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This paper describes the performance of the Queueing Network Analyzer
(QNA), a software package developed at Bell Laboratories to calculate ap-
proximate congestion measures for networks of queues. QNA is compared with
simulations and other approximations of several open networks of single-
server queues. This paper illustrates how to apply QNA and indicates the
quality that can be expected from the approximations. The examples here
demonstrate the importance of the variability parameters used in QNA to
describe non-Poisson arrival processes and nonexponential service-time dis-
tributions. For these examples, QNA performs much better than the standard
Markovian algorithm, which does not use variability parameters. The accuracy
of the QNA results (e.g., the expected delays) in these examples is satisfactory
for engineering purposes.

I. INTRODUCTION AND SUMMARY

This paper is a sequel to Whitt,! which described the software
package called the Queueing Network Analyzer (QNA). QNA calcu-
lates approximate congestion measures for networks of queues. The
first version of QNA treats open networks of multiserver queues with
the first-come, first-served discipline and no capacity constraints.
QNA is designed to treat non-Markovian models: The arrival processes
need not be Poisson and the service Mstnbutlons need not be
exponential, QNA approximately characterizes other kinds of varia-
bility through variability parameters assigned to each arrival process
and each service-time distribution. The first step in the algorithm is
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to solve for the flow rates and the variability parameters of the internal
arrival processes. The second step is to compute approximate conges-
tion measures for each queue separately by regarding it as a standard
GI/G/m queue in which the renewal arrival process and the service-
time distribution are each partially characterized by their first two
moments or, equivalently, the rate and variability parameters. The
third and final step is to calculate congestion measures for the network
as a whole. v

This paper describes the performance of QNA by comparing it with
simulations and other approximations of networks of queues. Even
though QNA can analyze multiserver queues, only single-server queues
are considered here. Among the other approximations in each case are
the M/M/1 and M/G/1 approzimations, which can be obtained from
QNA by using default options. The M/M/1 approximation, which is
embodied in the Markovian algorithms, is obtained by setting all
variability parameters equal to 1. With the M/M/1 approximation,
the nodes are treated as independent M/M/1 queues with the correct
rates. The M/M/1 approximation yields the exact equilibrium distri-
bution of queue lengths for the Markov model with Poisson external
arrival processes, exponential service-time distributions and one cus-
tomer class. The M/G/1 approximation is obtained by setting the
variability parameter of each arrival process equal to 1 and using the
specified service-time variability parameter cZ; then the expected wait-
ing time at each node is (1 + ¢?)/2 times the M/M/1 value.

The congestion measures we consider in the examples here are the
expected waiting time (before beginning service) and the expected
sojourn time (waiting time plus service time) at a node or in the entire
network. Of course, QNA produces other congestion measures, but we
are comparing with previously published simulation results, which are
mostly limited to expected waiting times and sojourn times.

We begin in Section II with a single GI/G/1 queue and discuss the
implications of previous work on approximations for the GI/G/1
queue.”” In Section III we consider a single queue with a superposition
arrival process and compare QNA with simulations by Albin.®° In
Section IV we consider a network of eight queues in series analyzed
by Fraker,!' and in Sections V and VI we consider two networks
analyzed by Kuehn:!? Section V treats a tightly coupled two-node
network and Section VI treats a nine-node network. In Section VII
we treat a five-node network used to model a Bell Laboratories
computer system. Finally, in Section VIII we consider a model from
Gelenbe and Mitrani'? for a packet-switched communication network.
The examples in Sections VII and VIII have input by classes and
routes as in Section 2.3 of Whitt.

These examples indicate the approximation quality that can be
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expected in applications of QNA. They also demonstrate the impor-
tance of the variability parameters when the external arrival processes
are not nearly Poisson or the service-time distributions are not nearly
exponential. These examples also illustrate how to apply QNA, e.g.,
to model superposition arrival processes (Section III), to eliminate
almost immediate feedback (Section V), and to conduct sensitivity
analyses for the variability (Section VII).

II. A SINGLE GI/G/1 QUEUE

We begin by considering the special network containing a single
service facility, in particular, the GI/G/1 queue with service times and
interarrival times each partially characterized by their first two mo-
ments or, equivalently, by the four parameters r (the mean service
time), c2 (the squared coefficient of variation of the service time), A
(the arrival rate), and c2 (the squared coefficient of variation of the
interarrival time).! The subscript indexing the node is suppressed
since there is only one node.

It is useful to consider this model because it has been extensively
studied and is relatively well understood. In many cases we can
analytically determine the quality of the approximations for the
GI/G/1 queue. Hence, we can get an idea about the quality of the
approximations for more general networks. Of course, approximations
for a node in a general network might be worse because the internal
arrival processes usually are not actually renewal processes. On the
other hand, the network operations of superposition and splitting tend
to make stochastic point processes more like Poisson processes, so
that larger networks may actually be better behaved.

The model specification above determines the approximate conges-
tion measures produced by QNA, but the model specification is not
complete since there are many service-time and interarrival-time
distributions with the given parameters. The formulas produced by
the QNA are approximations for all these systems, so it is natural to
ask how the approximate congestion measures compare to the set of
all possible values that are consistent with the partial specification.
Fortunately, it is often possible to identify the set of all possible
values.?® Moreover, it is often possible to locate the more likely values
by identifying the set of all possible values under various natural
constraints on the distribution. When this cannot be done exactly, it
can often be done approximately using bounds.®

We now give a brief summary of results evaluating approximations
for the expected waiting time or, equivalently (by Little’s formula®*),
the expected queue length in the G1/G/1 queue based on the four
parameters A, c2, 7, and cZ. First, recall that for the M/G/1 queue,
with Poisson arrival process (c2 = 1), the expected waiting time
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actually depends on the service-time distribution only through the two
parameters 7 and c2. Nonexponential interarrival-time distributions
tend to be more difficult, however. For the GI/M/1 queue with an
exponential service-time distribution (¢2 = 1), the expected waiting
time depends on the interarrival-time distribution beyond the param-
eters A and c2. Given A and ¢2 in the GI/M/1 queue, the maximum
relative error (upper bound minus lower bound divided by lower bound)
in the mean queue length (number in system including anyone in
service) is exactly c2 (see Ref. 2). A similar, but somewhat less concise,
result holds for the expected waiting time by virtue of Little’s formula.
The maximum relative error for the expected sojourn time (waiting
time plus service time) is also c2. This result suggests more generally
that the reliability of the approximations might decrease when c2
increases, which is consistent with numerical experience.

If we assume that the interarrival-time distribution is not too
irregular, then the maximum relative error becomes much less. In the
H,/M/1 queue with a hyperexponential interarrival-time distribution
(mixture of exponential distributions having ¢Z > 1), the maximum
relative error in the mean queue length is (cZ2 — 1)/2 (see Ref. 4).
It turns out that the extremal interarrival-time distributions for
Hy/M/1 queues also are extremal for all interarrival-time distributions
that have Increasing Mean Residual Life (IMRL) (also ¢2 > 1) and all
service-time distributions,® so that the maximum relative error in the
mean queue length for IMRL/G/1 queues is (c% — 1)/[2 + p(c2 — 1)].

Other kinds of shape constraints for the GI/M/1 queue have been
investigated by means of nonlinear programming.® In general, we
conclude that if the distributions are not irregular, then the maximum
relative error in the GI/G/1 queue might be about 0.05 c2, e.g., about
10 percent when c2 = 2.0.

