ATET Bell Laborntories Technical dournal
Vol. 63, No. 9, November 1984
Printed in 1.5.A.
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This paper investigates the relationship between open and closed models
for networks of queues. In open models, jobs enter the network from outside,
receive service at one or more service centers, and then depari. In closed
models, jobs neither enter nor leave the network; instead, a fixed number of
jobs circulate within the rietwork. Open models are analytically more tractable,
but closed models often seem more reslistic. Hence, this paper investigates
ways to use open models to approximate closed models. One approach is to
use open models with specified expected equilibrium populations. This fixed-
population-mean method is especially effective for approximately solving large
closed models, where “large” may mean many nodes or many jobs. The success
of these approximations is partly explained by limit theorems: Under appro-
priate conditions, the fixed-population-mean method is asymptotically correct.
In some cases the open-model methods also yield bounds for the performance
measures in the closed models.

L INTRODUCTION AND SUMMARY

Queueing network models are now widely used to analyze commu-
nication, computing, and production systems. A relatively well-devel-
oped theory exists for the Markov Jackson network models and various
extensions that have a product-form equilibrium (steady-state) distri-
bution.*® In this paper we consider both the product-form models for
which exact solutions are possible and more complicated nonproduct-
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form models for which approximations are needed. We are primarily
motivated by the desire to develop new approximations for non-
" product-form closed models. We discuss methods for modifying the
Queueing Network Analyzer (QNA) software package’ so that'it can
be used to calculate approximate congestion measures for closed
models as well as open models. Our general approach to the closed
models is to apply previous techniques for open models. Hence, we
investigate the relationship between open and closed models.

For simplicity, we first consider a Markov Jackson network model
with First-Come First-Served (FCFS) multiserver nodes (service cen-
ters) and one job class. Flow within the network is determined by
stochastic routing probabilities: Each job completing service at node i
goes immediately to node j with probability g;, independent of the
history of the system. The individual service rates and external arrival
rates, if any, are independent of the state. The service-time distribu-
tions are exponential and the external arrival processes, if any, are
Poisson. It will be clear that the ideas generalize,

1.1 Open and closed models

These models can be classified as open or closed. In an open model,
jobs enter the network at random from outside at a fixed rate, receive
service at one or more nodes, and eventually leave the network. Thus,
with an ¢pen model the total external arrival rate or throughput is an
independent variable (specified as pari of the model data), and the
number.of jobs in the system is a dependent variable (whose equilib-
rium distribution is described in the model solution). On the other
hand, in a closed model there is a fixed population of jobs in the
network. Hence, with a closed model the number of jobs in the system
is an independent variable (specified as part of the model data), and
the throughput {(which may be defined, for example, as the departure
rate from some designated node) is a dependent variable (to be
calculated and described in the model solution). Since the individual

' service rate is part of the model data, knowing the throughput is
ig Wwﬂ#&%ﬁw equivalent to knowing the utilization, which is the expected proportion
of the servers at the designated node that are busy in equilibrium.

Of course, there also are more complicated models, in which the
simple dichotomy above is not valid. For example, Jackson introduced
models in which the external arrival rate can depend on the total
number of jobs in the network.! Then neither the external arrival rate
nor the network population is fixed. There are also mixed models,
which have some classes with fixed populations and other classes with
fixed external arrival rates.>® We will not consider these more general
models, but we note that open models can be used to approximate
) mixed models in the same way that they can be used to approximate
- . LS -closed models. i
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It might seem that open models would be more appropriate for most
applications because jobs do usually come from outside, flow through
the system, and eventually depart. However, closed models are often
used instead. The representation of flow through the system, i.e., the
throughput, is easily handled in a closed model by assuming that a
new job enters the system to replace an old one whenever the old one
has received all of its required service. This can be represented in the
closed model by a transition to a designated exit-entry node. At this
node, arriving jobs complete all of their required service, and depar-
tures are new jobs. The rate of transitions through this node (which
is both the arrival rate and the departure rate) can be regarded as the
throughput. If no such exit-entry node exists originally, it is easy to
add such a node. The modified network with the additional node is
equivalent to the original network if all jobs at this new exit-entry
node have zero service time.

Evidently, closed models are often applied because it seems natural
to regard the number of jobs in the system as the independent variable
and the throughput as the dependent variable. The number of jobs in
the system is often subject to control; the queueing analysis is desired
to determine the associated throughputs and response times. For
example, in production systems, new jobs usually do not arrive at
random; they are scheduled. In fact, this view was the main reason
that Jackson extended queueing network theory to cover closed
models:!

This extension of the author’s earlier work is motivated by the observation that
real production systems are usually subject to influences which make for increased
stability by tending, as the amount of work-in-process grows, to reduce the rate
at which new work is injected or to increase the rate at which processing takes
place.

Similarly, in computing systems the total number of jobs in device
queues tends to be limited by resource constraints, so that it is natural
to specify the number of jobs (the multiprogramming level) as a
decision variable and then calculate the associated throughput (see p.
116 of Ref. 6). Also, in time-sharing systems the number of jobs is
limited by the number of sources (terminals), so that the total number
of jobs is not unbounded (see p. 60 of Ref. 6). Hence, even though
closed models are significantly more difficult to analyze because of the
normalization constant or partition function, there are good reasons
for applying them.

1.2 The fixed-population-mean method

In this paper we propose and investigate a different approach that
may sometimes. be an attractive alternative. We.propose using the

. open model with specified expected equilibrium population, which we -
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refer to as the Fixed-Population-Mean (FPM) method. With the FPM
method, we have the analytically more elementary open model, but
the number of jobs (or, more precisely, its mean) becomes an inde-
pendent variable and the throughput or total arrival rate becomes a
dependent variable. Even though some of the initial modeling assump-
tions may not seem appropriate (e.g., unlimited population and Pois-
son arrivals), we believe that the approach has potential. With regard
to the modeling assumptions, it is important to remember that the
model solutions are describing only the equilibrium or, equivalently,
long-run averages. Moreover, the closed mode] assumptions are often
not entirely appropriate either. In many situations where closed
models are applied, the total population is not nearly fixed. The FPM
equilibrium solution may better deseribe these systems. Moreover, we
can modify the FPM method in various ways to obtain a better
description.

Even when a closed model is deemed appropriate, the open model
with the FPM method can be useful because if often provides a
convenient approximation for the more difficult closed model. Cer-
tainly the required computation is significantly reduced. In some cases,
throughputs can be calculated by hand by the FPM method when
some computer codes for closed models are unable to obtain any
solution. Moreover, in many cases the results are very close.

The FPM method also forms the basis for one proeedure to calculate

- approximate- congestion measures for closed non-Markov networks

containing multiserver FCFS nodes with nonexponential service-time
distributions, using previously developed approximation procedures
for open non-Markov networks such as the Queueing Network Ana-
lyzer (QNA).” In fact, the primary motivation for this work was the
desire to modify QNA so that it can analyze closed models as well as
open models. The FPM method is one way to do this. Several possible
approaches for calculating approximate congestion measures for non-
Markov closed networks are described in Section X:

For the basic Jackson network we are now considering, we unple-
ment the FFM method by identifying the external arrival rate that
yields the specified expected equilibrium number of jobs in the system.
The standard application would be to a system that was previously
analyzed by a closed model. Consider such a closed model with a
designated exit-entry node. In the closed model, an arrival to this node
from elsewhere in the network completes ifs required service, and a
departure represents a new job entering the system. To obtain the
associated open madel, cut the flow into this exit-entry node, let all
internal arrivals into this node leave the system, and insert an external

- Poisson arrival process. The FPM throughput is the. rate or intensity
-of the external Poisson arrival process for which the expected equilib- -

1914 TECHNICAL JOURNAL, NOVEMBER 1984

.



rium population has the specified value. The approximate mean num-
ber of jobs at each node is the mean number in the open model with
the FPM arrival rate.

In fact, in the FPM procedure described above, it is not necessary
to have a special exit-entry node. Any node can serve as the exit-entry
node. For the Jackson product-form network we are considering, the
equilibrium distribution of the resulting open model is independent of
the node chosen. Choosing the exit-entry node can be important,
however, if we do not have a product-form network. Then it may also
be appropriate to let the new external arrival process be something
other than a Poisson process.

In this introductory section we give a few elementary examples to
illustrate the FPM method. However, the primary motivation is the
need for approximate methods to analyze more complicated medels,
e.g., with multiple job classes, nonexponential FCFS servers, priorities,
etc. It should be clear that the FPM method is a general approach
that applies to these more complicated models. We believe that the
performance of the FPM method for Jackson networks indicates the
performance that can be expected for more complicated models.

Example 1. Consider a closed Markov cyclic network of single-server
FCFS queues with K jobs of a single class. Let there be n, nodes
having mean service time 1 and n,; nodes baving mean service time 7,
arranged in any order. As usual, cyclic means that all departures from
node j go next to node j + 1 for 1 = j < n; + ny — 1 and all departures
from node n; + n; go next to node 1. To apply the FPM method, cui
the flow into one node, let all original arrivals on that are leave the
system, and insert an external Poisson arrival process. We identify
the external arrival rate in the associated open model, say A, such that
the expected equilibrium total population is K. Since we have a cyclic
network, the arrival rate at each node is the external arrival raie.
(Otherwise, we would have to solve the traffic rate equations.) Recall-
ing that the equilibrium distribution in the open model is equivalent
to independent M/M/1 queues, we solve

n nNaAT
-+ =
1—-X 1-—2Ar

for X, which is a quadratic equation. (If there were m different service
rates, then we would have a polynomial of degree m.)

To illustrate, if K = 20, n; = n; = 10 and = = 1.2, then the ap-
proximate throughput is = 0.45. In Section IV we prove that this is a
fower bound for the throughput in the original closed model. In (15) we
suggest as a possible improvement A(r: + nx + K)/(ny + n + K — 1),
" -which in this case is 0.46. The actual throughput in the original closed
-network also turns out to be 0.46. This is easily determined using any

K
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software package for closed Markovian networks of queues; we used
PANACEAZ

Since the mean service times at different nodes do not differ much,
we could also use a quicker approximation, based on a linear equation
instead of the quadratic equation, obtained by assuming that all n, +
n; nodes have mean service time 7 = (n; + nor)/{my + ns), and then
applying the FPM method, which yields the almost instantaneous
approximation K7 /(K + n; + n,;) = 20/44 = 0.45 for the throughput.

This last balanced network approximation can also be used directly
in the closed network, which corresponds to combining the last two
suggested improvements. (See Section I11.) The resulting approximate
throughput by this method is K7/(K + n, + n, — 1) = 0.47. This
direct balanced network approximation for closed networks is in fact
an upper bound on the throughput in the closed model, as was first
shown by Zahorjan et al.® (also see Refs. 10 and 11).

If we use A = 0.45 as the approximate throughput by the FPM
method, then with the M/M/1 formula the mean number of jobs at
each node with mean service time 1 (1.2) is 0.82 (1.18); for the closed
model, it is 0.83 (1.17). The expected sojourn time at each of these
nodes by the FPM method is 1.82 (2.62); for the closed model, it is
1.79 (2.53). For practical purposes, the standard congestion measures
calculated by the FPM method agree with those for the closed model
in this example.

Note that the FPM solution does not ‘change if we multiply the

. population and the number of nodes of each type by a eommen

constant. It turns out that the quality of the approximation improves
as the network grows in this way. On the one hand, this means that
the FPM method does not perform well when there are few nodes,
e.g., when n; = nz = 1 here. On the other hand, the FPM method tends
to perform well for the large models that are more difficult for closed
network algorithms. In fact, in Section V we prove that the FPM
method is asymptotically correct for such growing closed networks.
This asymptotic property of large closed networks was apparently first
observed by Gordon and Newell.2 We contribute by providing a rig-
orous proof based on the local central limit theorem for sums of
independent and identically distribuied random vectors.’> Also, we
stress the significance of the FPM method in this asymptotic analysis.
Algorithms for closed models have difficulty as the number of nodes
increases. Evidently, no existing closed-network algorithm is able to
handle the case of 200 nodes and 200 customers for this numerical
example. With the aid of new asymptotic theory,’®* PANACEA? is
able to solve much larger networks, but the asymptotic theory does
not apply to this example because it requlres a decouplmg mﬁmte-
server node (see Sectwn 1.4). R
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in general, when we apply the FPM method, we do not get a
quadratic equation. However, the expected equilibrium population in
the newly created open network is an increasing function of the
external arrival rate, so that it is not difficult to identify the external
arrival rate which yields the desired fixed population mean by a search
procedure. In fact, it is usually possible to quickly obtain the desired
throughput with a programmable hand calculator that can find the
roots of an equation. (At the expense of some added complexity, this
same general approach can be used for multiple job classes. We give
an efficient iterative algorithm for special cases involving infinite-
server nodes in Section VI.)

However, it is usually not necessary to carry out such a special
inversion procedure. As is standard for closed models, we usually want
to determine the throughput as a function of the (expected) network
population. Hence, we simply solve the open model for a range of
possible external arrival rates and express the expected equilibrium
population as a function of the external arrival rate. It is then easy to
invert the function if desired. Moreover, we can also describe the
resulting population variability in the open model as a function of the
external arrival rate. Thus, the FPM method consists of little more
than using open models in situations where closed models were used
before. Our object, then, is to better understand the relationships
between these two kinds of models. We propose some algorithms and
obtain some insight about when they will work well and when they
will not.

When both closed and open models are available, the appropriate
model might be chosen according to which better describes the popu-
lation variability. We suggest using estimates of the population vari-
ance to help identify an appropriate model. It turns out that the
population variability in the open model is often less than might be
expected (Section II), so that the two models are often remarkably
similar, For larger networks {large population or many nodes), the
differences are often small relative to the quality of data typically
available for modeling fitting. When this is the case, the open model
is usually preferred because it is much easier to analyze.

The possible advantage of closed models over open models is also
reduced if we do not restrict attention to Markov open models. For
example, if we use QNA to approximately analyze a non-Markov open
model, then we have an additional degree of freedom in modeling the
variability because we can select variability parameters for each serv-
ice-time distribution and each arrival process. If the actual arrivals
are scheduled, as in many production systems, then it is natural to use

_clocked arrivals in QNA, i.e., detéerministic interarrival times, which

is achieved by setting the variability parameter for the external arrival
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process equal to zero. With an open model, we are not forced to have
a Poisson external arrival process. From direct modeling considera-
tions, the open model with clocked external arrival processes is often
more realistic than the closed model.

Furthermore, given that we are actually interested in a closed model,
the variability parameters offer the possibility of improved approxi-
mations by open models. Since the population constraint in the closed
model tends to reduce the variability (see Section IV), a promising
heuristic approximation procedure with the FPM method (suggested
by H. Heffes) is to reduce the variability parameters in the approxi-
mating open model. For example, with a Jackson network of single-
server queues, we might treat each node as a D/M/1 queue instead of
an M/M/1 queue, but the actual procedure would have to be more
sophisticated. The general approach using QNA for non-Markov
closed models is to cut the flow into one node and replace it with an
external arrival process. First, as described in Section X, we can let
the variability parameter of the external arrival process be such that
it agrees with the variability parameter of the departure process from
the network. We use QNA to calculate approximate variability param-
eters for the arrival process to each node. Afterwards, to improve the
approximation of the closed model, we can systematically reduce all
these variability parameters. The reduction should depend on the
network parameters, with the variability parameters evidently being

~-reduced less as the number of nodes or the number of jobs increases.

We briefly investigate this possibility, but we have just begun studying
refined approximation procedures of this kind.

1.3 The finite-waiting-room refinement

We also propose a refinement of the FPM method for approximating
closed models, which is especially useful for small models. We apply
the network population constraint given for the closed model to each
node separately in the open model. When there are K jobs in the
closed model, we allow at most K jobs at each node in the open model.
However, we implement this Finite-Waiting-Room (FWR) approxi-
mation within the product-form equilibrium distribution of the open
model. We act as if there is capacity K at each node in the open model,
but we do not analyze the modified open model exactly. Instead, we
keep the product-form equilibrium distribution-in the open model, and
modify the distribution of the number of jobs at each node.,

If N? is the equilibrium number of jobs at node i in the open model
without the refinement, then we use the conditional distribution of
N? given that N? < K. Since N7 has the distribution of a birth-and-
death process in a Jackson network, this conditional distribution

- obtained simply by truncating. the original di;stribution' at K and
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- renormalizing is tantamount to imposing a finite waiting room at that
node in isolation. [ This conditioning can also be used as an approxi-
mation for more general models (see Refs. 15 and 16).]

Let N? be the equilibrium number of jobs at node ¢ by the FWR
method; then

P(N? = k) = P(N? = k| N? = K) = P(N? = k)/P(N; = K}—41)

For an M/M/1 queue, the mean is EN7 = p;/(1 — p;} and the
utilization is u? = P(N{ > 0) = p;, where p; = X/u; is the traffic
intensity at node i, based on the net arrival rate A; and service rate p;.
The corresponding quantities EN? and ¢ with the FWR method are

EN? = w(p;, K)EN?
wipi, K) = (1 — (K + 1)p{* + Kpf*")/(1 — pf")
af = P(N? > 0) = (p; — pf*)/(1 — pi), (2)

provided that p; # 1 (see Section 2.5 of Ref. 17). Obviously, EN? <
EN? and ¢ < uf. If we let a2 be free, fix «f, and let EN9= EN?, then
22 > uf (see Section IV), which is a refinement in the right direction.
Moreover, if u$ is the utilization of node { and N¥% is the equilibrium
number of jobs at node i in the closed model, then &? < u$ when EN?
= EN¢4. Since the ratio of the utilizations at any two nodes in the
closed model is the same as in the open model,>® we thus obtain a
valid lower bound on uf by this procedure, namely,

ui = af = mjin{(u?/u}’)ﬂf} . (3)

We need (3) to obtain the valid lower bound because the property
ui/u? = uSfu§ for all i and j does not hold for a/af. [See (15) and
Section IV.]

