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ABSTRACT

We apply the relation L =AW to prove that in great generality the long-run
average number of customers in a queueing system at an arrival epoch is equal
to the long-run average number of arrivals during the period a customer spends
in the system. This relation can be regarded as an ordinal version of L =AW,
arising when we measure time solely in terms of the number of arrivals that
occur. We apply the ordinal version of L =AW to obtain a conservation law for
single-server queues. We use this conservation law fo establish an extremal
property for the FIFO service discipline: We show that in a G/GI/1 system the
FIFO discipline minimizes (maximizes) the long-run average sojourn time per
customer among all work-conserving disciplines that are non-anticipating with
respect to the service times (may depend on completed service times, but not
remaining service times) when the service-time distribution is NBUE (NWUE).
Among the disciplines in this class are round robin, processor sharing and
shortest expected remaining processing time.

Key Words: queues, conservation laws, Little’s law, work-conserving service
disciplines, stochastic comparisons, new better than used in
expectation.
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1. Introduction

In this paper we establish a conservation law that can be viewed as an
ordinal version of the relation L =AW, due to Little [10] and Stidham [14].
(We briefly review L =AW in Section 2.} Our main result, Theorem 2, states
that in great generality (the same kind of conditions as for L =AW) the long-
run average number of customers in the system at an arrival epoch coincides
with the long-run average number of arrivals during a customer’s sojourn time
(the interval between arrival and departure). We may either count or not count

the arriving customer, but we do the same for both averages.

For the FIFQ (first-in first-out) discipline, our result is known, being any
easy consequence of two facts. First, with the FIFO discipline, the customers
left behind by a departing customer are just those customers that arrived durtng
the departing customers sojourn time; see Keilson and Servi [9] for recent
applications. Second, the departure-point averages coincide with the arrival-
point averages, as can be seen from upcrossing and downcrossing arguments;
e.g., see (9) below and p. 112 of Franken, Konig, .Arndt and Schmidt [5].

However, we do not restrict attention to the FIFO discipline here.

We regard our conservation law as an ordinal version of L =AW, because
it is an analog of the standard version that arises when we do not measure or
observe time. As with the standard version, customers are indexed in order of
arfival, but we do not consider the actual arrival epochs. Similarly, customers
depart some time after they arrive, but we do not consider the actual departure
epochs. Instead, we measure time in terms of the arrival indices, so that the
waiting time is replaced by the number of arrivals during a customer’s sojourn
time. In Section 3 we show that the ordinal version of L =AW can be derived

from the standard version simply by making this interpretation.

In Section 4 we é.pply this ordinal version of L=AW to obtain a
conservation law for single-server queues; see (6)-(10). In Section 5, we apply

this conservation law to establish some useful comparisons between congestion
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measures with different service disciplines. Theorem 3 shows that the FIFO
discipline minimizes (maximizes) the expected sojourn time per customer in a
G/GI/1 model, among all work-conserving disciplines that are non-anticipating
with respect to the service times, when the service-time distribution is NBUE
(NWUE), i.e., new better (worse) than used in expectation. In this model, the
service times are i.i.d. (independent and identically distributed) and independent
of the arrival process, but the arrival process can be general, e.g., non-renewal.
Work-conserving means, first, that the server works at unit rate whenever there
is work to do and, second, thai the discipline does not affect the arrival times
and service requirements; sze p. 418 of Heyman and Sobel [8]. Since the
discipline can affect the number of customers in the system, we cannot have a
limited number of queue positions; the discipline could then affect the arrivals
(customers that enter). On the other hand, we could have a finite capacity for
work (service time), because the workload process is independent of the
discipline within this class. Non-anticipating with respect to the service times
means that the discipline can depend on the amount of completed service time
of each customer, but not on the remaining service time. A/l work-conserving
disciplines are of this form when the service requirements aré¢ not known upon
arrival, but instead are only realized through service. Work-conserving
disciplines such as round robin (RR) and processor sharing (PS) that do not
depend on the service times in any way are of course included. A discipline
that uses the completed service times is shortest expected remaining processing
time (SERPT), where we compute the expectation conditional on the completed
service time of each customer and we use processor sharing when there are
ties. One might conjecture that SERPT always'minimizes the long-run average
sojourn time within this class of disciplines; this is so for NBUE service-time
distributions, but not in general, even with a Poisson arrival process; see

Remark 5.5.

