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THE POINTWISE STATIONARY APPROXIMATION FOR
M,/M,/s QUEUES IS ASYMPTOTICALLY CORRECT
AS THE RATES INCREASE*

WARD WHITT
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-2070

Green, Kolesar and Svoronos (in press) and Green and Kolesar (in press) use numerical methods
to investigate the behavior of multiserver Markov queues with a Poisson arrival process having
a sinusoidal arrival rate. For this model they propose an approximation for long-run average
performance measures called the pointwise stationary approximation (PSA), which consists of
an appropriate weighted average of the performance measure that would result at each point in
time if the system were stationary with the arrival rate that applies at that point in time. In this
paper we verify their conjecture that PSA is asymptotically correct as the service and arrival rates
increase with the instantaneous traffic intensity held fixed (corresponding to long arrival rate
cycles). We actually establish both pointwise and average versions of this result for general time-
dependent birth-and-death processes.

(QUEUES; NONSTATIONARY QUEUES; BIRTH-AND-DEATH PROCESSES; LIMIT
THEOREMS; APPROXIMATIONS)

1. Introduction

Green, Kolesar and Svoronos (in press) and Green and Kolesar (in press) investigate
the behavior of M,/ M/ s queues with periodic sinusoidal arrival rates. They (abbreviated
GKS) propose an approximation for average performance measures called the pointwise
stationary approximation (PSA) which consists of an appropriate weighted average of
the performance measure that would result at each point in time if the system were
stationary with the arrival rate that applies at that point in time. (Obviously this ap-
proximation breaks down for unbounded performance measures if the instantaneous
traffic intensity is allowed to exceed 1, but that case is ruled out.) They empirically
observe that the quality of the approximation improves as the individual service rate
increases with the instantaneous traffic intensities remaining unchanged (less than 1),
and conjecture, quite naturally, that the approximation is asymptotically correct in the
limit. In this paper we verify that conjecture. We actually establish a stronger result for
a more general model: we show that both a pointwise version of PSA and the integrated
(average) version of PSA considered by GKS are asymptotically correct for general time-
dependent birth-and-death processes (TDBD’s). In TDBD’s, the transition rates can
depend on both the state and time.

The limit for TDBD’s is obtained by multiplying the transition rates by » and letting
n — oo. The limiting behavior for this model (and more general models) should be
anticipated because the process approaches steady state (locally) more quickly as the
rates increase. Indeed, the limit corresponds exactly to the uniform acceleration used by
Massey (1985) to analyze the M,/ M,/ I queue. (Related work was done by Newell 1968,
1982 and McClish 1979.) Massey goes beyond the relatively simple limit we consider to
develop refinements. Indeed, the Oth order term in Massey’s Theorem 1 is just the point-
wise version of PSA for the M,/ M,/ 1 queue. Formula (9.1) of Newell (1982, p. 263)
also expresses a variant of the pointwise version of PSA. The upper bound in Rolski
(1986) is a variant of PSA as well. (A deterministic periodic arrival rate can be expressed
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as the limit of a sequence of Markov intensity processes.) Indeed, PSA goes back to Palm
(1943, 1988). Nevertheless, a relatively simple proof of the limit for TDBD’s seems to
be of interest. It is also of interest to see how PSA performs, as shown by Green and
Kolesar (in press) for the A,/ M /s model with sinusoidal arrival rates.

The rest of this paper is organized as follows. In §2 we define the TDBD model. In §3
we state the limit theorem and two corollaries for this model, and in §4 we prove them.
We conclude in §5 with some discussion; e.g., there we propose a new approximation
based on a stationary model, in which the arrival rate is determined by averaging the
instantaneous arrival rate over an interval prior to the time of interest. In particular, we
suggest making the length of the interval proportional to the mean service time. This
average stationary approximation (ASA) may be any attractive alternative to the two
relatively extreme schemes discussed by GKS, namely, using the instantaneous arrival
rate (PSA) or using the long-run average arrival rate. With the averaging, we can treat
short periods of instability; only the average traffic intensities must be less than one. The
averaging also produces a lag in the performance measure behind the arrival rate that is
observed in examples.