From heavy-traffic limit theorems that describe the queue as p —
1, where p = Ar is the traffic intensity, we know that asymptotically
the queue length and waiting-time distributions depend on the inter-
arrival-time and service-time distributions only through the four pa-
rameters A, c2, 7, and c2. This suggests that more generally the quality
of the approximations might improve as p increases. This is certainly
consistent with experience for the GI/G/1 queue, but not necessarily
for more complex networks, e.g., the tightly coupled two-node network
here in Section V.

The heavy-traffic limit theorems are closely related to diffusion
approximations because diffusion processes emerge as limits in the
heavy-traffic limit theorems. We have recently compared various
diffusion approximations for the expected waiting time in a GI/G/1
queue to known bounds.® We now show how QNA and other related
approximations fit into this framework. Table I here compares four
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Table I—Bounds and approximations for the expected waiting time,
EW, in a GI/G/1 queue: Three cases

Parameter Values
=05 =20 =08
=40 2=40 =40
p=0.7 p=07 p=03
Daley’s general upper bound 5.75 9.00 1.82
Monotone failure rate upper bound® 583 7.50 1.07
Kraemer and Langenbach-Belz” 5.14 6.88 1.02
QNA! 5.14 7.00 1.02
M/G/1 583 H 583 L 107H
M/M/1 233L 2.33L 043L
R lower bound® 5.00 5.83 0.93

Notes: 1. In each case the mean service time is r = 1.
2. “H” indicates high (greater than or equal to) and “L” indicates low (less than
or equal to) in comparison with the bounds.

approximations for the expected waiting time, EW, with various upper
and lower bounds in the three cases in Table 1 of Ref. 6. The four
approximations are the M/M/1, M/G/1, Kraemer and Langenbach-
Belz,” and QNA.

The M/M/1 approximation is obtained by replacing both variability
parameters cZ and ¢2 by 1. The M/M/1 approximation is produced by
a direct application of the Markovian software packages. The M/G/1
approximation is obtained by replacing c2 by 1 and using the specified
value of cZ. The M/G/1 approximation EW is the exact value for the
approximating M/G/1 system since EW depends on the service-time
distribution only through its first two moments. Both the M/M/1 and
M/G/1 approximations are produced by QNA using default options.

The QNA approximation is the Kraemer and Langenbach-Belz
approximation when cZ < 1 and is slightly greater when c¢% > 1.! The
one case in which ¢2 > 1 in Table I shows that the difference between
the two approximations is small compared to the distance between the
upper and lower Monotone Failure Rate (MFR) bounds.® The MFR
bounds are for interarrival-time distributions with decreasing failure
rate when c2 = 1 and increasing failure rate when c¢2 < 1. The MFR
bounds are tight when c2 = 1 but not when c2 < 1 (see Ref. 5). Since
the interarrival-time distribution need not have monotone failure rate,
the range of all possible values is greater, but the MFR bounds indicate
the more likely values.

For the three cases in Table I, the M/M/1 approximation performs
very poorly, falling way outside the bounds. The M/G/1 approximation
always coincides with one of the MFR bounds—the upper bound when
¢2 < 1 and the lower bound when cZ = 1—but it would be better to
have an approximation somewhere in the middle between the bounds.
When c2 = 1, the QNA approximation is a convex combination of the
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two MFR bounds.? Since the MFR bounds are tight when ¢2 = 1, the
QNA approximation always yields the exact value of EW for some
GI/G/1 system with the given parameters.® When c2 < 1, the QNA
approximation is slightly less than the convex combination of the
MFR bounds. The convex combination of the MFR bounds is known
to be an upper bound for E,/G/1 systems,® so that it is appropriate to
use a smaller value. We conjecture that the QNA approximation always
yields an exact value of EW for some GI/G/1 system with the given
parameters when ¢2 < 1 too.

Table I provides a sample of the comparisons possible using the
previous studies.?® Since QNA coincides with the Kraemer and Lan-
genbach-Belz approximation when ¢ < 1 and the Sakasegawa-Yu
approximation when c2 = 1, previous comparisons such as Tables 13
and 14 in Klincewicz and Whitt? also apply to QNA.

lll. A QUEUE WITH A SUPERPOSITION ARRIVAL PROCESS

In this section we consider one single-server queue with a superpo-
sition arrival process. Such a system with two component arrival
processes is depicted in Fig. 1a. Since only one external arrival process
at each node is allowed in QNA, this model cannot be analyzed directly,
but it is easy to modify the model so that QNA does apply. We added
dummy nodes with very low traffic intensity on each component arrival
process, as shown in Fig. 1b. Since the new dummy nodes have low

(@)

(b)

Fig. 1—(a) The criginal queue with a superposition arrival process. (b) The equivalent
network with one external arrival process at each node.
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traffic intensity, the rate and variability parameters of the departure
processes from the dummy nodes will be almost identical to the
corresponding parameters of the external arrival processes.

This model has recently been studied quite extensively by Albin
and is now relatively well understood. As in Section I, here we consider
one illustrative example, which suggests the accuracy to expect more
generally and shows the importance of the variability parameters.

The specific model we analyze is the ZGI;/M/1 system with an
exponential service-time distribution and n iid stationary renewal
processes as component arrival processes. The total arrival rate is 1,
so the rate of each component process is n~'. We consider six cases
involving two values of n, n = 2 and 16, and three values of the traffic
intensity p, p = 0.3, 0.7, and 0.9. In each case the component renewal-
interval distribution is H3, i.e., the mixture of two exponentials with
balanced means: one with mean m, realized with probability p and the
other with mean m, realized with probability 1 — p, where pm;, =
(1 — p)m,. In each case the squared coefficient of variation of the
component renewal process interval is ¢> = 6, This is quite high
variability, so that the component processes are not nearly Poisson.
The three parameters of an H, distribution are determined by speci-
fying the mean as n, ¢ = 6 and balanced means.

This model is taken from Chapter 3 and Appendix 6 of Albin.?
Albin’s approximations are based on the rate and variability parame-
ters just as in QNA. In fact, the superposition approximation in QNA
is a modification of Albin’s procedure.! With Albin’s procedure, the
variability parameter of the superposition process is a convex combi-
nation of the variability parameters obtained from the stationary-
interval method and asymptotic method described in Whitt.!® The
specific implementation of the stationary-interval method in Whitt'®
and Albin® is part of Kuehn’s'? algorithm for approximating networks
of queues. Since Kuehn’s implementation of the stationary-interval
method is nonlinear, a different procedure is used in QNA. In QNA
the variability parameter of the superposition process is a convex
combination of the variability parameters obtained from the asymp-
totic method and a Poisson process.! Extensive experimentation has
shown, however, that the approximation in QNA is very close to
Albin’s hybrid approximation, which performed very well in many
experiments (about 3-percent average absolute relative percent error).