Of course, disciplines such as last-in first-out (LIFO) and random order
of service (ROS) for which the distribution of the equilibrium number of
customers in the system is the same as far FIFO have the same expected

sojourn time as FIFQ (by virtue of L =AW). A useful comparison with FIFO is
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established for preemptive service-sharing disciplines such as RR, PS and
SERPT. Consistent with intoition, FIFO tends to be good for low-variability
service-time distributions, but bad for high-variability service-time distributions.
With FIFO, more customers suffer from the exceptionally long service times.
Since the exponential distribution is both NBUE and NWUE, the expected
sojourn time is independent of the discipline in this class when the service-time

distribution is exponential.

The stochastic comparisons under NBUE and NWUE conditions here
extend previous results by Yamazaki and Sakasegawa for the special case of a
GI/GI/1 queue (renewal arrival process) with a PS discipline having a finite
number of service positions. Such systems were also analyzed by Rege and
Sengupta [12] and Avi-Itzhak and Halfin [2]-[4].

2. Review of L=AW

The standard L =AW framework is a sequence of ordered pairs of random
variables {(Ag, Dy): k=1,2, ...}, where 0<A, <A, and A, <D, for all k; see
Stidham [14],[15] and Glynn and Whitt [6],[7]. We usually interpret A, and
Dy as the arrival and departure epochs of customer k, but this is not necessary.

Indeed, we will propose something different in the proof of Theorem 2.

Related quantities of interest are defined in terms of an indicator variable
1;(¢), which is 1 if A, <t<D; and O otherwise. The number of customers in
the system at time ¢ and the waiting time of the k™ customer are

N@ =Y 1), 20, and Wi =Dy—Ar= | L(d, k21. (1)
k=1 : 0
We can now state a version of Little’s law, L =AW; e.g., see Theorem 2

of Glynn and Whitt [6]. Throughout this paper, limits are understood to be
with probability one (w.p.1).

Theorem 1. (Little’s Law). Assume that k! Ak—:»?\.‘l as k— oo, where

0<A<oo. Then the following are equivalent:
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k
(i) k' X Wiow as koo
j=1

i
Gy 1 [ N(s)ds >0 as t oo and k' Wy—0 as k—oo.
0

3. The Ordinal Version of L=AW

We now cease to keep track of time. Instead, we measure time in terms
of amrival indices, so that the waiting time becomes the number of arrivals
during a customer’s sojourn time. As in Section 2, we assume that the
customers are totally ordered, but we allow multiple arrivals at the same time;
ie., the k™ customer has arrival epoch A; with A;<A;,;. In the framework of
Section 2, let X; be the number of customers with indices greater than k that
arrive while customer %k is in the system, and let N{ be the number of
customers with indices less than k that are in the system at the arrival epoch of
customer k. {The qualification on the indices is included to cope with multiple

events occurring at the same time.)
Here is our ordinal version of L =AW.

Theorem 2. The following are equivalent:

k
() k1 T X;ox as koo
j=!

k
(i) k' ¥ NI 5x and k7' X, -0 as ke
j=1
A direct proof of Theorem 2 is not difficult (see Remark 3.1 below), but
it essentially amounts to reproving a variant of Theorem 1. To show the

connection to Theorem 1, we directly apply Theorem 1.

Proof. We put this problem in the framework of Section 2 by letting A, =%
and letting D, be the index of the last arrival during customer £’s sojourh time

