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We prove a many-server heavy-traffic fluid limit for an overloaded Markovian queueing system having two customer classes
and two service pools, known in the call-center literature as the X model. The system uses the fixed-queue-ratio-with-
thresholds (FQR-T) control, which we proposed in a recent paper as a way for one service system to help another in face of
an unexpected overload. Under FQR-T, customers are served by their own service pool until a threshold is exceeded. Then,
one-way sharing is activated with customers from one class allowed to be served in both pools. After the control is activated,
it aims to keep the two queues at a prespecified fixed ratio. For large systems that fixed ratio is achieved approximately. For
the fluid limit, or FWLLN (functional weak law of large numbers), we consider a sequence of properly scaled X models in
overload operating under FQR-T. Our proof of the FWLLN follows the compactness approach, i.e., we show that the sequence
of scaled processes is tight and then show that all converging subsequences have the specified limit. The characterization
step is complicated because the queue-difference processes, which determine the customer-server assignments, need to be
considered without spatial scaling. Asymptotically, these queue-difference processes operate on a faster time scale than the
fluid-scaled processes. In the limit, because of a separation of time scales, the driving processes converge to a time-dependent
steady state (or local average) of a time-varying fast-time-scale process (FTSP). This averaging principle allows us to replace
the driving processes with the long-run average behavior of the FTSP.
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1. Introduction. In this paper we prove that the deterministic fluid approximation for the overloaded X
call-center model, suggested in Perry and Whitt [36] and analyzed in Perry and Whitt [37], arises as the many-
server heavy-traffic fluid limit of a properly scaled sequence of overloaded Markovian X models under the
fixed-queue-ratio-with-thresholds (FQR-T) control. (A list of all the acronyms appears in §F in the appendix.)
The X model has two classes of customers and two service pools, one for each class, but with both pools
capable of handling customers from either class. The service-time distributions depend on both the class and
the pool. The FQR-T control was suggested in Perry and Whitt [35] as a way to automatically initiate sharing
(i.e., sending customers from one class to the other service pool) when the system encounters an unexpected
overload, while ensuring that sharing does not take place when it is not needed.

1.1. A series of papers. This paper is the fourth in a series. First, in Perry and Whitt [35] we heuristically
derived a stationary fluid approximation, whose purpose was to approximate the steady state of a large many-
server X system operating under FQR-T during the overload incident. More specifically, in Perry and Whitt [35]
we assumed that a convex holding cost is incurred on both queues whenever the system is overloaded, and our
aim was to develop a control designed to minimize that cost. (That deterministic cost approximates the long-run
average cost during the overload incident in the stochastic model.) We further assumed that the system becomes
overloaded because of a sudden, unexpected shift in the arrival rates, with new levels that may not be known to
the system managers, and that the staffing of the service pools cannot be changed quickly enough to respond to
that sudden overload.

Under the heuristic stationary fluid approximation, in Perry and Whitt [35] we proved that a queue-ratio
control with thresholds (QR-T) is optimal, and showed how to calculate the optimal control parameters. We
also showed that the QR-T control outperforms the optimal static control when the arrival rates are known.
In general, that optimal QR-T control is a function of the arrival rates during the overload incident, which are
assumed to be unknown. In the special case of a separable quadratic cost, i.e., for C4Q11Q25 = c1Q

2
1 + c2Q

2
2,

with c1, c2 being two constants, we proved that the FQR-T control is optimal, so that two queue ratios—one
for each direction of overload—are optimal for all possible overload scenarios. More generally, we found that
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a FQR-T control was approximately optimal, as illustrated by Figure 4 of Perry and Whitt [35]. Thus, in all
subsequent work we have focused on the FQR-T control.

Second, in Perry and Whitt [36] we applied a heavy-traffic stochastic averaging principle (AP) as an engi-
neering principle to describe the transient (time-dependent) behavior of a large overloaded X system operating
under FQR-T. The suggested fluid approximation was expressed via an ordinary differential equation (ODE),
which is driven by a stochastic process. Specifically, the expression of the fluid ODE as a function of time
involves the local steady state of a stochastic process at each time point t ≥ 0, which we named the fast-time-
scale process (FTSP). As the name suggests, the FTSP operates on (an infinitely) faster time scale than the
processes approximated by the ODE, thus converges to its local steady state instantaneously at every time t ≥ 0.
Extensive simulation experiments showed that our approximations work remarkably well, even for surprisingly
small systems, having as few as 25 servers in each pool.