2. Time-Dependent Birth-and-Death Processes

For each integer k = 0, let (¢, k) and u(?, k) be nonnegative bounded real-valued
functions of 1 = 0 with left and right limits everywhere. Moreover, assume that there
exist constants A\, u and k* such that

MNt,kysh<upu for all ¢ and k, and (1)
w(t, k)= pu for all ¢ and k= k*. (2)

We regard \(¢, k) and u(t, k) as time-dependent birth and death rates in state k for a
time-dependent birth-and-death process (TDBD) on the nonnegative integers. The special
case in which A(¢, k) = M(?) (i.e., A(¢, k) is independent of k) and u(¢, k) = p min {k,
s} for some constant p is the M,/ M /s queue. If, in addition, A(z) is sinusoidal, then we
have the model considered by GKS.

The TDBD can be constructed using independent Poisson processes, with one Poisson
process associated with each state k. Let u(k) be an upper bound for u(¢, k), which exists
by assumption. Let the Poisson process associated with state k have intensity a(k) = A
+ u(k). Start the TDBD with some proper initial distribution on the nonnegative integers.
If the process starts in state k, then let the Poisson process in state k generate the first
potential transition, and suppose that it occurs at time ¢. Let this potential transition be
a real jump up to k + 1 with probability A(¢, k)/a(k); let this transition be a real jump
down to k — 1 with probability u(¢, k)/a(k); and let this potential transition not cor-
respond to a real transition with probability

[a(k) = N2, k) — u(t, K)]/ a(k).

After time ¢ generate the next potential transition using the Poisson process associated

-with the resulting state, and continue inductively. By assumptions (1) and (2), there can
be only finitely many transitions in finite time. (This is a consequence of comparison
results in §4.)

3. The Limit Theorem

We now consider a family of TDBD’s indexed by #n. For n = 1, let the birth and death
rate functions \,(¢, k) and u,(t, k) be defined in terms of the birth and death rate
functions in §2 simply by increasing the rates, i.e., by

Mt k) =nX(t, k) and  p(t, k) = nu(t, k). (3)
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Let the initial state be given by the proper nonnegative integer-valued random variable
X (0). For each n = 1, let { X,,(2): t = 0} be the resulting TDBD with rate functions in
(3)and X, (0) = X(0).

For each s > 0, let {Y,(¢): t = 0} be a time-homogeneous birth-and-death process
(BD) with birth and death rate functions A\ (k) and u,(k) defined by

As(k) =N(s, k) and (k) = u(s, k). (4)

Let = denote convergence in distribution; see Billingsley (1968). From the previous
assumptions, it is easy to see that, for each s > 0, there exists a proper random variable
Y,(o0) such that Y, (¢) = Y;(co0) as t = oo . The random variable Y,(c0) is the pointwise
stationary approximation (PSA) to X,(t) for each n. To see this, note that the stationary
distribution of {¥y(¢): ¢ = 0} is unchanged by multiplying both \,(k) and u,(k) by n
for all k.

Our main result is that PSA is asymptotically correct (in a pointwise sense instead of
an average sense).

THEOREM 1. If\(t, k) and u(t, k) satisfying (1) and (2) are strictly positive and left-
continuous at t for all k, then

X, (1) = Y, (o0) asn—> .

The following result implies that PSA is asymptotically optimal in the integral or
average sense of GKS.

COROLLARY 1. If, under the assumptions of Theorem 1, f(t) and w(t) are bounded
measurable real-valued functions; then

b b
lim Ef[Xn(t)]W(t)dt=f Ef[Yi(c0)]w(t)dt

h—>o0

for0<a<b< .