Several different approximations for the expected waiting time are
compared with simulation in Table II. The simulation results were
obtained in Albin.® The sample standard deviation is given in paren-
theses below the simulation estimate in Table II to indicate the
statistical reliability of the estimate. The simulation program was
written in FORTRAN using the “Super-Duper” subprogram in Mar-

8-10
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Table Il—A comparison of approximations and simulation of the
expected waiting time, EW, in a ZGI/M/1 queue with a superposition
arrival process

Approximation Method

No. of Simu- Kuehn'’s
Renewal Traffic lation Stationary- Asymp- Albin’s
Pro- Inten-  Esti- Interval totic Hybrid
cesses, n sity, p mate M/M/1  Method Method Procedure QNA
0.3 0.205 0.128 0.231 0.2 0.240 0.236
" (0.007) (—37 6) (+12.7) (+3'7 1) (+17.1) (+15 1)
2 0.7 4.57 3.54
' (0.14) —64 3) (—22.5) (+16 4) (- 1 3) (+1 5)
0.9 26.3 18.2 28.2 216 27.5
’ (1.2) —69 2) (—30.8) (+1.2) (+4.6) (+4.6)
03 0.138 0.128 0.147 0.281 0.1563 0.139
' (0.004) (—7 2) (+6 5) (+103.6) (+10 9) (+0 7
16 0.7 2.57 2.36 2.16
: (0.07) (—36 6) (—26 8) (+107 0) (-8.2) (-156.9)
09 20.8 21.1 20.7
' (0.94) (—61 1) (—54 8) (+35 6) (+1.4) (—0.5)
Average Absolute Relative 46.0 25.7 51.2 73 6.4

Percent Error

Notes: 1. The total arrival rate is 1 in each case.
2. The component renewal processes have Hj (hyperexponential) renewal-inter-

val distributions with mean n, ¢? = 6, and balanced means.
3. The sample standard deviations appear below the simulation estimates in

arentheses.
4. 'The relative percent error appears below the approximation values in paren-

theses.

saglia et al. to generate uniform random numbers.'® A different random
number seed was used for each simulation. The simulations began
with an empty system, but the first 1000 customers were not counted
to allow the system to approach steady-state. Each simulation con-
sisted of 20 batches, with the number of customers per batch depending
on the traffic intensity: 3,000 per batch for p = 0.3, 15,000 per batch
for p = 0.7, and 50,000 per batch for p = 0.9. Even though much more
simulation time was spent on the cases with higher traffic intensities,
the statistical reliability was slightly less.

In Table II, in parentheses below the approximation values are the
relative percent errors (RE), which are defined as

RE = 100(Approx. — Simul.)/Simul. (1)
At the bottom of Table II are the average absolute relative percent
errors (ARE), which are defined as

ARE = 26‘, | RE;|/6. (2)

i=1

Dividing by the simulation value perhaps inflates the errors when p =
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0.3 too much, but these summary measures provide a good overall
comparison.

The stationary-interval method and the M/M/1 approximation are
not bad for large n and small p because the superposition process
converages to a Poisson process as n —  and the queue reflects this
if p is not too big, in particular, if n(1 — p)? is sufficiently large.!®"’
However, for p = 0.9, these two methods perform poorly. On the other
hand, the asymptotic method performs reasonably well for p = 0.9,
but not well in other cases. In particular, the asymptotic method does
not reflect the convergence to a Poisson process as n — ; it gives the
same answers for n = 2 and 16. So, for fixed p, the asymptotic method
gets worse as n increases.

As Albin determined in extensive experiments,?® her hybrid approx-
imation is much better than either basic method alone. This example
also illustrates how close QNA is to Albin’s hybrid procedure. For
queues with superposition arrival processes, we conclude that QNA
usually gives reasonable results and strongly dominates the two basic
methods,

In closing this section, we add a caveat. The component processes
in the simulation for Table II, in Albin’s hybrid procedure and in
QNA, are all based on the case of balanced means. However, as
discussed in Whitt,*® given the first two moments, the one-parameter
family of renewal processes with hyperexponential renewal-interval
distributions range from a Poisson process to a batch Poisson process
with geometrically distributed batch size. For a single renewal arrival
process, the expected waiting time, EW, in an H,/G/1 queue also
ranges between these same extremes, i.e., the M/G/1 and the MB/G/1
systems. Unfortunately, no related theory yet exists for superposition
arrival processes. However, we can easily describe what happens in
the two extremes. The superposition of independent Poisson processes
is Poisson and the superposition of independent batch Poisson proc-
esses with geometrically distributed batches having a common mean
is batch Poisson with geometrically distributed batches. Thus, we
conjecture that the maximum and minimum values for EW with a
superposition of iid H,-renewal processes correspond to the MB/G/1
and M/G/1 systems, respectively. If the conjecture is true, then we
would have the same range of possible values for H,-superposition
arrival processes as for H,-renewal processes. However, if the compo-
nent processes are not too batchy, then the superposition process will
become more Poisson as n increases. We should usually expect the
superposition process to be more nearly Poisson as n increases. To
summarize, this heuristic analysis suggests that the range of possible
values for EW in the 2GI;/G/1 queue given the basic parameters A,
¢2, 7, c2 may be about the same as for the GI/G/1 queue. In fact, the
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superposition operation may actually make the arrival process better
behaved.

IV. EIGHT QUEUES IN SERIES

In this section we apply QNA to a network of eight single-server
queues in series previously analyzed by Fraker.'! The external arrival
process is Poisson and all service-time distributions are Erlang. Fraker
considered eight cases involving four traffic intensities (p = 0.3, 0.5,
0.7, and 0.9) and four Erlang service-time distributions (M = E,, E,,
Eg, and D = E,,). Each of the traffic intensities and each of the service-
time distributions are assigned randomly to two of the eight nodes.
Fraker developed an approximation for these systems and compared
it with simulations.

Tables III and IV describe Fraker’s first two cases and the approx-
imations for the expected waiting time at each node. The service-time
squared coefficient of variation specifies the Erlang distribution since
¢? = k7! for E,. Fraker made three simulation runs of 2500 customers,
discarding the first 500 in each case to damp out the transient effects
of starting the simulation. Statistics were collected for six blocks of
1000 customers each. Unfortunately, this is not enough to produce
very good accuracy, especially for the nodes with higher traffic inten-
sities. (Compare with the simulation length in Section III.) The
statistical reliability can be seen from the results of the six runs
displayed in Fraker.!! (These also appear in Appendix 1 of Whitt.!8)
An idea of the variability can also be seen from node 1 because all the
approximations except the M/M/1 approximation are exact for node
1. When p = 0.9 the length of a 95-percent confidence interval
approximately equals the estimated value; when p = 0.7 the length of

Table lIll—A comparison of approximations and simulation of the
expected waiting time at each node in Fraker's model of eight
queues in series: Case 1
Approximation Methods

Squared
Coeffi- {(Marko- (Asymp- (Lag-l QNA
Traffic cient of vian Net-  totic Corre-
Node Intensity, Variation, Simulated work) Method) lations)
No. pj 5 Value M/M/1 M/G/1 Fraker EW, <&
1 0.7 1/8 0.98 1.63 0.92 0.92 092 1.00
2 0.5 1 0.30 0.50 0.50 0.38 0.38 0.61
3 0.5 0 0.19 0.50 0.25 0.13 0.16 0.71
4 0.7 1/4 0.73 1.63 1.02 0.62 0.63 0.58
5 0.3 0 0.01 0.13 0.07 0.01 0.01 0.42
6 0.9 1 7.60 8.10 8.10 6.03 5.66 0.40
7 0.9 1/8 3.91 8.10 4.56 4.16 408 0.89
8 0. 1/4 0.00 0.13 0.08 0.01 0.01 0.33
Note: %‘hle arrival process is Poisson with rate 1 and the service-time distributions are
rlang.
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Table IV—A comparison of approximations and simulation of the
expected waiting time at each node in Fraker's model of eight
queues in series: Case 2

Squared Approximation Methods
(;oefﬁ- (Marko- (Asymp- (Lag-1 QNA
Traffic _cient of vian totic Corre- ———
Node Intensity, Variation, Simulated Network) Method) lations)
No. P & Valuee M/M/1 M/G/1 Fraker EW, ¢
1 0.9 1 6.256 8.10 8.10 810 810 1.00
2 0.7 1/8 0.84 1.63 0.92 092 092 1.00
3 03 1/4 0.01 0.13 0.08 004 0.04 0.61
4 0.9 0 2.61 8.10 4.06 2.45 228 0.58
5 82 1/8 0.00 0.13 0.07 0.00 0.00 0.27
6 05 1/4 0.02 0.50 0.31 005 0.06 0.26
7 0'7 0 0.02 0.50 0.25 0.02 0.02 0.26
8 ' 1 0.78 1.63 1.63 0.82 0.89 0.26
Note: 'EI:‘hIe arrival process is Poisson with rate 1 and the service-time distributions are
rlang.

a 95-percent confidence interval is about 25 percent of the estimated
value. .