(which is taken to be % if there are no other arrivals during this time). Then
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W=D, —A, =X, is the number of armrivals with indices greater than k during
the sojourn time of customer 4. For ¢ not an integer, N (¢) defined by (1) is the
number of customers in the system at arrival epoch [¢] that are still present at
arrival epoch [r]+1, where [t] is the integer part of . Thus, N(z) only counts
arrivals before {1+ 1. Consequently, for any integer k,
k k
k7 [ N@s)ds =k 3 N9, )
0 Jj=l
i.e., the avérage number of customers with smaller indices in the system upon

arrival.
We are now ready to apply Theorem 1. Since A=k, the initial

k
assumption is trivially satisfied with A=1. Obviously, k! IN (s)ds —x as
- 0

r .
k—>o for integers k if and only if t“le(s)ds —>X as [ —>oco, SO
0

{
: k
! IN(s)ds —Xx as [ —eo IS equivalent to k! Y Nf—x as k—>co. Thus,
0 j=1

Theorem 1 produces Theorem 2 with this interpretation. O

Remarks. (3.1} A direct proof starts by letting Y;;=1 if j>i and customer j

arrives while customer i is still in the system. Then let

Xx=3% Y= 3 Yy and NfE=3 V=3 Y. 3)
Jj=t J=k+1 i=l i=1

(3.2) Theorem 2 can also be proved by applying the general version
of L=AW in Glynn and Whitt [7], but it is not any easier. In that context,
Theorem 2 is interesting because it is treated by a two-dimensional cumulative

input function F (s, t) generated by a double sum.

(3.3) A central-limit-theorem version of Theorem 2 can be
established, just as the central-limit-theorem version of Theorem 1 in Glynn

and Whitt [6].
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4. Relations for a Single-Server Queue

Consider a single-server queueing system in which work is processed at
unit rate whenever work is present and the server is working. We can trivially
express the time spent in the system by customer k, say T, in terms of five

components:
S — service time of customer k£,
W$¢ — work in system (in service time) just prior to arrival of customer £,
Wi — work (in service time) to arrive during customer k’s sojourn time, 4)
I, — idle time of the server during customer &’s sojourn time,
W¢ — work (in service time) just after the departure of customer .
For each k=1,

Ty =S, + W + Wi +1, — W, (5)
We can obtain corresponding relations among long-run averages and expected
steady-state values. In particular, we consider expected steady-state values, i.e.,
in a stationary process framework, as in Franken et al. [5]. Henceforth, assume
that there is appropriate ergodicity as well as stationarity so that all long-run
averages exist and coincide with expected stationary values. For the quantities

in (5), this means the customer-stationary or synchronous version (Palm

distribution). After dropping the index &, we obtain
E(T):E(S_)+E(W“)+E(W‘)+E(I)—E(Wd). (6)

Furthermore, if the service times are i.i.d. and independent of the arrival

process, (a G/GI/1 model), then we can express E (W°) as

EW®)=EX)E(S), )
where X is the stationary number of arrivals during a customer’s sojourn time.
We can then apply Theorem 2 to obtain

EX)y=EWN%, (8)

where N is the stationary number of customers in the system just prior to an

arrival. We also have
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E(N%) =ENY, (9

where N9 is the stationary number of customers in the system just after a
departure. (However, we must be careful about ties. For example, (9) is valid
if we stipulate that N§ counts all customers that arrive at epoch A; and have
arrival indices less than k, while N¢ counts all customers that depart at epoch
D, and have arrival indices greater than k. Then (9) follows by relating the

upcrossings to the downcrossings.)

Finally, we can obtain an expression for E(N), where N is the time-
stationary number of customers in the system at an arbitrary time and A is the

arrival rate (assumed to be well defined, with 0<A <eo). From Theorem 1,

EN)Y=AE). (10)

5. Work-Conserving Disciplines Non-Anticipating with Respect to the

Service Times

Now we assume that the G/GI/1 queue of Section 4 has a work-
conserving discipline; i.e., the server is never idle when a customer is in the
system, and the discipline does not affect the arrival epochs or the amount of
service given to any customer. Hence, I; =0 for all £ in (5). As usual, let the

traffic intensity be p=AE(S)<1. Under all the assumptions above,
E(T) = E(S)+E(W%+E(W°) — E(W?)
= ES + E(W?) + E(N®)E(S) - E(W¥)
=ES + EW?) + [E(NDE(S) — EW). (11)

Of course, if the discipline is FIFO, then E (T)=E (S)+E(W?) and W¢ is

distributed as the random sum of N 4 ii.d. full service times, so that
EWY) =EWNYE(S). (12)
Otherwise W? is the sum of N9 residual service times, which can be quite

complicated. However, we can use (11) to obtain useful comparisons for

work-conserving disciplines that are non-anticipating with respect to the service
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times. In particular, we can establish inequalities with NBUE and NWUE (new
better or worse than used) service-time distributions. Recall that a service time

S is NBUE (NWUE) if
E(S—t ]S> <) E(S) forall ¢; (13)

e.g., see Stoyan {16]. We summarize the conclusions in the following theorem.