Example 2. Consider a closed Markov network with n single-server
nodes and K jobs. Let the service rates and net arrival rates be
identical, so that the equilibrium distribution is symmetric. When
rn= 4 and K = 2, the server utilizations by direct analysis of the closed
model, the FPM method, and the FPM/FWR method are, respectively,
0.400, 0.333, and 0.384. By using the FWR refinement, the error is
reduced from 42 percent to 4 percent.

Using the FWR refinement to the FPM method can yield external
arrival rates for which p; = 1 at some nodes. Limited numerical
experience indicates that the quality of the approximation often de-
teriorates in this case.

1.4 Decoupling infinite-server nades

“Fhere need not be many modes for the FPM method to be effective.
The FPM method-is particularly. appealing to approximately solve
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closed Markovian networks with few nodes but a large population and -
an Infinite-Server (IS8) node with relatively low service rate: For these
models, the FPM method extends easily to multiple job classes. How-
ever, the need for help with these difficult models is much less now
because an efficient algorithm for them has recently been developed
by McKenna, Mitra, and Ramakrishnan,'®!* which is implemented in
their PANACEA software package.®
The PANACEA algorithm exploits integral representations and
o4 asymptotic expansions to reduce the original large closed network to
many much smaller closed networks. Under appropriate conditions,
the difficult partition function of the original closed model and related
quantities such as the utilization of a particular class at a particular
node can be represented by asymptotic expansions in which the
coefficients are constructed from the partition functions of the smaller
closed networks (the pseudonetworks in Ref. 14, which typically in-
volve at most three classes and a total of seven customers). Moreover,
the asymptotic expansions permit a thorough analysis of the trunca-
tion errors: The truncation error is less in absolute value than the first
neglected term and has the same sign.
The asymptotic expansions underlying the new capabilities in PAN-
ACEA are based on several assumptions. First, it is assumed that each
class visits an IS node [see (27) of Ref. 14]. Second, it is assumed that
the population of each class is large {see {17) of Ref. 14]. Third, it is
assumed that the individual service rates at the IS node are signifi-
cantly lower than the service rates in the rest of the network [see (18)
of Ref. 14]. Finally, it is assumed that utilizations of the non-18 nodes
are not close to their critical values, i.e., they are not in heavy traffic
[see (29) through (31) of Ref. 14]. It is worth noting that these
assumptions are often realistic—e.g., in computing systems where the
IS nodes correspond to “think times” at terminals.
: : It turns out that the FPM method tends to work well under these
R s b same conditions. Unlike PANACEA, however, the FPM method is an
T ' approximation. (The asymptotic expansions in PANACEA also can
be regarded as approximations, but of a different kind; they are a
numerical method that can achieve any degree of accuracy given
enough computation. On the other hand, the FPM method changes
the model, so that the answers are good only if the two model solutions
are close.) The FPM method in this situation can be derived by a
procedure that at first seems to be different from the FPM method.
This alternate procedure is motivated by the observation that under
the stated conditions the departure processes from the special IS nodes
. tend to behave much like Poisson processes. Moreover, the subnetwork
- L +. 7«. . without the IS nodes tends to behave much like an open network with
T - .- van external Poisson arrival process. This is partly substantiated by
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previous work™ in which we showed that, under appropriate condi- ..

tions, the departure process from an IS node with a fixed general
stationary arrival process and a general service-time distribution ap-
proaches a Poisson process that is independent of the arrival process
as the individual service rate at the IS node decreases. Reference 18
does not directly apply here because the arrival processes at the IS
node are changing too, but Ref. 18 suggests that the departure proc-
esses from the IS nodes are approximately Poisson processes that are
independent of the rest of the network under the stated assumptions.
Corresponding limit theorems for the situation here are contained in
Section VIIL.

The key to our procedure for these models, as with the asymptotic
expansions underlying PANACEA, is a large population and the
presence of IS nodes with relatively low service rates. The FPM
method can be used more generally, but there is stronger supporting
logic with the IS nodes. The FPM method works well if there are
several IS nodes, as long as each class visits one of them, but for
simplicity we assume that there is a single IS node visited by all
classes. Also, each class can visit more than one IS node, but we
assume that only one IS node has relatively low service rate, so that
jobs tend to accumulate there. We use this IS node to decouple the
network. We let its departure process leave the system and replace it
by an external arrival process. The external arrival process is a set of
independent Poisson processes, with- one' Poisson process for each
class. Equivalently, there is a simple Poisson external arrival process
and fixed probabilities that each arrival belongs to one of the classes.
We approximately solve the original closed network by identifying the
appropriate external arrival rates for the associated open meodel. We
use the special IS node to determine what rates are appropriate, We
do this by simply equating the arrival and the departure rates for each
class at the IS node. It turns out that this procedure is equivalent to
the FPM method discussed above (see Section VI).

Example 3. To illustrate the FPM method with an IS node having
relatively low service rate, we consider a central processor model
treated by McKenna, Mitra, and Ramakrishnan.”® This is a closed
cyclic network with only two nodes. The first node is the CPU, which
has a single server, where service is provided according to the proces-
sor-sharing discipline. The second node is a “think” node, which is an
IS node, representing independent delays at terminals before a job 1s
next sent to the CPU. (Because of insensitivity properties,®®*% only
the means of the service-time distributions matter for the equilibrium
distribution. We can also equivalently regard the CPU as an FCFS
node with an exponential'sérvice-time distribution.) We shall consider

.the case of one job class, which is test problem I described in Table 1
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" of Ref. 13. The mean service times at the two nodes are 1 and 240,

respectively, so indeed the IS node has relatively low individual service
rate.

This example was significant in Ref. 13 because it demonstrated the
advantage of PANACEA over previous closed network algorithms, in
particular CADS.*! In several cases CADS was unable to obtain a
solution. This example is also significant here because for it the FPM
method is both easy and accurate. The FPM method only requires the
solution of a quadratic equation [see (38) in Section VII). A quick
upper bound on the CPU utilization can be found by simply multiply-
ing the population times the IS individual service rate [see (30) in
Section VI]. Both of these methods perform remarkably well. The
throughput results for several population sizes are described in Table
I. The CPU node has a processor-sharing service discipline with mean
processing time of y7' = 1. Hence, the throughput of jobs at the CPU
is equal to the utilization of the CPU. Node 2 is an infinite-server
delay node representing the think time of users at terminals. The
mean think time is p3" = 240.

For the cases in Table I it is apparent that even the trivial upper
bound is adequate for practical purposes. Moreover, as we have re-
marked, the FPM throughput itself is a lower bound (see Section IV},
so that from the FPM method alone we can determine that the quality
of the approximation is satisfactory. Since the FPM throughput is a
lower bound, from Table I we see that in some cases the FPM
throughput is actually slightly more accurate than the published values
in Ref. 13, but of course the differences are not significant for practical
purposes. In the difficult case of 200 jobs, Version 2.1 of PANACEA
terminated with lower and upper bounds of 0.8129 and 0.8204, based
on four terms of the asymptotic expansion. In the other cases the two
bounds coincide for the specified accuracy. The main point is that
essentially the same answers can be obtained quickly by hand. (See
Sections VI and VII for additional discussion.)

With the FPM method we avoid closed networks and the associated
partition functions entirely. Instead, we approximately solve the orig-
inal closed network by solving a related open model. In the case of
multiple job classes, we iteratively solve a sequence of associated open
networks. By working with open networks, we never calculate the
complete distribution of the number of jobs of each class at each node.
With open networks it suffices to work with expected values. By
exploiting simple monotonicity properties, we are also able fo give
upper and lower bounds on the desired approximate solution at each
iteration. Finally, we are able to treat very general networks; e.g., the
subnetwoik can have multiserver‘nodes. In fact, the approximation
procedure is ideal for the closed-model analogs of the non-Markov
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networks analyzed by QNA,” in which there are FCFS nodes with
nonexponential service-time distributions. For the first step of the
analysis, in which we replace the departure process from the IS node
by an external Poisson arrival process, the FPM method is still
asymptotically correct. Hence, for these closed non-Markov medels
with decoupling IS nodes, it appears that the FPM method with QNA
should perform about as well as the original QNA approximation for
the corresponding open non-Markov model.

1.5 The rest of this paper

The rest of this paper is organized as follows. In Section II we
discuss population variability in open networks, and show that it tends
to be relatively small in large networks, which supports using the FPM
method to approximate large closed models. We also sugpest measuring
population variability to help decide which model to use. In Section
III we compare the throughputs in closed models and open models
(using the FPM method) for a special class of balanced networks, and
we show that the differences are, for practical purposes, negligible
when the network is large (but not when the network is small). This
example provides a convenient, simple, quantitative characterization
of the difference between the models, as far as throughputs are
concerned. The explicit balanced network results also suggest possible
refinements of the FPM method for unbalanced networks.

In Section IV we present theoretical results about the closed network
and the FPM approximation. We prove that the utilizations and
throughput calculated by the FPM method are always lower bounds
for the corresponding quantities in the closed network (see Theorem
1). For the special case of single-server and infinite-server nodes, this
result can also be deduced from Zahorjan.?? We not only treat general
nodes such as multiserver nodes, but we treat models with several job
classes. To make our comparison and establish other properties of the
closed model, we exploit the log-concavity® of the distribution of the
number of jobs at each node in the associated open model. In various
ways we show that the distribution of jobs is less variable in the closed
network than in the associated open network. In particular, given
ordered means at any node, we establish increasing coneave stochastic
order (see Theorem 2).2¢ To do this, we introduce and apply the notion
of one distribution being log-concave relative to’another (see Defini-
tion 1). .

It is intuitively clear that the population consfraint should introduce
negative dependence among the queue lengths at the different nodes.
In Section IV we also show that recently developed concepts of
multivariate negative dependence, such as reverse-rule distribu-
tions®% and - negative association,” are ideally suited to make this
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" idea precise. Indeed, the multivariate distribution of jobs at the differ-
ent nodes has all of these properties. The closed Markovian network
model can be regarded as a canonical example of negative dependence.

In Section V we present some additional theory to show that the
FPM method tends to perform well for large networks. We prove that
the FPM method is asymptotically correct as the number of nodes in
the closed model increases with the number of customers per node
held fixed (see Theorem 7). For this result, we can let the network
grow in a ¢yclic manner so that the connectivity does not increase. To
obtain a rigorous proof, we apply the local central limit theorem for
partical sums of random vectors.'? This result applies to Example 1 as
a special case.

In Section VI we present the variant of FPM method to approximate
closed networks with a large population and a decoupling IS node with
relatively low service rate. We exploit monotonicity to obtain an
efficient algorithm for multiple job classes. In Section VII we illustrate
the FPM method in this context by considering the central processor
model in Example 3. We consider cases involving two job classes as
well as one. This example is taken from Ref. 13, so that we can
conveniently compare the FPM method to numerical results for PAN-
ACEA and the CADS algorithm for closed models.**

In Section VIII we present theoretical results to support the FPM
method in the context of Sections VI and VII. We show that the
vector-valued queue-length process in the subnetwork of the closed
model without the IS node converges in distribution to the correspond-
ing stochastic process in the approximating open mode] with a Poisson
external arrival process as the populations increase and the individual
service rates at the IS node decrease appropriately. We establish
convergence in distribution (weak convergence®®?) of both the sto-
chastic processes (see Theorem 8) and the equilibrium distributions
(see Theorem 9). Convergence of the departure process from the IS
node to a Poisson process is established as in Refs. 18 and 30;
convergence of the associated vector-valued queue-lenpth process is
established by model continuity.®*? As a consequence, the FPM
method is asymptotically correct for the closed model under these
conditions (see Theorem 12). In Section VIII we also make stochastic
comparisons between the stochastic processes in the open and closed
models, exploiting couplings or almost-surely ordered constructions as
in Refs. 33 and 34. The stochastic comparisons are interesting in their
own right, but they also play a role in establishing the convergence.
We show that a first upper bound for the FPM method is also an
upper bound for the closed model in terms of both transient and
-equilibrivm- throughputs and quede lengths (see Corollaries-to Theo-

- - rems 10 and 11).
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In Section IX we discuss similar approximations for closed networks
with a bottleneck node which is not an IS code. We propose a different
approximation for closed networks with a bottleneck node. We delete
the bottleneck node from the closed network, but we do not use the
FPM method. Instead, the proposed approximation is to simply use
the open model obtained by deleting the bottleneck node and replacing
its departure process by an external arrival process generated by the
service times at the bottleneck node. The difference between the total
population and the expected population in the open subnetwork is the
suggested approximation for the expected population at the bottleneck
node. This approximation method is also asymptotically correct as the
population grows. The vector-valued queue length process in the
subnetwork of the closed network without the bottleneck node con-
verges in distribution to the corresponding process in the open network
as the population grows. This phenomenon is of course quite well
known,?*®® but some of the supporting theory here seems to be new.

In Section X we discuss methods for approximately solving non-
Markov closed models. We indicate how existing procedures for non-
Markov open networks such as the Queueing Network Analyzer (QNA)
can be modified for this purpose. In particular, we describe in detail
the changes in Ref. 7 to implement the FPM method.

In Section X1 we provide some additional motivation for considering
special algorithms to analyze non-Markov closed networks. It is some-
times claimed that Markov models with_ exponential service-time
distributions adequately describe throughputs for single-server FCFS
nodes with nonexponential service-time distributions with the same
mean, but we show that this is not always the case. We use tight lower
bounds on the throughput in closed models with FCFS single-server
nodes and general service-time distributions identified by Arthurs and
Stuck." For highly variable distributions, the actual throughput can
be much less than predicted by the Markov model. In fact, the Markov
model can be arbitrarily bad. The true throughput can be arbitrarily
close to zero, while the Markov model throughput is arbitrarily close

to one.
In Section XII we make additional numerical comparisons that help

put the different models and approximation procedures in perspective.
We draw some conclusions in Section XIII.

This paper contains diverse material, ranging from heuristic algo-
rithms and examples to theorems and proofs. These are intended to
complement each other, but the primary algorithm sections (Sections
VI and X) and mathematics sections (Sections IV, V, and VIII) can
be read independently.

1.6 Other bounds and approximations
‘In thls paper we mtroduce several approximation procedures and
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establish several bounds for networks of queues. Of course, many other

approximations and bounds have already been developed by others. In -

addition to the previously mentioned balanced network bounds and
others in Refs. 9 through 11, there are useful bounds in Refs. 37
through 39. There is great potential for combining them in new ways.
We focus on the basic Markov network models and natural non-
Markov extensions obtained by allowing nonexponential service-time
distributions and non-Poisson arrival processes. However, the results
also have relevance for more complicated models and other approxi-
mation procedures.

For example, open-model representations such as the FPM method
can be applied in conjunction with aggregation-decomposition approx-
imation methods for closed networks, as suggested by Zahorjan.* The
basic approach is to replace a subnetwork of a closed network by a
single “composite” node with a state-dependent service rate {see pp.
165 through 172 of Ref. 6). For the product-form models, by Norton’s
theorem, the aggregation step is exact if when there are m; jobs of
class j in the subnetwork, the composite node service rate of class j is
precisely the throughput rate for class j for the subnetwork in isolation
{as a closed model with that population veetor) (see pp. 100 and 106
of Ref. 6). The FPM method can be used as an approximation here to
calculate approximate throughputs for the subnetworks.

The FPM method is a very natural idea, so no doubt it has been
considered before. In fact, we have indicated that it appears in the
asymptotic analysis in Ref. 2. The FPM method is alse intimately
related to another approximation procedure, which is called the Ap-
proximate Infinite Source (AIS) method and was proposed independ-
ently by Fredericks.* The idea in the AIS method is to replace a finite
source by an infinite source, in particular a Poisson process, so that
Little’s formula®'? relating the throughput, expected population, and
expected sojourn time remains valid. However, since the original
population with a finite source is fixed, it is easy to see that this
constraint is equivalent to making the expected equilibrium population
in the open model coincide with the actual population in the closed
model (with the finite source). Hence, aside from additional refine-
ments, the AIS and FPM methods coincide. Fredericks illustrates the
effectiveness of this approach with other examples, including a two-
class priority service system with separate finite sources.

il. POPULATION VARIABILITY IN AN OPEN NETWORK

At first glance, it might seem that the open model with fixed mean
number of jobs would always differ dramatically from the associated
_ closed model with fizxed actual ntimber of jobs. It might seem that the
_population variability in the open network would necessarily be much
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greater than in the closed network (for which there is no population
variability at all). Indeed, for networks with few nodes there typically
is a dramatic difference in the variability, but it turns out that the
population variability of an open network tends to decrease as the
number of nodes increases. This suggests that the FPM method should
work well for large networks.

In one sense the variability in an open network increases as the

~ number of nodes increases. Since the equilibrium numbers of jobs at

the different nodes in an open model are independent, the variance of
the equilibrium population is the sum of the variances at the nodes.
So, roughly speaking, the population variance tends to grow as the
network grows (assuming that the marginal distributions at the indi-
vidual nodes do not change).

2.1 The population squared coefficient of variation

However, we believe that the squared coefficient of variation (the
variance divided by the square of the mean) is usually a better measure
of the relevant variability than the variance. It describes the variability
relative to the mean. Suppose that in the open network under consid-
eration there are n single-server nodes with the traffic intensity at
node 7 being p;. Since the equilibrium number, N?, of jobs at node @
has a geometric distribution, the mean, variance, and squared coeffi-
cient of variation of Nfare

E(N?} = pi/(1 — pi,
Var(N9) = pi/(1 — ps)?, and c*(NY) = 1/p..

Obviously, ¢* (N9 can be arbitrarily large, so that we cannot expect
the variability to be small with one single-server node.

The associated parameters of the equilibrium total number, N°, of
jobs in the entire network are

E(N°) = E(N{) + --- + E(N}), .
Var{N°) = Var(N39) + --- + Var(N?),
c¢*(N°) = Var(N°)/E(N°)* {4)

When the traffic intensities are all equal, i.e., p; = p for all i, c(N°)
= 1/np, so that ¢®(N°) tends to decrease rapidly as the number of
nodes increases. There is a law of large numbers effect when there are
many nodes.*! This is also true as n increases wheit the traffic intens-
ities are unequal, provided that E(N?) is asymptotically negligible
compared to 3%, E(N?). By the central limit theorem,* the distribu-
tion of N° tends to be approximately normally distributed with the
mean and variance in (4).