Table V compares the approximations with simulation for the nodes
with traffic intensity p = 0.7 in all eight cases. Since the approxima-
tions are exact for the first node, the first node is not included for the
cases in which p, = 0.7 (Cases 1, 5, and 6). For the approximations,
the difference between the approximation value and the simulation
value is displayed.

Tables III through V show that QNA performs about the same as
Fraker’s approximation, which is based on lag-1 correlations and is
especially designed for queues with Erlang service times. Both these
approximations performed significantly better than the M/G/1 ap-
proximation, which in turn performs significantly better than the
M/M/1 approximation.

Additional analysis of Fraker’s models plus other queues in series is
contained in Whitt.'® The performance of QNA in these other cases
is consistent with the description here.

V. A TIGHTLY COUPLED NETWORK OF TWO NODES

In this section we consider a two-node network analyzed by Kuehn'?
and Gelenbe and Mitrani.'® This network is depicted in Fig. 2. It has
one external arrival process, which comes to node 1. Customers com-
pleting service at node 1 leave the system with probability 1/2; other-
wise they go to node 2 and then back to node 1 to be served again. At
node 2 customers are immediately fed back to node 2 for another
service with probability gz», but in most cases gz; = 0.

We first consider Kuehn'’s experiment. There are eight cases with
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Table V—The expected waiting time at the nodes with p; = 0.7 in
Fraker's eight cases of eight single-server queues in series

Simulated Approximation Methods
Case Node Value of
No. No. EW; M/M/1 M/G/1 Fraker QNA
1 4 0.73 +0.90 +0.29 -0.11 -0.10
2 2 0.84 +0.79 +0.08 +0.08 +0.08
8 0.78 +0.85 +0.85 +0.04 +0.11
3 4 1.08 +0.556 +0.56 =0.04 +0.04
8 0.55 +1.08 +0.37 0.00 -0.02
4 3 1.52 +0.11 +0.11 =0.04 -0.04
6 0.02 +1.61 +0.80 +0.09 +0.16
5 3 0.74 +0.89 +0.28 +0.10 +0.11
6 5 0.33 +1.30 +0.49 +0.05 -0.01
7 4 0.78 +0.85 +0.14 -0.06 -0.02
7 0.17 +1.46 +0.65 +0.02 -0.01
8 5 0.50 +1.13 +0.52 +0.04 +0.02
Average 0.67 +0.96 +0.43 +0.01 - +0.03
Average Absolute Difference 0.96 0.43 0.05 0.06
Note: Tl}e value for the approximations is the approximate value minus the simulated
value.
{r,=1,¢c2)
Agy. cy) _ — ] ~ 1@z =172
7/7 I 1 -~
g2=12
922
——
= > HIII
22
(75, c&)

Fig. 2—Kuehn's first example: A network of two queues with one external arrival
process.

three values of the external arrival rate for each case: A, = 0.15, 0.30,
and 0.45. In each case the mean service time at node 1 is 7, = 1 and
the transition probability from node 1 to node 2 is ¢ = 1/2, so that
the traffic intensity at node 1 is p; = 2\g;. For node 1 these three
external arrival rates correspond roughly to light traffic (p, = 0.3),
moderate traffic (p; = 0.6), and heavy traffic (p; = 0.9). In Cases 2 and
3 the traffic intensity at node 2 is the same as at node 1, i.e., p2 = 2\,
but in all other cases it is p; = Ap:. In these other cases node 2 is
always in relatively light traffic. The external arrival process is always
a renewal process. Each interarrival-time distribution and service-
time distribution is one of four distributions: deterministic (D with ¢2
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= 0), Erlang of order 4 (E, with ¢? = 0.25), exponential (M with ¢% =
1), or hyperexponential with balanced means (H? with ¢* = 2.25). The
eight cases are indicated in Table VI. The system type is described by
a triple such as M/H,/E,, which means that the interarrival-time
distribution is M and the service-time distributions at nodes 1 and 2
are H; and E,, respectively.

The results are described in Tables VII and VIII. The simulation
results and Kuehn's approximation are taken from Kuehn.'? Two
different approximation results are given for QNA in Table VII. The
first column is the standard application of QNA with the network
reconfigured to eliminate immediate feedback in the one case it occurs,
at node 2 in Case 3. (See Section 3 of Ref. 1.) The final column of
Table VII is an adjusted version of QNA to eliminate almost immediate
feedback, which we discuss below.

For this network the quality of the standard QNA approximation is
about the same as Kuehn’s approximation. They both work well for
low and moderate traffic intensities, e.g., about 10-percent average
absolute relative percent error when p; = 0.6 (Table VIII), but not so
well in heavy traffic. This two-node network presents an obvious
difficulty for QNA. The network is tightly coupled so that many
departures from node 1 rapidly return to node 1 for additional service.
However, since these returning customers first pass through node 2,
there is no immediate feedback, so that QNA does not reconfigure the
network to eliminate the feedback. Nevertheless, it is evident that this
almost immediate feedback for node 1 is very similar to immediate
feedback and the potential exists for better results by reconfiguring
the network to eliminate this feedback too.

In all cases except 2 and 3, almost immediate feedback is eliminated
by applying the standard version of QNA with immediate feedback
elimination twice. The first time we apply QNA to the full network
and the second time we apply QNA with node 2 removed. When node

Table VI—The eight cases of Kuehn’s two-node example in Fig, 2

Defining Parameters

System

Number  System Type ch 2 ch ckh o2
1 M/H,/E, 1.00 1.0 2.25 0.25 0.0
2 M/H,/E, 1.00 2.0 2.25 0.25 0.0
3 M/H,/E, 1.00 1.0 2.25 0.25 0.5
4 M/H,/H, 1.00 1.0 2.25 2.25 0.0
5 M/E,/E, 1.00 1.0 0.25 0.25 0.0
6 M/D/D 1.00 1.0 0.00 0.00 0.0
7 H./H,/E, 2.25 1.0 2.26 0.25 0.0
8 E./H./E, 0.25 1.0 2.25 0.25 0.0

Notes: 1. In each case 7, = 1 and g, = 1/2.
2. In each case the arrival rate assumes one of three values: Ay = 0.15, 0.30, and
0.45.
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Table VII—A comparison of approximations and simulation of the
expected total sojourn time (waiting time plus service time) in
Kuehn's two-node network

