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Murray Hill, New Jersey

We construct a version of the recently developed Poisson-Arrival-Location . .
Model (PALM) to study communicating mobiles on a highway, giving the dis-
tribution of calls in progress and handoffs as a function of time and space. In
a PALM arrivals generated by a nonhomogeneous Poisson process move inde-
pendently through a general state space according to a location stochastic pro-
cess. If,.as an approximation, we ignore capacity constraints, then we can use.-
this model to describe the performance of wireless communication systems. Our
basic model here is for traffic on a one-way; single-lane, semi-infinite highway,
with movement specified by a deterministic location function. For the highway
PALM considered here, key quantities are the call density, the handoff rate,
the call-origination-rate density and the call-termination-rate density, which
themselves are simply related by two fundamental conservation equations. We
show that the basic highway PALM can be applied, together with independent
superposition, to treat more complicated models. Our analysis provides con-

nections between teletraffic theory and highway traffic theory.

-

1. INTRODUCTION

In a previous paper {10] we introduced a Poisson-Arrival-Location Model
(PALM), in which a nonhomogeneous Poisson process generates arrivals that
move independently through a general location state space according to some
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location stochastic process. A PALM generalizes the notion of a finite network
of infinite-server queues with nonhomogeneous Poisson arrival processes. Such
a network is a PALM with a location space that is a finite set. In fact, the
M,/G/o queue is a PALM with a location space containing a single point.

Our motivation for creating the PALM was to develop queueing models for
wireless communication systems (see Lee [8]). The key features a PALM enables
us to model are the following:

¢ nonstationary behavior,
¢ non-Markovian behavior,
* service dependence on space and time.

The PALM is able to capture these important features because it does not rep-
resent interactions between customers. Our idea is that the PALM should be
able to serve as a practical model for mobile phones, just as the infinite-server
M,/G/o queue can serve as a practical model for telephone trunk groups.
This idea for telephone trunk groups was advanced by Palm [15], which partly
explains the name for our model.

Although the PALM ignores interactions between customers, it does cap-
ture many of the space-time dynamics of wireless communication systems. For
a stationary telephone, only the time a call is in progress is important, so that
service can be represented by the length of a telephone conversation. For mobile
phones both the location and time of a call in progress are important, so that
service should be represented by a path through a location space as a function
of time. ‘

For moving automobiles the two-dimensional space R? is a natural loca-
tion space. For personal communication systems associated with people or air-
planes, three-dimensional space R? is a natural location space. When these
spaces are partitioned into a finite set of cells, the resulting PALM corresponds
to a standard finite-node, infinite-server network. This PALM can then model
the number of phone conversations in each cell.

In this paper our basic model will be for traffic on a one-way, single-lane,
semi-infinite highway. Thus, we can let -our location space be to the interval
[0,0); a point représents the distance along the highway from the origin. The
boundary point 0 will be called the spatial or'igin; it'will mark the entrance point
to the highway. A nonhomogéneous Poisson arrival process { A(f} | — o0 <7< oo}
counts the number of cars that enter the highway. In particulaf;, A4 (¢) counts the
number of arrivals up to time ¢, which we assume is finite with probability 1.
This nonhomogeneous Poisson process A is characterized by its arrival rate func-
tion . To have A(#) finite with probability 1, we assume that [ «(s) ds < o
for all ¢.

It is significant that many formulas here (e.g., for means) do not depend
on the Poisson assumption; they hold if A is an arbitrary point process (with-
out multiple points) with time-dependent arrival-rate function . The Poisson

‘I



WIRELESS COMMUNICATION SYSTEMS 543

assumption for A is important for distribution conclusions (e.g., the Poisson
property and stochastic independence).

In a general PALM the movement of each customer after arrival can be
characterized in terms of a stochastic process. Here, as a further simplification,
we assume that the movement of each car after arrival is described by a deter-
ministic function x (s, ), which gives the position at time ¢ of a car entering the
highway at time s. To specify the deterministic location function x (s,#), we can
draw on vehicular traffic theory. As in Gazis [3] and Haberman [4], we con-
struct the function x by a velocity field v(x, #), which gives the velocity at posi-
tion x at time {. Qur analysis of the highway PALM thus brings together
teletraffic theory and vehicular traffic theory. Other recent efforts to do this are
the papers by Meier-Hellstern, Alonso, and O’Neill [12], Montenegro, Sengoku,
Yamaguchi, and Abe [14], and Seskar, Maric, Holtzman, and Wasserman [16].
We anticipate much more of this in the future.

Even though we directly consider only one-way traffic on [0,o0) originat-
ing at 0, our analysis applies to much more general models, by virtue of super-
position. To include other cars on the highway going the same direction with
different starting points, and other cars going in the opposite direction, we can
simply superimpose independent versions of the highway PALM considered
here. Moreover, general movement in R? and R? can be treated as superposi-
tions of independent one-way traffic along paths in these spaces. Hence, the
one-way highway is not only a natural model of interest in its own right, but
also it is a key building block for more complicated models. We discuss such
extensions further in Section 9.

It is important to keep in mind, though, that in all these PALMs we are
assuming that there are no interactions between different cars. The locations of
all the cars are mutually independent, conditional on their arrival times. None
of this precludes, however, the cars being influenced by their common space-
time environment. For example, we cannot directly model a car deciding to slow
down based on the actions of another car, but we can model this behavior indi-
rectly by having all cars slow down in a specific region of the highway at a spe-
cific time. In a sequel to this paper [9], we show that a variant of the highway
PALM introduced here can indeed indirectly capture the effect of an accident.

