s k=1 (6)

Since the ratios pp/pe.-; are nondecreasing with log-convexity, the
distribution changes smoothly. The failure rate is

Ts = Di _Zh p, k=0 (7
=

Decreasing failure rate of course implies that the probability mass
function is decreasing. For log-convex distributions, ¢> = 1 and m; =
(3/v2)m¥? (see p. 69 of Keilson*).

144 TECHNICAL JOURNAL, JANUARY 1984



Convolutions of exponential and geometric distributions are log-
concave, i.e., the inequality (6) is reversed. Log-concavity is equivalent
to strong unimodality. A probability mass function p, on the non-
negative integers is unimodal if there is an integer ko such that

Pr = Dr-1 for kR <k
and

De = Dre1 for k= ko. 8

A probability mass function py is strongly unimodal if the convolution
with any unimodal probability mass function remains unimodal. In
addition to being strongly unimodal, log-concave distributions are
IFR, i.e., have increasing failure rate. For log-concave distributions,
c? =1 and my < (3/V2)m¥? (see p. 69 of Keilson*).

Of course, truncation and conditioning alter some of these proper-
ties. For example, the failure rates are changed significantly. For
Prototype I, the failure rate is decreasing for the first thirteen values
but is increasing after that. The failure rate remains increasing for
Prototype II. The mass function ratios p./pr+1 are unchanged by the
truncation, however. Also the unimodality properties are unchanged:
Prototype I is decreasing and Prototype II is unimodal with a mode
at 1.

In our study, we focus on the shape constraints unaffected by the
truncation, namely, log-convexity or log-concavity and unimodality.
We also consider additional parameters such as the third moment,
transform values, and constraints on the cdf F.

2.3 The nonlinear programs

From (1), we see that the mean queue length L depends only on the
traffic intensity p and the root ¢ of (2). Since L is an increasing
function of ¢, the maximum and minimum values of L are attained by
the maximum and minimum values of ¢. For interarrival-time distri-
butions with probability mass functions {p:} on the set {0, 1, 2, - - -,
20}, (2) becomes

20
3 eip, = o, ©
k=0
To find the maximum and minimum values of &, we solve nonlinear
programs. The variables are ¢ and the probability masses pi, k& =
0,1, ---, 20. The constraints specify that { p.} is a proper probability
distribution with the specified properties and that (9) holds.
Given the two interarrival-time moments m; and m,, the upper
bound b = 20 on the support of the interarrival-time distribution, the
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service rate u, and no shape constraints, we have a nonlinear program
(NLP) for the maximum of the form:

(NLP) max o, (10a)
subject to:
20
Y e =Hp, = ¢, (10b)
k=0
20
Z Dr = 1) (].OC)
k=0
20
Z kpr = my, (10d)
k=0
20
Y k’pi = my, (10e)
k=0
pr=0 forall k&, (10f)
0<so=<1-—g¢ (10g)

where 0 < ¢ < 1. For any probability mass function {p,}, the queue is
stable if and only if p = 1/um; < 1, in which case ¢ is the unique
solution to (10b) in the open interval (0, 1). Since ¢ = 1 is also a
solution to (10b), we rule it out by bounding ¢ above in (10g).

Of course, we obtain a corresponding NLP for the minimum value
of ¢ by changing (10a) from a maximum to a minimum. If there is a
mode at ko, then we add the constraints (8) to (10). In the nonlinear
program for ¢% = 2.0, we assumed that the mode is at 0; in the nonlinear
program for ¢ = 0.8, we assumed that the mode is at 1. This is
consistent with the location of the modes in the prototype distribu-
tions. If we were to assume only unimodality without specifying where
the mode is, then we would have to solve a program for each possible
mode location, and then optimize over the solutions.

