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a b s t r a c t 

A battery swap station (BSS) is a facility where electric vehicle owners can quickly exchange their de- 

pleted battery for a fully-charged one. In order for battery swap to be economically sound, the BSS op- 

erator must make a long-term decision on the number of charging bays in the facility, a medium-term 

decision on the number of batteries in the system, and short-term decisions on when and how many 

batteries to recharge. In this paper, we introduce a periodic fluid model to describe charging operations 

at a BSS facing time-varying demand for battery swap and time-varying prices for charging empty bat- 

teries, with the objective of finding an optimal battery purchasing and charging policy that best trades 

off battery investment cost and operating cost including charging cost and cost of customer waiting. We 

consider a two-stage optimization problem: An optimal amount of battery fluid is identified in the first 

stage. In the second stage, an optimal charging rule is determined by solving a continuous-time optimal 

control problem. We characterize the optimal charging policy via Pontryagin’s maximum principle and 

derive an explicit upper bound for the optimal amount of battery fluid which allows us to quantify the 

joint effect of demand patterns and electricity prices on battery investment decisions. In particular, fewer 

batteries are needed when the peaks and the troughs of these periodic functions occur at different times. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Today more and more people are opting for electric vehicles

(EVs), as plummeting battery prices and new battery technology

have enabled automakers to produce cheaper models with longer

ranges. On the horizon, the growth of shared mobility and the

emergence of self-driving vehicles strongly complement EVs, fur-

ther hastening EV market penetration. In addition, many govern-

ments have long incentivized EV purchases, considering numer-

ous environmental and socio-economic benefits. The transition to

widespread EV adoption is accelerating, yet there are still concerns

centering around (i) long charging times and (ii) grid overloading

due to mass EV charging. Charging times are decreasing, due to the

emergence of specialized fast-charging facilities, such as Tesla’s su-

perchargers that provide up to 135 KW of power and are able to

charge a battery to 80% in 45 minutes and to 100% in 75 min-

utes. But this is not as quickly as consumers would like, as a gas

station could serve dozens of cars in that time. Moreover, as EV

ranges get longer and batteries get bigger, fast-charge technology

is fighting physics. High-power charging could also present grid
∗ Corresponding author. 
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hallenges, as distribution lines and transformers need to handle

normous spikes of electrical demand when cars plug in. A recent

loomberg report projects global electricity consumption from EVs

o rise 300-fold, from 6 TWh in 2016 to 1,800 TWh by 2040. Ad-

itionally, the report warns that the sharp rise in EV ownership

ould increase pressure on the power network far beyond the cur-

ent capacity; many systems will have to be replaced or upgraded.

Battery swap, as an alternative refueling option realized in a

attery swap station (BSS), is being considered. For example, NIO,

 Chinese automobile manufacturer, has recently put 18 BSSs into

peration in 14 service areas and plans to deploy 1,100 additional

SSs by 2020. Battery swap provides a way to address the afore-

entioned issues associated the rapid charging. First, battery swap

rovides a more rapid way of refueling EVs and can enable EVs to

ravel essentially nonstop on long road trips. In addition, empty

atteries that are swapped out can be charged when electricity

s cheap or demand is low. By controlling the charging time, the

otential peak demand or overloading, caused by mass EV charg-

ng, can be flattened. Moreover, banks of batteries waiting to be

wapped can soak up extra energy and sell it at a profit, thus

alancing supply and demand. Battery-swap technologies make it

ossible to charge batteries with a lower voltage, compared with

apid charging hence should prolong their life expectancy. 

https://doi.org/10.1016/j.ejor.2019.06.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.06.019&domain=pdf
mailto:bsunaa@connect.ust.hk
https://doi.org/10.1016/j.ejor.2019.06.019
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Fig. 1. Illustration of a BSS with an infinite-buffer queue for EVs and a closed queue 

for batteries circulating inside. 
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1 The report gathers information about daily travel patterns of different types of 

households in 2009, and shows that the daily travel statistics are very similar for 

each weekday and weekend. 
.1. Benefits for fleet vehicles 

Companies with fleet vehicles may find BSSs especially attrac-

ive because one company owns all vehicles and batteries; that

s there is no ownership issue about the batteries. For instance,

JEV, the leading new energy electro-mobile producer in China,

as built 106 new battery swap stations for electric cabs as of the

nd of 2017 and planned to build over 30 0 0 swapping stations in

00 cities nationwide by 2020. Recently, the company establishes a

oint venture with Didi Chuxing, China’s ride-hailing giant, to work

n projects related to ride-hailing, battery swap, and the operation

f shared EVs. BJEV estimates that there will be close to 4 million

ehicles using the technology with most coming from ride-hailing

ervices. Another example is Tesla Semi, the company’s upcoming

ll-electric trucks. It is widely speculated a commercial applica-

ion of these electric trucks may rely on battery-swap technology.

ccording to a third-party analysis, recharging a semi to around

0 percent takes about 90 minutes. Since companies make money

y keeping the vehicles on the road, reducing a truck’s downtime

ith a battery swap station can help boost productivity and prof-

ts. 

With autonomous driving solutions taking care of the driver

ortion of any trip, charging is yet to be addressed for autonomous

ehicles and a battery swap solution could be extremely useful for

he hundreds of thousands of shared autonomous EVs that will be

ooding streets in the near future. Recent studies regarding the

erformance characteristics of shared autonomous EV fleets sug-

est that increasing charging power can reduce the desired fleet

ize by 30% and the number of chargers by 50%; see Loeb, Kock-

lman, and Liu (2018) , Bauer, Greenblatt, and Gerke (2018) . With

attery-swap services, it is reasonable to expect that the fleet size

nd the number of chargers can be further reduced. 

.2. A Preview of the model 

Fig. 1 illustrates the daily operations of a BSS. Exogenous de-

and for battery swap comes from vehicles arriving at the BSS.

hat demand is fulfilled by exchanging a depleted battery (DB) for

 fully-charged battery (FB), but the EV must wait if an FB is not

vailable since an EV with a DB may not have sufficient energy

o reach another refueling facility. A BSS can dynamically control

he number of DBs to be charged at the same time, which we

haracterize via the energy consumption rate. Two types of capac-

ty resources constrain the BSS’s capability of producing FBs. The

umber of charging bays restricts the number of DBs that can be

harged simultaneously, whereas the number of batteries in the

ystem limits the utilization of the charging bays. These two re-

ources together determine the effective charging capacity of the
SS. Here we regard the number of charging bays as part of long-

erm planning and take it as given in our model. 

Fig. 2 (a) illustrates the percentage of the average hourly refuel-

ng demand of vehicles at gasoline stations over one week. Fig. 2 (b)

hows the energy prices of New York City in Jul. 17–23, 2017, Oct.

7–23, 2017, Jan. 15–21, 2018, and Apr. 16–22, 2018. It is signif-

cant that a BSS operates in a highly dynamic time-varying en-

ironment. Both the demand rate for battery swap and the price

f electricity vary significantly over each day. Indeed, the arrival

ate of the residential EV charging demand could have a periodic-

ty where the period is one day ( Zhang & Grijalva, 2015 ). The daily

ravel patterns are also likely to exhibit periodicity based on the

ational Household Travel Survey in 2009. 1 The electricity price

lso exhibits strong daily and weekly periodicity and can often be

ccurately forecasted, according to Amjady and Keynia (2009) . Ac-

ordingly, we take the demand rate and the electricity price to be

ointly periodic functions in the present study. 

As alluded to earlier, in order for a BSS to run efficiently, the

SS owner not only should know the initial number of batter-

es to be purchased, but also should perform charging in a time-

cheduled fashion on the basis of electricity prices and demand

olume. It would clearly be beneficial for the BSS to recharge bat-

eries at full capacity when the electricity price is low in order to

ut down on energy cost. On the other hand, high demand for bat-

ery swap produces a greater number of DBs that can be used for

echarging; hence the BSS owner would also like to recharge bat-

eries when the demand volume is high so as to increase the uti-

ization of the batteries. These conflicting goals suggest that opti-

ization could help to manage a BSS. 

.3. Our contribution 

We make four contributions in this paper. 

1. We develop a dynamic (time-varying) fluid model that serves

as a deterministic and continuous approximation of a large BSS

with stochastic arrival of demand and random battery charging

times. 

2. We propose a fluid-based optimization framework for optimiz-

ing battery purchasing and charging operations. Leveraging the

fluid-model analysis, we obtain useful managerial insights for

optimizing the operations of a BSS under time-varying demand

and electricity price: (i) When the degree of similarity between

demand and electricity price is high, namely, the high-demand

period coinciding with the high-price period, the trade-off be-

tween the charging and the waiting cost becomes more salient.

(ii) Each additional battery can help mitigate the trade-off, but

the marginal gain of doing so decreases in the number of bat-

teries. 

3. We propose a variant of the problem that allows to achieve

high service levels (i.e., zero waiting). Since the effect of de-

mand uncertainty is more pronounced without backlogs, we

introduce a robust optimization formulation to deal with de-

mand uncertainty. We show that the robust formulation is of

the same order of complexity as its nominal counterpart. 

4. We illustrate through extensive numerical examples the effect

of key parameters on the solution to the battery purchasing and

charging problem. We identify the key factors that one should

focus on in order to improve the performance of a BSS. 

The remainder of the paper is structured as follows. In

ection 2 , we review related literature. In Section 3 , we introduce
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Fig. 2. Illustrating the battery-swapping demand and the energy price. 
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our fluid-based optimization framework and provide important an-

alytical results. In Section 4 , we present extensive numerical ex-

periments using real-world data to gain engineering insights. In

Section 5 , we present a robust optimization formulation for the

optimal charging problem where backlogged demand is not per-

mitted. We draw conclusions and discuss related applications in

Section 6 . 