- ]t is easy to see that ¢?(N°) can be very large if there are relatively
- few nodes all in light traffic. If there is a single bottleneck node in
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heavy traffic, then ¢*(N°) = 1, which may also be regarded as signifi-
cantly different from zero. This indicates that the FPM method might
. not be desirable with a bottleneck node (see Section IX). However, if
there is no bottleneck node and if there are several nodes with at least
moderate traffic intensity (and any number of other nodes), then
c?(N°) will not be large. For example, if there are six nodes with p; =
2/3 for each i, then c*(N°) = 0.25.

2.2 Several servers

It is also worth noting that the equilibrium distribution at a node
usually tends to become less variable as the number of servers in-
creases, so that the single-server case we have just considered tends
to be the worst case for variability. This is perhaps not true for IS
nodes, which often are “delay” nodes. If A; is the arrival rate, g; is the
individual service rate, and «; = \;/u; at node i, then since IS nodes
have a Poisson distribution,

E(Nf) = aj, Var(N‘;’) = o and CZ(N?) = 1/0[,‘.

If A; and g; are the same as in the single-server case, then so is c®(N¥).
If M;/u; tends to increase as the number of servers increases, then
¢?(N?) decreases as well. In an M/M/s queue, it is possible to show
that cZ(N9) decreases as s increases and converges to 0 as § — o,
provided that we fix the probability of delay (see Ref. 42). With p; =
Ai/uis;, this is tantamount to having (1 — p;) Vs —> B, 0<pi<tass;
increases. In other words, if we only inerease s;, then p; decreases and
A/ p: remains unchanged, but if we adjust p; as we change s; to reflect
the corresponding congestion, then the distribution tends to concen-
trate. In particular, we then have E{(N% — o, Var(N9 —» o=, and
c*(Nf) > 0as s — .

2.3 Practical implications

The rather informal analysis in this section indicates that the
population variability measured by ¢%{N°) in an open network will
often be surprisingly small if (1) the network has quite a few nodes,
(2) the network is not in light traffic, and (3) the network is not
dominated by one or two bottleneck nodes. Perhaps the most impor-
tant idea is the possibility of using ¢?(N°) to help determine whether
an open model or a closed model is more appropriate. In an application
it seems appropriate to measure the real system and estimate the
population mean and variance. Then estimate c?(N°) for the open
mode] to judge the quality of the fit.

2.4 Reducing the variability of the drrival processes :
As mentioned in Section 1, we might try to improve the opeén-model
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approximation of a closed model by artificially reducing the variability
of the arrival processes in the open model. For example, we might
replace each M/M/1 queue by an E,/M/1 queue, where Ey is an Erlang
distribution with the same mean. Of particular interest is the limiting
case as k — o, D/M/1. It is significant that indeed both Var(N?) and
¢*(NY) decrease as we increase k; in fact, Var(N9 and c¢%(N9 for
D/M/1 are the least possible values among all GI/M/1 queues with
the same arrival rate and service rate. To see this, recall that for a
GI/M/1 queue

Var(N?) = p{1 — pi + 0:}/(1 — 6:)® and

AN = (1 — pi + 0/ p;, (5
where g; is the probability of delay, which is the root of the equation
$ui(l — o)) = o (6

for
¢is) = J; e MdF(t) {7

with F; the interarrival-time cdf of the GI/M/1 model for node i (see
I1.3 of Ref, 43).

The relationship is appropriately expressed in terms of stochastic
orderings. We say that one random variable X, is less than or equal
to another X; in the sense of stochastic erder {denoted by X, =, X3),
increasing convex order (denoted by X; =; X:), and convex order
{denoted by X, =. X;), respectively, if Eg(X,) = Eg(X;) for all non-
decreasing, nondecreasing convex, and convex real-valued func-
tions g for which the expectations are well defined (see Sections 1.3
through 1.5 of Ref. 24). Since g(x) = x and g(x) = — x are both convex,
convex order implies equal means. With equal means, convex order is
equivalent to increasing convex order. It is significant that D =<, E;.,
=. Ey =. M =, H, for random variables with a common mean. {H, is a
hyperexponential distribution, the mixziure of two exponential distri-
butions.) '

Let W be the equilibrium waiting time before beginning service.
Stoyan and Stoyan showed that W, =<;. W, in two GI/G/1 queues with
common service-time distribution when X; =, X,, where X; is the
generic interarrival time in system i.* For the special case of GI/M/1,
Rolski and Stoyan showed that W, <, W; under the same condition.‘l5
Since o; = P(W; > 0), o1 < o, and, by (5), Var(N;} < Var(N,) and

c?(Ny) = c*(N,). Since EX =. X for any X, these quantities are
~minimized among GI/M/1 queues by the D/M/1 case. .

Table II shows how the- variability is reduced by -comparing the
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“Table H—A comparison of congestion measures for the M/M/1 and_
D/M/1 queues®

M/M/1 M/1

Traffic ™M/ DM/

intensity, Delay

o EN; (N Probability, a4, EN; (V)

0.10 0.11 10.00 0.000 0.10 9.00
0.20 0.25 5.00 0.007 0.20 4.04
0.30 0.43 3.33 0.041 0.31 247
0.40 0.67 2.50 0.107 0.45 1.77
0.50 1.00 2.00 0.203 0.63 141
0.60 1.50 1.67 0.324 0.89 1.21
0.70 2.33 1.43 0.467 1.31 1.10
0.80 4.00 1.25 0.629 2.16 1.04
0.90 9.00 1.11 0.807 466 1.01
0.95 19.00 1.05 0.902 9.69 1.002
0.98 49.90 1.02 0.960 24.50 1.000

principal congestion measures for the M/M/1 and D/M/1 queues. The
variability is reduced the most for traffic intensities near 0.5; e.g., for
pi = 0.5 the D/M/1 value is 70 percent of the M/M/1 value. [From
heavy traffic theory,*> we know that, as p; — 1, ¢*(N?) approaches }
for all GI/M/1 queues and, for D/M/1, EN? approaches one-half the
M/M/1 value.] This analysis shows that the proposed technique for
refining the approximations by artificially reducing the variability
parameters of the arrival processes would indeed reduce the variability
of the number of jobs at each node. It also indicates by how much.
Since the means would also decrease, this device would also increase
the throughput with the FPM method. However, it remains to deter-
mine how much to reduce the variability of arrival processes and
whether this will produce a good general approximation procedure for
network models. .

1. COMPARING THROUGHPUTS IN BALANCED NETWORKS
3.1 The closed model with single-server nodes

In this section, we compare the throughput in 2 closed model with
the throughput in the associated open model using the FPM method.
We still consider the Markov Jackson models, but for simplicity we
restrict attention to single-server nodes. Given a closed model con-
taining n single-server nodes and a fixed population, K, construct the
associated open model by removing the arrival process fo one node,
say the first node, and replacing it by an external Poisson arrival
process with sufficiently low arrival rate to have stability. Let the
original arrivals to this entry node in,the closed model leave the
.. system. Then solve the traffic. equations to obtain the arrival rates );
and traffic intensities p; for each node i. Note that n ~ 1 of the n
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traffic-rate equations for the original closed model are the same as for
- . the new open model.’ Since there is one degree of freedom in the
traffic-rate equations for the closed model, the arrival rates X; calcu-
lated for the open model are legitimate relative traffic rates for the
closed model; i.e., the ratio of the arrival rates at any two nodes thus
is identical in the closed and open models.
Let N? and N° be the equilibrium number of jobs at node { and in
-the entire system for the open model, and let N% and N° be the
corresponding quantities for the closed model. Obviously, N° = K. For
the open network with the given external arrival rate, the expected
equilibrium number of jobs is

E(N°) = 2 (ol (L = p). ®

It is somewhat remarkable that the equilibrium distribution of the
number of jobs at each node in the original closed model can be found
by considering the associated open model we have constructed, even
though the arrival process we have removed is not & Poisson process.
The equilibrium distribution of the numbers of jobs at each node in
the original closed model can be expressed exactly in terms of the
solution for the open model constructed above;!® it is

PN=k,1=<i=n) " ,
PN =K _CRBe ©@

where G is the normalization constant or partition function chosen so
that the probabilities sum to one over the set of n-tuples (k;, ks, -+ -,
k) suchthat ky + kz + - - - + k, = K. [Of course, this is partly explained
by the fact that ratio of arrival rates at any two nodes are the same in
the open and closed models. The one remaining degree of freedom, the
_ arbitrary arrival rate in the open model, cancels in the division in (9).)
The associated throughput in the closed model, say &, is then the
flow through the designated node, i.e., the utilization uj times the
service rate y;:

PiNi=h,1=<isn)=

Y ST I TP L
qig':u\:- -.-..;..:,'?5.- el el e Tt

¢ = uip = P(NT > 0. (10)

As usual, the throughput can be obtained by calculating the normali-
zation constant recursively over smaller populatlons and subsets of
nodes (see Section 5.5 of Ref. 6). -

3.2 The special case of a balanced network

From (8} through (10), it is clear that the relation between the

, throughput and the total population is much more elementary for

- o .+ . open models; for open models, we only need to know the expected

' ‘ ' ' . total population, not the detailed distribution at the nodes. We make

1932 TECHNICAL JOURNAL, NOVEMBER 1984



an interesting explicit comparison, by considering the special case in
which the traffic intensities at all the nodes are identical, say p. For
the open model, (8) reduces to EN° = np/{(1 — p), so that if we set
EN° = K, we obtain p = K/(K + n). Thus, the utilization u§ and
throughput 6° in the open mode! are

uf = K/(K + r}) and 6° = A\ = K, /(K + n) {11)

because all external arrivals but no internal arrivals go to the desig-
nated first node.
On the other hand, for the closed model,

I/GPK=AK.n= (n+;{(— 1), (12)

the number of ways K indistinguishable objects can be placed into n
cells (p. 38 of Ref. 41). Similarly,

P(N{=0)}=Agna/Akn=(n—1)/(n+ K- 1), (13}
so that the utilization and throughput in the closed network are
ui=K/(K+n-1) and 8 = Ku/(n+ K —1). (14)

From (11) and (14}, we see that the two throughputs are very similar.
Moreover, 8 > 6°, so that #° is a conservative estimate of §°. (This is
always true; see Section 1V.}

It is significant that a good approximation for the threughput #° in
the closed model immediately provides a good approximation for the
utilizations of all the nodes. As we have indicated above, the elosed
and open models are linked together in a very important way: The
ratio of any two utilizations is always identical in both models; i.e.,

udful = uifuf (15)

for all i and j.

The difference between the two utilizations, say A, which for the
balanced model is the difference between the throughputs in (11) and
(14) normalized by dividing by the service rate yu,, is

A=sui—ui=00"—0/m=K/(n+ K)(n+ K—1). (16)

Note that §° = p, 6° = 13/2, and A = 1/2 when K= n = 1. We
conjecture that A = 1/2, in general. The difference A is small if either
n or K (especially n) is large but not if n and K are both small.
Representative values of n, K, 8%, #°, and A are given in Table III. In
Table II the service rate at the'enitry node is i1, = 1. We also describe
.the population variability in the open model using (4) and (11), from
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Table Il—A comparison of throughputs for the network of single-
_ server nodes with common relative traffic intensities
considered in Section ill

Network Throughput
Parameters Measures Difference in Population
Nodes Jobs Closed Open Throughputs Variability
n K o 6° - A(16) E(N°)
2 0.67 0.50 0.17 1.00
2 5 - 0.83 0.7 0.12 Q.70
2 20 0.95 0.91 0.04 0.55
5 2 0.33 0.29 0.04 0.70
5 5 0.56 0.50 0.06 0.40
5 20 0.83 0.80 0.03 0.25
20 2 0.10 0.09 0.01 0.55
20 5 0.21 0.20 0.01 0.25
20 20 0.51 0.50 0.01 0.10

which ¢? (N) = (K + n)/Kn. The difference between the two models
as described by both A and ¢*(N°) decreases as n and K increase.
Table IIl quantifies the differences.

Formulas (11) through (16) indicate that the FPM approzimation
for the throughput will be good if either the population, K, or the
number of nodes, n, is large, but with single-server nodes it seems
much better to have n large. The quality of the approximate queue-
length distributions computed by the FPM method often deteriorates
when there are nodes with high utilizations and few servers. Example
1 in Section 1 is ideal for the FPM method; both K and n are large
(K = n = 20}, but the utilizations are not. The finite-waiting-room
refinement in Section 1.3 is useful for the small models.

3.3 Simple approximations for unbalanced networks

We can use the results for balanced networks to obtain simple
approximations for unbalanced networks. A simple rough approxi-
mation, say G5pprox, fOr the throughput in a closed network with K jobs
and n single-server nodes with unequal (but not too different) utili-
zations based on (11) and (14) is

approx = 80(n + K)/(n + K- 1): (17)

where #° is obtained from the associated open modeI using (8}, e.g., by
simple search. We would not expect (17) to be good if there is a severe
bottleneck node; we would be in serious trouble if we had six nodes,
five having relative utilization 1 and the other having relative utiliza-
tion 3. We also would not count nodes in relatively light traffic; if we
had nine nodes, three with relative utilizations 1 and 6 with relative
-utilization 3, then it would be better to use n = 6.in (17).° .
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1IV. SUPPORTING THEORY FOR COMPARING THE MODELS
4.1 A lower bound for the closed model

For the special example in Section 3.2, we saw from (11) and (14)
that §° > 6°. In general, we should expect the throughput to be greater
in the closed model because it is intuitively obvious that N¢ is less
variable than N{. Given the same mean, N§ is evidently more likely to
assume both very large values and very small values, so that we should
have P(N? = 0) > P(N5 = 0). Of course, we need not actually have
EN?= EN%when EN° = N, but this is the idea.

In this section we justify thlS reasoning. We assume that the open
model is constructed from the closed model as described in Section
3.1. We consider the Markov Jackson network with one job class and
multiserver nodes as specified in Section I, but it is significant that
the throughput comparisons extend to Markov networks with multiple
job classes and more general state-dependent service rates at the nodes.
Some of these comparisons also apply to the finite-waiting-room
approximation introduced in Section 1.3. To avoid complicated nota-
tion, we only discuss these extensions in remarks after Theorem 4.
Theorem 1: If EN° < N¥, then §° < 8° and ul < u$ for all i.

For the special case in which all nodes are either single-server or IS
nodes, Zahorjan? has given a nice proof of Theorem 1. We give a
different argument that allows us to treat more general nodes, eg,
multiserver nodes, and obtain some interesting additional results along
the way. To establish Theorem 1, we use notions of eoncave ordering,
which are closely related to the convex orderings introduced in Section
il (see Section 1.4 of Ref 24). One random variable X is less than or
equal to another X, in concave (increasing concave) ordering, denoted
by X) o X2 (X} Siov X3), if Eg( X)) < Eg(X.) for all concave (increasing
concave) real-valued functions g for which the expectations are de-
fined. The connection to the convex orderings is simple: X; <., X; if
and only if X; =, Xg; X, =i Xz if and only if — X, = — Xb. The
following basic characterization for random variables with values in
the nonnegative integers is useful: X; =;., X, if and only if

SPXiskz3 Pk (20)
k=0 L ot]
for all n (see Sections 1.3 through 1.5 of Ref.-24).

As a basis for Theorem 1, we establish the following result.
Thearem 2: If EN¢ < ENS for any node i, then N? <., N%.

In fact, Theorem 2 directly implies Theorem 1 given (15). Let u$
and u? be the utilizations of node [ in the closed and open models,
respectively. They are both defined as the expected number of busy

. servers; e.g., for the open model,
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We can also directly approximate 6° by replacing the traffic inten-
sities at each node with the average traffic intensity over all nodes.
This yields a,prox = K1 /(K + n) as in (11). Due to the convexity of
EN?, 025r0x = 8°, which is a modification in the correct direction if we
wish to approximate 8°,

Finally, we could combine these two approximations to obtain (14)
for unbalanced closed networks, but it appears that this would tend to
overestimate 8°. In fact, (314) has already been shown to be an upper
bound for the closed model.?!! The simple approximation (17) worked
very nicely in Example 1 in Section 1.2.

3.4 Reducing the variability of the arrival processes

As in Section 2.4, we can consider approximations for the closed
model obtained by reducing the variability in the open model. Since
EN¢? = pi/(1 — o)) in the GI/M/1 model, EN? also decreases as o;
decreases, so reducing the variability of the arrival process at each
node increases the throughput 8° in the open model. (Typical values
of EN? for the D/M/1 queue are given in Table IL) If there are n
identical GI/M/1 nodes, then instead of {11} we have

= KFI/("’ + xK)’ €18)

where x = ¢/p. Since ¢ depends on p via {6}, {18) is harder te solve.
Moreover, a direct application of the D/M/1 medel need not yield
good results beeause (18} can be much greater than (11). For example,
if K= 10, n = 16, and g; = 1, then 6° = 0.40, while ° = 0.385 and 0.50
via (11) and (18), respectively. It remains to determine how to exploit
this approach.

3.5 Several servers

It is also interesting to consider networks of n identical multiserver
nodes (back with the Markov models), When there are s servers with
1 < s < oo, the formulas are rather complicated, but the situation
simplifies greatly for s = 0. Then EN§ = EN{= K/n and §° = ¢° =
Ku, /n, so that there is no difference at all. We conjecture that (8° —
8°)/, decreases in s, which would mean that the single-server case we
have examined gives the worst approximation.