When log-convexity is assumed, we add the constraints (6) for k =
1, ..., 19, to (10). For log-concavity, we add the constraints (6) with
the inequality reversed.

i1l. SHAPE CONSTRAINTS WITH TWO MOMENTS FIXED

In this section, we give the minimum and maximum values of the
root ¢, denoted by os and o,, respectively, and the interarrival-time
distributions yielding these extreme values of ¢. From (1), we obtain
the extreme values of L, denoted by L, and L,. We also give the
maximum relative error (MRE) in L, which is computed as
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MRE = = = . (11)

Table II gives the extremal characteristics and the MRE for the two
prototype distributions (c?2 = 2.0 and 0.8), two values of the traffic
intensity (p = 2/3 and 9/10), and five constraint cases:

1. Two moments fixed only

2. Plus an upper bound b = 20 on the support of the distribution

3. Plus discrete, all masson {0, 1, - - -, 20}

4. Plus unimodal

5. Plus log-convex (c? = 2.0) or log-concave (c2 = 0.8).

The results in the first two cases, before discreteness is imposed, come
from Tables IV and V of Part 1. The last three cases are the solutions
to the nonlinear programs described in Section 2.3. Tables III through
V give the associated extremal probability mass functions. Notice that
these extremal distributions are the same for both values of p.

Each successive case adds an additional constraint to the one before,
so the subsets of feasible interarrival-time distributions are nested,
and the extremal characteristics get closer to the values for the
prototype distributions.

The main conclusion is that with fairly strong but reasonable shape
constraints the maximum relative error given two moments is dra-
matically reduced, becoming small enough to justify two-moment
approximations. In particular, with log-convexity or log-concavity the
MRE is always less than 8 percent, with the average MRE over the
four cases being 3.8 percent. Unimodality helps, but is not good in the
case ¢ = 2.0 and p = 2/3, yielding a 33.7-percent MRE. However,
from Tables III and IV it is apparent that the unimodal extremal
distributions are still quite irregular. ‘

As in Part I, we see that the MRE gets smaller as p increases and
c? decreases. From Table 11, it is evident that this property holds with
shape constraints as well as without. We also see that the upper bound
of 20 on the support of the interarrival-time distribution strongly
affects the minimum characteristic o, but does not change the maxi-
mum characteristic o, at all. The discreteness either has no effect (for
o, when ¢% = 2.0) or only a very small effect.

As we indicated above, there is another significant conclusion. The
extremal probability distributions on the set of integers {0, 1, 2, - - -,
20} obtained from the nonlinear programs evidently share an impor-
tant property with the extremal distributions on [0, 20] given fixed
parameters, treated in Part I: The extremal distributions computed by
- the nonlinear programs are evidently independent of the traffic inten-

sity p.
Consider the case of no shape constraints (Table V). The extremal
distributions on the set {0, 1, ---, 20} computed by the nonlinear
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Table lli—The distributions minimizing the Gl/M/1 mean
queue length L given two moments and the shape
constraints

Prototype Distribution I, Prototype Distribution II,
ct=20 =08
Unimodal Log-Convex Unimodal Log-Concave
p=%and %o p=%and %0 p=%and %0 p=2%and %o
0 0.2460 0.3486 0.0000 0.0619
1 0.2460 0.2260 0.1810 0.2155
2 0.2460 0.1465 0.1810 0.1663
3 0.2090 0.0950 0.1810 0.1283
4 0.0031 0.0616 0.1810 0.0990
5 0.0031 0.0399 0.1748 0.0764
6 0.0031 0.0259 0.0068 0.0589
7 0.0031 0.0168 0.0068 0.0455
8 0.0031 0.0109 0.0068 0.0351
9 0.0031 0.0071 0.0068 0.0271
10 0.0031 0.0046 0.0068 0.0209
11 0.0031 0.0030 0.0068 0.0161
12 0.0031 0.0019 0.0068 0.0124
13 0.0031 0.0012 0.0068 0.0096
14 0.0031 0.0008 0.0068 0.0074
15 0.0031 0.0005 0.0068 0.0057
16 0.0031 0.0003 0.0068 0.0044
17 0.0031 0.0002 0.0068 0.0034
18 0.0031 0.0001 0.0068 0.0026
19 0.0031 0.0001 0.0068 0.0020
20 0.0031 0.0088 0.0068 0.0016

programs are related to the analytic extremal distributions on the
interval [0, b], derived in Section I of Part I. In Part I, the distribution
yielding the upper limit of L is a two-point distribution with positive
probability mass on 0 and another point x,. The extremal distribution
yielding the lower bound is also a two-point distribution with mass on
a point xs and on b. (The points x, and x, are determined by the
requirement that the distributions have moments m; and m,.) Our
results support the following conjecture:

Conjecture I: The extremal distributions on the set of integers {0, 1, 2,
- .. b} given the same two moments m; and m; have as mass points the
triples (0, L %.) and (g, xz, b), respectively, where x,is the greatest
integer less than x and % is the least integer greater than x. If x, or xs
is an integer, then the three-point extremal distribution reduces to a
two-point distribution.