Simulation
(with 95-Per- Approximation Methods

External cent Confi-

System  Arrival dence Inter- QNA
No. Rate, Ay vals) M/M/1 M/G/1 Kuehn QNA Adjusted

0.15 4.24 + 0.08 4.04 4.50 4.51 4.51 4.24
1 0.30 7.51 £ 0.29 6.43 8.13 8.22 8.26 7.26
045 27.27 £ 5.63 21.82 32.67 33.47 34.10 27.36
0.15 5.95 + 0.89 5.29 5.65 5.94 5.95 4.41
2 0.30 10.91 + 0.64 8.50 9.79 10.89 11.01 8.22
0.45 49.49 + 6.80 31.00 38.74 46.31 46.57 36.79
0.16 6.09 = 0.19 5.29 5.65 6.11 6.12 4.48
3 0.30 11.08 + 0.63 8.50 9.79 11.60 11.66 8.25

0.45 61.72+ 1799 3100 3874 51.27 5143 35.07

0.16 4.50 +0.16 4.04 4.68 4.69 4.69 4.42
4 0.30 7.96 + 0.55 6.43 8.56 8.71 8.79 7.68
0.45 29.91 + 6.14 2182 3348 3494 36.75 28.17
0.16 3.66 + 0.05 4.04 3.63 3.63 3.64 as1
5 0.30 5.356 + 0.16 6.43 5.13 4.93 5.00 5.67
0.45 18.29 + 3.27 2182 14.67 1280 12.80 18.12
0.15 3.43 +0.04 4.04 3.61 3.49 3.61 3.72
6 0.30 4.83 + 0.07 6.43 4.7 4.42 4.56 5.42
0.45 13.59 +1.79 2182 1241 9.79 1032 16.73
0.15 473 + 0.12 4.04 4.50 4.60 4.62 4.78
7 0.30 9.04 = 0.56 6.43 8.13 8.59 8.92 9.14
0.45 46.83 + 10.64 21.82 32.67 3588 39.74 39.50
0.15 3.67 + 0.09 4.04 4.50 4.19 4.43 3.91
8 0.30 5.78 = 0.16 6.43 8.13 7.49 7.84 6.09

0.45 17.46 = 1.67 21.82 3267 29567 30.68 20.47

Notes: 1. In each case the traffic intensity at node 1 is p) = 2Aq;.
2, In Cases 2 and 3 the traffic intensity at node 2 is p; = 2\q; otherwise it is

£2= Ao1.

2 is removed, the feedback to node 1 becomes immediate and the
network is reconfigured by QNA to eliminate it. We use the second
run with node 2 removed to determine the expected waiting time per
visit at node 1. We use the first run to determine the expected number
of visits to node 1 and the expected total sojourn time at node 2.

We do not treat nodes 1 and 2 symmetrically in Cases 1 and 4
through 8 because p; = 2p; s0 that p, is relatively small compared to
p1. Customers that return to node 1 via node 2 will not be delayed long
at node 2 before coming back, but customers returning to node 2 via
node 1 will be delayed relatively longer before coming back. If we had
p1 < ps, we would remove node 1 in the second run of the QNA and
focus instead on node 2.

In Cases 2 and 3 the traffic intensities at nodes 1 and 2 are equal,
so the motivation for eliminating almost immediate feedback is less.
What we have done for Table IV is first calculate the congestion
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Table VIIl—A comparison of approximation methods in Kuehn’s
two-node netwark with Ao; = 0.3 {p: = 0.6): The average absolute
relative percent error in the expected total sojourn time compared

with simulation

Approximation Methods

System QNA QNA Ad- QNA Re-

Number M/M/1 M/G/1 Kuehn  Standard  justed fined
1 —-14.3 +8.3 +9.5 +10.0 -3.5 -3.5
2 -22.1 -10.3 -0.2 +0.9 —24.7 +0.9
3 -23.3 —-11.6 +4.7 +5.2 -26.5 +5.2
4 -19.2 +7.4 +94 +10.4 =35 -3.5
5 +20.2 -4.1 -79 -6.5 +6.0 +6.0
6 +33.1 =25 —85 =5.6 +12.2 +12.2
7 -28.9 -10.1 —5.0 -1.3 +1.1 +1.1
8 +11.2 +40.7 +29.6 +35.6 +5.4 +5.4

Average 21.5 11.9 9.4 9.4 10.2 4.7

Percent

Error

measures for node 1 via the second run of QNA with node 2 removed
as before. Then we use the results for node 1 to approximate the
variability parameter of the arrival process to node 2. Finally, we
analyze node 2 in isolation with the correct rates and this approximate
arrival variability parameter. This works slightly better than the first
procedure, but neither works well.

The results demonstrate that the standard version of QNA performs
relatively well in Cases 2 and 3 when p; = p;. The adjustment to
eliminate almost immediate feedback yields a significant improvement
when p, > ps, but the results after adjustment to eliminate almost
immediate feedback are much worse when p, = p,.

As a refined procedure for this two-node network, we suggest elim-
inating almost immediate feedback at the node with higher traffic
intensity when the traffic intensities differ significantly, and using the
standard QNA algorithm otherwise. The refined procedure in Table
VIII is standard QNA in Cases 2 and 3 and the adjusted QNA in all
other cases.

Table VIII displays the relative percentage errors for all the approx-
imations for the eight cases with Ay = 0.3 (p; = 0.6). The refined
procedure in the last column yields very good results. Table VIII also
demonstrates that the standard version of QNA is significantly better
than the M/M/1 approximation, but not uniformly better. In some
cases, e.g., in Case 8, errors in opposite directions can cancel for the
M/M/1 approximation.

The improvement from eliminating almost immediate feedback “by
hand” suggests that it would be desirable to develop an automatic
procedure for eliminating almost immediate feedback to incorporate
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in @NA, and this is being investigated. It also indicates the potential
for “tuning” QNA for particular applications.

We now consider Gelenbe and Mitrani’s!® experiment, which con-
sists of five cases. The network is as depicted in Fig. 2 except the
routing probability g,; is not exactly 1/2. The parameter values are
given in Table IX and the results in Table X (pp. 137, 138 of Gelenbe
and Mitrani'®). We only include the best of three approximation
schemes discussed by Gelenbe and Mitrani. Unfortunately, Gelenbe
and Mitrani provided no information about the statistical reliability
of the simulation estimates. Since p, and p; are nearly equal in each
case, we did not try to eliminate almost immediate feedback.