2. Literature review 

Our research problem is similar to some inventory control prob-

lems, especially the research on a closed-loop supply-chain inven-

tory system in which failed items (DBs) are returned and replaced

by functioning ones (FBs), and the returned items are then re-

paired (recharged) and put back into the inventory. Early work

on supply chains with repairable items dates back to the work of

Sherbrooke (1968) where the repair capacity is assumed to be in-

finite. Extensions of these models with limited repair capacity are

sometimes framed as a closed queueing network; see, e.g., Gross,

Miller, and Soland (1983) and Diaz and Fu (1997) . These papers as-

sume the repair cost (if any) to be constant and the demand to

be time-stationary and mainly focus on steady-steady state analy-

sis, whereas we take both the charging cost and the demand (for

battery swap) to be time-varying. In addition, the time scale for

these inventory problems is drastically different from that for the

BSS problem. For repairs the time scale is days or weeks whereas

charging times in a BSS tend to be of a much shorter time scale. 

Our paper is also related to a fluid approximation of a time-

varying stochastic system, which tends to be appropriate for large-

scale systems. While the reference list presented here is by no

means exhaustive, it should give an indication of the many re-

search studies making use of this technique. The fluid model analy-

sis is often used in the study of queueing and production/inventory

systems. Whitt (2006) relies on deterministic fluid models to de-

rive staffing solutions for a call center with uncertain arrival

rate and employee absenteeism. The use of fluid model analy-

sis also appears in the revenue management literature. For in-

stance, Maglaras and Meissner (2006) perform a unified analysis of

the pricing and capacity control problem in the context of multi-

product revenue management and develop a deterministic fluid

formulation that gives rise to a closed-form characterization of the

optimal control which in turn leads to useful fluid heuristics. 

We are by no means the first to consider the battery purchas-

ing and recharging problem for a BSS. A problem that concurrently

optimizes the number of batteries and the charging decisions has
een formulated and carefully studied by Schneider, Thonemann,

nd Klabjan (2017) under a Markov decision process (MDP) frame-

ork. In contrast to their study, we propose a fluid-based opti-

ization framework, inspired by the current implementations of

attery-swap technology in China and its potential application to

uture urban mobility systems. In addition, our fluid-based anal-

sis produces operational insights that can be absent under an

DP framework. Since BSSs are still in the early planning stage,

esearch on optimizing the operation of a BSS remains limited.

ak, Rong, and Shen (2013) analyzes a BSS location problem us-

ng a robust optimization approach. Jie, Yang, Zhang, and Huang

2019) studies a two-echelon capacitated EV routing problem with

SSs to determine the delivery strategy for city logistics. In the

aper Tan, Sun, Wu, and Tsang (2017) , the authors model a BSS

s a mixed queueing network and analyze the system capacity

arameters as the number of batteries approaches infinity. Using

he same queueing-theoretic approach, in the paper Sun, Tan, and

sang (2018a) , the authors formulate the charging operation prob-

em as a stationary constrained MDP to minimize the charging cost

hile ensuring a certain quality of service. Widrick, Nurre, and

obbins (2018) formulates and analyzes a finite-horizon, discrete-

ime, non-stationary MDP. They consider a scenario, in which the

SS is able to discharge energy back to the power grid, but they

o not take into account the cost of waiting due to backlogged de-

and. In contrast to Widrick et al. (2018) , we do not consider dis-

harging operations but take system congestion as an important

omponent in the operating cost. More recently, Sun, Yang, and

ang (2018b) applies a multi-range robust optimization approach

o jointly optimize the location, battery investment and charging

trategy for a network of BSSs. They also prohibit backlogged de-

and and take the recharging time to be the length of one time

lot, which oversimplify the charging operations in BSSs based on

urrent battery charging technologies. In addition, as the authors

oint out, the problem is NP-complete and can be computationally

xpensive for large-size systems. 

Our BSS model is related to EV sharing systems as considered

y He, Mak, Rong, and Shen (2017) . By assuming all customer

equests to be lost when there are no available EVs, He et al.

2017) models the EV fleet operations as a closed queueing net-

ork. The same modeling approach is adopted by Bellos, Ferguson,

nd Toktay (2017) to model a car sharing system with a fixed num-

er of vehicles in circulation. In contrast to He et al. (2017) and

ellos et al. (2017) , we assume that all unfilled demands will wait

n queue instead of being lost. Due to the striking resemblance be-

ween these shared transportation systems and the BSS, we believe
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hat the modeling framework provided here can be easily adapted

o suit EV fleet management problems. 

. The fluid-based optimization 

We start by introducing a dynamic (time-varying) fluid model

o describe system dynamics. Fluid is a deterministic divisible

uantity. Here we model the state of the battery at a fundamen-

al level. Hence, each quantum of the battery fluid is either fully-

harged or depleted. Since the consumption of an FB automatically

reates a DB, the total amount of battery fluid is kept a constant.

hroughout the rest of this section, we will use κ and b to de-

ote the maximum amount of DB fluid on charging mode and the

otal battery fluid quantity, respectively. The total EV fluid input

demand for battery swap) over an interval [0, t ] is 

(t) ≡
∫ t 

0 

λ(u ) du, t ≥ 0 , 

here λ≡ { λ( t )| t ≥ 0} is the demand (arrival-rate) function. We as-

ume λ( t ) to be a periodic function in time with the cycle length

qual to τ ; i.e., λ(t) = λ(t + τ ) . We model the system such that

he amount of time for a quantum of fluid to receive a full charge

o be exponentially distributed with rate parameter μ. This means

hat the remaining charging time per quantum of DB fluid does

ot depend on how long time it has been charging; i.e., if the to-

al DB fluid content in the charger is m ( t ), then the rate at which

ew FB fluid is produced is μm ( t ). While the exponential distribu-

ion may not capture the exact charging-time distribution in prac-

ice, it is close to reality since it captures (i) the mean charging

imes and (ii) the independence between different batteries, and

as been used in some known references to model battery charg-

ng times; see, e.g., Bayram, Michailidis, Devetsikiotis, and Granelli

2013) , Yang, Dong, and Hu (2017) and Gnann et al. (2018) . The

ssumption is mostly motivated by mathematical convenience. In-

eed, the memoryless property allows us to gain much analyti-

al tractability which is not possible for other probability distri-

utions. However, to validate the potential implementation of our

uid approach in practice with general charging time distributions,

e have numerically shown the effectiveness of the charging so-

ution from our model with exponential charging time distribution

ven when the charging time is uniformly or deterministically dis-

ributed in Section 3.2 . 

.1. System equations and problem formulation 

Let x ( t ) be the state variable representing the amount of FB

uid at time t and p ( t ) be the electricity price at time t . We assume

 ( t ) to be a periodic function with cycle length τ so that λ( t ) and

 ( t ) are jointly periodic functions with the same cycle length. We

ecall there are two types of resource constraints, κ and b , rep-

esenting the maximum possible amount of DB fluid that can be

harged simultaneously and the total amount of battery fluid in

irculation, respectively. We use c to denote the waiting cost per

nit of time for an EV waiting for service. Further assuming bat-

ery investment cost to be γ per unit of time (e.g., if a battery

osts $3,500, or $350 per year considering a 10% amortization rate,

hen γ ≈ 1 if we use day as the units of time), we can formulate

he BSS battery purchasing and charging problem as 

in 

b≥0 
γ τb ︸︷︷︸ 

battery cost 

+ V (b) ︸︷︷︸ 
operating cost 

, (first-stage) (1) 

here the second-stage problem, which we also refer to as the

harging problem, is given by 

 (b) ≡ min 

x 0 ≤b,m 

∫ τ

0 

p(t) m (t) dt + c 

∫ τ

0 

x −(t) dt (2a) 
.t. ˙ x (t) = μm (t) − λ(t) 0 ≤ t ≤ τ, (2b) 

 ≤ m (t) ≤ κ 0 ≤ t ≤ τ, (2c) 

 (t) + x + (t) ≤ b 0 ≤ t ≤ τ, (2d) 

 (0) = x (τ ) = x 0 . (2e) 

The goal of the charging problem is to determine a charging

olicy m 

∗ and an initial FB fluid content x ∗0 that minimize the sum

f the charging cost and the cost of waiting within one cycle, and

e denote its optimal objective value by V ( b ) so as to indicate

he dependence of the solution on the value of b . Here the state

ariable x ( t ) can take either positive or negative values. Positive

alues indicate that we have an amount of x ( t ) FB fluid in stock

hereas negative values occur when demand for FB fluid exceeds

ts supply in which case there is an amount of −x (t) EV fluid in

ueue. Constraint (2b) is the basic flow equation derived of con-

ervation laws. Constraint (2c) stems from the fact the amount of

harger fluid at any time is nonnegative and cannot exceed the

aximum charger fluid κ . Constraint (2d) states that the amount

f DB fluid being charged and the amount of FB fluid combined

annot exceed the total amount of battery fluid in system. Finally,

e impose the terminal condition (2e) which is primarily moti-

ated by the existence of a periodic-stationary optimal policy π ∗

o the MDP in Appendix A whose induced FB inventory has a

eriodic-stationary distribution ; i.e., x t equals in distribution to x t+ τ .

ince our fluid model can be seen as a deterministic approxima-

ion of the MDP, it would be reasonable to have x (t) = x (t + τ ) in

he fluid model with a periodic-stationary control. Loosely speak-

ng, by adding constraint (2e) , we restrict ourselves to the space of

eriodic-stationary solutions. 

Note that constraint (2e) requires the amount of FB fluid pro-

uced over [0, τ ] to be equal to the demand occurred over the

ame cycle. Indeed, combining (2b) and (2e) yields 

(τ ) = μ

∫ τ

0 

m (t ) dt . (3)

urther let θ be such that μκθ = �(τ ) , or simply θ = �(τ ) / (μκ) .

rom (2c) and (3) , it is readily seen that θ is the minimum amount

f time that the BSS has to spend on charging batteries within a

ycle. The result below guarantees the existence of an optimal so-

ution over the decision space R × L for the problem specified by

2) . The proof makes use of an equivalent formulation and is de-

erred to the appendix. 

heorem 3.1. Suppose θ ≤ τ . Then there exists at least one optimal

olution (x ∗
0 
, m 

∗) to the second-stage problem given by (2) . 