With no additional shape constraints, we can show that the solution
to the NLP (10) has at most three nonzero values of p.. To see this,
consider the situation where an extreme value of ¢ in (10) is known
for particular values of m; and m.. Then, we can combine (10a) and
(10b) to form a linear objective function in the remaining variables ps.
With this linear objective, the three linear constraints (10c), (10d),
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Table IV—The distributions maximizing the GI/M/1 mean
queue length L given two moments and the shape
constraints

Prototype Distribution I, Prototype Distribution II,
c2=20 c?=0.8
Unimodal Log-Convex Unimodal Log-Concave
p=%and %0 p=7% and %o p=%and%o p=2%and %o
0 0.5778 0.4377 0.1985 0.1719
1 0.0500 0.1571 0.1985 0.1450
2 0.0500 0.1133 0.0629 0.1223
3 0.0500 0.0817 0.0629 0.1031
4 0.0500 0.0589 0.0629 0.0870
5 0.0500 0.0425 0.0629 0.0734
6 0.0500 0.0306 0.0629 0.0619
7 0.0500 0.0221 0.0629 0.0522
8 0.0500 0.0159 0.0629 0.0440
9 0.0222 0.0115 0.0629 0.0371
10 0.0000 0.0083 0.0629 0.0312
11 0.0000 0.0060 0.0367 0.0262
12 0.0000 0.0043 0.0000 0.0221
13 0.0000 0.0031 0.0000 0.0181
14 0.0000 0.0022 0.0000 0.0043
15 0.0000 0.0016 0.0000 0.0001
16 0.0000 0.0012 0.0000 0.0000
17 0.0000 0.0008 0.0000 0.0000
18 0.0000 0.0006 0.0000 0.0000
19 0.0000 - 0.0004 ‘ 0.0000 0.0000
20 0.0000 0.0003 0.0000 0.0000

and (10e), and the bounding constraints (10f), we can determine the
values for the p, by solving a linear program for which only three
variables will be in the basis. Hence, to establish Conjecture 1, it
suffices to verify that the special three-point distributions are optimal
among all feasible three-point distributions for all these objective
functions, i.e., for all arguments of the transform. Of course, if the
extremal mass points x, and x, for the distributions on [0, b] are
integer, then these extremal distributions on [0, b] are feasible for the
smaller set {0, 1, - - - , b} and are thus still optimal. This happens here
for the upper bound with ¢2 = 2.0.

The following conjecture for the cases with shape constraints is also
supported by our experiments (we solved the programs for traffic
intensities ranging from 0.01 to 0.9):
Conjecture 2: For each kind of shape constraint considered, the ex-
tremal interarrival-time distributions on {0, 1, 2, ..., b} for the
GI/M/1 queue, given the first two moments of the interarrival-time
distribution, are independent of the traffic intensity, p.

Moreover, there is an obvious regularity in the extremal unimodal
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Table V—The extremal G1/M/1 interarrival-time distributions without
shape constraints: the effect of discreteness and an upper bound on
the support of the distribution

Prototype Distribution I, ¢ = 2.0

Upper Bounds, g, o X De X Ds X3

Cases 1,2, and 3 0.6667 0.000 0.3333 6.00 — —

Lower Bounds, o/ o x; D2 X3 D3 X3
Case 3 0.4211 1.000 0.5555 2.00 0.0234 20.00

Case 2 0.9759 1.556 0.0241 20.00 — —

Case 1 1.0000 2.000 — — — —

Prototype Distribution II, ¢ = 0.8

Upper Bounds, g, D x D2 X3 Ps X3

Cases 1 and 2 0.444 0.000 0.556 7.20 - —
Case 3 0.4429 0.000 0.4571 7.00 0.1000 8.00