COROLLARY 2. If, in addition to the assumptions of Theorem 1 and Corollary 1,
E[X(0)*] < o0, then

b b
lim | E[X,(t)/]w(t)dt = f E[Y,(00)/1w(t)dt

H—>o0

Jorallj<kandd=a<b< co.

4. Proofs

The essential idea in the proof of Theorem 1 is that the scaling in (3) makes the
processes approach steady-state (locally) faster as # increases. Equivalently, the scaling
in (3) is tantamount to considering TDBD’s with the original rate functions in a different
time scale; 1.e., the nth process has the same rate functions stretched by a factor of #.
With this interpretation, the rate functions become asymptotically locally constant as
n — oo. In the context of GKS, this means long cycles for given amplitude.

We actually prove Theorem 1 by bounding the TDBDs X,,(¢) above and below by
BD’s in the neighborhood of ¢ and showing that these BD’s converge. Since the BD’s can
be made arbitrarily close, the process X, (¢) sandwiched between them must converge
as well.

For this purpose, we need a comparison result for TDBD’s. The following is a corollary
to Theorem 9 of Whitt (1981), but we give a direct proof. We say that one random
variable X; is stochastically less than or equal to another X, and write X; <, X,, if
Ef(X,) < Ef(X;) for all nondecreasing bounded real-valued functions f.
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LEMMA 1. Fori=1,2,let {X(t):t= 0} be TDBDs with rate functions \(t, k) and
wi(t, k) such that each TDBD has only finitely many transitions in finite time w.p.1. If
X1(0) =4 X5(0), M (2, k) < \(t, k) and u,(t, k) = uy(t, k) for all t and k, then it is
possible to construct TDBDs {X’,«: (t): t =0} on the same sample space such that {)f,«(t):
t =0} has the same finite-dimensional distributions as { X;(t):t = 0} for each i and

P(X,(1) = X,(¢) forall t) = 1,
so that
Xi(1) <4 Xa() forall t. (5)

PROOF. First, construct X, (0) < X,(0) in the usual way; i.e., let F; be the cdf of X;(0)
and let U be a uniform random variable on the interval [0, 1]; then let X;(0)
= F7'(U). Next, construct the two TDBD’s as described in §2 using the same Poisson
processes (independent of the uniform random variable above ). When the two processes
are in the same state, the next potential transition in both processes occurs at the same
time. Generate the actual transitions at this time using a common uniform random
variable (using a different independent uniform variable for each potential transition).
Use the condition on the rates to guarantee that process 2 has a jump up whenever
process 1 does (and possibly when process 1 does not) and that process 1 has a jump
down whenever process 2 does (and possibly when process 2 does not). Hence, the
conclusion follows by induction on the potential transition epochs when the two processes
are in the same state. By assumption, the number of transitions when the two processes
are in same state is finite in finite time, so that the construction covers all time. [

Let {Q,(?): t = 0} represent the queue length process (number in system) in an
M/ M/ 1 queue with arrival rate n X and service rate nyp, with p = \/p < 1. Then { Q,(?):
t=0} is a BD with Q,(1) = Q(o0) as t = oo, where

P(Q(w0) = k)= (1 = p)p*, k=0

(Note that the same limit holds for all #.) Let Q,(¢; X) represent Q,(¢) with Q,(0) = X,
where X is a random variable independent of { Q(¢) — Q(0): ¢t =0}.

LEMMA 2. Under the assumptions of Theorem 1,
Xo(1) <y k* + Q,(1; X(0))
=g k* + X(0) + Q.(2;0)
<q k* + X(0) + Q(o0)
for all n and t, where k* is defined in (2).