Here is how this paper is organized. In Section 2 we construct the basic
highway model and identify the four fundamental stochastic processes associ-
ated with it. They are Q(x, ), the number of calls in progress in region (0, x]
before time ¢; H(x,t), the number of handoffs at position x (the number of
calls in progress passing x) before time ¢; C*(x, ), the number of call origina-
tions in region (0,x] before time ¢; and C~(x, ), the number of call termina-
tions in region (0,x] before time ¢. Their means are characterized by a call
density g(x, ¢), a handoff rate #(x, ¢), a call-origination-rate density ¢*(x, ),
and a call-termination-rate density ¢~(x, ¢), which are all related by two fun-
damental conservation equations (see Eqgs. (2.6) and (2.7)).
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In Sections 3 and 4 we develop the PALM version of the highway model.
As in Massey and Whitt [10], these four processes are Poisson when viewed
properly (see Theorem 3.1). This additional stochastic structure allows us to
analyze the interactions of cells and the aggregate flows of calls in and out of
cells. :
In Section 5 we review how infinite-capacity models can be used to approx-
imate finite-capacity models. In particular, we review the modified-offered-load
(MOL) approximation for the nonstationary Erlang loss model, i.e., the
M,/G/c/0 model, which has ¢ servers and no extra waiting room. In Section 6
we describe how the highway PALM here can be applied to divide the highway
into cells so that each cell can just handle its offered traffic. We contrast the case
of fixed cell boundaries with dynamic cell boundaries (which are functions of
time). Having dynamic cell boundaries is analogous to having dynamic (time-
of-day) routing in a standard voice network. Fewer cells are required with
dynamic cell boundaries. The highway PALM here provides a way to quantify
the difference. .

In Section 7 we indicate how we can describe the proportion of blocked
originating calls in a cell and the proportion of blocked handoffs from one cell
to another. Here we exploit the MOL approximations discussed in Section 5.

In Section 8 we analyze a special case of a highway PALM in which all cars
have constant velocity. For this special case we can easily express the call den-
sity g¢(x, ¢) in terms of the external arrival rate function o and other model fea-
tures. We consider a simple numerical example to investigate the influence of
the distributions beyond their means.

Finally, in Section 9 we show how to exploit independent superposition in
order to build more elaborate. models. There we show that the two fundamen-
tal conservation equations still hold with appropriate definitions.

2. GENERAL CONSERVATION EQUATIONS

Before we specialize to the highway PALM, we will describe the conservation
equations that hold for general systems. For every space time pair (x,#), we can
associate the following four random variables:

Q{(x,t) = number of active calls_ in the interval (0,x] at_‘ti'me {,

H(x,t) = number of calls in progress moving past position x before time ¢,

C*(x,t) = number of call initiations in interval (0,x] before time ¢,
- C7(x,t) = number of call terminations in interval (0,x] before time ¢.

We also call H (x, t) the number of call Aandoffs at x before ¢, because in many
mobile communication systems if a boundary of a cell were at x then the call

in progress would have to be handed off from a base station in one cell to a base
station in the next cell when the mobile passes the cell boundary.
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Assuming that all traffic moves only from Jeft to right down the positive
real line, these four random variables satisfy the following conservation relation:

CH(x,t) = Q(x,t) + H(x,t) + C(x,1). 2.1

Now assume that their expectations are finite and differentiable in both x and ¢.
Let g(x,t) and h(x,t) be, respectively, the active call density and the call hand-
off rate, defined by '

d
w0 = = BON] ad h(on = EBHED. @)
Similarly, let ¢*(x,¢) and ¢~ (x, ) be, respectively, the call-initiation-rate den-
sity and the call-termination-rate density, defined by '
3? + 8?

E{C*(x,? d c(x,t)= —E[C(x,1)]. 2.3
Fyey {C¥(x,t)] and c7(x,¢) Fyry [CT(x0)1. Q.3
Applying the operator [9%/(0xd?)]E[ -] to the conservation relation, we get
the differential equation

cH(x,t) =

i gix,t) + _6__ h(x,t) =ct(x,t) — c(x,1). 2.4)
at ox

Assuming that the calling density g(x, ¢) is never zero unless the call handoff

rate a(x, 1) is also, let

h(x,t)

:t = »
v(x1) q(x,t)

2.5)
when the ratio is weli defined and set v(x,?) equal to zero otherwise. We can
give v(x,t) the physical interpretation of the aggregate mean velocity for the
active calls. We have now created by definition the relation

h(x,t) = v(x,t)q(x,1). 2.6)

This parallels the fundamental conservation equations of highway traffic (see
Haberman {4, p. 274]). The difference here is that we are talking about calls
instead of cars. Substituting this into the conservation differential equation
above, we get

3 g(x,t)+ 2 v(x,1)q(x,t) = c*(x,t) — c™(x,1). Q.7

at ax
Resulting differential Eq. (2.7) is a one-dimensional version of the gener-
alized -conservation law for fluid motion (see Symon [17, p. 323]). This equa-
tion governs the mean behavior of any stochastic highway traffic model. The
standard continuity equation for charges in semiconductor statistics is a concrete
application of this law (see Sze [18, p. 51]). In the special case in which ¢*(x,¢) =
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¢ (x,1), Eq. (2.7) reduces to the standard mass conservation equation in fluid
dynamics (see Symon {17, p. 317]).

3. CONSTRUCTING THE HIGHWAY PALM

The conservation equations given in Section 2 hold for any stochastic highway
model. These equations govern the mean behavior for Q, H, C*, and C~ but
do not give any insight into their distributions or behavior as stochastic pro-
cesses indexed by both space and time. By specializing to the PALLM version of
the highway model, we can handle both issues. :

For simplicity, we assume that each car goes through three successive
phases: think mode, calling mode, and completion mode. Given that a car
arrives to the highway at time s, the car (or its driver) is in think mode until
some random call origination time T when a call is placed. After the call is
placed, the call is in progress and the car is in calling mode until some random
call termination time T, . After T, the call is finished and the car is in comple-
tion mode. Observing that we will always have s < T < T, we will refer to
T — s as the think time and T, — T, as the call holding time. In Section 9
and in Leung, Massey, and Whitt [9], we discuss extensions to the highway
PALM in which cars can make multiple calls.

Assuming that cars do not pass each other, we can let the aggregate mean
velocity field v(x, ¢) in Eq. (2.5) be the velocity field for the cars. We then con-
- struct the trajectory field x (s, ) as the unique solution to the differential equation

d

Ex(s,l‘)—v(x(s t),t) 3.1)
for ¢ > s, where x(s,5) = 0. From the trajectory field we can define 7(s,x) and
o(x,t), where -

7(s,x) = time at position x for a car cntering the highway at time s,
o(x,t) = highway entrance time for a car to be in position x at time £.

Figure 1 is a space-time diagram depicting a car in think and call modes. The
solid-line portion of the car’s trajectory represents when the call is in progress.
In the dashed-line portions before and after, the call is not in progress.

To have a(x,?) and v(x, t) well defined, we need to assume that two cars
cannot be in the same place at the same time or, equivalently, that cars cannot -
pass each other. (In Section 9 we will treat cases where cars can pass by using
- the principle of independent superposition.)