Lower Bounds, o/ D x D2 X2 DPs X3
Case 3 0.7529 3.000 0.2000 4.00 0.0471 20.00

Case 2 0.9524 3.200 0.0476 20.00 — —

Case 1 1.000 4.000 — —_ _— —

Note: The cases are described at the beginning of Section II of this paper. x; is the
ith point with positive probability mass; p; is the probability mass at point x;.

distributions: they have only a few points of mass change. This can be
explained by making a change of variables. For unimodal distributions
on {0, 1, - - -, b} with a mode at 0, we can make the change of variables

ar = (k + 1)(px — Pr+1)s k=0, (12)

with py+1 = 0. Then g; = 0 for all k, and the constraints for p; become
the following constraints for g:

b b
S a=1, Y kg =2m, (13)
k=0 k=0
and
b
Y R%qp = 3m; — my/2. (14)
k=0

Moreover, the linear objective function ¥%., e~%p; is transformed into
the linear objective function

b k
A L ak+ 1) Y e
k=0 j=0

Solving the transformed linear program yields three-point solutions.
Hence, the extreme points for the decreasing distributions with uni-
modal constraints have at most three points of decrease after 0. For
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decreasing probability mass functions, we thus make the following
conjecture.
Conjecture 3: Let (0, x,) and (x4, b) be the pairs of mass points for the
extremal distributions on [0, b] given the first two moments 2m, and
3m, — my/2, obtained from Section II of Part I. Then, for the
GI/M/1 queue characteristics, the extremal decreasing probability mass
functions on the set of integers {0, 1, 2, ..., b} given the first two
moments m, and my have as points of decrease the triples (0, x,,, %.) and
(x4 %2, b), respectively. (This completely determines the extremal prob-
ability distributions.)

For other modes, say ko, we can do a similar change of variables,
namely,

[ ..
% +1 .
( 12 ) (pko+j—Pko+j+1), 0=<j=<b-k,
—(1+ ‘
9 / (pko+j+1 _pko+j)’ —ko— 1 =)j=-1,

with p_; = pp+1 = 0, so that g, is a probability mass function on {—1,
0,1, ---, 20} for which
i=j

pi= Y ag-, 0=<j=<b (16)
=0

where a;; are appropriate constants determined by (15). As before, the
two linear moment constraints for p, become linear moment con-
straints for gi. In addition, there is an extra linear constraint on the
gr when ky > 0 since the support of g, has one more point, i.e., is {~1,
0,1, ---,b}instead of {0, 1, - - -, b}. In particular, from (15) it is easy
to'see that

b—ky 2 koil 2 0
: i+ —_ - = 0.
Z o)t 2 \go1) an

Therefore, solving the transformed linear program would require the
inclusion of (17) as a fourth linear constraint. This results in four
positive values among the g.. Therefore, extremal unimodal distribu-
tions with mode ky > 0 must have at most four points of mass change,
including any positive mass at 0 and 20. The unimodal extremal
distributions for Prototype II with k, = 1 obtained from the nonlinear
programs have this property; see Tables III and IV. For Prototype II,
we also found that the extremal characteristics o~ and ¢, both de-
creased as the mode ky was changed from 0 to 1 to 2, e.g., 6, changed
from 0.633 to 0.614 to 0.603.

The numerical results also show that the extremal distributions for
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the log-convex and log-concave constraints have special regularity
that can be seen by looking at the successive ratios px/prs1.
Conjecture 4: In the log-convex case, the upper-(lower-) bound distri-
bution has constant ratios py/pr+ fork=1,2, --- , b(k=0,1, ---,
b — 1) with an extra mass at 0 (b). (This determines the interarrival-
time distribution.)

Conjecture 4 is supported by Tables II and IV. With log-con-
vex constraints, the upper-(lower-) bound ratios are p,/p, = 1.387
(p1/p2 = 1.542).

1V. SHAPE CONSTRAINTS WITH OTHER PARAMETER SPECIFICATIONS

In this section, we investigate different parameter specifications,
both with and without shape constraints. However, attention is fo-
cused on the cases with shape constraints because alternate parameter
specifications without shape constraints were considered in Sections
IIT and IV of Part 1. We consider only Prototype Distribution I'with
the traffic intensity p = 2/3. This is the difficult case in Section III,
yielding the largest maximum relative errors.