For the open model in which each node has s servers and a common
traffic intensity, p = \i/spu, 8° can be approximated by solving

nfps + ép/(1 — p)] = K, (19)

where & is the probability of delay at node 1 (which also depends on
A1) (see Ref. 42). A possible procedure is to approximate § first and
then: solve the resulting quadratic equation for A. One could then
iterate, recalculating $, etc.
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. IV. SUPPORTING THEORY FOR COMPARING THE MODELS
4.1 A lower bound for the closed model

For the special example in Section 3.2, we saw from (11) and (14)
that #° > 8°. In general, we should expect the throughput to be greater
in the closed model because it is intuitively obvious that N< is less
variable than N Given the same mean, N?is evidently more likely to
assume both very large values and very small values, so that we should
have P(N? = () > P(N$ = 0). Of course, we need not actually have
EN?= ENSwhen EN° = N°¢, but this is the idea.

In this section we justify this reasoning. We assume that the open
model is constructed from the closed model as described in Section
3.1. We consider the Markov Jackson network with one job class and
multiserver nodes as specified in Section I, but it is significant that
the throughput comparisons extend to Markov networks with multiple
job classes and more general state-dependent service rates at the nodes.
Some of these comparisons also apply to the finite-waiting-room
approximation introduced in Section 1.3. To avoid complicated nota-
tion, we only discuss these extensions in remarks after Theorem 4,
Theorem 1: If EN° < N¥, then §° = 0° and u? = uf for all i.

For the special case in which all nodes are either single-server or IS
nodes, Zahorjan®® has given a nice proof of Theorem 1. We give a
different argument that allows us to treat mere general nodes, e.g.,
multiserver nodes, and obtain some interesting additional results along
the way. To establish Theorem 1, we use notions of concave ordering,
which are closely related to the convex orderings introduced in Section
II (see Section 1.4 of Ref 24). One random variable X, is less than or
equal to another X in concave (increasing concave) ordering, denoted
by X) =o Xo (X5 =i X2), if Eg(X;) = Eg{X;) for all concave (increasing
concave) real-valued functions g for which the expectations are de-
fined. The connection to the convex orderings is simple: X; <., X, if
s Sinessaniii : and only if X; =, X X; =i, X; if and only if — X; =, — X5. The
rmmReR——— following basic characterization for random variables with values in

the nonnegative integers is useful: X; =;., X5 if and only if

i PX, <k) = i P(X, = k) (20)
=0 k=0

for all n (see Sections 1.3 through 1.5 of Ref. 24).

As a basis for Theorem 1, we establish the following result.
Theorem 2: If EN? < ENS for any node i, then Nt <;,, NS.

In fact, Theorem 2 directly implies Theorem 1 given (15). Let u%
and u? be the utilizations of node { in the closed and open models,
respectively. They are both defined as the expected number of busy
servers; e.g., for the open model,
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u? = E(min{N?}, s:}) = pisi = N/ui, - @)

where, of course, A; is the net arrival rate determined by the traffic
rate equations plus the external arrival rate, which is, in turn, deter-
mined by the FPM requirement that EN° = N<. Formula {21) is also
valid for the closed model.

To prove Theorem 1, we use the following consequence of Theorem
2.
Corollary to Theorem 2: If EN? < ENS, then u? < ut.
Proof: Apply Theorem 2 observing that the function in (21) is increas-
ing and concave. O
Proof of Theorem 1: If EN® < N*, then EN? = EN% for some i because

B, ENS= EN°= N° For one such i, u? < ut by Theorem 2 and its
corollary. By (158), u? < uf% for all i. Since 6° = uf x;, and 6° = uf u,,
#c>8too. O

To prove Theorem 2, we use notions of log-concavity (see p. 70 of
Ref. 23). A probability mass function {p;, k = 0} is log-concave if

P: = Peaabe, k=1 (22)

A log-concave distribution is unimodal; moreover, it is strongly uni-
modal, i.e., the eonvolution with any unimodal distribution is alse
unimodal. In fact, for discrete distributions log-coneavity, strong uni-
modality, and the PF, {Polya frequency function) property are all
equivalent.? The equilibrium distribution of any birth-and-death proe-
ess is log-coneave if the birth rates are nonincreasing and the death
rates are nondecreasing (see example 5.7F in Ref. 23). Moreover, log-
concavity is preserved under convolution. Hence, for each i and m the
distributions of N?and N§ + ... + N¢, are leg-concave. (By example
5.7F in Ref. 23 referred to above, it suffices for the service rate at each
node to be a nondecreasing function of the number of jobs present.) It
turns out that this is also true for the more complicated distributions
in the closed network.

Theorem 3: Let the service rate at each node be a nondecreasing func-
tion of the number of jobs present. For any m the distribution of

S+ ... + NS is log-concave.

Proof: Consider m = 1. Since log-concavity is preserved under convo-
lution,? the distribution of N3 + ... + N9 is log-concave. Then note
that

P(Ni=k+1)
P(Ni = k) 7
_PNi=k+ 1PN+ --- + No=K~k—1)
P(Ns=kP(N3+ ...+ Noa=K—Fk) ’

(23)
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with the right-hand side being the product of two ratios, both decreas-
ing in k. A similar argument appliesto m>1. O

From (23), we see that in some sense the distribution of N% is more
log-concave than the distribution of N¢. We now formalize this notion.
Definition I: One probability mass function {p}, k = 0} is said to be
log-concave relative to another {p3, k& = 0} if (phapd)/{piD%+) is
nonincreasing in k. .

From (23) it is obvious that N¢ is log-concave relative to N2 We
now show that this supplies what we need for Theorem 2. The key
property is that relative log-concavity implies that the ratio pi/pi is
unimodal.*

Theorem 4: If the distribution of a random variable X, is log-concave
relative to the distribution of another random variable X, and EX, =
EXz, then X1 ev Xz.

Proof: Our goal is to verify (20). We first show that P(X; = 0} =
P(X; = 0). If not, then the relative log-concavity implies that there
is a ky such that P(X, = k) < P(X, = k) for all k < k; and no k > k.
This would make X, stochastically larger than X, implying that
EX, > EX,, which contradicts an assumption. Hence, P(X; = 0) =
P(X,; = 0). Next let k, be the first k, if any, such that P(X, < k) <
P(X; = k). By the relative log-concavity, we must have P(X; < k) =
P(X, < k) for all k = k. Since EX; = Y7o P(X; = k),

EX, - EX, = 2 [P(X; < k) — P(Xz < k)] > 0
and
YyYPXi<k)z ¥ P(Xa=<k), n=9,
k=0 foers

which establishes {20). O ,
Wﬁwfﬁﬁﬂﬁm@mﬁ Proof of Theorem 2: By (23), the distribution-of N¢ is log-concave
- relative to the distribution of N%according to Definition 1. By Theorem
4, Ni=<,w Ni. O
Remarks: 1. In a network made up entirely of infinite-server nodes,
we have uf = uf for all i and #° = 6%, so that we cannot have strict
inequality in Theorems 1 and 2.

2. Theorems 2 through 4 apply to the FPM/FWR method introduced
in Section 1:3. Let N? be the equilibriumn number at node { by this
method. It is easy to see that N% is log-concave relative to N9, which
in turn is log-concave relative to N% Hence, if EN? < EN?, then N¢
<iov N2 if EN? < EN?, then N¢ <;., Nt. However, this does not yield

- _ : « %&- _  a proof of the analog of Theorem 1 because the relatxonshxp (15) is
"' - lost. We do obtain the iower bound (3), though '

1938 TECHNICAL JOURNAL, NOVEMBER 1984



3. As indicated at the beginning of this section, Theorems 1 through
4 extend to multiple job classes. There are many different ways to

define the class structure, but we shall use only basic properties that -

have been established for the Markov models.>® For the open model,
the vector of jobs at the nodes without identifying the classes has the
same equilibrium distribution as when there is only a single class, and
given any number of jobs at node i in equilibrium, each job is of class
j with some probability p;, independently of the other jobs. In other
words, if N?is the total number of jobs at node i and N% is the number
of class j jobs at node i, then N} is obtained from N¢ Bernoulli trials
with probability p;:

PNy =k = 5 P(N?=n) (;j) i1 -p)™  (24)
nwk

The key property is that the distribution of N in (24) is log-concave
whenever the distribution of N?is log-concave. This result is intuitively
reasonable, but not so easy to prove. The result is established in
Theorem 2 of Ref. 46. Given that N has a log-concave distribution
and that N2; is independent of N{,; when i; # iy, it is easy to extend
all of the previous results in this section to multiple job classes. For
example, the extension of Theorem 1 states that the utilizations of
each class at each node are ordered, i.e., uu uf; for all  and j, if the
expected class populations are ordered ie., ZL-'I EN} < ¥i; N§ =
K; for all j.

4, We have indicated that p' being log-concave relative to p? implies
that p}/pf is unimodal in k. We call this relationship Uniform Cen-
ditional Variability Order (UCVO), provided that p* and p® are not
stochastically ordered, because all conditional distributions, condition-
ing on a common subset, are either ordered again by UCVO or are
ordered by ordinary stochastic order. This property parallels uniform
conditional stochastic order,**® and is studied further elsewhere.*®

4.2 Dependence in the closed model

So far in this section (in Theorem 2 and Remark 4 above), we have
shown how to express the idea that the distribution of the number of
jobs at each node is less variable in the closed model than in the open
model, but we have yet to describe the joint distribution at several
nodes. Unlike in the open model, where the marginal distributions are
independent, in the closed model the marginal distributions are de-
pendent. If there are more jobs in one subset of nodes, then there
should be fewer jobs at another disjoint subset of nodes. The popula-
tion constraint obviously should make the populations at different
nodes negatively correlated. We can make these ideas precise usmg
. recently developed concepts of negative dependence.
One concept of negative dependence is the Multwanate Reverse
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Rule -distribution {MRRZ), which was introduced by Karlin and Rin-
ott.”® Let p be a multivariate probability mass function on the r-fold
product of the nonnegative integers. The distribution p is said t6 be

MRR, if ,
plx V y)p(x A ¥} < p(«)p(y) (25)
forallx=(x), --- , xx) andy = (31, -, %) in {0, 1, .. .}", where
. x V y = (maxix;, »}, ---, max{x,, ya}) and
x A y = (minfx,, 31}, «- -, minfx,, y.}).

In contrast, if p satisfies (25) with the inequality reversed, p is said to
be Multivariate Totally Positive (MTP,).%° In both cases it suffices to
check (25) for x and y differing in only two components.

Unlike MTP,; distributions,* the marginal distributions of an MRR.
distribution need not be MER;. Moreover, even having the marginal
distributions all MRR: is not strong enough to deduce some of the
desired multivariate inequalities. Karlin and Rinott®™ proposed one
way to cope with this difficulty, by introducing a special subclass called
the strongly MRR, (SMRR,) distributions. An n-dimensional proba-
bility mass function p is SMRR, if the (n — m)-dimensional function
T plxy -+, %) $1(x;) - -+ dm(x;.} is MRR, for all m and all m-tuples
of indices {ji, - - - , jm), where the sum is over all (x;, - - - , X;m) and ¢;
is log-concave (PF;) for each .

Bloek, Savits, and Shaked®® introduced a eonvenient structural
condition (condition N) that implies SMRR,. A random vector
(X, ---, X,) satisfies condition N if there is a vector of n + 1 in-
dependent random variables (Y, Y3, + -+, Y;) each with a PF;, density
{or mass function) such that (X3, -- -, X} is distributed the same as
(Y «--, Y) I Yo+ ... + Y, = s] for some s. It is easy to see that

‘ . condition N applies to the closed models as a special case; just set

e A e e Yo=0ands=K.

SR Another concept of negative dependence was proposed by Joag-Dev
and Proschan.?” They call random variables X, ---, X, and their
joint distribution Negatively Associated (NA) if, for every pair of
disjoint subsets A, and A, of the index set {1, 2, - - . , n}, the covariance

cov(f(X;, iedr)), 8((X], jeAn))) = O (26)

for all nondecreasing real-valued functions f and g defined on R* and
R*, where k; is the cardinality of A;. Their Theorem 8 directly implies
that (N5, - - - , N%) is negatively associated. We collect these properties
in Theorem 5.

Theorem 5: The vector (N§, --- , N3) is negatively associated, satisfies
‘candition N, is SMRR,, and has all marginal distributions MRR..
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Proof: Since (N§, --., N3) is distributed as (N3, -.., N3|N{ +
... 4+ N¢ = K), condition N in Ref. 26 and the sufficient condition
for the NA property in Theorem 2.8 of Ref. 27 are immediate. As
noted in the Remark at the end of Section IV of Ref. 26, condition N
implies SMRE,, which in turn implies that all marginals are MRR,. O
Remark: It is elementary to directly verify that all marginals are
MRR,.

Many important consequences of Theorem 5 are described in Refs.
25 through 27. We give some illustrative examples.
Corollary I to Theorem 5: Suppose that ¢; are all nondecreasing or all
nonincreasing functions on the nonnegative integers. Then, for any k,
1<k=n,

E{¢:(ND@2(N35) - - ¢a(NR)}
=< E{¢:i(NT} -+ ¢(NR)} X Ef¢p1(N51) --- ¢al{NR)}.

Proof: Apply (1.5) of Ref. 25, noting that the PF; property is not used
there.
Corollary 2 to Theorem 5: For any m < n and any m-tuple (R, +-.,

km),

P(NS<h,1=<i=m)= [[ PANS= k)

il

and

PNz k,1<i=<m)=<]] PIN;= k).
im1

Proof: Apply Corollary 1. O

Remark: Theorem 5 and its corollaries describe multivariate depend-
ence for a single job class. The multiple-job-class closed Markov
network suggests a natural generalization of condition N in Ref. 26,
which we call condition @N. A random vector X=(X;:1=<i<n,1l=<
Jj = m) in R™ satisfies condition @N if it is appropriately related to
another random vector. The other random vectoris Y= (Y;: 0 =i <
n, 1 <j = m)in R™"*V such that (1) the subvectors (Yy: 1 <j < m),
(Yy:1=j=m), -+, (Y 1 =j=<m) are mutually independent, (2)
the random variables Y%, Y; have a PF; density or mass function for
each #, and (3) given 32, Yy, (Yu, ---, Yin) has a multinomial dis-
tribution for each i. We say that X satisfies condition QN if X is
distributed as (Yy: 1 < i < n, 1 < j = m) conditional on Y&y Y; =
S;, 1 = j = m, for some m-tuple (51, ---, sm). For m = 1, of course
condition QN reduces to condition. N. Condition @N is being investi-
-gated; a discussion of its properties is intended for a future paper.
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4.3 Changing the population

With closely related stochastic comparison concepts, we can also
describe what happens when we increase the population in a closed
network. Let (NY(X), ---, N%(K)) be the equilibrium vector of jobs
at each node as a function of the total population K. Naturally, we
expect it to be increasing in K in some sense. In fact, this is truein a
very strong sense. Following Karlin and Rinott,*® we say that one
multivariate probability mass function p, is less than or equal to
another p, in the sense of multivariate Monotone Likelihood Ratio
{MLR), and we write p; =, ps, if

Di(x)p=Ay) < pu(x A y)palx V ) (27)

forall x = (x;, +--,x:) and y = (3, --- ,¥a) in {0, 1, . - -}". The MLR
order is a generalization of MTP, because p <, p if and only if p is
MTP.® MLR order implies stochastic order for the original distribu-
tions (i.e., ;1 = p2) and also for all conditional distributions condi-
tioning on sublattices.®®

The probability mass functions of the full vector [N{K), ---,
N%(K)] are not usefully compared by (27) for different K because they
have disjoint support sets. However, we can usefully compare the
marginal distributions. There is a further complication, however,
because (27) will obviously fail when x and y are in the support of
both distributions but x V y is not. However, the ordering {27) does
hold over every sublattice of the support. ,
Theorem 6: Given a elosed model with n nodes, (N{(K), - - - , N5-:(K))
is nondecreasing in K in the MLR ordering in the sense that the support
setf(ky, -+ ko) hr+ .-« + B <K} in 0,1, - - -} is nondecreasing
in K and (27) holds for K and K + 1 as an equality whenever the sum
of the components of x V y is less than or equal to K + 1.,

Proof: 1t suffices to establish (27) for x and y differing by one in just

-two indices, say 1and 2. Let x = (k; + 1, ko, ks, -+ - , ko—y) and y = (&,

Ry + 1, ks, +--, kny). Let px be the probability mass function of
[N§(K), ---, NS (K)]. Then (27) holds as an equality provided that
R+ ke + Ry + 2< K + 1 because

Px () Dr+1 (V)P (X A Y) prer (x V y)

n=1 n—-1
p(Ng=K— hX k_.-—-l)P(N.‘;= K+1)=- X k,——l)
j=1 e j=1
= n—-1 n=1
P(Nf,=K" 3 k,-)P(N?,=(K+1)— z k,--z)
j=1 J=1

=1 0

““Corollary 1 to Theorem 6: For each i-and K, NY(K) =, N{K + 1).
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‘Corollary 2 to Theorem 6: The utilizations u{(K) are increasing in K.
Procf: Apply Corollary 1 with the increasing function in (20). O
Corollary 3 to Theorem 6: The conditional distribution of [IN{(K), --- ,
N&_1(K)] given any sublattice of |0, 1, - - - , m}™"! with maximal element
(ky, -+, kn1) is independent of K for K = 33 k;.

Corollary 4 to Theorem 6: P(N{K) =2 m|g; = N(K) = b, 1 < j =
n — 1)}is independent of K for K = Y53 b,.

Proof: Apply Corollary 3. O ’

V. LIMITS FOR GROWING NETWORKS

In this section we provide some additional theory to show that the
FPM method tends to perform well as an approximation for closed
models when the network is large. For particular kinds of growing
networks we prove that the FPM method is asymptotically correct as
the number of nodes increases. We assume that the population is nK
when there are n nodes. As we indicated in Section 1.2, the basic idea
here is due to Gordon and Newell (see pp. 261 through 265 of Ref. 2),
but we formulate and prove a limit theorem.