If Q(x,t) is the number of cars with calls in progress at time ¢ within the -
interval of space (0,x], we can express it in terms of Poisson integration as

1
Ox,t)y= f 1[7}".-5:<T;; dA(s), 3.2)

{(x,¢)
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Ficure 1. Space-time diagram for a car in think and call modes.

where 15 is the indicator function of the set B; i.e., l1g(x) =1ifx€ Band 0
otherwise. By “Poisson integration” we mean stochastic inte€gration with respect
to the nonhomogeneous Poisson process A. This integration can be simply
defined as a finite sum over the jumps of the Poisson process A for each sam-
ple path (see the Appendix for more details).

The process Q can also be constructed by applying Poisson integration to
a location process L,(t), as we did in Massey and Whitt [10]. We define the
location space to be the set of ordered pairs (x,0) and (x,1) for x € RY, i.e.,
where x is a nonnegative real number. The pair (x,0) corresponds to the car
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being at position x on the highway and in the think mode. The pair (x,1) cor-
responds to the car being at position x in the calling mode. We can then let
L.(t) be defined by

(A, s<t,
(x(50),0), t=s<T,
Ly(t) = _ @3.3)
(X(SQI),I)’ TS+SS< TS,
LA, Ty =<s,

where A, and A* are the “prearrival” and “completion-mode” states as defined
in Massey and Whitt [10]. This gives us an alternate construction of Q(x, ) as

H

Q(x, 1) = f Linemxixy dA(S). G.4)
olx, )

We now assume in addition that ¢ is twice continuously differentiable, « is once
differentiable, and, for almost all s (with respect to the measure «(5) ds), the
distributions of both T and T, have densities. With these assumptions the
cell density g in Eq. (2.2) is well defined.

Suppose that the highway is partitioned into subintervals called cells. When
a car is in a cell, its calls are handled by a designated base station. To describe
the handoffs of calls from one cell to another at the cell boundary point x within
the time interval {(—oo, ], we use the function 7(s,x). Let one radio base sta-
tion cover the cell or highway region (w,x] and another cover (x, y], where
0= w<x<y=< o, Wecan express H(x, ) in terms of Poisson integration as

a{x,t) .
H(x,t)= f gt <ris, <15y dA(S). 3.5)

Figure 2 gives a space-time diagram for the processes Q and H for a pos-
sible location function x and a possible realization of the nonhomogeneous
Poisson arrival process. This particular realization has seven car arrivals. As in
Figure 1, the solid-line portion of each trajectory represents when the call is in
progress. For the specified x and ¢, Q(x,¢) = 2, while H(x,t) = 3. The same
conditions that allow us to define ¢(x, ¢) also enable us to define a handoff rate
h(x,t) in Eq. (2.2). ' ‘

Finally, the Poisson integral representations of C*(x,¢)and C~(x, ) are

t

CH(x,t) = f Lt <min(r(s, 0, 0 GA(S) 3.6

—0

and

4 .
C™(x,1) Ef L{7r<min(r(s.x). 00 FA(S)- 3.7
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space — -

time

FIGURE 2. Space-time diagram for the processes Q(x,¢) and H(x,?).

Using the same conditions as for g(x,¢) and A(x, ) (the second derivatives
of ¢ are needed here), we see that the call-origination-rate density ¢*(x,t) and
the call-termination-rate density ¢—(x,t) in Eq. (2.3) are well defined.

We now exploit the PALM structure to deduce distributional properties for
the basic processes Q, H, C*, and C~. We will prove the n€xt two results in the
Appendix.

THEOREM 3.1: The following results hold:

(@) For all real t, {Q(x,t}|x = 0} is a Poisson process with

{

E{Q(x,1)] =f P(T) =t < To)a(s) ds. 3.8

o(x, 1)
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(b) For all nonnegative x, {H (x,t) | —o0 < { < o] is a Poisson process with

al{x,l}
E[H(x,1)] = f P(T) < 7(s5,x) < T )a(s) ds. 3.9)

() Both {C*(x,1)|x=0,—0 <t< oo} and {C{x,1) |x=0,—0 <t < 0]
are two-dimensional Poisson processes with

alx, 1)

E[C*(x,1)] =_f P(T] < 7(s,x))a(s)ds

—o0

+ f P = Dals)ds 3.10)

(x, 1)

and

alx, )

E[C(x,t)] =f P(Ty = 7(5,x))a(s) ds

—Co

{
+ f P(Ty = )a(s) ds. (3.11)
a{x,t)

As in Remark 2.3 of Massey and Whitt [10], it is significant that the mean
formulas in Theorem 3.1 do nof depend on the arrival process A being a Pois-
son process. Of course, the Poisson process conclusions do depend on A being
Poisson. As in Massey and Whitt [10], let ® denote the sum of two random
quantities, where the summands are stochastically independent.

THeoREM 3.2: The following independence relations hold for the random pro-
cesses Q, H, C*, and C:

(a) For all space-time pairs (x,t) and (x',t’) with o(x,f) = a(x,t"),
Q(x,t) is independent of H(x',t’).

(b) For all t the processes {C~(x,t) |x = 0} and {Q(x,t) | x = 0} are inde-
pendent. '

(c) Similarly, for all x = 0, the process {C(x,t) | —o < t < ] is inde-
pendent of the process { H(x,t) | —0 < t < = }.

(d) Finally, for all space-time pairs (x,t),

-—

CHx, £) = Q(x,t) @ H(x,t) ® C7(x,1). (3.12)

4. CELL TRAFFIC ANALYSIS

At this point, we want to think more in terms of cells, so let (x, y] be a generic
cell where of course x < y. Note that calls can arrive at a cell in two ways:
(1) by a car already in the cell initiating a call, and (2) by a handoff of a call in
progress for a car entering the cell. Similarly, calls can leave a cell in two ways:
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(1) by a car already in the cell terminating a call, and (2) by a handoff of a call
in progress for a car leaving the cell. In this section we describe these four pro-
cesses and their relationships.

If we only focus on whether or not a call is in progress in a cell and suppress
the position within a cell, then a partition of the highway into a finite number
of cells allows us to represent the highway PALM as an (M,/G,/)V/G, net-
work in the terminology of Massey and Whitt {10]. Then, cells are nodes and
N is the number of nodes. If we number the cells starting at the origin, then the
network topology is as that shown in Figure 3. Each cell has an external arrival
process corresponding to call originations in the cell and a departure process
corresponding to call terminations in the cell. There are also flows from node
i—1toifor2=i=< N+ 1 (the horizontal lines in Figure 3) corresponding to
handoffs of calls in progress when a car passes a cell boundary.