Theorem 3. (a) If the G/GIl/I queue of Section4 has a work-conserving

discipline, then

E(T) = E(T; FIFO) + [EINDE(S) - EW%)]. (14)

b) If, in c;ddition, the discipline is non-anticipating with respect

to the service times, then

ETM <@ ET; FIFO) and EN) < () EWV; FIFO) (15)

whenever the service-time distribution is NWUE (NBUE), with equality holding

when the service-time distribution is exponential.

Proof. (a) Apply (11) and (12). (b) Note that W4 is the sum of N¢ residual
service times, say S;. Let H? represent the history of the system at the
departure epoch associated with N¢ and W7, which includes the completed

service times of all customers in the system. Under NBUE

Nd
EWH=E|Y S;

i=l

=E E[’E S7 IHd]

i=1

Nn'
3 (ES) | HY||=EWNHE(S). O

i=1

<E|E

Remarks. (5.1) For the special case of a renewal arrival process, exponential
service times and a PS discipline (the GI/M/l/oo/PS model), Theorem 3(b) is
covered by Theorem 2 of Ramaswami [11]. Note that Ramaswami’s result
shows for the special case of exponential service times that, although the first
moment of T does not depend on the discipline, the second moment (and thus

the full distribution) of T does depend on the discipline.
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(5.2) For GI/M/1, GI/Ei/1 and GI/D/1 queues, stronger stochastic
comparisons consistent with Theorem 3(b) have been established in Section 3
of Shanthikumar and Sumita [13].

(5.3) For the special case of a Poisson arrival process and a PS

discipline, Theorem 3(b) is an elementary consequence of known results; i.e.,

ET; M/G/1, PS)y = E(T; M/M/1, FIFO). (16)

For queues with common p, E(T;M/M/1, FIFO)<(2)E(T;M/G/1, FIFO)
whenever ¢2>(<)1, where ¢? is the squared coefficient of variation of the
service-time distribution. It is well known that S NBUE (NWUE) implies that
2<1E1). |

(5.4) It is not difficult to see that the NBUE (NWUE) condition in
Theorem 3(b) cannot be replaced by ¢2<1 (=1) for general GI/GI/1 systems
(non-Poisson arrival processes). A proof can be obtained by using a light-
traffic argument as in Whitt [17] with a batch Poisson arrival process with
geometric batch sizes, which is a renewal process. By making the Poisson
arrival rate small, almost all busy periods consist of a single batch. By making
the mean batch size small, batch sizes of size greater than k are asymptotically
negligible compared to batch sizes of size 4. All disciplines are the same for
batches of size 1, so it suffices to consider batches of size 2. Let S, and §, be
the service times of the two customers in such a batch. The expected sojourn

time per customer during such a special busy period, say E(T”), with FIFO is

E(T; FIFO)= 8, + 5,/2

and, with PS, is

max{Sl,Sg}—min{Sl,Sz}

E(T’; PS) = min{S;, S,} + 2

By considering specific distributions for §;, e.g., two-point distributions, we see

that ¢ =1 is not the borderline between FIFO and PS.

(5.5) Note that FIFO coincides with SERPT for NBUE distributions
and LERPT (longest) for NWUE distributions. Hence, Theorem ‘_3(b) also
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established extremal properties of SERPT and LERPT for subclasses of
service-time distributions. However, it is not difficult to see that SERPT does
not minimize E(T) for all service-time distributions. For example, let

P(§=0)=0.9=1-P(S=11). Obviously, for 10<¢<11,
E(S—t | S>1)=11-1<1.1 = E(S),

so that when a customer has been in the system for ¢ in this range, SERPT
does not give a new arrival a negligible amount of service to see if the zero
service time is realized, as it should. A formal proof can be developed by

using Poisson arrivals and light traffic, as in [17]. O

We now apply PASTA (Poisson arrival processes see time averages) as
in Wolff [18] to obtain another consequence of (11). For the external
exogenous arrival process considered here, we automatically have Wolff’s lack
of anticipation assumption (LAA): For each ¢, {A(+u)—A@): u=20} is

independent of {N(s): 0<s<t}, where A (?) is the arrival counting process.