To be precise, we must specify how the network topology and other
model parameters change as the closed network grows. If the connec-
tivity increases as the closed network grows, so that the departure
processes are split inte many components and the arrival processes
are superpositions of many components, then it is usually possible to
show that any fixed finite subset of nodes in the elosed network
behaves asymptotically as mutually independent queues (with mu-
tually independent Poisson arrival processes). This is an even stronger
form of independence than in the open model because it applies to the
time-dependent stochastic processes as well as the equilibrium distri-
bution. A simple example is the n-node network with routing of
departures from every node to all other nodes with equal probability.
Growing networks with increasing connectivity can be treated by
classical limit theorems for superposition and thinning.?*

Motivated by Example ] in Section 1.2, we formulate a limit theorem
in which the connectivity does not grow with 2. We define our sequence
of closed models as follows. We start with a general open Markov
product-form network having ¢ nodes, p job classes, and a p-tuple of
independent Poisson processes determining the arrivals (one for each
class). We then replicate this network n times, letting the departures
from network k be the arrivals to network k + 1. We let the routing
probabilities at each subnetwork be identical. Finally, we make it a
closed model by replacing the external arrival process to network 1 by
the departure process from network n and stipulating that there are
nK; customers of class j, 1< j < p.'A symmetric closed cyclic network
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is the special case in which the initial building-block network has one
node. Example 1 in Section 1.2 can be regarded as the special case in
which the initial building-block network is a network with two single-
server nodes in series, one with mean service time 1.0 and the other
with mean service time 1.2. The numerical calculations were for n =
10.

The following result shows that the FPM method is asymptotically
correct for such cyclically growing networks as n — oo. In Remark 1
following the proof, we indicate that Theorem 7 also applies to growing
networks with increasing connectivity. Let N%;; (n) be the number of
class j jobs at node i of the kth subnetwork in the nth closed model;
let N, () be the number of class j jobs at node i of the kth subnetwork
in the associated open model having independent Poisson arrival
processes with rate vector ) at the first subnetwork, with all departures
from the nth subnetwork leaving the system.

Theorem 7: For any ky and (gpko)-tuple (may, -+ - , Mapny),
limP(N‘,-,-,,(n)=m;;k:1£i£q,15j£p,lsksko)

kg
= kl;ll ‘Ell PINHQ) =mipe 1 =j=p)=Z,

where } = (A, ---, Ap) is the FPM solution for the original g-node
open building-block network.
Proof: Let M; = 121 $%y mupufor 1 <j < p. Asin (9),

P(NG(n) =myjp: 1 =i=<q,l=<j=<p l=<k=k)

Z-P( 3 iN?;;,(A)=nK,——M,-:lsjsp)

E=kgt1 i=1

n q

P (*21 21 Nix(d) =nKp:1=j=< p)

B e i e for any vector of external arrival rates ) for which there is stability.
(Z is defined in the statement of Theorem 7.) For the special case in
which ) is the FPM vector, we can apply the local central limit
theorem, pp. 75 through 79 of Spitzer,'? to obtain our desired result.
Suppose that ) is such that £ Y%, N¥1(0) = K; for each j. Since
Yi-1 L) N(d) — Kj) is the jth comppnent of the nth partial sum
of iid. random p-tuples where each component has mean 0, there
exists o, 0 < a < o0, such that

n q
lim n‘“’ﬂP(E Y Nu{M)=nK;+ag:1=<j Sp)= o

n—e® k=1 i=1

for any p-tuple (a;, - -, ) (It_ is easy to see that the aperiodicity
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requirement in the local central limit theorem is satisfied.) We thus
obtain the desired result’ by multiplying both the numerator and
denominator by n/? and letting n — o, [

Remarks: 1. Theorem 7 and its proof also apply to other kinds of
growing networks in which the connectivity does increase. For exam-
ple, consider the symmetric n-node network in which each node has
the same external Poisson arrival process with rate A,; and probahility
#; of departures leaving the system for class j, 1 < j < p, independent
of n. Also, let departures staying within the network be routed to all
other nodes with equal probability. Then the arrival rate of class J at
each node is A,;/(1 — r;), independent of n. Then the equilibrium
vectors of jobs at any node in the open mode] are the same for all
nodes and are independent of n, so that Theorem 7 and its proof
applies with ¢ = 1.

A more complex symmetric growing model with increasing connec-
tivity that can be treated the same way is obtained by replacing each
node in this example by a g-node subnetwork. The departures from
each g-node subnetwork staying within the system would be routed to
each possible g-node subnetwork with equal probability. Each g-node
subnetwork would also have its own external arrival processes. Then
the equilibrium vector of jobs of each class at each node in the open
model is the same for all g-node subnetworks and is independent of n.

2. Gordon and Newell propose a refinement to the FPM approxi-
mation for large networks, (27) in Ref. 2, which is obtained by
approximating the probabilities involving the large partial sums in the
numerator and denominator of by the normal density function. This
is justified by the Remark on p. 77 of Ref. 12.

Vi. THE FPM METHOD WITH A DECOUPLING INFINITE-SERVER
NODE .

We now consider the special case of a closed network with an IS
node. As in Section V, we allow p different job classes. We introduce
this added complexity here because our algorithm is particularly well
suited to cope with it. Let each class have its own population and
routing probabilities. Let there be g + 1 nodes with node g + 1 being
an IS node and assume that it is visited by every class. (It would
suffice to have different IS nodes visited by different classes. The
other nodes visited by any class might include IS nodes too; the
designated IS node has especially low service rates.) Let u; be the
individual service rate of class j at node g + 1. Let K; be the given
fixed population of class j, 1 = j < p. (We are now in the setting of
Ref. 14, except that we are allowing multiserver nodes.)

. 'We now modify the original closed model by removing the departure
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processes for the p classes from the designated IS node and replacing
them by p independent external Poisson arrival processes to the
remaining g nodes. Let A; be the rate of the Poisson process for class
Jandlet A = (Ay, ---, Ap).

Let N% (o) be the equilibrium steady number of customers of class
j at node { in the g-node open network without the IS node based on
the Poisson external arrival processes with rate vector A. (We have
changed the notation somewhat to emphasize the dependence on }.)
We use the designated IS node to determine the appropriate arrival-
rate vector ). Since the arrival rates equal the departure rates in the
open network, the departure rate of class j from the g-node open
subnetwork is also A;. Since these departures all leave from the
designated IS node, we use the IS node to enforce consistency. In
particular, we require that the arrival rate be equal to the departure
rate for each class at the IS node, i.e.,

5 = \K -3 EN:-’,-(A)') " (28)

i=1

for each j.

Since the expected equilibrium number of customers in a G/Gl/w
model (with general stationary arrival process) is just the arrival rate
divided by the individual service rate [e.g., see (4.2.3) of Ref, 19], eq.
(28) would be valid in the original closed model if (1) A were
the vector of arrival rates to the IS node and (2) T, EN}()) were
the correct mean number of class j customers in the g-node subnet-
work. However, 31, ENJ(}) is in fact an approximation based on
both A and the Poisson assumption. Even if } were correct, EN5(})
would be an approximation. In Section VIII we show that both
conditions are satisfied asymptotically if we let K; —.c0, u; — 0, and
Kjp; — ) for each j. (This is completely established only for the case
of one job class, but we conjecture that the convergence is valid for
multiple job classes t00.) Hence, there is reason to expect that the
procedure will perform well as an approximation for the closed model
under certain conditions. Interestingly, as indicated in Section I, these
conditions are the same as those in Ref. 14.

Equation (28) also coincides with FPM method. With the FPM
method we approximately solve the original closed model by finding
the external arrival rate in the associated {g + 1)-node open network
that makes the expected equilibrium population precisely K; for class
J- (We now regard the IS node as part of the open network.) However,
the expected population of class j customers in the IS node is A;/y;, so
that (28) is equivalent to ' )
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q+1 _
- K= I EN3() : (29)
for each j.

To complete the specification of the FPM procedure here, we must
identify the vector ) satisfying {28) for all j. This can usually be done
iteratively. The key is to recognize that the vector {EN3(}),1=<i=<gq,
1 = j = p} is a strictly increasing continuous function of (A, -- - , Ap).
We first bound »; above by

UP =K, 1= j<p. (30)

Then we bound A; below and above successively by

i=1

q
LY = (K; ~ ¥ EN(U®, ..., US"))#;

q
v = (k- $ ENGa, L) G

i=1
fork=1,1=j=p.Itis easy to see that
LP < LFN < )< UMY < UP, (32)

LY — N, and UY — ) for ); satisfying (28). [Use the fact that
EN¢()) is a continuous strictly increasing function of 3.}

To properly initialize the procedure, we must of course have (30) be
feasible arrival rates; i.e., we need stability:

ENSUD, ..., UY) < w (33)

for all / and j. Moreover, we need

q

Y ENG(U, .., UP) < K; (34}

i=1
for each j to have (31) be feasible rates. Conditions (33) and (34)
should hold if indeed K; is large, y; is small, and K;u; is not too large.
If conditions (33) and (34) were violated, we could search for initial
conditions satisfying the appropriate monotonicity.

In fact, such elaborate analysis as we have just described is often
unnecessary. If, indeed, K; is large and g; is small for each j, with no
node in the g-node network in heavy traffic, then it often suffices to
use the simple formula (30) as the approximation for the external
arrival rate A;. As indicated in (32), the approximation (30) yields
upper bounds for A; and EN$(}) for all i and j. Alternatively, the first
lower bound in (32} is often a goed-approximation, see. Section VIL

It is intuitively obvious that the first upper bound (30) for A in (28)
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is also an upper bound for the vector of throughputs in the original
closed model, and we prove this in- Section VIIL It also seems plausible
that the equilibrium queue length vector {N% (A)} in the open model
with ) in (30) would be a stochastic upper bound for the corresponding
random vector in the closed model, and we also prove this for the case
of a single job class. (The more general case of multiple job classes
remains a conjecture.) Theorem 1 in Section IV establishes for a single
job class that the FPM throughput in (28) is a lower bound for the
throughput in the original closed model. This extends to multiple job
classes by the remark following Theorem 4. Hence, for each job class
J, we have

L < L = ) = 67 = 65 = U, (35)

VII. EXAMPLES WITH A DECOUPLING INFINITE-SERVER NODE

In this section, we illustrate the FPM method in Section VI by
returning to Example 3 in Section 1.4, which is the central processor
model treated by McKenna, Mitra, and Ramakrishnan.® This is a
closed cyclic product-form network with two nodes. The first node is
the CPU, where service is provided according to the processor-sharing
discipline. Equivalently for our purposes because of insensitivity prop-
erties,>®1%% the service discipline can be FCFS with an exponential
serviee-time distribution. The second node is a think nede, which is
an IS node, representing independent delays at terminals before a job
is next sent to the CPU. Again, because of insensitivity properties,
only the mean of the service-time distribution at the IS node matfers.
We shall first consider the case of one job elass, which is test problem
2 deseribed in Table I of Ref, 13. Then we eonsider two job classes
and finally we consider the speeial case of a population of size one to
show that the FPM method can perform poorly when the approxi-
mating conditions do not nearly hold.

-

7.1 One job class

The specified model in Ref. 13 is closed with a fixed population size
(also referred to as degree of multiprogramming). We shall consider
the associated open model obtained by cutting the arrivals to node 1
and inserting an external Poisson arrival process with rate A. This
open model has a very simple solution. To express it, let u;' be the
mean processing time for each job at the CPU and g3! the mean think
time (individual service time at node 2). Let p, = M and oy = AMpz
and assume that p; < 1 to guarantee stability. The equilibrium distri-
bution in the open model has independent marginal distributions with
the marginal being geometric at node 1 and Poisson at node 2:

P(N3 = ki, N§ = ko) = (1~ pobie™al/bs  (36)

1948 TECHNICAL JOURNAL, NOVEMBER 1984 -



With the FPM method, we set the expected equilibrium total pop-
ulation equal to K i.e.,
£ A A

+a= + 2=k (37)

EN° =
1-p m— A

Hence, we obtain the following formula for the external arrival rate A:
2yl =1+ x(1 + K) — V[1 + (1 + K)x]* — 4Kx, (38)

where x = po/p;. By using a Taylor series expansion in powers of x,
we see that

Mu = Kx — Kx%2 — K(K — 1)x® + 0(x%), (39)

so that A = Ku, when u, and u,K are sufficiently small compared to
-
In contrast, for the closed model we combine (9) and (36). This is
conceptually simple, but the calculation can be complicated for large
population sizes. McKenna, Mitra, and Ramakrishnan®® used this
example to illustrate the advantage of PANACEA over previous con-
volution algorithms for the closed model, such as are contained in the
software package CADS.®! For large population sizes, CADS was
unable to obtain a solution, while PANACEA obtained a solution
easily. Moreover, for all population sizes, the throughputs caiculated
by the two methods agree closely.

1t is significant that comparable results can be obtained for this
example by the FPM method by hand. We do not even need to use
(38); we can simply use (30) to obtain A = Kp,. A comparison of the
throughput calculations appears in Table I. In this example we have
small g» (uy = 1/240 and g; = 1) and large K (K = 10, 50, 100, and
200). Since the FPM method throughput provides a lower bound on
the closed network throughput, the FPM answer is essentially exact
for K = 100. As in Refs. 13 and 14, the FPM procedure works best
here if u, is small, K is large, and Ku, is not too close to g;. Under
heavy loads, the open-network M/M/1 formula at node 1 keeps the
throughput down with the FPM method.

The last two columns of T'able I contain the first two and first three
terms of the Taylor series expansion in (39); the first term of course
corresponds to the first upper bound in (30), which appears earlier in
the table, Evidently the algorithm in Section VI converges faster than
the Taylor series for larger values of K,

7.2 Two job classes

We now give additional details for test problem 2 in Ref. 13, which
differs from Test Prob_lerp 1 only by having two job classes. Node 1
(the CPU) is again a processor-sharing node and node 2 is the IS node.
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The mean service times for the two classes are 1 and 1.5 at the CPU
and 450 and 150 at the IS node, respectively. Let p;; be the service rate
of class j at node { and let K; be the population of class j. The first
upper bounds for the approximate arrival rate, obtained from (30) are

UY = Ky (40)

The associated approximate CPU utilization of class j, say p;, is thus
p; = Kjugi/uy; and the associated approximate total utilization of the
CPU, say p, is p = py + p2- The first lower bounds on the approximate
arrival rates, obtained from (31), are

LY = (K; — pi/(1 ~ p)psj. (41)
The associated approximation for the total CPU utilization is thus
p = L pn + LP/ura. (42)

In this case we only compute the first upper and lower bounds.
Table IV shows that the approximation procedure works very well.
We are able to produce results very close to those given in Ref. 13 by
hand in a few minutes. As suggested in Section VI, the first lower
bound in (31) and (41) seems to provide a good approximation, even
though it is a lower bound. From (35), the first upper and lower bounds
from (40) and (41) are upper and lower bounds on the threughput in
the closed model.

7.3 Where the FPM method performs poorly

When the populations are not large, the FPM method can perform
poorly. This is easily and dramatically demeonstrated with the same
two-node closed network in which there is a single job. Let node 1
have one exponential server at rate 1 and let node 2 be the designated
IS node with individual service rate x.

The exaet equilibrium distribution has the job at node 1 with
probability x/(1 + x), which is also the associgted long-run flow rate

Table IV—A comparison of the approximation method with exact
results for the two-class example in Section 7.2

Number of Tota)] Utilization of CPU
dobs For th o iyats
(Degres of 'or the Closed Mode’l New Approximation
Multipro- From Ref. 13 “Version First First
gramming) 2.1of Upper Lower
Class 1/Class 2 CADS PANACEA PANACEA Bound (40) Bound (41)
10/10 0.118 0.119 0.121 0.122 0.121
50/50 0.693 0.60 0.598 0.611 0.598
100/50 . Breakdown  0.69 0.706 0.722 0.704
200/10 Breakdown  0.54 0.540 0.544 0.540
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out of node 2. However, the actual arrival process to node 1 is a
renewal process in which the renewal interval is the sum of two
independent exponential variables, one with mean 1 and the other
with mean 1/x. Moreover, the arrival rate depends dramatically on the
state.

When we carry out the approximation procedure, we treat node 1
as an M/M/1 queue, so that (28) becomes

A =1 = A1 = M, {43)

which requires A < 0.5 to have a solution. As x — o, A{x) — 1/2.
Obviously, the approximation does not work well in this case. The
approximate throughput approaches one-half, while the true value in
the closed model approaches 1 as x — . The normalized difference
A = (§° — 8°)/u, approaches one-half, which in Section Il we conjec-
tured was the lower bound.

VIHL. SUPPORTING THEORY WITH AN INFINITE-SERVER NODE

In this section we establish some theoretical results that help explain
why and when the FPM algorithm in Section VI approximates the
closed models well. As in Section VI, we assume that there is an IS
node visited by all classes. We show that the subnetwork of the closed
Markov network without the IS node approaches an open Markov
network as the populations inerease and the service rates at the IS
node decrease appropriately (see Theorems 8 and 9). As a consequence,
we show that the FPM method is asymptotically correct for the elosed
model under these conditions (see Theorem 12).

8.1 A sequence of closed models

As in Section VI, there are p job classes and ¢ + 1 nodes with node
g + 1 being the IS node that is visited by every class. We consider a
sequence of systems indexed by the superscript n. Let uf be the
individual service rate of class j at node g + 1 in the nth system. Let
K7} be the fixed customer population of class j in system n. As with
Poisson approximations for the binomial distribution*! and as in Ref.
18, the idea is to let K}— o and pf— 0 in such a way that Kfu?— X;
for eachjasn — o,

We let the remaining network structure and parameters be fixzed,
independent of n; neither the total numbers of nodes ¢ + 1 and classes
D, nor the parameters of the g-node subnetwork change with n. We
still assume the basic Markov Jackson network structure specified in
Section I, modified to allow multiple classes, but many of the resuits
extend to more general models (see subsequent remarks).