We now focus on one cell within this (M,/G,/)"/G, network. From
Massey and Whitt [10], we know that this cell itself can be regarded as an M,/
G,/% queue. We do a direct analysis here. The following results can be ex-
tended to more general location spaces. However, here we exploit the fact that
no call can reenter a cell after it has left (e.g., see Massey and Whitt [10, Theo-
rem 3.5]).

We now define C{,, ,; (¢) and C(; ,; (¢) to be, respectively, the number of
calls that originate and terminate in cell (x,y]. We can express them in terms
of C*and C™ as

C(-;_y](t) = C+(y:t) - C+(x,t) (4'1)
and
Ci iy (8) = C=(1,1) — C(0,1). 4.2)

Similarly, if we define Q,, ,;(¢) to equal- the number of calls in cell (x, y] at
time ¢, then

Oixp1 (1) = Q(3,1) — Q(x,1). 4.3)

By Theorem 3.1, Q.. ,;(#) has a Poisson distribution with mean g,(x,y) in
Eq. (6.1). The fact that Q for fixed ¢ is a spatial Poisson process can be rein-
terpreted for cellular traffic. If I'y,...,Tw, are a pairwise disjoint collection of
cells, we then have

P(Qr‘,(f) Kis.o.sQOry(t) = ky)

-

- EP(QF,.U) = k) = e~aan T 240" @4

i=1 k ! ’
where I' is the union of the I';’s. Here we see that like transient distribution for
infinite-server networks (appropriately initialized; see Massey and Whitt [10])
and the equilibrium distribution for the Jackson network [5], the PALM has a
product form structure. Although the PALM assumes that the number of active
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@®

FiGure 3. An infinite-server network representation of the highway
model.

calls in disjoint cells at time £ are mutually independent, it does nof assume that
this is the case for disjoint cells observed at different times. In general, we can
say that

coviQr, (£), O, (u)] =f P(Ty =t=u<T7)a(s)ds, (4.5)
a(l1, 13N (T, u4) :

where o(T',7) = {a(x,t) |x € T}.

As in Section 3, let @ denote the sum of two random variables that are sto-
chastically independent. We write X = Y © Z if X @ Z = Y. We will prove the
following result in the Appendix.

TueorREM 4.1: For any given cell (x,y], the following fesults hold:
(@) The arrival process of calls to cell (x,y] is Poisson and equals
 {H@H) @ CE ()| = <1< o). @.6)
(b) The departure process of calls from cell (x,y] is Poisson and equals
{H(3,t) ® Cq, (1) |- <t < »}.” “.7
(c) Finally, we have for all ¢ _
Qe y1 (1) = [H(x,t) ® C& ,1 ()] © [H(y,1) ® Ci 1 (1)]. (4.8)

5. APPROXIMATE ANALYSIS OF THE M,/G/c/0 QUEUE

In the next three sections, we will show how we can apply the highway PALM
to the design and performance analysis of a wireless communication system. We
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will formulate an approximate analysis of the wireless communication system
based on an exact analysis of the highway PALM. Before doing so, we want to
give the underlying motivation for this approximate analysis by reviewing how
the exact analysis of the M,/G/< model plays the same role in the approxi-
mate analysis of the M,/G/¢/0 model.

First, the M/M/c/0 queue is the Markovian model for a telephone trunk
group. We can encode the complete dynamics of this Markov model by the
state-space transition diagram in Figure 4. There, A is the call arrival rate, g is
the service rate, and ¢ is the number of channels. Let O be the steady-state num-
ber of busy trunklines. From standard birth-and-death process theory, we
obtain a closed-form solution for the distribution of Q and derive the classical
Erlang blocking formula

M) [E (Np)
(.u)z(p-)‘

P(Q =) = B.(Mp) = ] =
. i=0 .

5.1)
The Erlang blocking formula gives the probability that all trunklines are busy,
which also equals the proportion of arriving customers that are blocked from
entering the system. Moreover, if Q is the steady-state number of trunklines for
the non-Markovian M/G/¢/0 queue with i.1.d. service times distributed as S
with a general distribution, then P(Q = ¢) = 8.(AE[S]); i.e., the M/G/s/0
model has the insensitivity property: the distribution of Q depends on the dis-
tribution of S only through its mean.

A more thorough performance analysis of telephone trunk groups forces us
to deal with a call arrival process that is nonstationary. When this process is
nonstationary Poisson, we call it an M,/G/c/0 system. Although this model is
more realistic, it is far less tractable. In particular, we lose the simplicity of the
Erlang blocking formula.

HENEEERE

1] 1 K = c
channels channe! = channels channels
in use in use in use in use

11 2n kp (k+1)n cu

FiGcure 4. State-space diagram for the Erlang model.
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Before we discuss how to approximate these blocking probabilities, we con-
sider what we mean by blocking probability in the context of nonstationary sys-
tems. Let A{¢) be the arrival rate and let Q(¢) be the number of busy trunklines
at time ¢ for the M,/G/c/0 system. Now let (f,,?;) denote an interval of time
of interest, and let

. _ = f h
Blto, 1) = f Mr)P(Q(r)=C)df/ f A(7) dr, G.2)
. fo fo ’

which is the expected number of blocked calls during the interval (7,,%),

divided by the expected number of arriving calls during the same interval. Note

that for the M/G/¢/0 model, we have 8(#,,¢;) = 8.(AE[S]). For many appli-

cations it seems more appropriate to measure the proportion of arriving custom-

: ers that are blocked than the proportion of time that the system is available.

' This makes the weighted avérage 8(f,, f;) a more suitable metric for blocking
in the M,/G/c/0 system than the simple time average

-
Bllo,11) = — f P(Q(r) = c)dr. 5.3)
L — b Jy,

However, we can use the time-dependent blocking formula P(Q(7) = c) to
compute either 8 (£, ¢,) in Eq. (5.2) or 8(%, ) in Eq. (5.3). (Although at first
glance B(#,,¢,) appears to be the ratio of expectations instead of an expecta-
tion of a ratio and not exactly the expected proportion of customers blocked in
the interval (Z,,%;), the latter interpretation is valid with a minor modification,
as we show in Proposition A.1.)