The next result provides convexity of the charging problem in

 , the total amount of battery fluid circulating through the system.

heorem 3.2. Under the condition of Theorem 3.1 , the function V(b)

s convex. 

roof of Theorem 3.2. It suffices to show for arbitrary b 1 and b 2 , 

V (	b 1 + 	̄ b 2 ) ≤ 	V (b 1 ) + 	̄ V (b 2 ) for 0 < 	 < 1 and 

	̄ ≡ 1 − 	. 

et ( x i (0), m i ) denote an optimal solution associated with b i , and

et x i denote the optimal trajectory of the state, i = 1 , 2 . Consider

 ≡ 	m 1 + 	̄ m 2 and x ≡ 	x 1 + 	̄ x 2 . We argue that ( x (0), m ) is fea-

ible for the problem with b ≡ 	b 1 + 	̄ b 2 . Note that constraints

2b), (2c) , and (2e) are trivially satisfied. For the third constraint,

e have 

 (t) + x + (t) = 	m 1 (t) + 	̄ m 2 (t) + [ 	x 1 (t) + 	̄ x 2 (t)] + 

≤ 	(m 1 (t) + x + (t)) + 	̄ (m 2 (t) + x + (t)) , 
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where the right-hand side is no greater than 	b 1 + 	̄ b 2 which in

turn equals b . This shows that constraint (2d) is indeed satisfied

and therefore the solution ( x (0), m ) is feasible. The proof is com-

plete by observing that 

 (b) ≤
∫ τ

0 

p(t) m (t) dt + c 

∫ τ

0 

x −(t) dt 

≤ 	 

(∫ τ

0 

p(t) m 1 (t) dt + c 

∫ τ

0 

x −1 (t) dt 

)

+ 	̄ 

(∫ τ

0 

p(t) m 2 (t) dt + c 

∫ τ

0 

x −2 (t) dt 

)
= 	V (b 1 ) + 	̄ V (b 2 ) . 

This shows that the value function V ( b ) is convex in b . �

Theorem 3.2 suggests that although adding an additional

battery can help reduce the charging and waiting costs alto-

gether, the marginal gain of doing so diminishes. Moreover,

Theorem 3.2 shows that the first-stage problem given by (1) is con-

vex and its solution is guaranteed to exist. 

3.2. Maximum principle for the fluid optimization 

In this section, we characterize the solution to the second-stage

problem using Lagrangian form of Pontryagin’s maximum princi-

ple; see Chapter 3 of Sethi and Thompson (20 0 0) ; see also Chapter

3 of Bertsekas (1995) . To do that, we associate an adjoint function

α with Equation (2b) and write down the Hamiltonian function 

H ≡ H(x (t) , m (t) , α(t)) ≡ −p(t) m (t) 

− cx −(t) + α(t )(μm (t ) − λ(t)) . (4)

In (4) , we have used the negative of the integrand in (2a) , since

the minimization of V ( b ) in (2a) is equivalent to the maximization

of −V (b) . To apply the Pontryagin’s maximum principle, we differ-

entiate (4) to get 

∂H 

∂m 

= −p + μα, 

so that the optimal control is of the bang-bang form: 

m 

∗ = 

{ 

0 if p > μα, 

min (λ/μ, κ, b − x + ) if p = μα, 

min (κ, b − x + ) if p < μα. 

(5)

The adjoint variable α( t ) can be interpreted as the future value

(at time τ ) of one unit of FB at time t . Therefore, the decision

rule (5) has a clear economic interpretation: The BSS is willing to

charge DB fluid at the maximum (possible) capacity if the marginal

benefit of producing an additional FB fluid exceeds the associated

cost; similarly, if the marginal benefit falls short of cost, it is ben-

eficial for the BSS not to charge battery at all. To proceed, we form

the Lagrangian 

L ≡ L (x (t) , m (t) , α(t) , ν(t)) ≡ H + ν1 (t) m (t) 

+ ν2 (t)(κ − m (t)) + ν3 (t)(b − m (t) − x + (t)) , (6)

where the set of Lagrange multipliers ν ≡ ( ν1 , ν2 , ν3 ) satisfies the

complementary slackness (CS) conditions: 

ν1 (t) ≥ 0 , ν1 (t) m (t) = 0 , 

ν2 (t) ≥ 0 , ν2 (t)(κ − m (t)) = 0 , 

ν3 (t) ≥ 0 , ν3 (t)(b − m (t) − x + (t)) = 0 . (7)

In addition, the optimal state trajectory, optimal control, and the

corresponding Lagrange multipliers must satisfy 

∂L 

∂m 

= −p(t) + μα(t) + ν1 (t) − ν2 (t) − ν3 (t) = 0 and (8)
˙ (t) = −∂L 

∂x 
= −c1 { x (t) < 0 } + μ−1 ˙ p (t)1 { x (t)=0 , −μc≤ ˙ p (t) ≤0 } 

+ ν3 (t)1 { x (t) > 0 } . (9)

ne can easily check by combining the CS conditions (8) and

9) that ν3 (t) = μα(t) − p(t) if x (t) + m (t) = b and ν3 (t) = 0 oth-

rwise. 

In canonical control problems, it is usually assumed that the

nitial state x (0) is fixed. Here the initial state is free but the tra-

ectory must return to it. It turns out that this set-up can be

asily handled by using a version of the transversality condition,

hich involves the values of the adjoint function both at the ini-

ial time and at the terminal time. More precisely, this condition

equires (α(0) , −α(τ )) to be orthogonal to ( x (0), x ( τ )); see, e.g.,

quation (4.46) at page 107 in Liberzon (2011) . Because (2e) stipu-

ates x (0) = x (τ ) , we have 

(0) = α(τ ) . (10)

hen the final state is not fixed, there must also be a terminal

ondition for the adjoint equation. Here that condition is not nec-

ssary because we have the extra boundary condition (2e) main-

aining the balance between boundary conditions and unknowns.

o summarize, the optimal solution (x ∗0 , m 

∗) to the second-stage

roblem is completely characterized by (2e), (5) , and (7)–(10) . 

We conclude this section by numerically testing the accuracy

f the fluid model approximation. To that end, we solve the MDP

n Appendix A and the second-stage fluid optimization under the

ame settings, and then compare the results from the two ap-

roaches. To make the problem manageable for the MDP, we run

ur experiments on a medium-size system with K = 20 chargers,

 = 40 batteries, price function p(t) = 2 . 45 − 1 . 05 sin (πt/ 12) and

rrival-rate function λ(t) = 16 − 8 sin (πt/ 12) . The cycle length is

hus τ = 24 hours. We set the average charging time of each bat-

ery to be 1 /μ = 1 hour and the waiting cost factor to be c = 0 . 1

/min/EV. The fluid optimization can be solved fairly quickly by

 simple discretization procedure as described in Appendix B . We

pply the iterative algorithm in Riis (1965) with a discount factor

lose to one to compute the optimal policy for the infinite-horizon

eriodic MDP in Appendix A . This optimal policy is derived by as-

uming an exponentially distributed battery charging time. To fur-

her investigate the impact of charging time distribution on the op-

imal charging policy, we apply the optimal charging policy to the

SS systems with different charging time distributions, and simu-

ate their mean FB inventory levels and the numbers of working

hargers (averaged over 10 0 0 sample paths under the optimal pol-

cy from the MDP). We compare those simulated results with the

ime-varying FB fluid x and the working-charger fluid m computed

rom the fluid-model approximation in Fig. 3 . The effectiveness of

he fluid-model approximation is visually confirmed from Fig. 3 ,

n which both state trajectories and charging controls from MDP-

ased approach and fluid-based approach are close. Moreover, the

imulated results with more general charging time distributions

uch as uniform and deterministic distributions are also close to

he fluid-based solution. This verifies that our fluid-based approach

an serve as a good approximation to the MDP model even when

he charging time is not exponentially distributed. 

.3. Upper-bound analysis 

To gain greater managerial insights into the joint impact of en-

rgy price and demand functions on battery investment cost, here

e construct an explicit upper bound b̄ for the optimal amount of

attery fluid that arises in solving the fluid-based cost minimiza-

ion problem. We start by focusing on the charging cost. To save on

nergy costs, the BSS would like to operate at full capacity at those

imes when the electricity price is among the lowest. To explicitly
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Fig. 3. Comparison of the fluid-based and MDP-based approaches. The mean charging time of all distributions are set to be the same (i.e., 1 /μ = 1 hour). The uniform 

charging time varies within [2/3, 4/3] hours. 

Fig. 4. Illustration of the set-valued function φ( ·). 
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haracterize such a policy, define the set-valued function 

(ζ ) ≡ { 0 ≤ t ≤ τ : p(t) ≤ ζ } , (11)

hat maps each real number to a level set. Fig. 4 presents a graph-

cal illustration of the function φ. From (11) it is easily verifiable

hat g is a nondecreasing function yet not necessarily continuous.

ndeed, if p happens to be a step function, then g has points of

iscontinuity. 

ssumption 3.1. The price function p is Borel measurable so that

( ζ ) given in (11) is a Borel set. Denote by � the Lebesgue measure

nd define g ( ζ ) ≡ � ( φ( ζ )). Then there exists a unique ζ ∗ ≥ 0 such

hat g(ζ ∗) = θ . 

emark 3.1. Assumption 3.1 is likely to be violated if the price

unction is a staircase function. Indeed, in the case of staircase

rice functions, there typically exist two price levels ζ 1 and ζ 2 

uch that g ( ζ ) ≤ θ ≤ g ( ζ ), ζ ≤ ζ . To minimize the charging cost,
1 2 1 2 
he BSS must charge batteries at full capacity when the price is

ower than or equal to ζ 1 , and charge the remaining batteries at

he price ζ 2 . Moreover, there exist multiple charging policies that

an achieve the minimum charging cost without loss of demand. 