Let p;; be the probability that a departure of class j from the IS node

- . goes next to node i in the q_-hode subnetwork. (There could be imme-
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diate feedback to the IS node, which occurs for class j with probability

1- 3% pi)
Let A(t) be the counting process in the nth closed system repre-

- senting the number of departures of class j from the node g + 1 in the

interval [0 t] that go next to node i. Let N(t) represent the number .
of class j customers at node [ at time ¢ in the nth closed system. Let
AP, A, N7, and N represent the associated stochastic processes,
ie.,

AT = AR, t = 0}

A=A 1=j=<p 1=iz=q]

Ni = (NF(@), t = 0}
Ne=|Nml=<i<gl<j<pl (44)

We can initialize the closed networks at time 0 in various ways, For
example, we could assume that all K7 + --- + K} customers initially
are at node g + 1. We will later simply assume that the initial
distributions converge to a proper limit, which includes this situation
as a speeial ease.

Let Fijéx;) = WX, t) = [T, t), ¢ = 0} be a Poisson counting
process with intensity Ay, and let If = H (1) be a pg-dimensional
veetor of independent Poisson processes with intensities A = (\;; 1 <
J=p,1=i<g)ie, '

HQ) ={H{N), 1 <j=p,1=i=gql (45)

Let N{(¢t) represent the number of class j customers at node [ at time
¢t in the g-node open network obtained by deleting the IS node and
replacing its departure process with the external Poisson arrival proc-
ess II()A). By “external” we mean that we have the standard open
model in which future arrivals are independent/of the network state
and history; i.e., {Hﬁ()\ﬁ, t+ u) — I'I,-,-(h,-.-, hu=01=<i= ql=
J < p} is independent of {N¥(s),s<t,1=<i=<gq,1<j=p] foreacht
In both the open and closed models, successive service times and
routings are mutually independent and independent of the history of
the network prior to their generation. (At this point we are not using
the FPM method in the open model; the "arrival rates are simply
specified as A.) Let N° be the associated vector-valued stochastic
process.

The following theorem expresses how the g-node subnetwork of the
(g + 1)-node closed network without the IS node approaches a g-node
open network as n — . The convergence of stochastic processes

- described below is convergence in distribution (weak convergence),
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which we denote by = (see Refs. 28 and 29 and references there). The
stochastic processes are random elements of the function space
DI[0, ) = D([0, »), RP). '

Thearem 8: Let Nji = M\jpji for each jand i. If K7 — o, uf— 0, Kip} —
A; for each j, and N*(0) = N°(0) in R™ as n — oo, where N°(0) is
a proper random vector [P(N}(0) < o) = 1 for all i and j), then as

L —» 0

(@) A" = 1I{(})
and
(b) 11“\.;“-.-::= I..\Ia'

(c) If, in addition, {{N{(0)]*} is uniformly integrable, then
E[NP(t)]* — E[N3(O)

for each i, j, and t.

In the proof, as in Section IV, we use the notion of stochastic order.

One random element (random element of R, R, D[0, =), ete.) X, is
stochastically less than or equal to another X, denoted byX; =, X,
if ER(X,) = Eh(X;) for all nondecreasing real-valued functions h for
which the expectations are well defined.* Fer this a partial ordering
must be defined on the sample space, which we take to be the usual
one; e.g., {x, ---, %) < {y1, -+, y&) in R* if x; < ¥, for each i and
{x(t), t = 0} = {y(2), t = O} in D[0, )} if x(¢) = y(¢) for each &,
Proof: (a} The proof follows Ref. 18, which establishes convergence te
a Poisson process for the departure process of certain G/Gl/o queues
under similar conditions. The result is not already contained in Ref.
18 because the arrival process to the IS node here is changing with n.
However, by Corollary 1 to Theorem 1 in Ref. 18, it suffices to show
that A = A w, where o(t) =1, ¢t = 0, as in (3.1) of Ref. 18, and A*" is
the stochastic intensity of the counting process A, defined by

N (E) = [K] — NT ()]s t=0. (46)

(For related theory, see Ref. 30 and references there.) The desired
weak convergence of A follows easily from (46) because, for any T,

Sup. NF(t) <« NF(0} + Iu(Kfelps T), (47)

where =<, denotes stochastic order defined above and the two quan-
tities on the right are independent. Since we have assumed that N°(0)
converges and that N7(0) is proper and since KJulp;; — A as n — o,
(47) implies that the sequence [N} is uniformly tight (see p. 37 of
Ref. 28). This implies that N7 u7= 0w as n — = and the desired
conclusion. . ¢

(b) Convergence in distribution of -N*" follows by model continuity
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as in Refs. 31 and 32. In particular, given part (a), we can construct -

versions of 4°" and II(}) on the same sample space so that there is
convergence of the sample paths, using the Skorohod embedding
theorem.” Using the same service times and routing in all systems,
we obtain convergence of the sample paths of N°* to N° with proba-
bility one on the specially constructed space. (Since II()) has no fixed
jump points, simultaneous transitions need not be considered.) This
implies convergence in distribution of the separate stochastic proc-
esses.

{c) The stochastic dominance used in part (a) and the new condition
imply that the random variables {{N{(t)}*, n = 1} are uniformly in-
tegrable (see p. 32 of Ref. 28). Part (b) implies that NT () = N2(t)
as n —» o for each {, j, and . Theorem 5.4 of Ref. 28 thus implies
convergence of the moments. []

Remarks: 1. All the conditions on N (0) hold trivially if all Kt +
.-+ + K7 jobs are initially at the IS node for each n.

2. The conditions in Theorem 8 can be relaxed. The g-node subnet-
work of the closed model can be quite general; e.g., the service-time
distributions can be nonexponential with FCFS nodes. Our proof only
exploits the fact that the service-time distribution at the IS node is
exponential. The service-time distribution at the IS node could be
made general too, as in Ref. 18, but then we would have to be careful
with the initial conditions. If the initial residual service-time distri-

- butions at the servers are independent stationary-excess distributions

of a service-time distribution that has no mass at zero, then part (a)
holds by virtue of the limit theorem for the superposition of independ-
ent and identically distributed (i.i.d.) stationary renewal processes.®
Of course, if the service-time distribution has positive mass at zero,
then the limit process is, instead, batch Poisson with geometric
batches. O

Theorem 8 implies that the random vectors A°*(t) and N**(¢) in R
converge in distribution as n — o for each ¢, but Theorem 8 says
nothing about the equilibrium distributions. In fact, we have not yet
ruled out the possibility that the open network is unstable; i.e., we
could have N§(t) = o as t —s . Indeed, Theorem 8 is still valid in
this case, but now we consider the equilibrium distributions. Let
N¢*(e) and N°(0) be random vectors with the equilibrium or limiting
distributions as t — o, (For the continuous-time Markov chains, they
are necessarily unigue.) We assume that the limiting Poisson inten-
sities Ay are small enough so that the equilibrium or limiting distri-
bution for N°(t) exists.
Theorem 9; Assume that a proper equilibrium distribution exists for
N°. Also, assume that either (1) there is a single job class or (2) the
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sequence {N" (), n = 1} is uniformly tight. Then, under the cond;twns

of Theorem 8, N () = N°() in RPas n — oo,

We defer the proof of Theorem 9 until we develop some stochastic
comparison tools, which are interesting in their own right. We are able
to establish the desired stochastic comparison result (see Theorem 11)
only when there is a single job class, which explains the second
assumption in Theorem 9. We conjecture that the required tightness
in Theorem 9 can be proved from the other assumptions for multiple
classes.

8.2 Stochastic comparisons

For the counting processes A and IJ()\), we use the notion of
stochastic order based on conditional failure rates or stochastic in-
tensities, introduced in Ref. 34. The stochastic intensity of the vector-
valued stochastic process A“*(t) = {A{ ()} is defined in (46). Of course,
the stochastic intensity of the Poisson process II(A) is the determin-
istic funetion Aw. Following Ref. 34, the counting process A" is said
to be stochastically less than or equal to the Poisson process II()) in
the sense of conditional failure rates, here denoted by 4 <, II(}), if

AP e} = Xy (48)

with probability  for all j, §, and ¢ (=, is used in Ref. 34). From {46),
it is easy to see that indeed {48) is satisfied. Hence, trivially we have
Theorem 10.

Theorem 10: If Kiu? = \; for each J, then A™ <; II(}).

Coroliary to Theorem 9: In the setting of Section VI, K;u; is an upper
bound for the expected average throughput for class j over any time
interval. Hence, the first upper bound for the FPM method in (30)
yields an upper bound for the long-run throughput of each class in the
closed method.

We now establish a general stochastic comparison between N and
N°. We exploit a coupling or special, almost surely ordered construc-
tion, as in Refs. 33 and 34. To establish a general comparison result
for N and N°®, we assume that there is a single customer class. We
thus drop the j subscript. We also exploit the fact that the processes
N°*and IN° are continuous-time Markov processes, but now the service
rate at node i when there are k& customers present can be a general
nondecreasing function, say pi{k), forl=i=gq.

Theorem 11: Suppose that there is a single job class with K"p™ < X, Let

the processes N°* and N° be Markov with the service rate functions

ui(k) nondecreasing in k foreach i, 1 =i < q.
(a) If N<"(0) =, N°(0) in R, then N°* <, N° in D[0, ).
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(b} If, in addition, the eqisilibrium distribution for the open network
exists, then also N*" () <, N°() in R
Proof: (a) The argument parallels that of Theorems 6, 7, and 10 in
Ref. 34. For more details on the method, see Sonderman.®® First,
Theorem 10 implies that versions of the arrival processors 4" and
II(A) can be constructed on the same probability space so that the
points of A% (t) form a subsequence of the points in I1;(A;, ) for each
J {j =1 here) and { (the ordering <, in Ref. 34). Next we can construct
the service completions for N** using the service completions of N°. If
there is a service completion at node i in process N° at time £, then we
let there be a corresponding service completion at node i in N°* with
probability (N7 (2))/u(N%t)). When there are service completions
in both processes, we let the routing be identical. By using induction
on the transition epochs, we see that this special construction keeps
the sample paths ordered and the distributions of the individual
stochastic processes N* and N° unchanged.

(b) The stochastic order for each ¢ as a consequence of part (a) is
preserved in the limit as t —» o (see Proposition 3 of Ref. 33). O

Remarks: 1. 1t is not difficult to see that Theorem 11(a} is not true for
multiple job classes. For example, consider a network with two nodes
plus the IS node and three job classes. Let class j jobs go from the IS
node to node j and then back to the IS node for j = 1, 2. Let class 3
jobs go from the IS node to node 2, then node 1 and then back to the
IS node. Let all service rates be identical at nodes 1'and 2. Let K7 and
K% be large and p] and g% be small so that the arrival processes of
classes 1 and 3 are both nearly Poisson in the closed model. On the
other hand, let K% = 1, so that A%} is considerably smaller (stochasti-
cally) than the Poisson process associated with the open model. Let
nodes 1 and 2 be initially empty. For some relatively short initial time
interval, say [0, t], in the open model there are more arrivals of class
2 to node 2, with negligible change for classes 1 and 3. These class 2
jobs at node 2 tend to impede the class 3 jobs at node 2, so that the
class 3 jobs come to node 1 more slowly in the open model. Hence,
the class 1 jobs can get through node 1 more easily; thus, we can have
ENgl(t) =E irf(t) even though Klﬂ]_ =< A1

2. Even though Theorem 11(a) does not extend to multiple job
classes, we conjecture that Theorem 11(b} does. That would be suffi-
cient to eliminate conditions (1) and (2) in Theorem 9.

Proof of Theorem 9: Since N and N° are continuous-time Markov
processes with the given equilibrium distributions, we can apply Theo-
rem 8(b) here and Lemma 1 of Ref. 31. This implies that the desired
convergence [N"(x) = IN°() holds provided that {N**(x), n = 1} is
uniformly tight. We use the fact that N** and N° have unique equilib-
rium distributions. For the case of a single job class, the sequence
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{N*(w), n = 1} is uniformly tight by Theorem 11(b). The stochastic

dominance implies the desired uniform tightness because each indi- ~

vidual probability measure is tight (see Theorem 1.4 of Ref. 28). 1.
Remarks: 1. Of course, Theorem 9 applies to othér non-Markov prod-
uct-form models that have the same equilitbrium distributions by virtue
of insensitivity properties.?19%

2. Theorem 9 also holds for more general service-time distributions
in the g-node subnetwork provided that we can establish the uniform
tightness. The original processes N°* and N° can be made Markov by
appending supplementary variables.

3. If the service-time distribution for class j at the IS node is phase
type instead of exponential, then Theorem 10 remains valid with
A= Kju!", where p" is the maximum phase service rate for class J.
If the open network process N° is stable with the high intensities ¥,
then we can apply the analog of Theorem 11 to obtain the tightness
needed in Theorem 9 (again for a single job class).

We now show that the first lower bound for the FPM method in
{31) is a lower bound for the throughput in the closed network. As
stated, this follows from (32) and Theorem 1, but we make stronger
comparisons using the stochastic intensity A of the arrival proeess
A", defined in (46).

Coroliary to Theorem 11: Suppose that there is a single job elass with
K"u" < )\, Fhen, for each i and t,

(e} AT(E) =a IK" — NOG))e"pus
and |
(b) EALI(t) = E[K™ — N°()}e"py-
If, in addition, both systems are in equilibrium, then

i -
(c) E {t‘1 f Aﬁ?(u)du} = L{" forallsandt

and
(d) 8¢ = L.

8.3 The FPM method is asymptotically correct

We now apply Theorems 8 and 9 to deduce that the FPM method
in Section VI is asymptotically correct. Due to the second assumption
in Theorem 9, we only completely treat the case of one job class. Let
A and N°" be the vector-valued arrival process and queue length

_process obtamed by using the FPM method with the nth closed model.

' Theorem 12: Under the cond:twns ‘of Theorem 8, as n — w, -
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(a) A" = LA,

(b) gon —_ No,
and .
(¢) E(NF(®)* — E(Ng(£)*

for each i, j, k, and L. . _
(d) Under the conditions of Theorem 9, for sufficiently large n,
N°"() exists as a proper random vector and N°"(c) = N°(%) in R™,

- Proof: (a) Since A°" is a Poisson process for each n, it suffices to show
that the associated arrival rates converge. For this, it suffices to show
that the difference between the first lower bound in (31) and the upper
bound in (30) is asymptotically negligible, which is immediate under
the conditions of Theorem 8. Parts (b) and (c) follow exactly as in
Theorem 8. Theorems 10 and 11 extend easily when 4°* and N°*
replace A" and N** since the limiting system is the first upper bound
for the FPM method. Finally, part (d) follows exactly as in Theorem
9. O

IX. A BOTTLENECK NODE WITH A LARGE POPULATION
9.1 A different approximation procedure

In this section we cbserve that the methods and results of Sections

VI through VIII also apply, after appropriate modification, to closed

networks with a bottleneck non-IS node. We first consider the case of

one job class. For large populations, all servers at the bottleneck node

will usually be busy, so that we can approximately analyze the original

closed model by using the bottleneck node to decouple the network

just as we used the IS node in Section VI. We remove the bottleneck

node and replace its departure process by an external arrival process.

. . We then solve, exactly or approximately, the resulting open network,

Sesm If there are s servers at the botf:lfaneck no.d.e, thgn the external arrival

: ¥ Raatis: process would be the superposition of s i.i.d. rénewal processes each

having the bottleneck service-time distribution as the renewal-interval

distribution. The routing of the external arrivals is just the original

routing from the bottleneck node. When the service-time distribution

at the bottleneck node is exponential, the approximating external

arrival process is thus Poisson.®’ Otherwise, we would approximately

characterize the external superposition arrival process as in Ref. 7 and

apply the algorithm there to approximately analyze the resulting non-
Markov open network.

In this setting the bottleneck node is easy to identify. As in Section
IT1, we begin by replacing one internal arrival process by the external
arrival process with a rate sufficiently small to ensure stability. Let A;
be the net arrival rate to node { obtained from solving the traffic rate
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equations with the given external arrival rate, say A,. Then calculate
the traffic intensity at node { as p; = A\i/s;u;given that node i is a FCFS
node with s; servers, each working at rate u;. The node with the highest
traffic intensity is the bottleneck node; call it node ¢ + 1. We assume
that there are no ties. The capacity of the network is thus sg.yp541. We
can achieve any throughput less than sgs1p541 in the open model. The
traffic intensity becomes 1 at node ¢ + 1 at the capacity, which makes
the system unstable. It of course is well known that sy pq4 is an
upper bound on the throughput even in non-Markov networks (see
Ref. 11 and references there).

The proposed approximation procedure for the closed model with a
large population is to solve the traffic rate equations for the associated
open network and find the bottleneck node, which we denote by node
g + 1. Then solve the open mode! obtained by deleting node g + 1
from the closed network and inserting an external arrival process with
rate Sgi1ug+1. However, unlike Sections III and VI, we do not use the
FPM method for the full (¢ + 1)-node network; we do not require a
consistency -condition such as (28). We simply let the approximate
number of jobs at node g + 1 in the original closed network be

q
EN§+1(°°) = K — 2 EN ?(Sqn.uqﬂ)'- (49)
=]

If there are quite a few nodes but not a large population, we will use
the original FPM method, but as the population grows with the number
of nodes fixed, the effect of the bottleneck node becomes more pro-
nounced.

9.2 Limit theorems

The approximation procedure just described is evidently quite well
known. Supporting limit theorems are discussed by Whittle® and
Brown and Pollett.3® The methods and results of Section VIII provide
a convenient way to prove that the approximation procedure is asymp-
totically correct for the g-node subnetwork excluding the bottleneck
node as the population grows. Since the results and methods are
similar to those in Section VIII, we only give a brief account. The
analog of Theorem 8 is for one customer class. We let K] — o« as
before, but now we fix uf, the individual service rate at node ¢ + 1.
When the service-time distribution at the bottleneck node is exponen-
tial, we can use the obvious modification of the proof of Theorem 8(a).
With general service-time distributions, it is easy to show that the
probability that all servers are busy at the bottleneck node throughout
any interval [0, t] converges to 1 as n ~» . The rest of Section VIII

applies in a straightforward manner, with essentially the same remarks -

about generalizations.
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9.3 Multiple job classes

We now consider multiple job classes with a special bottleneck node.
We assume that there is a single-server processor-sharing bottleneck
node with fixed total service rate g whenever any customers are
present. Let the service requirements of class j at the bottleneck node
be exponentially distributed with mean p;'. Let the population of
class j in the network be K;.