The first approximate analysis method we present is the pointwide station-
ary approximation (PSA), which is

P(Q(#) = c) = B.(N1)ELS]). (5.4)

% This is an approximation technique that is applicable to any time-inhomogeneous
TR process. The PSA for the blocking metric in Eq. (5.2) is

Bllo,11) = f 'MT)BC(RG)E{SI)JT/ f '\ dr. )

There are many limitations to PSA. It does not properly capture the history
and it is insensitive to the distribution of S. An alternative to'PSA comes from
an exact analysis of the M,/G/o queue. We can obtain a tractable nonstation-
ary analysis of a system in exchange for assuming that we have an infinite num-
ber of trunklines. Let Q*(¢) be the number of busy trunklines for the M,/G/ o
queue. If the system starts empty in the past, then Q*(¢) has the Poisson dis-
tribution with mean

4

m(t) =E[Q*()] = E[ A(7) d'r] (5.6)

—-S
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(see Eick, Massey, and Whitt [2]). Going back to the M,/G/c/0 queue, the
MOL approximation is

P(Q(t) =¢) = B.(m (1)), (5.7

for m(t) is Eq. (5.6) (see Jagerman [6] and Massey and Whitt [11]). Just like
the PSA, the MOL approximation is exact for the stationary M/G/¢c/0 model,
because then m () = A(¢)E[S]. Unlike the PSA, the MOL approximation cap-
tures the effect of the distribution of S beyond its mean (see Davis, Massey, and
Whitt [1]).

Hence, the MOL approximation for the blocking metric in Eq. (5.2) is

Bltortr) = f MT)Be (1)) dr/ f ") dr. .8)

6. DIVIDING THE HIGHWAY INTO CELLS

We'now illustrate how we can apply the highway PALM to a wireless commu-
nication system. Consider the problem of dividing the highway into cells so that
the offered load in each cell is, at most, a specified A. We might determine A by
specifying a channel capacity c for each cell and a target call blocking proba-
bility b. Then, using Erlang’s formula, we can find the unique offered load \
such that 8.(\) = b. Using the MOL as inspiration, we define the offered load
for {(x,y] at time ¢ to be the measure g,(x, y) defined by

b g
ai(x, ) = f q(z,t) dz = E[Q(»,1)] —E[Q(x,1)]. 6.1)

Z

We have shown in Theorem 3.1 that Q(y,¢) — Q(x, ¢) has a Poisson distribu-
tion and is independent of Q(y',¢) — Q(x’,¢) for any other disjoint space inter-
val (x',y’].

For constructing cell boundaries, there are two natural cases: dynamic cell
boundaries, which are functions of time, and fixed cell boundaries. With
dynamic cell boundaries we consider all time points separately. With fixed cell
boundaries we must handle the worst case. We could also consider boundaries
that can be changed at only finitely many time points, but we do not.

Assuming that the average offered load function g,(x, ¥) in Eq. (6.1) can
be determined, for any given A, we can recursively define dynamic cell bound-
aries as follows:

1. Set xo(f) = 0.
2. Given x;(t), set x4 (f) = sup{y|x,-(t) < yand g,(x;(1),y) = \].

We can also define fixed cell boundaries for a finite time interval [0, T'] by
the following set of recursion relations:
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1. Set j‘o = 0.
2. Givenx;, foreachO=<s=<T,set y,y,(£)=sup{y|Z<yand g (%, y)<\].
3. Now set X4 = infoc/<rYip1 ().

It is intuitively obvious and easy to prove that fewer dynamic cells are needed
than fixed cells for any average offered load function.

ProposITION 6.1: Fewer dynamic cells are needed than fixed cells since for all
i we have X; < x;(!). '

Proor: We use induction on i. The result is immediate for i = 0. Hence, sup-
pose that X; < x;(¢). Because both sequences are increasing, we are done if
%141 < X;(1). Therefore, we need only consider the case £, > x;(f). By defini-
tion, q,(X;,X;+1) = A and s0 q,(x;(1),X;4) < A follows from X; < x; (£} < Xiy,.-
By the recursive definition of x;,,(¢), we have immediately that x;,| < x;,, ().

]

Let n(¢) equal the number of dynamic cells needed at time ¢, We can com-
pute this by observing that

n(t) = [q,(0,2)/\], 6.2)

where [x] is the least integer greater than or equal to x, and ¢,(0,) equals
the average queue length in the second queue for a two-station M, /G, /o net-
work. The service times at the first station are the think times 7" — 5, while the
service times at the second station are the call holding times T, — 7.

Let T = (x, y] be a region of the highway where we want to partition the
region into the optimal number of cells during a given time interval (s, f] under
the following conditions:

1. Each cell will carry at most ¢ simultaneous calls.

2. The offered load of calls to the cells will be evenly distributed.

3. Each cell will tolerate no more than some ¢g fraction of the initiated
calls blocked.

4. Each cell will tolerate no more than some ¢p fraction of the handoff
calls dropped. '

We then choose for some N and some time 7 a partition of cells 'y (7),...,
Ta(7) where T (7) = (Xi—1(7), X)), x =X (7) <X (7) < - T <xn(7)=). If
the offered load is evenly distributed, then ¢, (T;(7)) = ¢, (' (7))/N. Given c,
¢g, and ep, we will say that the optimal number of cells is N(I'), which is de-
fined to be the minimal integer N such that

f c; (Ti(1)B(q.(T)/N) dr
max — =< €p . (6.3)

lsisN !
f HTi(r)) dr
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and

f hr(x'—l(T):T)Bc(qr(F)/N) dT
lm_anv u - ' < ep. 6.4)
= f R %oy (7),7) dr

£

Note that N(T') = Np(T), where

No(I) = min[N|Bc( sup q,(I‘)/N) = min(eB,eD)} . (6.5)
s=r=/!

We intend to study methods for effectively finding desirable time-dependent
cells {T';(7)} in future work.