Table VI contains the major results. It gives the maximum relative
- errors in L for various combinations of two and three parameters with
no shape constraints and with log-convex shape constraints. Of course,
we still consider the first two moments m; and m,. The additional
parameters that we consider are: the third moment, mj, the Laplace-
Stieltjes transform evaluated at the service rate, ¢(u), and the inter-
arrival time cdf evaluated at k, F(k), i.e., F(k) =po+ p1 + - + Ds.
These parameters are fixed at the values satisfied by Prototype 1. In
particular, we use mg = 119.01, ¢(u) = 0.5098, F(0) = 0.35724, F(2) =
0.72692, and F(7) = 0.95409. Combinations of two parameters are

Table VI—A comparison of alternate second- and third-parameter
specifications: the maximum relative error (MRE) in the mean queue
length L in a GI/M/1 queue, based on Prototype | with p = 2/3

The Second Parameter in Addition to m,

me o(u) F(0) F(2) F(7)
No shape constraint 075 1.53 3.10 5.09 3.81
Plus log-convexity 0.077 0.083 0.096 0.370 0.555
The Third Parameter in Addition to m, and m»
ms o(u) Fo) F(2) F(7)
No shape constraint 0.069 0.175 0.331 0.604 0.609
Plus log-convexity 0.009 0.012 0.019 0.049 0.020

Note: m, is the kth moment, ¢(u) is the Laplace-Stieltjes transform evaluated at the
service rate u, and F(k) is the cdf evaluated at &, i.e,, F(k) = po + py +...+ pa, of
Prototype Distribution I. These values are m, = 2.00, m; = 12.00, ms = 119.01, ¢(u) =
0.5098, F(0) = 0.35724, F(2) = 0.72692, and F(7) = 0.95409. The distribution itself
appears in Table I. All these results are obtained from the nonlinear programs.
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formed by specifying each of the additional parameters together with
the first moment m,. Combinations of three parameters are formed by
specifying each of the additional parameters together with the first
two moments m; and ms.

The first conclusion is that, with log-convexity, the third moment
or almost any other third parameter in addition to the first two
moments makes the maximum relative error negligible. For the third
moment, the maximum relative error is less than one percent and for
all but one of the other third parameters it is less than two percent.
This suggests that with nice distributions three-moment approxima-
tions ought to work very well for more general models.

The second conclusion is that the next higher moment is the best
additional parameter in all cases. However, the advantage of the
moment over the transform value decreases dramatically with log-
convexity. Although the cdf constraints certainly reduce the MRE,
the next higher moment and the transform value perform better as
additional parameters.

In order to have the maximum relative error small enough to justify
approximations, say less than 10 percent, it appears that three con-
straints are enough. It suffices to specify either three moments without
shape constraints (6.9-percent MRE) or specify two moments with
log-convex shape constraints (7.7-percent MRE). We can think of log-
convexity as being roughly equivalent to another moment parameter.

The values of ¢, the GI/M/1 probability of delay, for the various
parameter specifications and shape constraints are given in Tables
VII and VIII. From Table VII we see an interesting reversal in form
with log-convexity. Without- shape constraints, the next higher mo-
ment is better than the transform value ¢(u) as an additional param-
eter for the upper bound but not as the second parameter for the lower
bound. With log-convexity, these orderings are reversed. From Table
VIII, we see that F(0) is significantly better than the other two cdf
values as an additional parameter for the upper bound with log-
convexity and for the lower bound with no shape constraints, but not
in the other cases.