Again the approximation is obtained by replacing the bottleneck
node by an external Poisson process with rate u. Each of these external
arrivals is from class j with probability

Y = Kj#j/(Klﬂl + -+ Kpf‘p)' (50)

Consequently, as in Section VI, there is a pg-dimensional vector of
independent Poisson processes with the intensity class j going to node
i being A = pv;pji. The limit theorems in Section VIII also apply here.
As before, Theorem 11{a) does not hold for multiple job classes.

9.4 Another stochastic comparison

We now make a stochastic comparison between the closed mode}
and the open model resulting from the bottleneck approximation. We
consider the case of one job class. We compare the g-dimensional
equilibrium distribution of the subnetwork of the closed model without
the bottleneck node to the g-dimensional equilibrium distribution in

“the g-node open model with external arrival rate p,.15;;. We show

that the equilibrium distribution based en the bottleneck approxima-
tion is larger in a very strong sense, namely, in the MLR ordering
used in Section 4.3.

Let (N5, ---, Ng) be the equilibrium random vector in the closed
model with population K without the bottleneck node, defined in
terms of an associated (g + 1)-dimensional open-model equilibrium
random vector (N9, - - - , N3+1) by

P(Ny=hy, ---, Ni=kg)

q
P(N{=h) --- PINg=k)PINGu=K— X k)
= = (51)
P(N°=K)
for (ky, ---, kgysuchthat by + --. + k< K, -

Let (NY, ---, N%) be the open-model equilibrium random vector
with utilization at node i of 1{/:3+1, where u?is the utilization of node
iin (N3, --+, Ng4u1) in (51). We assume that uf < uj,, for all i, This
is tantamount to having an external Poisson arrival process with rate
ULg415¢+1 in the g-node open network. - :

o

Theorem 13: (N§, -+~ , Ng) <y, (N}, ==+, N§).
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Proof: It is immediate that the distribution of (N3}, --. , N%) is MTP;
because the marginals are independent (see-Proposition 3.5 of Ref.
50). Consequently, by Theorem 3 of Ref. 48, it suffices to show that
P1{¥)p2(x) < pi(x)po( ¥) for all x < y, where p; and p; are the associated
probability mass functions. Moreover, it suffices to consider y differing
from x by 1 in only one place, e.g., x = (&, ---, k) and y = (& + 1,
ko, - - - , ky). We verify this as follows:

PNS=hi+1, -, Ns=hk) PINS = by, .-+, N} = by)
P(NS=Fhy, -+, Ns= k) PIN = by + 1, -+, Nb = k)

9
PNy =k + 1)P (N“.,H =K-— 3% k— 1) P(N§ = ky)
J=1

=1

q
P(Ni =R)P (N%H =K-% k,-) P(Ni=k +1)

1
because, for all j,
P(N3 =j+ 1)/P(N§ = j) = ugu P(N3 = j + 1)/P(N{ = j)
and
P(Ngn =j + 1)/P(Ng =J) = ugn. (52)

To verify (52), recall that N¢., has the equilibrium distribution of a
birth-and-death process, so that

ijP(Ns-{-l =]) = ﬁj+1P(N3+1 =j+1),

where i is the arrival rate when N34, = j, which is independent of j,
and j;, is the service rate when Ng,, = j + 1. When there is one
BEIVET, US4y = )\,/p,ﬂ for all j, but in general, ji;; = pe+1 minfj + 1, s},
so that uq+1 = A /ﬂ_,.,.]_ O

Remarks: 1. Theorem 13 has corollaries like those for Theorem 6. For
example,

P(N:= ki|lgj< Ni< b) < PNtz kla;< Ni<b) (53)

for all i, j, k;, a;, and b;. Inequality (53) is interesting both when i = j
and i # j. Of course, when i # j, the right-hand side of (53) reduces to
P(N%= k).

2. As in Section VIII, we can obtain results for the equilibrium
distribution associated with other queue dlsmphnes by invoking insen-
sitivity properties.3-1920

3. Algorithms for identifying bottleneck nodes and treating them
are described by Schweitzer™ and Goodman and Massey.* Stochastic
bounds for open networks-of-single-server nodes are contained in
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Massey.* These bounds apply to closed networks too by combining
them with the comparison results in this paper.

4. As the population increases, the closed network can be said to be
in heavy traffic. However, only the bottleneck node accumulates jobs
in the limit. The number of jobs at the nonbottleneck nodes is
asymptotically negligible compared to the number at the bottleneck
node. In fact, by the analog of Theorem 9, the number of jobs at all
nonbottleneck nodes, unnormalized, converges to a proper limit, as
the population grows. Instead of the complicated multidimensional
diffusion process approximations for networks of queues described in
Reiman,® we have significant accumulation of customers only at the
bottieneck node alone. The situation here is an example of the diffu-
sion approximations with state space collapse discussed by Reiman.®
However, because we are considering a closed network, the number of
customers at the bottleneck node is best described by K — ¥4, N2
Indeed, as a trivial corollary to the analog of Theorem 9, we have

g
(N ~ K™) = 3. N} (54)

=1
as n — . Unless there are ties for the maximum traffic intensity,
only one nede will be a bottleneck node for both closed and open
networks. Moreover, because of the geometrie tails of the queue length
equilibrium distributions in Markov networks, slight differences in

- traffic intensities will rapidly lead to laxge differences in the queue -

lengths as the population grows. Consequently, the case of a single
bottleneck node treated here seems most relevant for applications.

X. APPROXIMATIONS FOR NON-MARKOV €EOSED NETWORKS

10.1 Several possible approximation procedures

" Suppose, as in Ref, 7, that the Markov property is lost because we
are considering FCFS nodes with nonexponential service-time distri-
butions. There are two natural procedures for calculating approximate
congestion measures for such non-Markov closed networks based on
previously developed approximations for non-Markov open networks.
Just as we can use Markov open models to analyze Markov closed
models, we can use the approximate solution for an associated non-
Markov open model to generate an approximate solution for the given
non-Markov closed model.

The first procedure for non-Markov c¢losed models starts with the
approximate equilibrium distribution of the number of customers at
each node in the associated open model, as described in Section IIL

+ -~.Then the corresponding equilibrium distribution for the closed model.

-canbe obtained by conditioning-as-in (9). For the open model, the
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- standard approximation procedure is to use a product-form solution-
(an equilibrium distribution with independent marginal distributions).
This is the procedure first suggested by Reiser and Kobayashi.®” The
Extended-Product-Form (EPF) method of Shum and Buzen®®* and
the Generalized-Product-Form (GPF) method of Tripathi® are also
variants of this approach. A complete approximation thus is deter-
mined by specifying the equilibrium distribution of the number of
customers at each node in the open model. For example, with QNA’
this can be done by fitting a discrete distribution to the quantities
P(N?= 0}, E(N?), and Var(N?, which are currently provided in the
model solution. In fact, in Ref, 7 an approximation for the waiting-
time distribution at each node is obtained in this way. For single-
server nodes, it is natural to use mixtures and convolutions of geo-
metric distributions for the conditional distribution of the number of
customers at each node, given that the server is busy. Such an
approximation procedure based on QNA is currently being investi-
gated.

There are some difficulties with this first procedure, however. We
must do the same extensive calculation to find the normalization
constant G as we do with the Markov closed model, so that we obtain
no reduction in computation working with approximations. We can of
course use many of the same algorithms now being vsed for Markov
closed networks.®

The second procedure is to use the open model directly, as with the
FPM method. We believe that this method can be expected to work
about as well as it does for closed Markov models. Now, in the setting
of Ref. 7 we also have variability parameters. In particular, we must
specify a variability parameter as well as an arrival rate for the special
new external arrival process.

There are three different situations. First, with a decoupling IS node
containing most of the customers (under the conditions of Section
V1), it is natural to use the FPM method and approximate the external
arrival process by a Poisson process, so that there is no problem
selecting the variability parameter; set it equal to 1. However, now it
is important that the external Poisson arrival process replace the
departure process from the special IS node. This process will be
approximately Poigson, even with nonexponential service-time distri-
butions.

Second, with a bottleneck node having s servers as in Section IX, it
is natural to regard the arrival process as the superposition of s
independent renewal processes each with the bottleneck service-time
distribution as the renewal-interval distribution. When s = 1, the

procedure is clear: use the squared coefficient of variation of the °
. bottleneck service-time distribution. When s > 1, we can use approx- ; -
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- imations for superposition processes as in Section 4.3 of Ref. 7. As
- described in Section IX, we would not use the FPM method, but
" instead the open model with the bottleneck node removed.

The third situation is where the FPM method is appropriate but
the variability parameter needs to be determined. In Section 10.2 we
discuss this case in detail.

There are of course many other procedures for approximately ana-
lyzing non-Markov closed networks with nonexponential FCFS

7 nodes,*!'1?25162 hut we do not discuss them here.

10.2 The FPM method for non-Markov models

A simple procedure for the FPM method more generally, in the case
of a single job class, is to first specify an external arrival rate X, and
then, for that specified arrival rate, solve a system of linear equations
to obtain the variability parameter c§(A) that makes the variability
parameter of the departure process from the network equal to the
variability parameter of the external arrival process. (The reason for
doing this, of course, is that in the closed network these two processes
are actually the same process.) We then solve the open model for a
range of possible external arrival rates, associating c3(Ao) with X, each
time. As before, the throughput when the population is K is the value
of A; such that EN° = K.

We now deseribe in detail a modifieation of the @NA algorithm in

"Ref: T that has been developed to approximately analyze a closed non-
Markov network of queues with one job ¢lass by the FPM method.
The initial model is just as in Ref. 7 but without esternal arrival
processes. In partieular, the nodes have the FCFS discipline, several
servers, and general serviece-time distributions. We assume that the
reader is familiar with Ref. 7, and we use the same notation here.

The model input is a minor modification of the standard input in

o Section 2.1 of Ref. 7; we just omit the data for the external arrival
il processes. For each network we specify the following:

VR

n = number of nodes in the network

m; = number of servers at node j

7; = mean service time at node j

¢Z = squared coefficient of variation of the service-time distribution
at node j ,‘

g;; = proportion of those customers completing service at node i that
go next to node j.

To apply the FPM method, we introduce an external arrival process

to one node, which we stipulate is node 1. To see how the expected

- : -+ 4. network population depends on the external arrival rate, we specify a
S : set of external arrival rates, which are understood to apply to node 1.
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The set is specified by the following numbers:

L = lower bound for external arrival rate to node 1
U = upper bound for external arrival rate to node 1
C = number of different arrival rates.

Given the triple (L, U, C), the network will be analyzed C times
with the following external arrival rates to node 1:

N =L + k(U ~ L/C - 1) (55)

fork=0,1, ..., C — 1. The external arrival rates to all other nodes
are zero, To obtain the open model for the FPM method in each case,
we insert an external arrival process to node 1 with one of the rates
specified in (55) and we eliminate all internal arrivals to node 1. This
is done with the algorithm by setting g; = 0 for all i,

We begin by solving the traffic-rate equations, given the external
arrival rate Ay, exactly as in Section 4.1 of Ref. 7. This provides the
traffic intensities at the nodes, needed for the traffic variability equa-
tions.

Next we solve the traffic variability equations. The algorithm also
determines the variability parameter c3, for the external arrival process
to node 1. As indieated above, the idea is to have the variability
parameter of the external arrival process agree with the variability
parameter of the total departure process from the network (which
would have been the arrival process to node i in the closed medel}.
The equations in (24) of Ref. 7 are valid for j =2, ... , n; i.e., we have

Cﬁj =g; + 2 C%:bg, 2=<j=<n, {56)
=1

with g; and b; in (25) and (26) of Ref. 7. Since g;; = 0 for all §, ¢2; =
¢31. The variability parameters are solved by replacing the first equa-
tion in (24) of Ref, 7 with

n
ch=at+ Y cLb}, (57
{w]

where

af=1+w‘f‘{-—1+ 2, (di/d) [i gij

F= j=2
+ (1 -3 q;-,-) o (1 L 11)]}, (58)
Ju2 i
" B = widy/d) (1 - Ezq) A = od, (59)
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- d; is the departure rate from the network at node {, d=d, + .- - +d,
as in (23) of Ref. 7, and w} is the superposition weighting function in
{29) of Ref. 7 with p; in (30) there replaced by d;/d. .
We derive (57) through (59) as follows. First, the departure process
from the whole network is the superposition of the departure processes
(leaving the network) from the separate nodes. Hence, by Section 4.3
of Ref. 7,

s o ch=ut (E (d.-/d)cir?) + 1 - uf, (60)
i=1

where ¢37 is the variability parameter for the departure process from

the network at node i; i.e.,

Cd, = (1 - E qU) Cd, + 2 gij {61)

j=2

and

ci=1+ (1~ pHlck—-1)+—-= (62)

J_ (ck - 1),
using first the splitting formula (36) and then the departure formula
(39) from Ref. 7.
The rest of the modified QNA algorithm is just as in Ref. 7. We
" mext' calculate the congestion measures at the nodes using the traffic
rate and variability parameters already determined. By running the
algorithm a few times with various (£, U, €} triples, the user ean
easily select a set of external arrival rates to node 1 via (55} to yvield a
desired range of expected network populations in the open model. Fhe
algorithm also can automatically find the external arrival rate yielding
a specified expected equilibrium network population.
We can also use the finite-waiting-room refinement introduced in
WW%MW%%M Section 1.3 to calculate the congestion measures at the nodes in the
open model. For single-server nodes, we use the modifications in (2)
and (3), even if the nodes do not correspond to M/M/1 models.
Remarks. 1. Qur procedure above replaces an internal arrival process
to node 1 by an external arrival process. Instead, we could have
replaced the internal departure process from node 1 by an external
arrival process. It would then have been immediately split according
to the routing probabilities g;;. The original departures from node 1
would then be removed.
2. As mentioned in Section I, it may be desirable to artificially
deflate the variability parameters of the arrival processes. It is natural
S _ R to do this after the traffic var1ab1hty equations have been solved as
- ' - described above.
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3. The procedure can easily be extended to multiple job classes in
various ways. For example, we can let the variability parameters of
the external arrival processes for each individual class be unspecified.
We then can apply the procedure in (56) through (59) in this section
to specify the variability parameter for the overall external arrival
process in the aggregated single-class network obtained from Section
2.3 of Ref. 7. The only remaining complication is that instead of the
external arrival rates Ay determined by the single triple (L, U, C), we
now have a vector of external arrival rates determined by such a triple
for each job class. Automatic search obviously becomes desirable in
this setting.

4. The approximate solution using the FPM method can be fruitfully
combined with the exact solution of the corresponding Markov model
to obtain improved approximations for the closed non-Markov model.
For example, we can solve the closed Markov model to obtain uf as
the utilization of node i when the service-time distributions are all
exponential. We can also apply the FPM method twice, once with
general service-time distributions and once with exponential service-
time distributions, to obtain corresponding utilizations u2¢ and uf™.
We can then approximate u{%, the utilization at node i in the closed
network with nonexponential service-time distributions, by

u® = uMuluM. (63)

Since (65) can lead to inconsistencies such as uf® > 1, it is natural to
use

(1 —u® =1 —u™@ - e/ - u) (64)

for the node i with the largest utilization. We then calculate u® for
the other nodes using (15), which is justified for non-Markov models
as well as Markov models, e.g., by Little’s formula, (4.2.3) of Ref. 19.
At least, the ratios u?®/uf™ and (1 — uf)/(1 — uf™) can give a rough
idea of how much the nonexponential service-time distributions mat-
ter.

XIl. THROUGHPUT BOUNDS IN NON-MARKOV CLOSED NETWORKS

It is sometimes claimed that closed Markov models are suitable even
when the service-time distributions are not exponential. In particular,
it is sometimes claimed that the utilizations and throughputs, at least,
do not depend critically on aspects of the service-time distributions
beyond their means. Of course, this is trivially true for certain special
service disciplines such as processor sharing, for which there are
insensitivity results,*'*2 but with FCFS nodes the service-time dis-
tribution matters. Even with FCFS nodes, there is significant justifi-
cation for this view if the service-time distributions do not depart too

4
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drastically from the exponential distribution. However, in g‘egefal,
throughputs obtained with the Markov model can be very bad approx-
imations, as we show in this section. For example, for a eyclic network
with n single-server nodes, equal mean service times, and K customers,
we show that the set of possible utilizations for each server is the
interval (n~?, 1] for all K = n, whereas the utilization is K/(n + K —
1) in the Markov model by (14). For large n and K and arbitrarily
unfavorable service-time distributions with given means, the Markov
approximation can be arbitrarily bad. The true value can be arbitrarily
close to 0, while the Markov approximation is arbitrarily close to 1.

We consider the same non-Markov closed model as in Section X,
containing FCFS nodes with general service-time distributions, but
we restrict attention to single-server nodes. All the service times are
assumed to be mutually independent and the service times at any
given node are identically distributed. There is a single job class with
K jobs. A job completing service at node i is routed immediately to
node j with probability gy, independent of the history. The matrix
& = (g;) is a Markov chain transition matrix, which we assume is
irreducible. €onsequently, there i1s a unique equilibrium distribution
associated with @, defined by

N=2 Ng, l=j=n, (65)
i=1

with A; 4+ - .- 4+ X, = 1. By the law of large numbers, A; is the long-
run fraction of transitions that each customer spends in node j. The
system of equations (65) is also the basie traffic-rate equations for the
network of queues. The throughput or equilibrium flow rate through
node i, say #{, is proportional to A; i.e., 8f = yA; for some constant +.
Let 7; be the mean service time (which we assume is finite and
strictly positive) and let 1§ be the utilization (long run fraction of time
that the server is busy) at node i. By Little’s law, (4.2.3) of Ref. 19, or
by the law of large numbers again, we know the ratio of the utilizations,

ie.,

u?/uf = A,'T,'/Xjfj (66)

for any ¢ and j just as for the Markov model in (15).