7. APPROXIMATE BLOCKING IN CELLS

In this section we indicate how we can obtain approximate blocking probabil-
ities for cells once they have been constructed. These blocking probabilities
exploit MOL approximation and PSA heuristics plus exact results for the high-
way PALM. ‘

Using MOL approximation-like estimation methods, we can define for any
cell (x, y] a metric (4, ¢;) for the fraction of blocked originating calls dur-
ing some interval (f,,#,) as approximately

{1 Iy
BC(t,1)) = f c(*;,y}(S)Bc(qs(x,y))dS/ j: el 1 (8) ds, .1

g

where cft, ,; () = [ ¢*(z,5) dz. Similarly,' we can define a metric 8(#,¢,) for
the fraction of dropped handoff calls entering cell (x, y] during the busy hour
(fo, t 1) to be

N &
BH(to,l‘x)zf h(x,S)ﬁc(qs(x,y))dS/f h(x,s} ds. (1.2)

i

The preceding analysis assumes that handoffs and originating calls are
treated the same, but it may be desirable to give handoffs preferential treat-
ment. One way to do this is with trunk reservation, as discussed in Kelly [7] and
Mitra, Gibbens, and Huang [13]. We can apply PSA-like estimation methods
to analyzing handoffs with trunk reservations. Suppose that each base station
provides ¢ channels but admits new originating calls only when at least r + 1
channels are free. The time-homogeneous Markovian version of such a system
is specified by the state-space diagram in Figure 5 (assuming a constant service
rate g for all calls). From basic birth-and-death process theory, we see that the
steady-state probability for dropped handoff traffic is equal to
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FIGURE 5. State-space diagram for the trunk reservation model.

e+ ANy [ Qi+ Ae) & O+ Ac)c-'xf;)
c! /(Z + 2 (c—r+j)!

(7.3)

BE (A Ne) =

i=0 i i=1

and the steady-state probability for all blocked traffic is
(At + M) Ny (i: Q) | & Ot xc)c-'xf;;)
(c—r+j)! )
(7.4)

BEC(AH!}\C) = Z

j=o (c—r+i)! i—0 i! j=1

We will use 87, and S, in Eqs. (7.3) and (7.4) to develop a PSA in the
nonstationary model. We have the time-dependent arrival rates in #(x,¢) and
c*(x,t), but we need to know an appropriate average service time. For this
purpose, for s < o(x,t), let R,(y,t) be the residual conversation time after
time £ in cell (x, y] for a call that arrives to the highway at time s where (¥, 7) <
s<a({x,t), or

Ri(y,1t) =

We can express the sum of residual times in cell (x, y] at time £ asf z{’;: SRy, 1) %
dA(s). By the properties of Poisson integration (see the Appendix), we can
express the expectation of this random variable as

(min(T5,7(08)) — 1) - Yrprars) - (1.5)

alx, 1) alx,t)
E[f Rs(_y,t)dA(s)] =f E[R (1)} a(s)ds. (7.6)

(»t} (»t)

Now let S, ,; (¢) be the average residual service time after time ¢ for cell (x, y],
where
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i o(x,1)

Q(x,y] (t) a{y1)

We give a simple expression for S, ,; (¢} next.

S(X'y](t)EE[ R_,.(y,t)dA(s)

Q(x,y] (t) > O] . (7-7)

ProprosiTiON 7.1: For all times t and cell intervals (x, y], we have

alx,t)

S-(x,y](t) = f E{R.(»t)la(s) dS/E[Q(x,y](t)]- (7.8)

nt)

Proo¥F: Define the processes X and Y where for all 7 > ¢(3,¢) we have

X(r)= f Lt arars) dA(S) |

)

and

Y(7)= f (min(75, 7(,5)) — 1) - Yirt sy dA(S). .9

(ni)

Note that X(o(x, 1)) = Qqy, 1 (1) and Y(o(x, 1)) = [2¢51) R ¥, ¢) dA(s). More-
over, X is a Poisson process as a function of 7 and that

Y(f)=fr (min(7T, 7(,8)) — 1) dX(s). (7.10)

(»)

Now we apply part (c) of Proposition A.1 and set 7 = o(x,1). |

Thus, approximate instantaneous offered loads of handoffs and originat-
ing calls for cell (x,y) are

hix,ty o9

ky(t) = h'(x, t)g(x,)’] (&)= m ()
%y al{y,

E[R,(y,D]a(s)ds (1.11)

and

y

fc*(z,t)dz o)
x 2 ]
E[Q¢.,1 (] Jogyny

. py )
Ac(t) = f €*(2,1) dz- Sz, 51 (1) = E{R (y,t)]a(s) ds.

(7.12)

" Finally, we obtain as approximate blocking metrics

n &
B(t, 1) ﬁf (1 (IBE N (8, M (5)) ds/f clp(s)ds  (1.13)
. o ’ o

[1]

and

BH(to,1;) = f " B, )8R (M) A () ds/ f T has)ds.  (1.14)
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8. THE CONSTANT VELOCITY CASE

In this section we further specialize the highway PALM by assuming, first, that
the cars all have the same constant velocity and, second, that for each s the
think times and call holding times are independent random variables with the
same distributions as 7? and T, respectively, that are independent of time s.
Because all cars move at some constant velocity v, x(s,£) = v- (f —5), 7(5, %) =
s+ x/v, and o(x,¢) = f — x/v.

We have seen that all the quantities of interest can be computed given the
call density g(x, ). For this example it is easy to determine this call density. Dif-
ferentiating Eq. (3.8) with respect to x gives

q(x,t) = % a(t —x/VP(TO < x/v< TO 4+ TW) 3.1

= % a(t — x/v) [P(T® = x/v) —P(T® + T® < x/v)].  8.2)
If we assume that 7% and T are exponentially distributed with rate p, and
11, respectively, then

exp(—p1 x/v) — exp(—poXx/v)
Ho — I '

qix,1) = -’:—" ca(t — x/v)- (8.3)

If, on the other hand, we assume that 7? is constant and (to be consistent
with the exponential case) T = [/y,, then

0, if x < v/uo,
g(x,t) = ) 8.4
a(l — x/v)exp(—p x/v + pui/ug) /v, if v/pg < x.

Now we reverse situations and assume that 7@ is exponential and 7""? is con-
stant with TV = 1/u,. We now have

ot — x/vYexp(—pox/v + po/py) /v, if x<v/p,
q(x,t) =4 a(t — x/v)(exp(—p1x/V + pi/po) — exp(—p, x/v))/v, (8.5)
if v/ﬂ-l = X.

Finally, if we assume that both 7@ and 7" are constants, we have

0, if x < v/py, -
g(x,t) =3 alt —x/v)/v, ifo/pe=sx<v(l/pg+ /1), (8.6)
0, : if v(1/pg + 1/u4) = x.