Suppose for the moment that there is an unlimited amount of

attery fluid in the system; i.e., b = ∞ . Then (2d) is no longer a

eal constraint. Consider the following charging policy: 

 

∗(t) = 

{
κ if t ∈ φ(ζ ∗) , 
0 if t / ∈ φ(ζ ∗) , 

(12) 

here ζ ∗ is defined by Assumption 3.1 . The result below indicates

hat m 

∗ is optimal as far as the charging cost is concerned. 

roposition 3.1. Suppose θ ≤ τ and Assumption 3.1 holds. If the

mount of battery fluid in circulation is unlimited (i.e., b = ∞ ), then

he charging policy m 

∗ given in (12) achieves the minimum (possible)



530 B. Sun, X. Sun and D.H.K. Tsang et al. / European Journal of Operational Research 279 (2019) 524–539 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r  

r  

d  

r  

n  

d  

f  

�  

e  

B  

θ

b  

I  

o  

r  

p  

i  

t  

p  

a  

r  

t  

a  

v  

o  

q  

u  

l  

a

 

f  

r  

t  

s  

t  

t

C  

I  

c

4

 

c  

a

t  

a  

c

 

t  

S  

s  

o  

T  

i  

S  

s  

s  

t  
charging cost; that is, there exists no such a charging policy that gives

a lower charging cost. 

We next consider the cost associated with waiting. Note that

the cost of waiting will be completely eliminated if we choose

( x (0), m ) in such a way that 

x (t) ≥ 0 for all 0 ≤ t ≤ τ. (13)

Indeed, for a charging policy m , we can choose 

x (0) ≡ sup 

0 ≤t≤τ

[
μ

∫ t 

0 

m (u ) du − �(t) 

]−

= sup 

0 ≤t≤τ

[
�(t) − μ

∫ t 

0 

m (u ) du 

]+ 
, (14)

to ensure that condition (13) holds. To see that this is indeed the

case, notice 

x (t) = x (0) + μ

∫ t 

0 

m (u ) du − �(t) 

≥
[
μ

∫ t 

0 

m (u ) du − �(t) 

]−
+ μ

∫ t 

0 

m (u ) du − �(t) ≥ 0 , 

(15)

where the first inequality is due to (14) and the second inequality

follows from the simple relation x + = x − + x . In particular, we set,

for the optimal charging policy m 

∗ given in (12) 

x ∗(0) ≡ sup 

0 ≤t≤τ

[
�(t) − μ

∫ t 

0 

m 

∗(u ) du 

]+ 
. (16)

By Proposition 3.1 and (15) , the solution ( x ∗(0), m 

∗) yields the low-

est charging cost without causing any congestion , provided the to-

tal amount of battery fluid in system is sufficient. Therefore, solu-

tion ( x ∗(0), m 

∗) is optimal for the fluid-model optimization prob-

lem given by (2) with b = ∞ . With the control function m 

∗ and

the initial state x ∗(0) given by (12) and (16) respectively, the state

dynamics, denoted by x ∗( t ), is uniquely determined by 

x ∗(t) = x ∗(0) + μ

∫ t 

0 

m 

∗(u ) du − �(t) , for all 0 ≤ t ≤ τ. (17)

Using the state x ∗ and control m 

∗ specified by (12) and (17) respec-

tively, we define 

b̄ ≡ sup 

t≤τ
{ m 

∗(t) + x ∗(t) } . (18)

By choosing b = b̄ , we make sure that constraint (2d) is not vio-

lated. Indeed, b̄ is the minimum amount of battery fluid content

with which both components of the objective function (2a) reach

the lowest possible value. The theorem below summarizes the

main results in this section. 

Theorem 3.3. Under the conditions of Proposition 3.1 , there exists a

threshold value b̄ such that the value V ( b ) with respect to b is (i)

strictly decreasing for b < b̄ and (ii) constant for b ≥ b̄ . 

Theorem 3.3 immediately implies that the objective value of

problem (1) is monotonically increasing for b > b̄ . Consequently, b̄

is an upper bound of the optimal amount of battery fluid in the

two-stage optimization problem (1) . Moreover, this bound depends

on the energy price p and demand λ only. To analytically evaluate

the joint impact of energy price and demand functions on battery

investment cost, we illustrate by an example how the degree of

similarity between p and λ can affect the value of b̄ . For simplicity,

we stipulate that both price and demand follow sinusoidal func-

tions with cycle length τ . Specifically, we assume the price and

demand functions to follow 

p(t) = p̄ + A p sin (2 πt /τ ) and λ(t ) = λ̄ + A λ sin (2 π(t − ψ) /τ ) ,
espectively, where p̄ and λ̄ are the vertical shifts, A p and A p rep-

esent the amplitudes, and ψ denotes the phase shift. Here the

egree of similarity between p and λ is quantified by the pa-

ameter ψ that serves as an indicator of the degree of synchro-

ization. Note that ψ = 0 and ψ = τ/ 2 represent the cases that

emand function is synchronized and unsynchronized with price

unction, respectively. It is readily checked that the total demand

(τ ) = λ̄τ . In addition, let μ = 1 and κ = 2 ̄λ. With these param-

ters, we can calculate the minimum amount of time that the

SS has to spend on charging batteries within a cycle, yielding

= �(τ ) /κ = τ/ 2 . Using (12), (16), (17) and (18) , we deduce 

¯
 = κ + ̄λτ −

∫ τ

τ/ 2 

λ(t) dt = κ + 

λ̄τ

2 

− A λ

∫ τ

τ/ 2 

sin (2 π(t − ψ) /τ ) dt

= 2 ̄λ + 

λ̄τ

2 

+ 

A λτ

π
cos (2 πψ/τ ) . 

t is immediate by the analytical expression that b̄ , as a function

f ψ , attains its maximum at ψ = 0 , and keeps decreasing until

eaching its minimum value at ψ = τ/ 2 . This carries practical im-

lications that are important for the BSS operator to be aware of

n order to determine the optimal number of batteries in circula-

ion. In particular, when the demand function and the electricity

rice function are unsynchronized, the BSS can keep its charging

nd waiting cost down using a smaller number of batteries. The

eason is that when λ is synchronized with p , the BSS tends not

o recharge batteries over the high-demand (high-price) period so

s to keep its charging cost down, but it has to build high FB in-

entory over the low-demand (low-price) period to avoid shortages

f FBs over the high-demand (high-price) period, which would re-

uire a greater number of batteries in system. In contrast, in the

nsynchronized case, high price coincides with low demand al-

owing the BSS to maintain lower FB inventory levels, and hence

 smaller number of total batteries. 

One way to quantify the degree of similarity of two general

unctions is by a scalar ranging from −1 to 1, where −1 and 1 rep-

esent the lowest and highest degrees of similarity between the

wo functions, respectively. Specifically, in our context, we use co-

ine similarity as our measurement of the degree of similarity be-

ween the general demand function λ and the energy price func-

ion p . More formally, we define the cosine similarity to be 

 ≡
∫ τ

0 λ(t) p(t) dt √ ∫ τ
0 λ

2 (t) dt · ∫ τ
0 p 2 (t) dt 

. (19)

t is readily seen that the cosine similarity of two positive functions

an never be negative and will range from 0 to 1. 

. Numerical Studies and Discussion 

In this section, we numerically solve the two-stage fluid-based

ost minimization problem based on real-world data to gain man-

gerial insights into (i) how the optimal charging control trades off

he charging and waiting costs in the second-stage problem (2) ,

nd (ii) how the number of batteries trades off the battery capital

ost and the BSS operating cost in the first-stage problem. 

For any value of the first-stage decision variable b , we can solve

he second-stage problem by discretization (see Appendix B ) as in

ection 1 in Riis (1965) , p. 5, and obtain the corresponding second-

tage objective value V ( b ). Then our key problem is to find the

ptimal b to minimize γ τb + V (b) in the first-stage problem. By

heorem 3.3 , the optimal b is within the interval [0 , ̄b ] where b̄

s the upper bound of the optimal battery fluid given in Eq. (18) .

ince a complete enumeration of all feasible b is practically impos-

ible, we approximate the feasible region by a bounded discrete

et � ≡ { 0 , 1 , . . . , 	 ̄b 
} . Moreover, from Theorem 3.2 it follows that

he objective function γ τb + V (b) is convex in b . Therefore, a local
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Fig. 5. Illustrating the trade-offs between the battery capital cost and the BSS operating cost. 
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ptimal value b � , i.e., V (b � ) + γ τb � ≤ V (b) + γ τb for b = b � ± 1 , is

lso globally optimal in �. Thus, we can enumerate V ( b ) starting

rom b = 	 ̄b 
 to 0 until we find the local optimal value b � . 

Although our discussion here is based on the solution to the

uid model optimization, we will interpret b , x and m as the num-

er of batteries in system, the number of FBs and the number

f working chargers, respectively. Throughout the section we fix

he system parameters as follows: the number of charging bays is

= 50 , the average charging time is μ−1 = 1 hour, the power rate

f each charging bay is 26.8 kW. We choose the cycle length τ as

ne week to take into account the periodicity of price and demand

n the time of day and the day of week. Due to lacking the real

ata of battery-swapping demand, we follow the same data and

pproach as Widrick et al. (2018) and Nurre, Bent, Pan, and Sharkey

2014) , using the refueling demand of vehicles at gasoline stations,

s shown in Fig. 2 (a), to estimate the battery-swapping demand.

e assume the demand within each hour follows Poisson process

ith an average rate determined by the product of the weekly to-

al demand and the hourly demand percentage. We adopt the real

nergy prices of New York City from LCG Consulting (2018) . Specif-

cally, we use the hourly prices as shown in Fig. 2 (b) to represent

he energy prices in summer, autumn, winter and spring. As il-

ustrated in Fig. 2 (b), the energy prices of weekdays are generally

igher than those of weekends due to the electricity load reduction

n weekends, and the weekly average prices in summer and win-

er are higher than those in spring and autumn due to extremely

ot/cold weather conditions. 
.1. Trade-offs between the battery capital cost and the BSS operating

ost 

This section studies the first-stage battery purchasing problem

1) . To expose the trade-offs between the amortized battery cost

τb and the operating cost V ( b ), we show the operating cost

gainst the battery capital cost with the increase of the number

f batteries from 50 to 300 (which is called cost curve in this part)

n Fig. 5 . It can be observed that the marginal reduction of the

perating cost decreases with the increase of the battery cost for

ll cost curves in Fig. 5 . This observation verifies that V ( b ) is con-

ex in b as claimed in Theorem 3.2 . In the following, we discuss

n details about how the key factors affect the trade-offs between

attery capital cost and the BSS operating cost in the battery pur-

hasing problem. 