We also tabulated the extremal interarrival-time distributions for
the different combinations of parameters and shape constraints, but
they have been omitted to save space. As in Section III, these extremal
distributions have important regularity properties. With & parameters
and no shape constraints, the extremal distributions have at most & +
2 positive mass points; with k& parameters and a decreasing mass
function, the extremal distribution have at most k + 2 points of mass
change after 0. As in Section III, there is also regularity in the extremal
distributions in the log-convex case, which can be seen by looking at
the successive ratios p./pi+1. There appear to be only a few points
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Table Vil—The GI/M/1 extremal characteristics o (the probability of
delay) given c? = 2.0, p = 2/3, and the different shape constraints

Parameters Specified in Addition to the Mean

my o)  du(l—0p)) mymy mg, ¢(u)

No shape constraints  0.8057  0.8811 0.7994 0.7768 0.7844

g, Unimodal 0.7983  0.8203 0.77117 0.7708 0.7777
Log-convex 07790  0.7736 0.7690 0.7694 0.7680
Prototype Distribution 0.7675 0.7675 0.7675 0.7675 0.7675
Log-convex 0.7621  0.7542 0.7638 0.7673 0.7652

oz Unimodal ‘ 0.7374  0.7192 0.7574 0.7615 0.7606

No shape constraints  0.6601  0.6986 0.7545 0.7548 0.7466

Table VIII—The extremal characteristics ¢ (the probability of delay)
for the GI/M/1 queue given values of the cumulative distribution
function F in addition to the first moment, m,, or the first two
moments, m; and m,: the case of Prototype Distribution | with traffic
intensity p = 2/3

Additional Parameter with ~ Additional Parameter with

my m, and m,
F(0) F(2) F(D) F(0) F@) F
o, No shape con- 09093 0.9135 . 0.9034 0.7927 0.8019 0.8042
straint '
Unimodal 0.8523 0.8558 0.8408 0.7867 0.7940 0.7959
Log-convex 0.7760  0.8278 0.8385 0.7684 0.7781 0.7706
os Log-convex 0.7546 0.7641 0.7489 0.7639 0.7670 0.7659
Unimodal 0.6849 0.6683 0.6859 0.7544  0.7388  0.7427
No shape con- 0.6280 0.4736 0.5351 0.7241 0.6823 0.6849
straint

where these ratios change. Including the final mass point, for &
parameters there appear to be k points where the ratios change. Given
m, and mg, the ratios py—,/px change for the lower bound at k € {10,
11} and for the upper bound at k € {2, 20}. Given only ms,, the ratio
changes for the lower bound at k = 20 and for the upper bound at k =
2.

Although we report results for only a single value of the traffic
intensity p, it also appears that the extremal distributions do not
change with p, i.e., the numerical solutions to the nonlinear programs
were indistinguishable for a range of p values tested from 0.01 to 0.9.
There are natural extensions for Conjectures 1 through 4 to other
parameter specifications.

We also found the extreme values of the transform values ¢(u),
which are the blocking probabilities for the associated GI/M/1 loss
system, for given moments and shape constraints. The numerical
solutions for the extremal distributions appear to be the same as those
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in which ¢ is the objective. The extremal blocking probabilities are
given in Table IX. As in Section V and Table X of Part I, the
constraints pin down the delay probability ¢ better than the associated
blocking probability ¢(u).

V. OTHER BOUNDS AND APPROXIMATIONS FOR GI1/G/1 QUEUES

Having obtained the extreme values of the GI/M/1 mean queue
length L given two moments and various shape constraints, we note
how these results compare with other bounds and approximations for
the GI/G/1 queue that depend only on the first two moments of the
interarrival times and service times. Several of these other bounds and
approximations are defined and compared in Shanthikumar and Buz-
acott.” These bounds are stated for the mean waiting time, but they
are easily translated into the mean queue length by Little’s formula.
Among the bounds and approximations treated there is the Kingman'’
upper bound and the Marchal'! approximation based on it. Recently,
Daley'? obtained a better upper bound, (1.5) there, which can be used
to produce an approximation by scaling to make the M/G/1 case exact,
just as Marchal did for the Kingman bound. We call this new approx-
imation Marchal (D) and the original Marchal approximation Marchal
(K). Shanthikumar and Buzacott also discuss the Kraemer and Lan-
genbach-Belz!® approximation and a modification of Page’s'* approx-
imation based on it, formula (8) there, which we call Modified-Page.
They also discuss an approximation by Sakasegawa'® and Yu,'® which
coincides with the monotone-failure-rate approximation in Whitt."?
Another natural two-moment approximation is to fit a hyperexponen-
tial distribution with balanced means to the two moments, provided
c? = 1 (see Section III of Whitt”) and solve the resulting H5/H5/1
queue via a vector-state Markov process. When a distribution is
exponential, H§ becomes M, so for the setting of the GI/M/1 queue
based on Prototype I we obtain the H3/M/1 queue. Finally, the crudest