To illustrate the effect of randomness on the call density, we plot these four den-
sities for the case a{t) = 10 4+ 5sin¢, uy =1, uy =2, and v = 3 (see the graphs
in Figure 6). The two graphs in the top row have constant think times and the
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Figure 6. Graphs of the effect of deterministic versus exponential
think and calling time distributions on the average calling density.

two graphs in the left column have constant call holding times. Otherwise, the
times are exponentially distributed with the same mean.

It is significant that these graphs do not all look alike. Given exponential
think times (the bottom row of graphs), the call holding time distribution evi-
dently does not matter much. However, the three graphs that exclude the lower-
right graph are quite different.

More generally, we see how we can study various PALMs through graphs.

9. EXTENSIONS OF THE BASIC MODEL

In this section we discuss the ways in which our basic highway PALM is not sim-
ple but primitive; i.e., the basic PALM is a building block for constructing more
elaborate highway models In the next subsections, we mdlcate how to construct
models with the following features:

-one-way traffic with passing,
highway with two-way traffic,
highway network in R2,

cars making multiple calls.
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FiGURE 7. One-way traffic with passing as superpositions of the basic
highway PALM.

9.1. One-Way Traffic with Passing

As illustrated in Figure 7, we can model a highway with one-way traffic hav-
ing cars that pass each other as a superposition of the basic highway model. Let
I be some (at most countable) index of independent highway PALM systems.
We define the aggregate processes Q and H as

Q(x,t)= @ Qi(x,t) and H(x,t) = @ Hi(x,1). 0.1)
el iel
Similarly, let C* and C~ be defined by
CHx,ty= @ Ct(x,t) and C~(xt)= @ Cr(x,1). 9.2)
i€l ier

9.2. Highway with Two-Way Traffic

We can model a highway with two-way traffic as simply the superposition of
two independent replicas of our one-way highway, going in opposite directions.
The eastbound traffic would move according to a velocity field v, (x,¢), and
the westbound traffic by a velocity field v.(x, ), as depicted in Figure 8.

FIGURE 8. Two-way traffic as superpositions of the basic highway
PALM.
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For a given cell (x, ¥], we can define the processes
Q(x,yl(r) = Q(ﬁ’,y](t) © Q&‘y](t): 9.3)
where Q7,1 (1) = 05 (3,1) © Qs (x, 1) and Q% () = Q< (11) © O (x,1).

We can define C| ,; and C(; ,; in a similar fashion. To this we add the process
H¢, 1, which counts the number of handoffs for calls enfering cell (x, y1, and
H{, ,;, which counts the number of handoffs for calls departing cell (x, y].
Formally, we define them as

HE = Ho(x,t) @ Ho(3,t) and Hg = Ho(x,1) @ Ha (0, 1). 9.4)

9.3. Highway Network in R?

Now suppose that on some subregion of R? we superimpose a collection of
highways that may physically overlap, as depicted in Figure 9, but the result-
ing traffic for one highway acts independently of another. We construct this
model by initially viewing the ith highway as the basic highway PALM defined
on R,. We now associate a mapping ¢;: R, — R? that we will call an embed-
ding if both of the following hold:

- ew = - -t ‘
, . !‘.‘
F .
.
. N
« N
&’
,
s
Ty
.
s
Y
.
Y
7 &
“:\' L

- CR N N NN

Y

FiGgure 9. Highway network as superpositions of basic highway
PALMs.
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1. The mapping ¢; is continuously differentiable and one-to-one,
2. For all x € R,, the euclidean norm of ¢;(x) is one.

Such a transformation will preserve the speed of each car, but not necessarily
the direction of the velocity.

The ith highway will then be ¢;{(R,). Now let { be some bounded, open
region of R? with a connected boundary . In Figure 9 the region Q is a hexa-
gon. We assume that every highway will eventually leave such a region; i.e.,
Q N ¢;([x,)) = P for sufficiently large x. Moreover, we assume that every
highway can move in and out of a region no more than a finite number of times.
So for the ith embedding ¢;, we associate a finite set of disjoint intervals

(O (D)6 (N |i=1,...,J()) 9.5

such that x;"(i) < x; (i) and

x,"(i)sx,‘(i)-_c .o sxﬁ,-,(i)sx_,‘(,-,(i), (9.6)
where '
JG)
¢>f( U (xf(f).xj_(l'))) CQ 9.7
J=1
and
J{i)
ﬁbi( N [xj’(i),x:,-‘(i)]‘) N =40 9.8
j=1

By our definition (xj"(7),x;(i)) is mapped by the embedding ¢; into the jth
subroute of the ith highway that passes through ©. The point ¢;(x/"(i)) will be
an entrance point to {1, and ¢;(x;7(#)) will be an exit point.

To simplify notation, for x and yin R, let Q, ,; (£;§) = Q:(¥,£) © Qi(x, )
denote the number of calls in progress along the subroute of the ith highway,
which is ¢; ((x, ¥]). We can define C* and C~ in a similar fashion. Now for any
given cell 2, we define

J(i
Qa(t) = @ @ Qureyagan (£5). 9.9
ier j=1
Similarly, we can define

J) Jiy T
Ci(t) =@ @ Cipurgun(ti) and Ca(f) = @ @ Caray,can (1)

iel j=t iel j=1
9.10)

We now construct

J() J()
Hi() =@ X Hixj(i),t) and H;(f)= @ 2] Hi(x7(i),1). 9.11)

el j=1 iel j=1
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9.4. Cars Making Multiple Calls

Let T,7({) be the time that the car that arrives to the highway at time s begins
its /th call, and let 7,(/) be the time that this car terminates its ith call. We
then have

s=THy (D=T;(DN=TSQ)=T;2)=< ---. (9.12)
If we define Q;(x, t) to equal the number of ith calls in cell (0, x] before time ¢,
then

I

Qi(x, 1) =f Lirriy sicrsin dA(S) (9.13)

a(x, 1)

and each Q;(x, ) behaves like the basic h'ighway PALM. In terms of H;, C7,
and C;, we have

Ot =@ Qixt) and H(xi)= @ Hix1) ©.14)
i=1 i=l1
. but
CH(x,t) = E} Ct(x,t) and C(xt)= i Ci(x,t). 9.15)

Note that Q(x,?) and H(x, {) decompose into independent summands just like
the “passing” model in Section 9.1, but C*(x,#) and C~(x,¢) do not. It fol-
lows that Q(x, ) and H(x, ) will still have Poisson distributions, but this will
not necessarily be true for C*(x,r) and C~(x,r).
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APPENDIX: POISSON INTEGRATION

Let A be a nonhomogeneous Poisson process with rate function « and let {Z;} be an
i.i.d. sequence of random elements of scme Polish space (complete separable metric
space) ¥ distributed as Z. We will say that ¢ : L x R — R is an integrand with respect to
A and Z if it is a measurable function.