We exhibit the infimum of the server utilizations possible for
service-time distributions with the given means. As will soon be clear,
the infimum is approached by quite unusual service-time distributions,
so that we do not rule out the possibility that the Markov model can
provide good throughput approximations for typical nonexponential
service-time distributions. The idea for minimizing utilizations is
really quite simple. For our model, at any time at least one server must
be busy. Hence, the sum-of the server utilizations must exceed unity: .
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> ui=1. (67)

j=1
A lower bound on the server utilizations is the case in which there is
no concurrency, 1.e., no two servers are ever busy at the same time.
This lower bound is obviously valid in much greater generality. It is
also attained in the case K = 1. It is somewhat remarkable that this
lower bound is actually approached for any K with the general inde-
~ pendent service times allowed here. This observation was apparently
first made by Arthurs and Stuck.!

It is, in fact, not difficult to attain this lower bound asymptotically
by considering special sequences of service-time distributions with a
common mean that get successively more variable. In particular, for
m =1, let X,. be a2 random variable distributed as

PX,=m)=1—-PXn,=0)=m™" {68)

[Alternatively, (X, ] X, > 0) could have some other distribution with
mean m, such as exponential.] Then let the service time at node i be
distributed as 7:.X,.

Theorem 14: (a) The infimum of the possible utilizations of server i for
this closed network model over all service-times distributions with
specified means is ~

inf i; = )\:r.- / E )\;rj.
=

(b) If the service times are not all deterministic, then the infimum is
not attained for K > 1, but is approached asymptotically for all nodes
simultaneously as m — o using the service-time distributions of ;X
described above.
Proof: (a) We informally sketch the proof. For very large m, occasion-
ally (among all service times generated) a long service time occurs at
some node. With high probability, thereafter all the other customers
instantaneously fly around the network until they arrive at this node,
where they all wait together in queue. (There is only one server at
each node.) The only other possibility, which occurs with asymptoti-
cally negligible probability as m — , is that one of the other customers
encounters another nonzero service time before all of the customers
are gathered together at the same node. This event yielding the
concurrency has asymptotically negligible probability because the
distribution of the number of transitions for any job to go from any
node i to any other node j does not change with m. Hence, for each of
the K — 1 customers there is a fixed random number of trials (with
finite mean and variance) to generate a new nonzero service time, but
the probability of doing so on edch trial is m~>. Hence, the proportion
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of time during which two or more servers are s:multaneously busy
converges to zero as m — .,

(b) On the other hand, it is trivial that concurrency cannot be ruled
out altogether when K > 1 and there is some randomness. For any
model with strictly positive expected service times, at least one non-
deterministic distribution, and an irreducible routing matrix, concur-

rency occurs with positive probability. The limiting case above is not -

legitimate because X, converges in distribution to the random variable
XwithP(X=0=1. O

Remarks: 1. It is not necessary to have all service-time distributions
be of the special form (68). It suffices to have all but one. The other
one can be arbitrary. At this designated node there will be a suecession
of ordinary service times after which the customer usually returns
immediately to the end of the queue. When a customer does get a
nonzero service time elsewhere, the others get there relatively quickly
with high probability when they complete service. It is again not
difficult to show that the proportion of time that there is concurrency
is asymptotically negligible.

2, A next step would be to obtain tighter bounds under extra
conditions as, for example, in Refs. 63 through 65 and references there,
However, as noted above, the special service-time distributions can be
H. (hyperexponential: a mixture of two exponential distributions), so
that does not help. It would obviously help to fix the variance though.

- We econjecture that-the X, distributions would yield the minimum

then.

3. The infimum decreases rapidly as the number of nodes increases.
The possible server utilizations are not so great with two nodes. For
example, suppose that g2 = gz; = 1, which makes the network cyclic.
Then A, = Ay = 1/2 and inf 1, = 71 /{7: + 73). In this case the maximum
is 1, which is attained with the deterministic service-time distributions
for K = 2. As before, the infimum corresponds to the case K = 1. In
the case of balanced loads, the utilization of each server must lie
between one-half and one. It is useful to recall that this two-server
cyclic network is equivalent to an M/G/1/K—1 queueing model when
one of the two service-time distributions is exponential (see Ref. 66,
p. 33 of Ref. 67, and Ref. 2). The M/G/1/K—1 model means that we
have an external Poisson arrival process, a single queue with one
server and an additional waiting room of size K — 1. Since we approach
the infimum if all but one service-time distribution is of the special
kind, the infimum is also valid for M/G/1/K—1 queueing model.

Xil. MORE NUMERICAL COMPARISONS

We have indicated that the approximation methods should perform -

better for larger- closed networks, but it is nevertheless useful to
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compare their performance for smaller ones. It is certainly important
to realize the limitations of these procedures. They often perform
poorly for small networks. ,

It is particularly convenient to consider two-node closed networks
because these networks are equivalent to special single-node models
that have been studied extensively and for which there are tables of
exact values.

12.1 Two single-server nodes

As we noted in Section XI, the closed model with K jobs (all of one
class) and two single-server nodes, one of which has an exponential
service-time distribution, is equivalent to an M/G/1 model with &
finite waiting room of size K — 1. Similarly, the two-node closed model
with K jobs and one IS node having exponential service-time distn-
butions is equivalent to finite-source M/G/1 model with K sources.
Tables for M/G/1 models with finite waiting room and finite sources
are contained in Ref. 67, for example.

Table V here displays the exact values and various approximations
for the throughput and the expected equilibrivm number of jobs
present in an M/G/1 model having a waiting room of size 10. This

Table V—A comparison of exact throughput and mean number in

system in the M/G/1/10 model having a finite waiting room of size

10 with approximations based on the bottleneck method and the
FPM method for G =M, D, and H,

FPM
t
Arrival Exact Values  Bottleneck Method Method Predicted 8

Rate & EN, o EN, & EN, With (64)

(a) Exponential Service Times (M)
0.50 0.4939 100 0.500 1.00 0455 084
0.75 0.7418 261 0.750 3.00 0.674 2.07
1.00 09167 650 1000 © 0846 5.50
1.40 0.9928 8.72 1.000 8.50 0.902 9.19
2.00 09998 10.00 1.000 10.00 0910 10.16

(b) Deterministic Service Times (D)
0.50 05000 0.75 0.500 0.75 0461 065 0.500
0.75 0.7494 1.85 0.750 188 0.695 1.43 0.744
1.00 0.9538 5,57 L0000 o 0,912 4.93 0.952
1.40 099898 961 1000 939 (9.63) 0973 968 0.998
2.00 1.0660 1037 1000 10.25(10.61) 0987 10.38 1.000

(c) Hyperexponential Service Times With ¢ = 2.25 and Balanced Means

0.50 0.4883 127 0.500 131 0449 1056 0.500
0.75 0.7248  3.01 0.750 4.41 0651 2.7 0.739
1.00 0.8829 534 1.000 ;o i 0.787  6.00 0.885
égg 09791 815 -1.000 38 0833 9.06 0.987

09985 975  1.000 969 - 0840 1010 1.000
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corresponds to a closed network with a population of 11 and two
single-server nodes. Three servicé-time distributions are considered:
exponential, deterministic, and hyperexponential (mixture of two ex-
ponentials). The hyperexponential distribution has squared coefficient
of variation ¢ = 2.25 and balanced means (see p. 8 of Ref. 67 or
Section 3 of Ref. 68). The service time is set equal to 1 and five arrival
rates are considered: 0.50, 0.75, 1.00, 1.40, and 2.00. The arrival rate
of 2.00 (1.40) corresponds to a traffic intensity of 0.50 (0.71) when the
nodes are switched. In each case, the FPM and bottleneck approxi-
mations are displayed in addition to the exact values. For the nonex-
ponential service times, the refinement in (64) is also displayed.

The exact values come from Tables 5.1.6, 5.2.6, and 5.4.12 in Section
11.5 of Ref. 67, using the FIFO or FCFS discipline. The approximations
are obtained using the GI/G/1 formulas (47} and (44) in Ref. 5 with g
in (45) of Ref. 5 set equal to 1. The approximate values using the
Krémer-and-Langenbach-Belz correction term in (45) of Ref. 7 are
given in parentheses to the right of the other values in Table V (b).

There are several important conclusions to draw from Table V.
First, as we should expect from Section III, the FPM method performs
poorly, much worse than the bottleneck method. However, it is im-
portant to remember that this small network tends to be a worst case
for the FPM method. It is also significant that the refinement sug-
gested in (64) produces quite accurate results. With this job population

{waiting room size), the bottleneck method seems to work reasonably

well as long as the utilization of the bottleneck node is no more than
about 0.75.

It is also useful, to consider the Finite-Writing-Room (FWR) re-
finement introduced in Section 1.3 in the context of Table Va. When
combined with the bottleneck procedure, the FWR refinement ob-
viously makes the approximation exact when n = 2. The FPM method
with the FWR refinement is also exact in the special case of equal
service rates. When n = 2, we must have EN? = EN? = K/2 by the
FPM method. With the FWR method, this implies that p; = 1 and
P(Ne=K)=1/(K+ 1),sothat i =uf = K/(K+ 1) > K/(K+ 2) =
uf, using (11) and (14). However, more generally the FPM/FWR
method does not perform well, at least for the mean numbers at each
node, when n = 2. For example, when the arrival rate is 0.50, the
FPM/FWR approximations are §° = 0.69 and EN, = 2.17. However,
applying (3), we obtain §*= 0.495 as a lower bound on the throughput.

From Table Vb we see that the bottleneck method continues to
perform well for the deterministic service-time distribution. In fact,
the bottleneck approximation is clearly much better than using the
exact M/M/1 values in Table Va as an approx1mat1on whxch is often
what is. done in practice.
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However, from Table Ve we see that the quality of the bottleneck
approximation deteriorates when we consider the more variable hy-
perexponential service-time distribution. Of course, the throughputs

_are always close and the mean queue lengths are good when the traffic
intensity at the bottleneck node is 0.5, but when the traffic intensity
is 0.70 or 0.75, the open-network view exaggerates the impact of the
greater variability. The fixed population in the closed model tends to
damp the effect.

We can also see what happens as we change the service-time
variability in Table V. From the exact values, we see that the through-
put decreases in every case, but the throughputs are never near the
lower bound in Theorem 14. We also see that the expected number of
jobs at that node decreases when the arrival rate is greater than 1.00.
This phenomenon was observed by Bondi® and is further discussed
in Bondi and Whitt.%* Briefly, the explanation is that under moderate
to heavy loads increased variability in the service-time distribution
often has a greater impact on other nodes via their arrival processes
than on the congestion at the given node. It is significant that this
gualitative behavior is captured by both the bottleneck and FPM
methods using QNA. However, the FPM method fails to capture this
bottleneck phenomenon in other cases. As noted in Refs, 61 and 62,
the bottleneck phenomenon is useful to test procedures for approxi-
mately solving non-Markov closed networks.

‘Approxzimately characterizing the variability of arrival processes in
a tightly eoupled closed network such as the two-node model being
discussed is difficult because of the constraint on the total pepulation.
If the utilization of & server is high, then the interdeparture times are
distributed approximately the same as the service times, but the
population constraint tends to induce negative correlations among the
interdeparture times: several long (short) times are more likely to be
followed by a short (long) one. Hence, the effective variability of an
arrival process, e.g., as described by the asymptotic method in Ref. 68,
is likely to be considerably less in a closed network than in an open
one. This is the reason for developing heuristic procedures to reduce
the variability parameters of the arrival processes in the approxima-
tion method.

12.2 One single-server node and one infinite-server node

Table VI displays exact and approximate results for a two-node
network containing an IS node with exponential service-time distri-
butions. In this case, the service-time distribution at the single-server
node is always exponential. It is easy to apply the FPM approximation
to other cases, but we had no convenient tables. The exact values from
Table 2.10.7 of Ref..67 are obtained by specifying the population
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Table VI—~A comparison of exact throughput and mean number in
~ system in the M/G/1 queue having a finite source of size 10 with
approximations based on the FPM method-

Exact First Upper
Values FPM Bound
{a) Total Population 10 and Utilization (.50
" Arrival rate 0.0547 0.0547 given 0.0547 given
per idle source
Throughput or 0.500 given 0.494 0.547
utilization
Expected number 0.86 0.98 1.21
in system, EN,
{b} Total Population 10 and Utilization 0.75
Arrival rate 0.0927 0.0927 given 0.0927 given
per idle source
Throughput or 0.750 given 0.705 0.927
utilization
Expected number 1.9 2.39 12.70
in system, EN,

(number of sources) and the throughput. Paralleling Table V, we
consider two cases: a population of 10 and throughputs of 0.50 and
0.75. As in Table V the service time is set equal to 1. The population
and throughput determines the arrival rate per idle source (individual
serviece rate at the IS node). This is the starting point for the FPM
approximation, which is obtained from (28) or (38). The conditions
are clearly much less favorable in Table VI than in Tables I and IV;
the ratio of service rates (IS/other) was much less before. Nevertheless,
the FPM method works quite well, at least in the case of utilization
0.50. From Tables V and VI, we see that the FPM method does indeed
perform better with the IS node. Related numerical comparisons are
contained in Ref. 69. The overall performance here based on the FPM
method is somewhat better than the performance in Ref. 69, which is
based on matching the server utilization. The performance in Tables
I and IV is much better than we might at first expect from Ref. 69,
but recall that in Tables I and IV, as the total population decreases
the server utilization decreases because the service rate at the IS node
is held fixed. Nevertheless, the tables in Ref. 62 help assess how well

" the FPM method will perform for a small network with an IS node.

XH. CONCLUSIONS

In this paper we identified and investigated three situations in
which open queueing network models should provide good approxi-
mations for more difficult closed queueing network models:

1. When the closed network has many nodes (Sections II through
v, X), ) L )
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2. When the closed network contains a “decoupling” infinite-server
(IS} node with a relatively low service rate (see Sections VI through
VI, )

3. When the closed network contains a non-IS bottleneck node
under a fairly heavy load (Section IX).

The suggested approximation procedures in these situations are not
the same, however. In Case 3 we remove the bottleneck server and
replace its departure process by an external arrival process, which is
determined solely by the number of servers and the service-time
distribution at the bottleneck queue. The arrival rate is the maximum
possible service rate from the bottleneck node; we do not use the FPM
method. In contrast, in Case 1 no nodes are removed from the closed
network. As described in Section X, an entry node is selected and the
external arrival process there depends on the entire network in a
rather complicated way. The arrival rate is determined by the FPM
method. The variability parameter of the arrival process, using QNA,’
is chosen so that the variability parameter of the external arrival
process agrees with the vartability parameter of the departure process
from the network.

It is interesting that the suggested procedure for Case 2 ean be
regarded as a variation of either the procedure for Case 1 or the
procedure for Case 3. On the one hand, the procedure for Case 1 can
be applied without change to Case 2. As deseribed in Section VI, the
suggested procedure coincides with the FPM methed. However, in
Case 2 we know that the departure process from the IS nede is
approximately a Poisson process. Hence, it is natural to implement
the FPM method for Case 2 by replacing the departure process from
the decoupling IS node by an external Poisson arrival process. We
then use the FPM method to determine the appropriate external
arrival rate, but we do not have to worry about the variability param-
eter; we just set it equal to 1. If instead we used the FPM method as
described for Case 1 and we selected an entry node for an external
arrival process, then we would need to specify the variability parameter
of the external arrival process there. In general, in Case 2 the arrival
processes to other nodes need not be approximately Poisson. However,
if we apply the standard FPM method for Case 1 to Case 2, then the
results should be very similar because in Case 2 the FPM method will
make the variability parameter of the departure process from the
decoupling IS node nearly 1.

We can also think of the procedure for Case 2 as a modification of
the procedure for Case 3. The decoupling IS node also acts as a
bottleneck queue. Hence, as described in Section VI, we can analyze
Case 2 by removing the IS node from-the closed network and replacing
its department -process by an external arrival process. Because of the
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nature of this particular bottleneck queue, i.e., because there are many

servers each-with low service rate, it is appropriate to make the -

external arrival process a Poisson process. Incidentally, we would do
this in Case 3 too if there were many servers, but finitely many, each
with low service rate.

If we apply the procedure for Case 3 directly to Case 2, then we let
the arrival rate of the external Poisson process be the maximal possible
service rate from the IS node, which corresponds to the first upper
bound described in Section VI. The suggested modification is to let
the arrival rate of the external Poisson arrival be such that this arrival
rate would equal the departure rate at the IS node if it were included
in the network. As indicated in Section VI, this modification turns
out to coincide with the FPM method.

It is important to recognize that the three situations above do not
nearly cover all possibilities. As indicated in Section I, in some cases
an open model might also be reasonable from direct modeling consid-
erations; often the closed model is not entirely appropriate. However,
it is clear from the analysis and examples here that open models do
not always produce reasonable, let alone good, approximations for
closed models. For closed networks with few nodes, few servers per
node and few jobs, the open-model approximations for closed models
here tend to perform poorly. Further experimentation is needed to
better understand the appropriate regions for each procedure. As with

. any approximation tool, it is very helpful in applications to make a

few initial benchmark comparisons with simulations to determine the
actual quality of the approximations in that context.

The specific models discussed in this paper have been relatively
elementary. Many of the theorems only relate open and closed Markov
Jackson networks. The major complexity considered was nonexponen-
tial FCFS servers and the associated network model treated by QNA.
It is important to realize, however, that the ideas apply much more
broadly. As discussed by Zahorjan,?* these open-model approximations
for closed models can be used as modules or subroutines in more
complicated approximation procedures, e.g., based on network decom-
position. As illustrated by Fredericks,* the ideas also apply directly
to closed models with other complicating features such as priorities.
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