The M/M/1 approximation values are obviously much too large
because the M/M/1 approximation does not reflect the low variability
of the service times. The M/G/1 approximation is much too low at
node 2 because it does not benefit from the feedback elimination
procedure. The Gelenbe-Pujolle procedure is better than the M/G/1
procedure, but not uniformly so. The QNA approximation is clearly

Table IX—The parameter values for Gelenbe and Mitrani’s
experiment with the two-node network in Fig. 2

Parameter Values

No. Ao h T ca T2 &k qu Q2 g n

1 0.512 0941 0911 0427 0840 0 O 0510 0497 0.503
2 0410 0944 0916 0423 0840 0 0 0508 0,501 0.499
3 0342 0945 0914 0414 0.840 0.5616 0494 0.508
4 0.293 0.967 0904 0432 0.840 . 0.498 0.502
5 0257 0962 0911 0422 0.840 0.504 0493 0.507

[=F =N
[=F =Y =]
o
=3
—

[ -]

Table X—A comparison of approximations with simulations: The
expected number of customers at each node in the two-node
network in Gelenbe and Mitrani'

Approximation Methods

Case Queue Arrival Traffic In- Simulation Gelenbe-
No. No. Rate,\; tensity,p; Values M/M/1 M/G/1 Pujolle QNA
1 1 1.04 0.952 13.82 19.83 14.14 1196 11.98
2 0.53 0.901 7.83 9.10 4.55 5.74 5.88
2 1 0.84 0.765 2.36 3.26 2.32 2.09 231
2 0.43 0.713 1.87 2.48 1.24 1.69 1.84
3 1 0.71 0.646 1.60 1.82 1.29 1.20 1.41
2 0.36 0.620 147 1.63 0.82 116 1.29
4 1 0.60 0.543 1.06 1.19 0.85 0.82 0.98
2 0.31 0.519 1.01 1.08 0.54 0.78 0.90
5 1 0.52 0.472 0.76 0.89 0.63 0.62 0.76
2 0.26 0.445 0.73 0.80 0.40 0.59 0.70
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the best, but it may underestimate the congestion for high traffic
intensities.

V1. KUEHN’S NINE-NODE NETWORK

We now consider a nine-node network analyzed by Kuehn,'? which
is depicted in Fig. 3. The mean service time at node j is 7; = 1 for each
j. There are three external arrival processes with Ay; = 0.5 for each j;
these come to nodes 1, 2, and 3. Kuehn let the three external arrival
processes be Poisson processes. As in Section V, all service-time
distributions are D, E,, M, or H}. Kuehn considered two cases:
homogeneous servers, in which all the service-time distributions are
identical, and heterogeneous servers, in which nodes 1 through 3 have
one service-time distribution and nodes 4 through 9 have another.

Kuehn compared his approximation with the M/M/1 and M/G/1
approximations and simulation for service-time variability parameters
ranging from cZ = 0 to 4. He focused on the expected total sojourn
time (waiting time plus service time) in the network and the expected
sojourn time per visit in node 4. For this network Kuehn found, first,
that the service-time variability parameters are significant (the so-
journ-time measures increase significantly with c2); second, that his
approximation tracks the simulation well; and, third, that the M/G/1
approximation also works well, but not quite as well as his approxi-
mation.

We obtained similar results applying QNA. The QNA approxima-
tion values are indistinguishable from the approximation values dis-
played graphically by Kuehn, which are consistently within the sim-

—=o+ KD

—~o= 1K~

Fig. 3—Kuehn's second example: A network of nine queues with three Poisson
external arrival processes.

0.7
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ulation confidence intervals. In Table XI we display some of our
results. Here we consider only the case of homogeneous servers in
which ¢2; = 0, 1, or 4. However, we let the variability parameter of all
external arrival processes by c; = 0.25, 1.0, or 4.0. We thus obtain
nine cases.

Kuehn did simulations only in the case cj; = 1. The different values
obtained by QNA when c§; # 1 suggest that the congestion measures
in this model are more sensitive to the variability of the service times
than the variability of the interarrival times. Of course, we should
expect that the M/G/1 approximation might perform well when the
variability parameters of the external arrival processes are 1 or close
to 1, but for relatively large and interconnected networks the M/G/1
approximation may perform well for other external arrival processes.
It performs reasonably well here when c3; = 0.25 or 4.0.

Vil. A COMPUTER SYSTEM MODEL: INPUT BY ROUTES

In this section we apply QNA to a network with input by customer
classes and routes as in Section 2.3 of Ref. 1. We compare QNA to a
simulation model used in the development of a computer system at
Bell Laboratories. In this model there are five nodes and two customer
classes.

The customer classes correspond to typical functions performed by
the system. The route for each class represents a typical sequence of
operations performed by the system to process one of these functions.

Table XI—Approximations of expected sojourn times
in Kuehn’s nine-node network in Fig. 3: The case of
homogeneous servers, ¢ identical for all j

Service-Time Variability

Parameters
Expected Total Sojourn
Time in the Network =0 =1 =4
=025 6.1 11.5 28.3
QNA & =100 75 129 296
& = 4.00 12.3 177 344
M/Sl/l 8.2 12.9 27.1
M/M/1 129 12.9 12.9
Service-Time Variability
. Parameters
Expected Sojourn Time
per Visit in Node 4 =0 =1 ci=4
% =0.25 1.76 3.7 9.64
QNA c; = 1.00 2.34 4.25 10.15
& = 4.00 438 629 1219
M/G/1 2.62 4.25 9.12
M/M/1 4.25 4.25 4.25
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In the simulation model, both the routes and the service times at the
nodes are deterministic for each class. Hence, the input for QNA is
just as specified in Section 2.3 of Ref. 1 with the service-time variability
parameters set equal to 0, i.e., ¢i; = O for each class k and j on class
k’s route. The two routes we consider are given in Tables XII and

Table XIl—The data for the first route in the model

of Section VI
Mean Serv- Mean Serv-
Number Node ice Time Number Node ice Time
1 2 4
2 1 10 46 4 30
47 1 16
3 1 66
48 4 30
4 1 60 49 1 36
5 1 106
50 1 38
6 1 65
8 i s 51 1 45
52 4 30
8 1 16
53 1 16
9 4 30 54 4 30
10 1 36
55 1 36
11 1 12
u 1 bt 56 1 155
57 1 45
13 4 30
58 4 30
14 1 16 59 1 16
15 4 30
60 4 30
16 1 36
1 1 3 61 1 16
62 4 30
18 1 63
18 ! 63 63 1 16
64 4 30
20 1 1;.5 o ! 30
21 3 55
22 5 0.01 66 1 38
67 1 45
23 3 50
68 4 30
24 1 10 o 1 2
25 1 8
70 4 30
2 1 20.5
27 1 55.5 71 1 36
72 1 27
28 1 42
73 1 25
29 1 145 7 1 2
30 3 550
% 4 30
31 5 0.01
31 H - 7 1 16
7 1 30
33 1 10
78 1 36
34 1 8
35 1 20.5 79 1 13
- 80 1 58
36 1 63.5
37 1 76 81 1 8
82 2 16
38 4 30
83 5 0.01
39 1 36
40 1 15.5 84 2 4
- 85 1 10
41 1 45 86 1 36
42 4 30
43 1 16
44 4 30
45 1 16
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XIIL Note that node 1 frequently appears several times in succession,
so that there is immediate feedback at node 1. Also note that the
service times differ at different visits to the same node.

The customer classes arrive according to independent Poisson proc-
esses. In the case we consider the arrival rates of Classes 1 and 2 are
0.00015278 and 0.00030555, respectively.

The QNA, M/G/1, and M/M/1 approximations are compared with
simulation in Table XIV. The simulation values are the average of
three separate runs. The values from these separate runs are displayed
to give an idea of the statistical reliability. The congestion measures
compared are the expected waiting times at the nodes and the expected
total waiting time (excluding service time) on three route segments.
The first segment is the first 25 nodes of the second route; the second
segment is the first 21 nodes on the first route; and the third segment
is eight nodes from node 23 to node 30 on the first route. In Table
XIV the waiting times at the nodes are measured in milliseconds while
the waiting times on the route segments are measured in seconds.