We start with the impact of the battery purchasing cost. Re-

ent years have witnessed the rapid decrease in EV battery price

ue to the increasing production scale and the advance of the bat-

ery manufacturing technology. Battery capital cost (including bat-

ery cell and pack costs) has fallen from 10 0 0 $/kWh in 2010 to

09 $/kWh in 2017, see Mark Chediak (2017) , and it is expected to

each 125–150 $/kWh around 2025. Because most battery manu-

acturers are providing eight-year warranties, we assume that each

attery has an eight-year lifespan in expectation. Then we can

stimate the amortized battery capital cost per week. For exam-

le, the amortized cost in 2017 is 26 . 8 × 209 / 8 / 365 × 7 = 13 . 43

/week/battery. Fig. 5 (a) illustrates the cost curves with the battery
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prices in different years. To single out the effect of battery pur-

chasing cost, we take the electricity price and the demand pattern

to be fixed. Note that this keeps the charging cost and the waiting

cost unchanged so long as the number of batteries does not change

over the years. But we see that the falling battery cost drives the

cost curves to the cost-efficient regime (left-bottom corner). Fur-

thermore, the optimal number of batteries to be purchased (i.e.,

the red star) increases from 74 in 2015 to 123 in 2017. Thus, with

the continuously falling battery cost, it becomes more and more

cost-efficient to purchase more batteries to reduce the cost. 

Next, we fix the battery capital price to be 209 $/kWh, and con-

tinue to examine the impact of the key factors that affect the op-

erating cost. Fig. 5 (b) illustrates the cost curves of different waiting

cost factors c given the same price and demand functions. As the

waiting cost factor increases, the operating cost increases mainly

due to the large increase of charging cost. This is because the BSS

has to recharge batteries during the high-price period in order to

avoid high waiting cost. Furthermore, to mitigate the negative im-

pact of high penalty due to customer waiting, BSS is also moti-

vated to purchase more batteries. Interestingly, the cost curves for

c = 0 . 5 and c = 1 are close to each other. A close scrutiny reveals

that in these two cases, the number of backlogged demands for

battery swap has reached a relatively small value, and hence the

waiting cost only takes a small portion of the operating cost. Since

the waiting cost indicates the service quality of the BSSs and is the

foundation for a successful business, we prioritize the waiting cost

over the charging cost for the BSS operations. To do so, we set the

waiting cost factor c = 1 in the following numerical tests to ensure

the service quality. 

Fig. 5 (c) depicts the cost curves with different weekly total de-

mand for battery swap. It can be observed that the marginal gain

(in terms of reducing the operating cost) of adding an additional

battery is higher when the demand becomes higher. With the in-

creasing penetration of EVs in the future, the battery-swapping de-

mand is expected to increase accordingly. Thus, the BSS operators

are encouraged to purchase more batteries to reduce the operating

cost in the future. The weekly total demand is set to be 50 0 0 EVs

in the following tests to represent a typical penetration of EVs. 

Fig. 5 (d) compares the cost curves when the operating cost is

evaluated based on the energy prices in different seasons. It can be

observed that the energy prices in different seasons greatly affect

the battery purchasing decisions. For prices with a large mean and

variation in winter, BSS operators need to maintain 123 batteries in

circulation to best trade off the battery cost and the operating cost.

However, with a smaller and flatter price in autumn, only 60 bat-

teries are needed to achieve the minimum total cost. To take into

account the seasonality of energy prices in the battery purchasing

problem, we can reformulate the first-stage problem as follows. We

index the four seasons (i.e., winter, spring, summer, and autumn)

by i = 1 , . . . , 4 , respectively. Assume that the operating cost per

week in each season can be represented by the periodic-stationary

cost in the second-stage problem (2) . Then denote the operating

cost per week in four seasons by V i ( b ), i = 1 , . . . , 4 . Let ω i be the

ratio of the number of weeks of season i to the total number of

weeks of one year. We can determine the optimal number of bat-

teries to be purchased by solving 

min 

b 

4 ∑ 

i =1 

ω i V i (b) + γ τb. (20)

Set ω i = 0 . 25 , ∀ i . Then based on the energy price data in Fig. 2 (b),

we can solve problem (18) and the optimal number of batteries to

be purchased is 81. 

To summarize, the seasonality of the operating cost indicates

that BSS operators prefer to maintain different number of batteries

to minimize their total cost. Thus, instead of purchasing batteries,
SS operators may prefer to lease batteries from companies (which

an be independent third-part companies or the battery manufac-

uring companies) based on the amortized battery cost and adjust

he number of batteries in system over different seasons to mini-

ize their overall costs. 

.2. Impact of demand and price functions on the optimal charging 

ontrol 

This section focuses on the second-stage charging operation

roblem (2) to trade off the charging and waiting costs. In order to

educe the charging cost, the BSS has the incentive to build up FB

nventory in low-price periods and then use the on-hand inventory

o satisfy the demand in high-price periods. On the other hand, to

educe the waiting cost, the BSS would like to build up FB inven-

ory over underloaded periods (i.e., the time period that λ( t ) < μκ),

nd then use the inventory together with the real-time production

f FBs to satisfy the demand over overload periods. Intuitively, to

void holding too much FB inventory (which necessarily requires

reater number of batteries in circulation), it is beneficial for the

SS to fulfill the demand of overload periods with best effort (i.e.,

harging at full capacity) rather using the on-hand FB inventory

uilt in the underloaded period only. For this reason, there exists

n important trade-off between achieving low charging cost and

educing waiting cost, especially when the overload period is not

verlapping with the low-price period. 

We obtain the optimal charging control m and the optimal FB

nventory level x by solving the second-stage problem (2) . In this

umerical test, we set the weekly total demand as 50 0 0 EVs/week,

he energy price as the price data of New York City in Jan. 15–21,

he waiting cost factor as c = 1 $/min/EV, and total number of bat-

eries as 123. Fig. 6 illustrates the optimal charging control with

eference to price function, demand function and the FB inventory.

onsistent with the optimal charging control (5) derived based on

he Maximum Principle, m ( t ) often, but not always, assumes the

aximum or minimum possible values. Thus, we can divide the

harging control in Fig. 6 into three types of operations: (i) the BSS

tops charging when the price is high; (ii) the BSS charges at its

aximum capacity min { k, b − x + } when the price is low; (iii) the

SS charges at the rate of the offered load λ/ μ when the price is

oo high to charge at the maximum capacity but the price decreas-

ng rate − ˙ p is smaller than the waiting cost factor c , preventing the

tate variable x transiting to negative values. 

We also see that the optimal charging control builds up a large

B inventory before the overload period (i.e., peak of the FB in-

entory precedes peak of the demand) to reduce the backlogged

emand (i.e., the waiting cost) except on Saturday. This is because

he energy prices on Saturday and Sunday are much lower than

eekdays, and thus to reduce the charging cost the BSS prefers to

harge at the full capacity during Saturday to satisfy the demand

n the same day. In addition, the low energy prices on weekends

otivate the BSS to build up the highest FB inventory before the

verload period of Monday to reduce the charging cost. 

.3. Impact of the degree of similarity between the price and demand

unctions on the operating cost 

Theorem 3.3 and the example followed show that the degree of

imilarity between the demand and price functions can greatly af-

ect the upper bound of the optimal number of batteries. Inspired

y the this result, we conjecture that given the number of batter-

es, the degree of similarity can also make a difference in the op-

rating cost. To verify this conjecture, we numerically compute the

perating cost when the demand function is shifted over time and

ompare the resulting cost with that before shifting the demand.

e do this numerical test in three scenarios with different energy
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Fig. 6. Illustration of the optimal charging control and FB inventory level under the time-varying energy price (Jan. 15–21, 2018) and demand (50 0 0 EVs per week). 
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rices as shown in Fig. 7 (a). In each scenario, we periodically shift

he demand function forward and afterward compared the result

o that of the original demand in Fig. 7 (a). For each shifted de-

and function, we solve the second-stage problem and obtain the

orresponding operating cost. Then, we center this operating cost

y subtracting the operating cost with that of the original demand

unction. The change in operating cost is illustrated in Fig. 7 (b) for

ifferent ener gy price scenarios. We observe that the shifted de-

and can lead to either increase (positive change in cost) or de-

rease (negative change in cost) of the operating cost. 

We also compute the corresponding cosine similarity, which is

efined in Equation (19) , between the energy price and shifted de-

and functions, and show the results in Fig. 7 (c). We can observe

hat when the demand is shifted over time, the shifted demand

as different degrees of similarity with different ener gy prices

rom different seasons. This results in different trends of change

n operating cost as shown in Fig. 7 (b). Particularly, the operating

ost tends to fall (rise) when the cosine similarity becomes low

high). Therefore, our conjecture is verified that the operating cost

an be reduced when the demand is shifted to be in a lower de-

ree of similarity with the energy price. This phenomenon natu-

ally motivates the introduction of demand-management strategies

uch as pricing to make demand pattern and energy price less sim-

lar. Moreover, we further elaborate the correlation between the

egree of similarity and the operating cost by Fig. 7 (d), in which

ach point represents the cosine similarity and corresponding op-

rating cost for each pair of energy price and shifted demand func-

ions. We can clearly observe that the operating cost is positively

orrelated with cosine similarity, which is consistent with our dis-

ussions in Section 3.3 . We also notice that a cosine similarity

alue may correspond to multiple possible operating costs. This is
 m  
ecause cosine similarity is a normalized value and may lose some

agnitude information when measuring the degree of similarity.

herefore, a particular cosine similarity may correspond to multi-

le possible pairs of energy price and shifted demand functions,

esulting in different operating costs. Since searching for the best

easurement for the degree of similarity is out of the scope of

his paper, we will leave finding a more proper measurement as

ur future work. 