Given such an integrand ¢, we define Z,(¢) to be

t AL) R
Zy()= |  ¢(Zas,S)dAGS) = D] #Z,, 4,), (A.1)
n=1

—0

where A, is the nth jump time of A, counting backward from time .
We proved the following in Massey and Whitt {101:
1. For all bounded or nonnegative integrands ¢

t

E[Z,(¢)] =f Ef$(Z,5)]a(s) ds. (A.2)

-

2. For all bounded or nonnegative integrands ¢ and ¢,
g
cov[Z, (1}, Z,(1)] = f E[#(Z,5)¥(Z,5)] a(s) ds. (A.3)

3. If ¢ is a binary function, then Z, is a Poisson process.
4. If ¢, ¥, and ¢ + 1 are all binary, then Z, and Z, are independent Poisson pro-
cesses,
To these results we add the following proposition.
ProrposiTION A.Y: For all t, we have the following:

(2) For any two binary integrands ¢ and ¢ and any given t, Z,(t) and Z,(t) are
positively correlated Poisson random variables. In addition, their covariance is
. zero if and only if they are independent.

(b) Moreover, if 3 is a third binary integrand, then Z.(t) is a Poisson random vari-
able that is independent of Z,(t) + Z,,,(t) if and only if Z,(t) is independent
of both Z4(t) and Z¢(t)

(c) Finally, if ¢ is a bounded, real-valued integrand, then ..

fo E[¢(Z.7)]a(r) dr

E[M A(t)>0] = Bz _ (A.4)

A E[A -
(1) [A(1)] f’am .
0

Proor: For part (a), we use Eq. (A.3) to show nonnegative correlation. Now observe
that zero covariance implies ¢y = 0 up to time ¢, This means that ¢ + i is binary up to
time ¢, and so Z,(¢) is independent of Z,(¢).
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For part (b), if Z (¢} is independent of Z,(¢f) + Z,(¢), then their covariance is
zero. Using the bilinearity of the covariance, we have

COVZ, (1), Zy(1)] = —cov[Z, (1), Z, (). (A.5)

It follows by part (a) that both covariances are zero, Z,(¢) is independent of Z,(¢), and
Z,(t) is independent of Z,(¢).

For part (c), let A(¢) = fo a(7) dr. If N is a standard Poisson process (rate I}, then
we can construct the sample paths of A4 by using V¢ A so that N(A(¢)) has the same dis-
tribution as A4 (¢). Similarly, if N, is the nth jump for the standard Poisson process N,
then A, has the same distribution as A~'(N,). Using the fact that N,,...,N,,, are dis-
tributed like the order statistics for m i.i.d. random variables that are uniformly distrib-
uted on [0,¢] when we condition on the event { N(¢) = m}, we have

1 I
E[A_(t_) f_m $(Zacn,7) dA(T)

o Aﬁ’ Z,, A
- [A(t) n=|¢( e n)

A() > O]

A > O]

1 1 AW 5

i * 1 [ m )
= PG> 0 2 m LA e A = m]

_ 1 1
T PA(N) > 0) gy m
_ I oo l [ m Ly

= A0S0 ’;z:.! —~ EZ=}l H(Z,, A" (N,)
— 1 -
T P(A(1) > 0)

E| X ¢(Z,,A,)
=1

A(t) = m]P(A(t) =m)

N(A(D) = m]P(A(t) = m)

: Mr)E ZA_I. drP(A
IA(I)J; [¢(Z, ()] drP(A(f) = m)

o " grgza o ¢
——mj; [ (Z,A7(7))] T

‘ |
f E[6(Z, ] a(r) dr
= 0 . .

f'o.'('r) dr
0

Proor oF THEOREM 3.1: This can be regarded as a consequence of Theorem 2.1 of Mas-
sey and Whitt [10]. Given the properties of Poisson integration, it is clear that each
Q(x,1) has a Poisson distribution and, as a function of x, these random variables have
the independent increment property. By a similar argument we see that the H(x, ¢)’s form
a Poisson process as a function of £,

Both integrands use o(x, t) because by definition any arrival after this time must still
be in the region (0,x] at time ¢, and any arrival before this time must be past position

—
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x by time (. Taking expectations of these Poisson integrals gives us the formulas for the
expectations of Q(x,¢) and H(x,¢) as in Eq. (2.11) of Massey and Whitt [10]. [ |

Proor oF THEOREM 3.2: Using representations (3.2) and (3.5) for O(x,¢) and H(x, ¢},
respectively, the first statement follows immediately from the properties of Poisson inte-
gration. To prove the second and third statements, we observe that

ol{x, () ¢
CH(x,t) = f LirF<s(san dA(s) + f Lirpsy dA(S) . (A.6)
—oo alx, 1}
and
alx,t) [
C7(x,t) = f Lirr <rs,xn dA(S) + f lirr =y dA(S). (A.7)
—o0 . alx, 1)
The rest follows from using
Lrtsiersy + Yirssey = Lirg=eys (A.8)
where we will also substitute 7(s,x) for ¢. |

ProoF oF THEOREM 4.1: By Theorem 3.1, H(x,-} and C{, y; are Poisson process with
respect to time, so it is sufficient to show that they are independent processes. Referring
back to Theorem 3.1, we see that C¢,, , is independent of C*(x,-). Using Proposition
A.1, we have that CJ, yj must be independent of H{x,-) because, by Theorem 3.2, the
latter is a summand of C*(x,-).

The argument for the departure process in part (b) is easier because, by Theorem
3.2, C~ when holding x or # fixed is correspondingly independent of H(x,-) or Q(-,¢)
and H and H(y,t) are independent of Q( y,¢). We then deduce from Proposition A.1
that H(y,¢) is independent of Q, ,;(¢), because Q, ,;(¢} is a Poisson summand of
Q(x1). m