PROOF. To establish the first inequality, apply Lemma 1. Note that we can regard
k* + Q,(t; X(0)) asa TDBD with u(t, k) = 0 for k < k*. By (1)and (2), the assumptions
of Lemma 1 are satisfied. The dominating process is well known to have finitely many
transitions in finite time. The second inequality is elementary. The third inequality follows
because a birth-and-death process is stochastically monotone, see Keilson (1979, Chapter
9), so that Q,(¢; 0) increases stochastically toward steady-state limit Q(c0). O

REMARK 1. Lemma 2 implies that, under the assumptions of Theorem 1, { X,,(): n
> 1} is tight, so that any subsequence has a subsubsequence converging in distribution;
see Billingsley (1968, pp. 9, 37). It only remains to show that Y,(co) must be the limit
of any subsequence converging in distribution; see Billingsley (1968, p. 16). [

PROOF OF THEOREM 1. Fix ¢ > 0. For all # = 1, we bound the TDBD X,,(¢) in the
interval [7 — ¢, t] above and below by BD’s. Let the upper bound BD { X, (7): 1= 0}
have rate functions
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No(k) = sup {n\(s, k)} and we(k)y = inf {nu(s, k)}, k=0, (6)

[—e<s<t I—e<S<t
let the lower bound BD { X ,(¢): ¢ = 0} have rate functions
Aa(k) = inf {nX(s, k)} and (k)= sup {nu(s, k)}, k=0. (7)

—e<s<i I—e<s<i
Let X}(t — €)= k* + X(0) + Q(o0), the stochastic upper bound established in Lemma
2;let X, (t — €) = 0, a trivial lower bound. By Lemma 1,

X a(8) <g Xu(s) <4 X 5(5), I—e<s<t{. (8)

(Stronger sample path comparisons could also be made.) By an elementary change in
time scale, { X},(¢): ¢ = 0} is distributed the same as { X} (n?): = 0}, and similarly
for {X4(2): t = 0}. By Lemma 2, X/, (¢) is stochastically bounded above. Hence,

H(nt)= X}(0)and X (nt)= X, (c0)asn—> co. As noted in Remark 1 above,
Lemma 2 implies that { X,,(7): n = 1} is tight. Let X, () be the limit of some convergent
subsequence of { X,,(¢) } as n —> oo .. Since convergence in distribution preserves stochastic
order, we can combine this with (8) to obtain

el(oo)—leco(l) SSIX:—I(OO) (9)
Finally, we w1ll show that X ] (oo)=> Y,(co)and X ;(c0)= Y,(c0)as e = 0. This implies
that X w(l) = Y,(o0), where = denotes has the same distribution, so that indeed X, (¢)
= Y, (c0)asn —> 0.

We now show that X[ (c0) = Y,(c0) and X (c0c) = Y,(c0) as e = 0. This step is
relatively easy because all processes are BD’s. In this step, we use the strict positivity of
\(t, k) and u(t, k) to ensure that the BD {Y,(u): u = 0} is irreducible. Since {Y,(u): u
= 0} is stochastically bounded, it has a proper limiting distribution, which is

T = P(Yi(c0) = k) = Bu | 22 By, (10)
Jj=0
where 8,0 = 1, B = [1f21 pijs k= 1, and p;; = N(,j — 1)/u(z,j) > 0. Let
Ta=P(Xi(0) = k)= B4 [ 2 B, (11)
j=0

where 8% = 1, 8% = [1j21 pg, k = 1, and p; = Mi(j — 1)/uf(j), and similarly, for
7. By (1)and (2),

pg=py<pi=Nwp<l,  j=k* (12)

Since p; > p,; > 0 for all j and (11) holds, for sufficiently small ¢, 0 < p; < oo for all ,
so that (11) is indeed valid. (Since X /i(¢) is stochastically bounded, the sum in (11)
- must converge.) For any € > 0, we may have \;(j) = O for some j, but the analog of
(11) for 7 is also valid because of the initial condition X _,(0) = 0. (We have 7. = 0
fork=j+ 1if \j(j)=0.)
Finally, by the left continuity of \(¢, k) and u(¢, k), we have p = p,;and pj = p,;
as e = 0 for each j. To establish = % — m,;and 74 = ,;, we also use the uniformity in
the tails provided by (12); i.e.,