. The charging problem with no backlog permitted 

What makes battery swap very attractive is its ability to refuel a

ehicle in seconds. This is especially appealing for autonomous cars

ervices, as that make almost nonstop travel possible, minimizing

he down time on the road. It is thus sensible to target high service

evels, in which case one would want to eliminate customer delays

ntirely. Clearly, this can be achieved by choosing the waiting cost

actor c large enough, in which case the charging problem becomes

min 

x 0 ,m ) ∈X (b) 

∫ τ

0 

p(t) m (t) dt (21) 

here the decision region X (b) for the recourse variables ( x 0 , m )

s specified by 

 (b) ≡ { x 0 ≤ b, m : ˙ x (t) = μm (t) − λ(t) , 0 ≤ m (t) ≤ κ, 

x (t) ≥ 0 , m (t) + x (t) ≤ b, x (0) = x (τ ) = x 0 } . (22) 

ote that since we impose a nonnegativity constraint on the state

ariable x , the component corresponding to the waiting cost in

2a) vanishes. 

We remark that the fluid input model is intended to approxi-

ate the mean value of the corresponding EV arrival process. In
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Fig. 7. Illustrating operating cost and cosine similarity under different energy price scenarios. 
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reality, the actual/realized demand process may as well deviate

from its mean value. Thus if we were to implement the solution

to the fluid-based optimization, we will likely experience a backlog

of demand for battery swap in the face of demand uncertainty; an

EV may have to wait upon its arrival at the BSS. Below we resort

to the idea of robust optimization to deal with uncertain parame-

ters/data. 

5.1. A robust optimization formulation 

Unlike stochastic optimization that makes distributional as-

sumptions on unknown model parameters, a robust optimization

assumes that these quantities belong to certain sets; see, e.g.,

Bertsimas, Brown, and Caramanis (2011) . In particular, we model

demand uncertainty as follows. We use λ( t ) and 

˜ λ(t) to denote the

nominal function and the realization, respectively. In addition, we

assume that the realization lies within an interval centered around

the nominal function with half-length 

ˆ λ(t) , namely, ∣∣˜ λ(t) − λ(t) 
∣∣ ≤ ˆ λ(t) for all t ∈ [0 , τ ] . (23)

To take into account the fact that the realization is unlikely to be

at its worse-case scenario at all times, we introduce a budget-of-

uncertainty function �( ·), taking value in [0, τ ], and stipulate that∫ t 

0 

∣∣˜ λ(u ) − λ(u ) 
∣∣du ≤ �(t) for all t ∈ [0 , τ ] . (24)

The function �( ·) allows us to trade off between the level of con-

servatism of the robust solution and its performance. We take � to
e a non-decreasing function in t to account for the fact that the

ggregate error grows over time. 

Let F denote the uncertainty set, i.e., the set of functions ˜ λ sat-

sfying (23) and (24) . It is quickly verifiable that the function pre-

ents the realization 

˜ λ(·) from being too far away from its nomi-

al value over a large part of the planning horizon. We can spell

ut the robust optimization formulation that serves as the robust

ounterpart of the nominal problem given by (21) and (22) . 

min 

x 0 ,m,χ
χ

s.t. χ ≥
∫ τ

0 

p(t) m (t) dt for all ˜ λ ∈ F, 

˙ ˜ x (t) = μm (t) − ˜ λ(t) 0 ≤ t ≤ τ, 

0 ≤ m (t) ≤ κ, ˜ x (t) ≥ 0 0 ≤ t ≤ τ, 

m (t) + 

˜ x (t) ≤ b 0 ≤ t ≤ τ, 

˜ x (0) = 

˜ x (τ ) = x 0 . 

(25)

t turns out that the robust optimization formulation can be greatly

implified, yielding an equivalent formulation that shares the same

rder of complexity as its nominal counterpart given by (21) .

pecifically, we have the following theorem. 

heorem 5.1. The robust optimization given by (25) is equivalent to

he following problem. 

min 

(x 0 ,m ) ∈X (b) 

∫ τ

0 

p(t) m (t) dt 
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Fig. 8. Illustrating the uncertainty bound and the resulting protection levels with different robustness factors. 

Fig. 9. Illustrating the impact of robustness factor β and variation parameter σ on battery purchasing cost and operating cost. 
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here the decision region X (b) for the recourse variables ( x 0 , m ) is

pecified by 

 (b) ≡ { x 0 ≤ b, m : ˙ x (t) = μm (t) − λ(t) , 0 ≤ m (t) ≤ κ, 

x (t) ≥ η(t) , m (t) + x (t) ≤ b − η(t) , x (0) = x (τ ) = x 0 } , 
(26) 

here 

(t) ≡ min 

{
�(t) , 

∫ t 

0 

ˆ λ(u ) du 

}
for 0 ≤ t ≤ τ. 

In this formulation, the demand uncertainty has an effect only

n the no-backlog constraint and the upper limit on the number

f batteries either fully charged or being charged. In other words,

he uncertainty of demand translates into protection levels for the

B inventory; i.e., the protection levels guarantee that the FB in-

entory remains positive and depend on the budget-of-uncertainty

unction � and the variation parameter ˆ λ for the demand function

, which are determined through the solution to the dual problem

C.13) . 
.2. Impact of demand uncertainty on battery capital cost and BSS 

perating cost 

Finally, we study the impact of the demand uncertainty on the

attery purchasing cost and operating cost when no backlog is per-

itted for high service levels. To specify the uncertainty set, we let
ˆ (t) = σλ(t) . Then combining with (23) , we have (1 − σ ) λ(t) ≤
˜ (t) ≤ (1 + σ ) λ(t) , 0 ≤ t ≤ τ , which restricts the demand realiza-

ion to be around the nominal demand with at most σ error.

his uncertainty bound is illustrated in Fig. 8 (a). Next, we set the

udget-of-uncertainty function �(t)= β
√ ∫ t 

0 λ(u ) du . Here our choice of

is primarily inspired by the functional central limit theorem sat-

sfied by non-homogenous Poisson arrival process; see, e.g., Kurtz

t al. (1978) lemma 3.1. Together with (24) , we have ∣∣∣∣∫ t 

0 

˜ λ(u ) du −
∫ t 

0 

λ(u ) du 

∣∣∣∣ ≤
∫ t 

0 

∣∣˜ λ(u ) − λ(u ) 
∣∣du 

≤ β

√ ∫ t 

0 

λ(u ) du for all t ∈ [0 , τ ] . (27) 
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Thus, the cumulative realized demand up to time t is around the

cumulative nominal demand and does not deviate from it beyond

a squared-root term. Here σ is a problem-specific parameter and β
is an adjustable factor that controls the level of robustness in the

robust second-stage problem. A larger σ or β indicates a higher

level of uncertainty, and hence the corresponding solution is more

conservative. We solve this robust optimization problem based on

the reformulation specified by Theorem 5.1 . Recall that the un-

certainty set determined by both σ and β is finally transformed

into protection level η, which affects the battery purchasing cost

and operating cost. The protection levels with varying robustness

factors β and fixed variation parameter σ = 0 . 1 are shown in

Fig. 8 (b). We notice that protection level η is dominated by � in

most cases except when the robustness factor is set to be a very

large value β = 2 . 5 . This is because the realization of the demand

is unlikely to always take the worse-case values (i.e., (1 + σ ) λ(t)

or (1 − σ ) λ(t) ). Therefore, the budget-of-uncertainty function �( t )

is often less than the cumulative error function 

∫ t 
0 

ˆ λ(u ) du, and

hence dominates the determination of protection levels. Fig. 9 (a)

and Fig. 9 (b) shows the battery purchasing cost and operating cost

as a function of robustness factor β and variation parameter σ , re-

spectively. It can be observed that with the increase of β or σ ,

battery purchasing cost keeps increasing because more batteries

are needed to avoid violating the constraints enhanced by protec-

tion levels, which increase with β and σ . Meanwhile, the operating

cost keeps decreasing with β and σ because the increasing num-

ber of batteries offers more flexibilities for batteries to charge in

low-price periods, and thus reduces the operating cost. However,

the total cost of battery purchasing and operating still keeps in-

creasing as one pursues a more robust solution. Also notice that

the battery cost and operating cost become nearly unchanged af-

ter σ reaches 0.05 in Fig. 9 (b). This is because the protection levels

start to be dominated by �, and the increase of variation parame-

ter nearly has no impact on the cost. 

6. Conclusions 

In this paper, we studied the problem of battery purchasing

and charging at an EV BSS. Based on the fluid model analysis,

we gained important managerial insights for determining medium-

term decisions (i.e., minimum number of batteries) and how sys-

tem parameters affect the optimal charging policy. We found that

it is tremendously helpful for the BSS to run in an environment

where the demand and the electricity price function are asyn-

chronous . Particularly, when the demand function is out of sync

with the price function, charging at full capacity during the low-

price period can reduce both charging cost and cost of waiting at

the same time. In contrast, when the demand and the price func-

tion are highly synchronous, it becomes difficult to achieve low

charging cost and low cost of waiting at the same time. This leads

us to the consideration of demand management that complements

the supply management view adopted by the present paper. 