Table IX—The extremal blocking probabilities for the
associated GI/M/1 loss system (the transform values
o)) with given moments and shape constraints: case
of Prototype | withmy =2, m; =12, ms =119, and p =
4/3 (p = 2/3)

The Moment Parameters

The shape constraints my, my my, my, Mg
Mazx ¢(u), no shape constraints 0.6641 0.5902
Max ¢(u), unimodal 0.6225 05414
Max ¢(u), log-convex 0.5499 0.5147

Prototype I 0.5098 0.5098
Min ¢(u), log-convex 0.5026 0.5087
Min ¢(u), unimodal 0.4395 0.4713
Min ¢(x), no shape constraints 0.3279 0.4049
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approximation is obtained by ignoring the second moments and using
the M/M/1 formula L = p/(1 — p). There is also a related collection
of approximations arising from diffusion approximations that we will
not consider here; see Whitt'® and references there.

We also include bounds for GI/G/1 queue in which the interarrival-
time distribution is IFR or DFR.Y” Marshall*® obtained a lower bound
for IFR/G/1 queues and an upper bound for DFR/G/1 queues. Stoyan
and Stoyan® also obtained an upper bound for IFR/G/1 queues and a
lower bound for DFR/G/1 queues, which is just the M/G/1 queue with
the given arrival rate. (In fact, the interarrival-time distribution is
only required to be NBUE or NWUE, i.e., new better or worse than
used i171 expectation.) The DFR bounds, but not the IFR bounds, are
tight.?

In Table X these various bounds and approximations are compared
with the extreme values of L for ¢ = 2.0 and 0.8 (the two prototype
distributions), and p = 2/3 and 9/10. When interpreting these results,
note that none of the other bounds and approximations use the fact
that the service-time distribution is exponential. Also, the DFR and
the IFR bounds are based on interarrival-time distributions having
densities with support on the entire positive half line, whereas the
bounds obtained here in Section II are based on interarrival-time
distributions with support {0, 1, - - -, 20}. The upper bound b = 20 on
the support of the interarrival-time distribution has a -significant
impact on the lower bound mean queue length, L, when the inter-
arrival-time distribution in DFR (¢2 > 1) and on the upper bound
mean queue length, L, when the interarrival-time distribution is IFR
(c2<1). :

The first conclusion is that all the approximations, with the excep-
tion of the M/M/1 approximation when ¢? = 2, appear to be within
the range of reasonable values for actual GI/M/1 systems. However,
for ¢ = 2.0 and p = 2/3, the Modified-Page approximation seems a
bit high. The Kraemer and Langenbach-Belz approximations for ¢2 =
2.0 seem low compared to the log-convex discrete lower bounds (Case
5), but note that the Kraemer and Langenbach-Belz approximations
are close to the H}/M/1 values.

The second conclusion is that the D/M/1 lower bound and the
Kingman and Daley upper bounds are not close enough to be good
approximations. Of course, the upper bounds are asymptotically tight
in heavy traffic, so they are not too bad when p = 0.9.

We believe that the shape constraints play a very useful role. They
narrow down the range of possible values for L, so it is reasonable to
consider approximations based on two moments only. Instead of
concluding that it is not possible to obtain a good approximation when
c%>1 (p. 765 of Shanthikumar and Buzacott®), we conclude that it is
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Table X—A comparison of the GI/M/1 extreme values of the mean
queue length, L, with other bounds and approximations for L in
GI/G/1 queues that depend on the first two moments of the
interarrival times and service times