2 B> 2By and 2 Bg—> 2 By O
Jj=0 Jj=0 Jj=0 Jj=0
REMARK 2. The final step in the proof involved a continuity result for BD’s, as in

Karr (1975) and Whitt (1980). For example, we could also have applied Lemma 1 of
Whitt (1980). O -
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PROOF OF COROLLARY 1. The function fcan be regarded as a continuous function
on the nonnegative integers. Hence, by the convergence in distribution (see Billingsley
1968, p. 12), Theorem 1 implies that Ef[X,,(#)] = Ef[Y,(c0)] for all ¢ which are left-
continuity points of A(¢, k) and u(¢, k) for all k. Since (¢, k) and u(t, k) have left and
right limits, there are only countably many points of discontinuity for each k (see Bil-
lingsley 1968, p. 110) and, thus, for all k. Hence, the convergence holds almost everywhere
with respect to Lebesgue measure. The stated result then holds by the bounded conver-
gence theorem. It should also be noted that the integrals are well defined. First, E f[ X, (¢)]
has limits from the left and right, and so is measurable, because X,,(¢) has limits from
the left and right in probability. Similarly E f[Y;(c0)] has limits from the left and right
because the distribution of Y,(c0) is continuous in the rates. In particular, we can use
the argument at the end of the proof of Theorem 1 again, noting that

X(oo) =g Y,ia(OO)SJ,le(OO) (13)

whenever 0 < § < ¢, paralleling (9). O

PROOF OF COROLLARY 2. The assumption together with Lemma 2 implies that
{X,(t)’: n = 1} is uniformly integrable for j < k; see Billingsley (1968, p. 32). Hence,
from Theorem 1 we obtain E[X,(¢)'] = E[Y:(c0)’] as n = oo for almost all ¢. The rest
of the proof is as for Corollary 1. [

5. Discussion

We conclude with a few additional remarks.

5.1. Finite State Spaces

We considered TDBD’s with infinite state spaces. Corresponding results hold for finite
state spaces. Suppose that the state space is the finite set of integers {k: k; < k < k, }.
Without loss of generality (by changing the labels), we can assume that k; = 0. Now we
do not need Lemma 2 to establish a stochastic upper bound; we can use k, instead, e.g.,
let X} (¢ — €) = k, before (8).

5.2. Instantaneous Instability

It is important to note that, because of (1) and (2), Theorem 1 does not apply to an
M,/ M /s queue if the instantaneous traffic intensity p, = A(7)/su ever can exceed one.
Of course, PSA is well defined whenever the performance measure is bounded, but we
think that the use of PSA is much more questionable in this case. For example, consider
an M,/ M/ 1 queue with service rate u = 1 and a periodic Poisson arrival process with
cycle of length 1 and arrival rate

99, 0.00 <1 =<0.01,
A1) =

14
0, 001l <t=<1. (4

Then the average arrival rate per cycle is X = f (: A(t)dt = 0.99 and the long-run probability
of finding the server busy is p, = 0.99 by Little’s law. On the other hand, a direct PSA
approximation is p7 = 0.01. Green and Kolesar (in press) have cleverly circumvented
this difficulty for p;, by using A(¢)/u for the instantaneous probability that the server is
busy instead of max {1, A(z)/r}, and similarly for the multi-server case. For the M,/ M/
1 queue, this gives the exact result and for A,/ M/s queues it evidently gives an upper
bound. Perhaps other bounded performance measures can also be successfully modified
to produce reasonable PSA-type approximations when there is instantaneous instability,
but that needs to be shown. For example, consider the long-run average value of ¢~ ¢¥®
where « is a positive constant and N(¢) is the number of customers in the system at time
t. Our example illustrates that there can be serious difficulties with a direct PSA approx-
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imation when instantaneous instability is allowed. When periodicity is dropped, even
more bizarre behavior is possible, as shown by §2 of Heyman and Whitt (1984).