Theorem 4. (a) In an M/Gl/1/ queue with a work-conserving discipline,

P
1-p

Proof. PASTA implies E(NY)=E () in (11). O

EN®Y=EN) =

1+ EWO-E (Wd)] . a7)

E(S)

For an M/GI/1 model, we can also determine when E(N) is the same as

for an M/M/1 model with the FIFO discipline.
Corollary. In an M/Gl/1/=~ queue with a work-conserving discipline

E(N) = % = E(N; M/M/1, FIFO) (18)

if and only if E(W?%) = E(WY).
Remarks. (5.6) In an M/GI/1 FIFO queue, E(N®)=E(N 4), but we typically do

not have E(W?)=E(W?), because W¢ is the sum of N¢ full service times,

while W9 is the sum of N¢ éervice times, one of which is residual (if N®>1).
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(5.7) Let V be the steady-state workload at an arbitrary time. By
PASTA, the distribution of W¢ coincides with the distribution of V in the
M/GI/1 model. Thus, E (W“)=E(Wd) if and only if E(V)=E (Wd). Hence,
departures see time averages (in the limited sense of these means) if and only if

the moment £ (V) satisfies (18).

6. A Heavy Traffic Limit and An Approximation

In this final section, we apply our results to the case of a GI/GI/1 queue
with a discipline such that at most m customers in the system can have

received partial service at any time. For this model let
d d d
N9 =N§ + Ny

where N? is the number of customers that have received partial service and Ng
is the number of customers that have not received any service, among those N¢

customers in the system at a departure epoch. Then

EWNDES) - EW?) = ENDE(S) ~ EWD), (19)

where W¢ is the remaining work of the N customers that have received partial

service.

For FIFO it is well known that
lim (1-p)E(T)=E (S)(cg + c?)/ 2, 20)
p—1

where ¢ and ¢? are the squared coefficients of variation of the interarrival
times and service times, respectively; see p. 196 of Asmussen [1]. To relate

our discipline to FIFO, we assume the following regularity condition:

sup E(S ~1 | §>1) <K <oo. 1)
2

Theorem 5. Consider a GI/Gl/1 queue with a work-conserving discipline that
is non-anticipating with respect to the service times and permits at most m

customers in the system to have received partial service. If (21) holds, then

lim ——8)
p—1 E(T; FIFO)
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Proof. By (14), (19) and (21),
| E(T) - E(T; FIFO) | = |E(NDES) - EWY | <mK,

s0 that the conclusion follows from (20). O

From (14) and (19), it follows that if one has good estimates or
approximations for E(N?) and E(WY), then one obtains good estimates or
approximations for E(T)—E(T; FIFO). For example, it should be much more
efficient to estimate E(Nf) and E(W?) by simulation than to estimate

E(T)~E(T; FIFO) directly by simulation, especially if p is near 1.

A specific example is an M/G/1 queue with m *‘service positions’’, where
the customers occupying the service positions are served according to a
processor-sharing discipline. Variants of this model have been considered by
Avi-Itzhak and Halfin [2]-[4] and Yamazaki and Sakasegawa [19]-[21]. In [2]

the following approximation is proposed:

(1) ‘N¢ is approximately distributed as min(m—1, X); where X is the state of
the equally loaded M/M/1 queue.

(2) The amount of residual work of a customer in a service position at a
departure is approximately distributed as the stationary excess or residual

lifetime of the service time.

These approximations are exact for the extreme cases m=1 and m=c. The
resulting approximation is

.
E(T) = E(T; FIFO) + "T_"p— % E(S). 22)

Approximation (22) and variations could be used more generally.

As noted in the introduction, Yamazaki and Sakasegawa [19]-[21]
derived for this model comparisons to the FIFO discipline. Their results are in
agreement with the Theorem 3. Moreover, (22) is also proposed by them in
(4.7) on p. 983 of [19].
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