Although motivated by EV BSS operations, our model can be di-

rectly applied to BSSs for electric scooters. For example, Gogoro,

a Taiwan-based electric scooter manufacturer, operates more than

500 BSSs across the region, with approximately 69,0 0 0 batteries

swapped per day. A system at this scale evidently fits in with our

fluid-based framework. Our approach may also be applied to other

systems that share common features with a BSS. One example is a

bike-sharing system that pays some of its members to redistribute

the bikes themselves so as to resolve the “rebalancing problem”, in

which riders overload a system’s most popular takeoff points and

destinations, rendering docks useless ( Chung, Freund, & Shmoys,

2018 ). Specifically, consider an idealized model with two bike lo-

cations A and B connected by a one-way street with direction from

A and B . One can draw an analogy between these two models by
egarding each bike as a battery and each pick-up at location A as

n EV arrival. Then each reverse trip (from B to A ) corresponds to

 charge completion for the BSS. Moreover, the transit time from

 to B and that from B to A can be thought of as the battery-

wapping and battery charging times, respectively. Yet the forms

f controls used are slightly different. A bike-sharing system in-

uences its number of reverse commuters indirectly by dynami-

ally adjusting its rewards whereas a BSS can decide the number

f working chargers directly. 
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ppendix A. An MDP-Based Formulation 

Throughout Appendix A , we will use K and B to denote the

umbers of charging bays and batteries to distinguish them from

heir counterparts κ and b in the fluid model. We first describe the

econd-stage problem and present the first-stage problem there-

fter. 

.1. The second-stage problem 

Under the MDP framework, the action taken at each decision

poch is the number of DBs to be put in the charging bays and

tart charging. The objective of the MDP is to find a policy for

harging batteries that can best trade off the charging cost and the

ost of waiting. We adopt a discrete-time formulation where time

s discretized into small slots of length δ, indexed by k = 1 , 2 , . . . .

o capture the fact that demand and electricity price depend on

he time of day and the day of the week, we allow the param-

ters in both state transition probability and one-slot cost func-

ion to be time-varying. Specifically, we assume that the number

f EV arrivals over the k -th slot [ kδ, (k + 1) δ] , denoted by ξ k , to

e a Bernoulli random variable with parameter λk δ. Here we as-

ume { λk ; k ≥ 0} to be a periodic sequence with cycle length τ , i.e.,

k = λk + τ for any k . With slight abuse of notation, we write λk in

lace of λk δ and refer to λk as either the demand rate or probabil-

ty of arrival in slot k . We model the system such that the amount

f time for a DB to receive a full charge is geometrically distributed

ith parameter μδ. Again, with slight abuse of notation, we write

in place of μδ and refer to μ as either the charging rate or the

robability that a battery finishes charging during the slot. 

The sequence of events in each time slot is as follows. At the

eginning of slot k , batteries that receive a full charge become

vailable and backlogged demand (if any) for battery swap is ful-

lled immediately from on-hand FBs. Then the system operator ob-

erves the system state and electricity price p k , and decides how

any batteries to start charging. Here we assume { p k ; k ≥ 0} to be

 periodic sequence as well with the cycle length equal to τ , i.e.,

p k = p k + τ for all k . Thus { λk ; k ≥ 0} and { p k ; k ≥ 0} are jointly pe-

iodic with a common cycle length τ . At the end of the slot, the

emand ξ k is realized, and finally the charging and waiting costs

re incurred. We now mathematically characterize the MDP using

he notation introduced above. 

1. The state of the system in slot k , x k ∈ X ≡
{−∞ , . . . , −1 , 0 , 1 , . . . , B } represents the inventory level of

FBs at the beginning of period k . Here, a positive value indi-

cates the existence of FBs in system and a negative value is

understood to be backlogged demand. Thus, the number of

https://doi.org/10.13039/100000001
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DBs at time slot k equals B − x + 
k 
, where x + denotes the positive

part of x , i.e., x + ≡ max (x, 0) . 

2. The action taken at the beginning of the k -th slot, a k ∈ A k (x k ) ≡
{ 0 , 1 , . . . , min (B − x + 

k 
, K) } , is the number of DBs placed in the

charging bays. A decision rule, πk : X → A k (x k ) , is a function

mapping from the state space X to the action space A k (x k ) ,

which indicates how the system operator selects an action

a k ∈ A k (x k ) at a decision epoch k when the system state is

x k ∈ X . Because the decision rules depend on the current sys-

tem state only rather than the entire history, we are essen-

tially restricting ourselves to Markovian decision rules. We use

π ≡ (π1 (x 1 ) , π2 (x 2 ) , . . . ) to denote a policy specifying the de-

cision at all decision epochs. Since we consider a periodic sys-

tem, we anticipate that both the state and the optimal control

policy should exhibit time-periodic structure as well, namely,

x k = x k + τ and πk (x k ) = πk + τ (x k + τ ) , which will be rigorously

shown in Theorem A.1. Denote by � the set of the determin-

istic periodic-stationary policies. 

3. We denote by q k ( j | x k , a k ) the transition probability that the sys-

tem state reaches j at time k + 1 from x k when action a k is

taken. Let ηk ≡ηk ( a k ) denote the number of batteries that be-

come fully-charged at the beginning of the (k + 1) -th slot. From

our distributional assumption on the charging times, it can be

verified easily that ηk is a binomial random variable with pa-

rameters ( a k , μ). The transition equation for the state is then

given by 

x k +1 = x k − ξk + ηk . (A.1)

It is readily checked from (A.1) 

 k ( j| x k , a k ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

λk f b (0 ; a k , μ) if j = x k − 1 , 

λk f b ( j − x k + 1 ; a k , μ) + ( 1 − λk ) f b ( j − x k ; a k , μ)
if x k ≤ j < x k + a k , 

( 1 − λk ) f b ( a k ; a k , μ) if j = x k + a k , 

(A.2) 

for f b ( k ; n , p ) being the probability mass function of a binomial

distribution with parameters ( n , p ). 

4. The one-slot cost when action a k is taken in state x k at time

k that leads to transition to x k +1 at time k + 1 is the cost of

system incurred over the k -th slot, given by 

c k ≡ c k (x k , a k ) = pa k + cx −
k 
, (A.3)

where we have written p k and c in place of p k δ and c δ, re-

spectively, similar to what we did with λk δ and μδ, and x −

denotes the negative part of x , i.e., x − ≡ max (−x, 0) . Here x −
k 

represents the backlog, namely, the number of EVs waiting for

battery swap, p is the charging cost per battery per unit time, c

is the cost of waiting per EV in queue per unit time. 

5. As we will be primarily interested in minimizing long-run aver-

age cost, we choose to present the infinite-horizon average-cost

formulation. For simplicity, we suppose that the initial system

state is zero. Let c π
k 

denote one-slot cost at time k under policy

π , and C(π ) ≡ lim sup T →∞ 

T −1 
∑ T 

k =1 c 
π
k 

denote the correspond-

ing long-run average cost, where T is the time horizon. Then

the infinite-horizon cost-minimization problem can be formu-

lated as 

inf 
π∈ �

C(π ) ≡ inf 
π∈ �

( 

lim sup 

T →∞ 

T −1 
T ∑ 

k =1 

c πk 

) 

. (A.4) 

The result below guarantees the existence of a periodic-

stationary optimal policy. 

Theorem A.1. There exists a periodic-stationary optimal policy
∗ for problem (A.4) ; i.e., the decision rule π ∗ at time k = jτ + i

 j ∈ Z 

+ and i ≤ τ ) is independent of j but depends on i . 
roof of Theorem A1. The key is to show the periodic MDP

an be reformulated so as to be stationary. This is done

y enlarging the state and the action space. Define X̄ ≡
 (x, k ) ; x ∈ X , k ∈ { 1 , . . . , τ }} and Ā ≡ { (a, k ) ; a ∈ A k , k ∈ { 1 , . . . , τ }} .
et c̄ ((x, k ) , (a, k )) = c k (x, a ) , and let q̄ (·| (x, k ) , (a, k )) assign proba-

ility one to X × { k + 1 } for k 
 = 0 (mod τ ) and to X × { 1 } for k = 0

mod τ ) with the marginal distribution of the first coordinate be-

ng q k ( ·| x , a ). Then the MDP with state space X̄ , action space Ā ,

ost structure c̄ , and transition law q̄ is time-stationary. Because

he original action space A has finite elements, the new action

pace Ā is finite and hence compact. An application of Theorem

.8 in Schäl (1993) (see the references there for earlier related

ork) allows us to conclude the existence of a stationary opti-

al policy for the reformulated MDP. By the earlier transformation

f the state and the action space, we conclude that there exists a

eriodic-stationary optimal policy π ∗ for problem (A.4) . �

.2. The first-stage problem 

Note that the solution to the MDP relies on the “fixed param-

ter” B . Following the convention, we use V ( B ) to denote the op-

imal objective value. On the one hand, increasing B allows us to

chieve lower objective value V ( B ). On the other hand, EV batteries

re expensive to manufacture. We thus incorporate costs of capi-

al and assume battery investment cost to be γ per unit of time.

or example, if a battery costs $3,500, or $350 per year considering

 10% amortization rate, then γ ≈ 1 if we use day as the units of

ime. Our first-stage problem is then formulated as follows: 

in 

B 
V (B ) τ + γ τB. (A.5)

ppendix B. Discrete-time Approximation of the Fluid Model 

We numerically solve the second-stage cost minimization prob-

em (2a)–(2e) by discretization. Let �t denote a small time interval

nd N = τ/ �t denote the total number of time intervals within a

ycle [0, τ ]. Let k ∈ { 1 , . . . , N} be the index of the time intervals.

hen we have m ≡ { m (k ) ; k = 1 , . . . , N} representing the working-

harger fluid during time interval k . Additionally, let x ≡ { x (k ) ; k =
 , 1 , . . . , N} , where x ( k ) denotes the amount of FB fluid at the end

f the time interval k when k = 1 , . . . , N and x (0) denotes the ini-

ial FB fluid at the beginning of the first time interval. We can dis-

retize (2a) –(2e) as follows: 

in 

x,m 

N ∑ 

k =1 

p(k ) m (k )�t + c 

N ∑ 

k =1 

[ x (k )] −�t, 

 . t . x (k ) − x (k − 1) = μm (k )�t − λ(k )�t, k = 1 , . . . , N, 

0 ≤ m (k ) ≤ κ, k = 1 , . . . , N, 

m (k ) + [ x (k )] + ≤ b, k = 1 , . . . , N, 

x (0) = x (N) . 