5.3. Another Approximation

GKS observe that PSA performs much better than a simple stationary approximation
(SSA, the stationary model with the long-run average arrival rate) for periodic M,/M/s
queues when the service rate is relatively high, but the reverse can be true when the
service rate is relatively low; see Tables 1 and 2 of Green and Kolesar (in press). We
now propose an approximation for M,/ M /s queues (and more general M,/ G /s models)
which may be more robust; i.e., that may perform reasonably well for A,/M/s as the
service rate increases or decreases with the instantaneous traffic intensity held fixed. The
new approximation is a generalization of both PSA and SSA, which we call the average
stationary approximation (ASA). To determine the arrival rate to use in the stationary
model, ASA stipulates that we average the arrival rates over an interval. As the interval
gets long, ASA approaches SSA; as the interval concentrates about the point of interest,
ASA approaches PSA. To determine the effective arrival rate at time ¢ for ASA, we suggest
averaging the arrival rate A(s) over the interval [t — m, (], where m is chosen to be
proportional to (e.g., equal to) the mean service time. (Other finite intervals could be
used, but this seems to be a good candidate.) Assuming that the instantaneous traffic
intensity is bounded above sufficiently below 1, the arrival process up to some time
should be nearly independent of the system state several mean service times later.

To be more specific, suppose that we want to approximate E f [ X (#y)] where { X (¢):
t = 0} represents the number of customers in a M,/ G /s queue with arrival rate A(¢) and
mean service time u~'. We suggest letting

lo

7\,0=——1_—1f As)ds (15)
(e7%3 1o~ au™!

for some positive constant « (e.g., « = 1) and approximating E f[X (f9)] by Ef[Z (c0;

X,,)] where Z(o0; \,,) is the steady-state number in system of an M/G/s queue with

constant arrival rate \,, and the same service-time distribution with mean p~". If we want

the average performance measure over some interval [a, b], then we suggest computing

1
(b—a)

To compute (16), we need to be able to observe A(¢) fora — au™' <t < b.Ifa = 0and
the system is initially empty, then let A(¢) = 0 for < a in (15).

It is not difficult to see that ASA is exact for the M,/ D /oo model when o = 1. (The
M,/ G /oo model could be used as a basis for approximations for the A,/ G /s model too
as suggested before by Palm, Newell (1973) and Jagerman (1975).) Moreover, it is not
difficult to see, by a minor modification of Theorem 1 and its corollaries, that it is also
asymptotically correct for the M,/M /s model at ¢y as u = oo with A(¢)/u held fixed
provided that ¢, is a left-continuity point of A(¢). Similarly, the approximation appears
to be asymptotically correct as u — 0 with A(¢)/u held fixed, which corresponds to very
short cycles. Theorem 1 of Whitt (1984 ) implies that the arrival process then is asymp-
totically stationary Poisson with the long-run average rate, which is what is determined
by (15) as u — 0; also see Proposition A of Rolski (1989, p. 127).

b
f Ef[Z(c0; \,)]dt. (16)

5.4. Engineering Practice

GKS note that in most real service systems, the customer demand process is nonsta-
tionary, whereas the vast majority of queueing theory papers concern stationary models.
Nevertheless, there is a long history of addressing this nonstationarity in a fairly sensible
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way; e.g., in telecommunications over the last 70 years. Indeed, something like what is
proposed in §5.3 above seems to be common practice. Certainly, in telecommunications
one would never expect to see the simple stationary approximation (SSA) of GKS with
a daily average arrival rate when the mean service time (holding time) is a few minutes
and the arrival rate at night is negligible. The traditional way to address this problem is
to focus on appropriate busy hours, recognizing that the system tends to approach steady
state in minutes when the rates stabilize; e.g., see §§2.3, 9, 12.2 of Bear (1980). Nev-
ertheless, we still need to better understand time-dependent queues.

'I thank Linda Green and Bhaskar Sengupta for helpful comments.
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