Prototype Distribution I, Prototype Distribution II,
¢?=20 =038
GI1/G/1 upper bounds p=2/3 p=9/10 p=2/3 p=9/10
Kingman 4.33 14.95 2.53 8.95
Daley 4.00 14.85 2.40 891
DFR or IFR 3.00 13.50 2.00 9.00
GI/M/1 upper bounds
Case 1, two moments 3.44 14.06 2.06 841
only
Case 2, bound on sup- 3.44 14.06 2.06 841
port
Case 3, discrete 3.44 13.98 2.06 8.38
Case 4, unimodal 3.30 13.85 1.97 8.29
Case 5, log-concave or 3.02 13.55 1.92 8.25
log-convex
Approximations
Marchal (K) 2.92 13.48 1.82 8.11
Marchal (D) 2.89 13.46 1.82 8.11
Kraemer and L-B 2.56 12.85 1.86 8.18
Modified-Page 3.28 13.34 1.83 8.13
Sakasegawa and Yu 2.67 13.05 1.87 8.19
H3/M/1 2.64 13.03 — —
M/M/1 2.00 9.00 2. 9.00
GI/M/1 lower bounds .
Case 5, log-concave or 2.80 13.24 1.85 8.16
log-convex
Case 4, unimodal 2.47 12.97 1.73 8.02
Case 3, discrete 1.96 12.30 1.56 7.83
Case 2, bound on sup- 1.88 12.16 1.55 7.81
port
Case 1, two moments . 1.14 4.66 1.14 4.66
only
GI1/G/1 lower bound
DFR or IFR 2.00 9.00 1.80 8.00

Note: The actual values of L for the prototype distributions are 2.87, 13.31, 1.87, and
8.19, respectively.

possible to consider approximations based on two moments, with the
caveat that the distributions should not be too irregular.

VI. MATHEMATICAL PROGRAMMING ISSUES

Solving the nonlinear programs turned out to be quite complicated,
especially when the shape constraints were included. The programs
involve 22 variables and up to 46 constraints. This is a reasonably
large problem for most general-purpose nonlinear programming codes.
In addition, when the nonlinear constraints (6) are present, the
problems apparently become ill-conditioned and poorly scaled, causing
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numerical difficulties and, often, nonconvergence of standard nonlin-
ear programming algorithms.

The numerical results reported in this paper were obtained using
two nonlinear programming codes from the Harwell Subroutine Li-
brary, compiled by the Numerical Analysis Group at the United
Kingdom Atomic Energy Authority. These codes were VF01AD, an
augmented Lagrangian code described in Fletcher,® and VF02AD, a
quadratic approximation code due to Powell.?? They were run in double
precision on an Amdahl 470/V6 computer operating under multiple
virtual storage. Both codes are included in a recent performance
comparison of available state-of-the-art computer codes compiled by
. Schittkowski.?®
*  Although numerical problems were experienced with both codes,
they were far more prevalent with the augmented Lagrangian code
VF01AD. The augmented Lagrangian code solves a sequence of un-
constrained optimization subproblems. Unfortunately, some of the
problems (especially for p = 0.9 and Prototype II) resulted in ill-
conditioned subproblems and, occasionally, subproblems with an un-
bounded optimum, in which case, the augmented Lagrangian code did
not converge. Our experience bears out the experience of Schittkowski,
who reported that the performance of this code deteriorates drastically
for ill-conditioned problems and is highly sensitive to slight variations
of the problem. Certain standard measures, however, were able to
overcome the numerical difficulties in most instances. For example,
in some runs, the default settings for certain penalty parameters were
overridden according to rules of thumb suggested by Gill, Murray, and
Wright (see pp. 295-6 of Ref. 24).

Fortunately, for those experiments for which code VF01AD did not
obtain a solution, code VF02AD did. This supports Schittkowski’s
conclusion that code VF02AD is one of the most robust and reliable
codes available. Even though several individual runs experienced nu-
merical overflows and underflows and eventual nonconvergence, it
was always possible eventually to obtain convergence with this quad-
ratic approximation code using some starting point. In particular,
problems with p = 0.9 and Prototype II were solved with less difficulty
using VF02AD.

‘All runs were tried with a variety of starting points. These starting
points included the prototype distributions, the uniform distribution,
solutions obtained for other parameter settings, and an initial all-zero
solution.

In summary, then, although this nonlinear programming method
for analyzing the quality of queueing approximations provides consid-
erable insight and potential for future applications, great care must be
exercised in the solution of the nonlinear programs. Our experience
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indicates that the computer code, the parameter settings, the starting
points, and the scaling of the variables must be chosen judiciously in
order to obtain useful results.
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