From Table X1V, it is apparent that QNA with immediate-feedback
elimination performs reasonably well, significantly better than the
M/M/1 and M/G/1 approximations. Since the approximating varia-
bility parameters of the arrival processes are very close to 1, QNA
without immediate-feedback elimination is very similar to the M/G/1
approximation. Hence, again we see that eliminating immediate feed-

Table Xlll—The data for the second route in the model of

Section VI
Mean Mean Mean
Service Service Service
Number Node Time Number Node Time Number Node Time

1 2 4 21 4 30 41 1 46
2 1 10 22 1 36 42 1 14.5
3 1 66 23 1 42 43 3 400
4 1 60 24 1 14.5 44 1 8
5 1 106 25 3 400 45 1 12
6 1 65 26 5 0.01 46 1 30
7 4 30 27 3 350 47 1 58
8 1 16 28 1 10 48 1 8
9 4 30 29 1 16 49 2 16
10 1 36 30 1 20.5 50 5 0.01
11 1 12 31 1 84 51 2 4
12 1 65 32 1 45 52 1 10
13 4 30 33 4 30 53 1 36
14 1 16 34 1 16
15 4 30 35 4 30
16 1 36 36 1 16
17 1 62 37 4 30
18 1 40 38 1 16
19 4 30 39 4 30
20 1 16 40 1 36
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Table XIV—A comparison of approximations and simulation of the
expected waiting times for the model of Section VII

Expected Waiting Time at the Total Expected Waiting
Nodes Time on a Route Segment
1(25 2(21 3(8
Method Node1l Node2 Node3 Node4 nodes) nodes) nodes)
Simulation 1 51.9 0.058 224.1 2.11 1.25 1.12 0.66
runs 2 58.5 0.058 2456 2.27 1.37 1.27 0.77
3 57.6 0.055  236.2 2.17 1.35 1.23 0.74
Simulation 56.0 0.057 2353 2.18 1.32 1.21 0.72
average
M/M/1 59.2 402.5 6.53 1.45 1.32 1.16
(+5.7) (+71.1) (4200.0) (+9.8) (+9.1) (+61.1)
M/G/1 43.5 0.07 245.5 3.26 1.01 0.91 0.75
(-22.3) (+4.2) (+49.5) (—23.5) (—24.8) (+4.2)
50.2 0.07 244.1 2.81 1.11 1.01 0.79
(eliminating (—10.3) (+3.7) (+28.9) (-159) (-16.5) (+9.7)
feedback)
Additional Information About the Network
1 2 3 4 1 2 3
Mean service 33.1 8.0 350.0 30.0 1.28 1.31 0.75
time
Traffic inten- 0.64 0.11 0.54 0.18 .- .-- .
sity
¢? of the serv- 047 050 0.22 0.00 - - .-
ice time from
NA
¢? of the arrival 0.92 1.00 0.99 0.90 --- - -

process from
QNA

Notes: 1. The relative percent errors appear below the approximation in parentheses.
2. The value c = 0.47 at node 1 is before adjustment for feedback; after

adjustment it is 0.79.
3. The units of measurement are milliseconds for the nodes and seconds for the
route segments.

back helps. The M/M/1 approximations at nodes 3 and 4 evidently
are too large because the service times are nearly constant. However,
at node 1 the M/M/1 approximation does pretty well, apparently
because two different errors cancel. (We have not displayed the relative
percentage errors at node 2 since it seems of little consequence because
of the low traffic intensity.)

It is interesting to know how the system would perform if the
external arrival processes are not Poisson and if the service times at
the nodes on the routes are not deterministic. With QNA we can easily
perform such sensitivity analyses. We can simply change the variabil-
ity parameters of the external arrival processes and the service times
on the routes. The results of such a study are given in Tables XV and
XVI. Table XV gives the approximating variability parameter of the
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arrival process at each node as a function of the external arrival
process c? and the service time c2. It is assumed that both external
arrival processes have the same ¢? and that all service times on both
routes have the same ¢2. From Table XV, it is evident that the
variability of the external arrival process hardly has any effect. Thus,
QNA predicts that this model, and perhaps the system itself, will be
robust to changes in the variability of the arriving traffic. The varia-
bility from outside is evidently dissipated on the long routes through
the network.

Table XVI describes the impact of changing the service-time vari-
ability at the nodes on the routes. The service-time variability at the
nodes would increase significantly and, thus, QNA predicts that the
expected waiting times would also increase significantly. Simulations
to test these predictions are planned.

Table XV—The approximate variability parameter of the arrival
process at each node determined by the QNA, as a function of the
given variability parameters: The model of Section Vi

External Ar- Service Time ¢? at Each Node on the Route
rival Process
c? Node 0.0 0.2 0.5 1.0 2.0
1 0.9155 0.9506 1.0034 1.0912 1.2669
=1 2 0.9995 0.9997 1.0000 1.0001 1.0016
3 0.9937 0.9966 1.0010 1.0083 1.0230
4 0.8950 0.9480 1.0274 1.1598 1.4245
1 0.9162 0.9513 1.0040 1.0918 1.2676
=9 2 1.0086 1.0088 1.0092 1.0097 1.0107
3 0.9938 0.9967 1.0011 1.0084 1.0231
4 0.89563 0.9483 1.0277 1.1601 1.4249
1 0.9175 0.9527 1.0053 1.0932 1.2689
1o 4 2 1.0268 1.0271 1.0274 1.0279 1.0290
= 3 0.9939 0.9968 1.0012 1.0085 1.0231
4 0.8959 0.9488 1.0283 1.1607 1.4254

Table XVI—The approximate service-time variability parameter cZ
and mean delay EW, at node j determined by the QNA, as a function
of the variability of each service time on the route: The model of

Section VH
Node Char- Service Time ¢? at Each Node on the Route
acteristic Node 0.0 0.2 0.5 1.0 2.0
1 0.787 0.905 1.082 1.377 1.968
2 2 0.500 0.800 1.250 2.000 3.500
b 3 0.220 0.464 0.830 1.441 2.661
4 0.000 0.200 0.500 1.000 2.000
1 50.2 549 61.6 72,6 94.6
EW, 2 0.07 0.08 0.10 0.13 0.20
! 3 244.1 293.3 367.7 491.4 739.0
4 2.81 3.72 495 6.87 10.78
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Vill. A PACKET-SWITCHED COMMUNICATION-NETWORK MODEL

In this section we consider a model of a packet-switched communi-
cation network analyzed in Section 4.3.1 of Gelenbe and Mitrani.’
The basic model has 5 switching nodes and 12 one-way data links, as
depicted in Fig. 4. However, in this model each data link is a server
and the packets waiting for transmission on the link form the queue.
Packets are assumed to arrive at the switching nodes according to
independent Poisson processes. Each packet arriving from outside at
node i has final destination j with probability d;. Each packet with
destination j goes next to node r; from node i. Hence, there is a fixed
route for each origin-destination pair.

We analyze this network using the input by classes and routes in
Section 2.3 of Ref. 1. However, unlike Section VII, here the service-
time parameters are associated with the nodes rather than the routes
(which is an input option in QNA). The network of queues has 12
nodes with one server at each node and 20 routes. As specified by
Gelenbe and Mitrani, the service rate at nodes 1, 2, 7, 8, 11, and 12 is
4.8 (in thousands of bits per second) and the service rate at the other
nodes is 48. Since packet lengths are assumed constant, c¢Z = 0 for all
j.