(B.1) 

ppendix C. Technical proofs 

roof of Theorem 3.1. For the ease of mathematical analysis, we

urn the original fluid-model optimization into an equivalent prob-

em. Loosely speaking, two optimization problems are equivalent if

n optimal solution to one can easily be “translated” into an opti-

al solution for the other. Here we substitute (2b) into the objec-

ive (2a) and constraints (2c) –(2d) to get 

in 

x ∈ C 1 
μ−1 

∫ τ

0 

p(t)(λ(t) + 

˙ x (t)) dt + c 

∫ τ

0 

x −(t) dt, (C.1) 

 . t . 0 ≤ μ−1 (λ(t) + 

˙ x (t)) ≤ κ, 0 ≤ t ≤ τ, (C.2) 
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μ−1 (λ(t) + 

˙ x (t)) + x + (t) ≤ b, 0 ≤ t ≤ τ, (C.3)

x (0) = x (τ ) , (C.4)

where we have used C 1 to denote the space of differentiable func-

tions over [0, τ ]. The rest of the proof proceeds in two steps. We

first show that the equivalent problem specified by (C.1)–(C.4) is a

convex optimization problem. We then argue that we are minimiz-

ing over a compact set of continuous functions. Noting that there

exists at least one optimal solution to a convex optimization prob-

lem over a compact set (see, e.g., Beck (2014) , p. 149), we complete

the proof. 

Let us define F 

+ : C → C , x �→ x + and F 

− : C → C , x �→ x − to be

two mappings from the space of continuous functions C to it-

self. It is evident that both F 

+ and F 

− are convex. Also define

A : C 1 → L , x �→ μ−1 (λ + ˙ x ) . It is immediate that A is affine and

hence convex. Next define 

G : L →R , y �→ 

∫ τ

0 

p(u ) y (u ) du and H : C →R , x �→ 

∫ τ

0 

x (u ) du

That G and H are linear mappings implies they are convex. Finally,

let us use P t : C → R , x �→ x (t) to denote the projection mapping

at time t . The objective (C.1) is convex in x due to the fact that

G ◦ A + H ◦ F 

− is convex. Similarly, we can write (C.2), (C.3) and

(C.4) as 0 ≤ A (x ) ≤ κ, (A + F 

+ )(x ) ≤ b and (P 0 − P τ )(x ) = 0 re-

spectively. Hence all constraints are convex. 

To argue that the feasible regime X is compact, we apply

Arzela-Ascoli theorem. To that end, we show that (i) functions

in X are uniformly bounded, and (ii) they are equicontinuous , i.e.,

for every ε > 0, there exists δ > 0 such that | x (t) − x (s ) | < ε uni-

formly over X whenever | t − s | < δ. From (C.3) , it follows −λ↑ ≤
˙ x ≤ μ(κ − λ↓ ) where λ↑ ≡ sup 0 ≤t≤τ λ(t) and λ↓ ≡ inf 0 ≤t≤τ λ(t) .

Hence, condition (ii) is automatically satisfied. By the same token,

condition (i) reduces to the statement that x (0) is bounded uni-

formly over X . From (C.2) and (C.3) it follows easily that x (0) is up-

per bounded uniformly over X . We can also impose a (finite) lower

bound for x (0) without affecting the optimal solution because the

value of the objective function goes to infinity as x (0) approaches

−∞ . This shows that the feasible region is essentially compact. The

proof is thus complete. �

Proof of Proposition 3.1. Suppose, by way of contradiction, that

there exists another charging policy ˜ m such that ∫ τ

0 

p(t) ̃  m (t) dt < 

∫ τ

0 

p(t) m 

∗(t) dt. (C.5)

Then, from (12) it follows that 

˜ m (t) − m 

∗(t) = 

{
˜ m (t) − κ ≤ 0 for t ∈ φ(ζ ∗) , 
˜ m (t) − 0 ≥ 0 for t / ∈ φ(ζ ∗) . 

(C.6)

Because φ ≡φ( ζ ∗) is the collection of time instances at which the

electricity price p is less than or equal to ζ ∗, we have ∫ τ

0 

p(t) ̃  m (t) dt −
∫ τ

0 

p(t) m 

∗(t) dt = 

∫ 
φ

p(t)( ̃  m (t) − m 

∗(t)) dt 

+ 

∫ 
φc 

p(t)( ̃  m (t) − m 

∗(t)) dt. (C.7)

Using (C.6) , the right hand side of (C.7) is at least ∫ 
φ
ζ ∗( ̃  m (t) − m 

∗(t)) dt + 

∫ 
φc 

ζ ∗( ̃  m (t) − m 

∗(t)) dt 

= ζ ∗
∫ τ

0 

˜ m (t) dt − ζ ∗
∫ τ

0 

m 

∗(t) dt = 0 , (C.8)

for the last equality in (C.8) owing to (3) . This implies ∫ τ

p(t) ̃  m (t) dt −
∫ τ

p(t) m 

∗(t) dt ≥ 0 , 

0 0 
hich contradicts the assumption (C.5) . Hence, there is no feasi-

le charging policy that can beat m 

∗ in terms of minimizing the

harging cost. �

roof of Theorem 3.3. Note that the first case follows directly

rom Proposition 3.1 and the construction (16) - (18) . It remains to

how the second case. Suppose for the sake of contradiction that

here exists b < b̄ for which ( y (0), m 

∗) is an optimal solution. Then

t must be the case that y ( t ) ≥ 0 for all 0 ≤ t ≤ τ . Note that x ∗(0) in

16) is the smallest value that makes x ( t ) ≥ 0 for 0 ≤ t ≤ τ . There-

ore, y ( t ) ≥ 0 implies y (0) ≥ x ∗(0). Also note that y satisfies 

 (t) = y (0) + μ

∫ t 

0 

m 

∗(u ) du − �(t) . (C.9)

ombining with (17) yields 

 (t) − x ∗(t) = y (0) − x ∗(0) ≥ 0 for all 0 ≤ t ≤ τ. (C.10)

To proceed, suppose the right hand side of (18) reaches its max-

mum at time u , i.e., m 

∗(u ) + x ∗(u ) = b̄ . Then 

 

∗(u ) ≤ b − y (u ) < b̄ − x ∗(u ) = m 

∗(u ) , 

here the first inequality follows from the constraint (2d) and the

ssumption y ( t ) ≥ 0 for all 0 ≤ t ≤ τ , the second inequality is due to

C.10) and the assumption b < b̄ . But this leads to a contradiction

nd thus completes the proof. �

roof of Theorem 5.1. To reformulate the problem, we will need

o analyze each constraint in (25) where uncertainty is involved,

nd determine its “worst-case scenario”. Then we are guaranteed

hat the constraint is satisfied for any realization of the uncer-

ainty. We start with the nonnegativity constraint, i.e., ˜ x (t) ≥ 0 . It

s worthwhile to notice a straightforward fact about the realized

B inventory process: 

˜ 
 (t) = x 0 + 

∫ t 

0 

(m (u ) − ˜ λ(u )) du = x (t) −
∫ t 

0 

z(u ) du, (C.11)

or 

 (t) = x 0 + 

∫ t 

0 

(m (u ) − λ(u )) du and z(t) ≡ ˜ λ(t) − λ(t) . 

ence, to determine the worst-case scenario, it suffices to seek a

ealization of z that minimizes the right-hand side of (C.11) ; i.e.,

e need to find a realization of z that solves, for each t ≤ τ , 

ax 
z 

∫ t 

0 

z(u ) du 

.t. 

∫ t 

0 

| z(u ) | du ≤ �(t) and 0 ≤ | z(u ) | ≤ ˆ λ(u ) 

for all u ∈ [0 , t] . 

t is immediate that at the optimal solution, z ≥ 0. We can therefore

ewrite the constraints on the variable z to obtain an equivalent

roblem 

ax 
z 

∫ t 

0 

z(u ) du 

.t. 

∫ t 

0 

z(u ) du ≤ �(t) and 0 ≤ z(u ) ≤ ˆ λ(u ) 

for all u ∈ [0 , t] . 

(C.12)

t turns out that problem (C.12) is a specific instance of the contin-

ous linear program introduced by Bellman (2013) , and we obtain

trong duality and with its dual formulation provided below: 

min 

(t) ,γ (·,t) 
ω(t)�(t) + 

∫ t 

0 

γ (u, t) ̂ λ(u ) du 

.t. ω(t) + γ (u, t) ≥ 1 ∀ u ∈ [0 , t] 
ω(t) ≥ 0 and γ (u, t) ≥ 0 ∀ u ∈ [0 , t] . 

(C.13)
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he constraint m (t) + ̃  x (t) ≤ b can be analyzed in a similar fashion,

nd the determination of the worst-case scenario reduces to an op-

imization problem which is essentially the same as that in (C.12) .

s a consequence, their respective dual formulations are the same,

s specified by (C.13) . We observe that both the primal (C.12) and

ts dual (C.13) take only the known parameters ˆ λ and � as inputs,

nd can be solved independently. We thus obtain the modified de-

ision region defined through (26) with 

(t) ≡ ω 

∗(t)�(t) + 

∫ t 

0 

γ ∗(u, t) ̂ λ(u ) du 

or ( ω 

∗, γ ∗) being the solution to problem (C.13) . Clearly, the first

nequality constraint in (C.13) can be replaced by ω(t) + γ (u, t) =
 . Upon substituting it into the objective function yields the de-

ired result. �
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