For this example the matrices D = (d;;) of destination probabilities
and R = (r;) of next-node routes are:

0.00 0.10 020 010 0.60 0 3 3 3 2
0.40 0.00 040 0.15 0.05 4 0 5 5 4
D= 010 020 000 060 010 R=|6 6 0 9 8
0.30 0.30 0.30 0.00 0.10 10 10 10 0 12
0.10 025 0.30 035 0.00 1 1 711 O

Fig. 4—Gelenbe and Mitrani’s model of a packet-switched network: The 12 links are
the nodes in the network of queues.
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The input data for the routes are given in Table XVII. These data
are obtained from the matrices D and R plus the external arrival rates
of 6.00, 8.25, 7.50, 6.75, and 1.50 at the five switching nodes (p. 141 of
Gelenbe and Mitrani'®).

The results are compared with Gelenbe and Mitrani’s approximation
and simulation in Table XVIII. Since only 6000 packets reached their
destination in the simulation, the statistical reliability of the simula-
tion estimates cannot be very good, cf. Section III. Qur analysis is
revealing. First, Gelenbe and Mitrani describe their results as average
buffer queue lengths, which might be thought to exclude the customer
(packet) being served (transmitted). However, the results obviously
include the customer in service. Second, the two M/M/1 approxima-
tions should agree, but they do not. Evidently, the arrival rates at
switches 1 and 2 were not actually as cited in the text.!* Hence, the
numbers for the one heavily loaded link, link 2, cannot be meaningfully
compared.

It is useful to consider the expected number waiting excluding the
customer in service. This is easily obtained because the probability
that the server is busy is exactly the traffic intensity, p (see Section
11.3 of Heyman and Sobel'*). We thus obtain estimates of the expected
number waiting by subtracting p from the numbers displayed in Table

Table XVII—The input data by routes for Gelenbe and
Mitrani’s model of a packet-switched communication
network

External Arrival Number

Origin-Des- Process Param-  of Nodes
Route  tination . eters on the Node

Number Pair A G Route Sequence
1 1,2 0.60 1 1 3
2 1,3 1.20 1 2 3,5
3 1,4 0.60 1 3 3,5,9
4 1,5 3.60 1 1 2
5 2,1 3.30 1 1 4
6 2,3 3.30 1 1 5
7 2,4 1.24 1 2 5,9
8 2,5 0.41 1 2 4,2
9 3,1 0.75 1 2 6,4

10 3,2 1.50 1 1 6
11 3.4 4.50 1 1 9
12 3,5 0.75 1 1 8
13 11 203 1 3 10,6,4
14 4,2 2.03 1 2 10,6
15 43 2.03 1 1 10
16 4,5 0.68 1 1 12
17 51 0.15 1 1 1
18 5.2 0.38 1 2 1,3
19 5,3 0.45 1 1 7
20 5.4 0.53 1 1 11
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XVIIL. When this is done, some of the simulation estimates become
negative, demonstrating that the input parameters are incorrect or the
statistical reliability of the simulation is not very good. In this case,
probably both problems exist.

We also observe that the traffic intensities at all link queues but
the second are very small, so the numbers displayed in Table XVIII
are mostly estimates of the traffic intensities themselves. Moreover,
because the traffic intensities are small, the variability parameter of
the departure process produced by QNA will be very close to the
variability parameter of the arrival process (see Section 4.5 of Ref. 1).
This would not be true for the second link with traffic intensity 0.835,
but note that all departures from the second link leave the system.
Since the external arrival processes are all Poisson, QNA should and
does perform virtually the same as an M/G/1 approximation. In fact,
since the service times are all constant (c% = 0), the approximation
reduces to the M/D/1 system. Moreover, we predict that a proper
simulation of this model with the specified parameters will yield values
very close to the M/D/1 approximation.

We also display in Table XIX the point-to-point (origin-destination)
average total service times, delays, and sojourn times (service times
plus delays) produced by QNA. No simulation values were available
for comparison, however. The output is useful to indicate unacceptably
high or low values. It is also useful to determine the separate contri-
butions of service times and delays to sojourn times. Of course, in

Table XVIlIl—A comparison of approximations and simulation; The
expected number waiting and being served on each link in the
Gelenbe-and-Mitrani model of a packet-switched communication
network depicted in Fig. 4

Approximation Methods
M/M/1
Gelenbe
Traffic In-  Simulation and via Gelenbe-

Link No. tensity, p; Value Mitrani QNA Pujolle QNA
1 0.110 0.117 0.123 0.124 0.116 0.117
2 0.835 1.920 3.000 5.076 1.875 2.955
3 0.058 0.132 0.139 0.061 0.131 0.060
4 0.135 0.163 0.170 0.156 0.157 0.146
5 0.132 0.105 0.127 0.152 0.125 0.142
6 0.131 0.173 0.157 0.151 0.146 0.141
7 0.094 0.087 0.104 0.103 0.099 0.099
8 0.156 0.208 0.185 0.185 0.171 0.171
9 0.132 0.155 0.162 0.152 0.147 0.142

10 0.127 0.129 0.145 0.145 0.136 0.136
11 0.110 0.106 0.123 0.124 0.116 0.117
12 0.142 0.154 0.164 0.165 0.152 0.153

PERFORMANCE OF QNA 2841



Table XIX—Average point-to-point service times, delays, and sojourn
times for the Gelenbe-and-Mitrani model of a packet-switched
communication network

Poisson Arrivals ¢? = 1.0 Bursty Arrivals ¢? = 4.0

Mean Total Mean Total
Mean Total Mean Total  Sojourn Mean Total  Sojourn
Route  Service Time Delay on Time on Delay on Time on

No. on Route Route Route Route Route
1 0.021 0.001 0.021 0.001 0.022
2 0.042 0.002 0.044 0.003 0.044
3 0.063 0.004 0.066 0.005 0.068

4 0.208* 0.529* 0.737* 1.920* 2.128*
5 0.021 0.002 0.022 0.002 0.023
6 0.021 0.002 0.022 0.002 0.023
7 0.042 0.003 0.045 0.005 0.046

8 0.229* 0.530* 0.759* 1.922* 2.151*
9 0.042 0.003 0.045 0.004 0.046
10 0.021 0.002 0.022 0.002 0.046
11 0.021 0.002 0.022 0.003 0.024

12 0.208* 0.019 0.228* 0.077 0.285*
13 0.063 0.005 0.067 0.006 0.068
14 0.042 0.003 0.045 0.004 0.046
156 0.021 0.002 0.022 0.002 0.023

16 0.208* 0.017 0.226* 0.069 0.277*

17 0.208* 0.013 0.221* 0.025 0.233*

18 0.229* 0.014 0.243* 0.026 0.265*

19 0.208* 0.011 0.219* 0.043 0.251*

20 0.208* 0.013 0.221* 0.062 0.260*

Note: The larger values are marked with an asterisk.

Table XIX delays play a significant role only for routes using the
second link.

We conclude by remarking that the assumption of Poisson arrivals
for packets at each switch made by Gelenbe and Mitrani'® often is not
realistic. Often messages containing many packets arrive according to
a Poisson process, but the packets arrive in a much more bursty
manner. Hence, it is appropriate to use QNA with arrival-process
variability parameters much larger than 1. The last two columns of
Table XIX give the mean delays and sojourn times when the variability
parameters of the external arrival processes are changed from ¢ = 1.0
to ¢ = 4.0. When this is done here, the large delays on routes 4 and 8
increase significantly. To a large extent, QNA was motivated by the
need to be able to systematically study the effect of such variability.
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