Third, in Perry and Whitt [37] we investigated the ODE suggested in Perry and Whitt [36] using a dynamical-
system approach. The dynamical-system framework could not be applied directly, because the ODE is driven by
a stochastic process, and its state space depends on the distributional characteristics of the FTSP. Nevertheless,
we showed that a unique solution to the ODE exists over the positive halfline 601�5 for each specified initial
condition. The stationary fluid approximation, derived heuristically in Perry and Whitt [35], was shown to exist
as the unique fixed point (or stationary point) for the fluid approximation. Moreover, we proved that the solution
to the ODE converges to this stationary point, with the convergence being exponentially fast. (That supports the
steady-state approximation used in Perry and Whitt [35].) In addition, a numerical algorithm to solve the ODE
was developed, based on a combination of a matrix-geometric algorithm and the classical forward Euler method
for solving ODEs.

1.2. Overview. In this fourth paper, we will prove that the solution to the ODE in Perry and Whitt [36, 37]
for specified initial condition is indeed the many-server heavy-traffic fluid limit of the overloaded X model,
which we also call a functional weak law of large numbers (FWLLN); see Theorem 4.1; see §3.4 for the key
assumptions. In doing so, we will prove a strong version of state-space collapse (SSC) for the server-assignment
processes; see Corollary 6.2 and Theorem 6.4. We will also prove a strong SSC result for the two-dimensional
queue process in Corollary 4.1. In a subsequent paper (Perry and Whitt [38]) we prove a functional central limit
theorem (FCLT) refinement of the FWLLN here, which describes the stochastic fluctuations about the fluid path.

We only consider the X model during the overload incident, once sharing has begun; that will be captured
by our main assumptions, Assumptions 3.1 and 3.2. As a consequence, the model is stationary (without time-
varying arrival rates), but the evolution is transient, because the system does not start in steady state. Because of
customer abandonment, the stochastic models will all be stable, approaching proper steady-state distributions.
As a further consequence, during the overload incident sharing will occur in only one direction, so that the
overloaded X model actually behaves as an overloaded N model, but that requires proof; that follows from
Corollary 6.3 and Theorem 6.4. Our FWLLN serves as an approximation for the time-dependent behavior of
the model as it approaches steady state. In addition, we prove a weak law of large numbers for the stationary
distributions, showing that the unique fixed point of the fluid limit is also the limit of the scaled stationary
model. Proving that latter result builds on a novel limit-interchange argument, which requires the established
FWLLN.

Convergence to the fluid limit will be established in roughly three steps: (i) representing the sequence of sys-
tems (§§5.1 and 6), (ii) proving that the sequence considered is C-tight (§5.2), and (iii) uniquely characterizing
the limit (Perry and Whitt [37] and §7). The first representation step in §5.1 starts out in the usual way, involv-
ing rate-1 Poisson processes, as reviewed in Pang et al. [34]. However, the SSC part in §6 requires a delicate
analysis of the unscaled sequence. The second tightness step in §5.2 is routine, but the final characterization step
is challenging. These last two steps are part of the standard compactness approach to proving stochastic-process
limits; see Billingsley [7], Ethier and Kurtz [12], Pang et al. [34] and §11.6 in Whitt [47]. As reviewed in Ethier
and Kurtz [12] and Pang et al. [34], uniquely characterizing the limit is usually the most challenging part of the
proof, but it is especially so here. Characterizing the limit is difficult because the FQR-T control is driven by a
queue-difference process that is not being scaled and hence does not converge to a deterministic quantity with
spatial scaling. However, the driving process operates in a different time scale than the fluid-scaled processes,
asymptotically achieving a (time-dependent) steady state at each instant of time, yielding the AP.

As was shown in Perry and Whitt [37], the AP and the FTSP also complicate the analysis of the limiting ODE.
First, it requires that the steady state of a continuous-time Markov chain (CTMC), whose distribution depends
on the solution to the ODE, be computed at every instant of time. (As explained in Perry and Whitt [37], this
argument may seem circular at first, because the distribution of the FTSP is determined by the solution to the
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ODE, while the evolution of the solution to the ODE is determined by the behavior of the FTSP. However, the
separation of time scales explains why this construction is consistent.) The second complication is that the AP
produces a singularity region in the state space, causing the ODE to be discontinuous in its full state space.
Hence, both the convergence to the many-server heavy-traffic fluid limit and the analysis of the solution to the
ODE depend heavily on the state space of the ODE, which is characterized in terms of the FTSP. For that
reason, many of the results in Perry and Whitt [37] are needed for proving convergence.

1.3. Literature. Our previous papers discuss related literature; see especially §2 of Perry and Whitt [35].
Our FQR-T control extends the FQR control and other queue-and-idleness ratio controls suggested and studied
in Gurvich and Whitt [14, 15, 16], but the limits there were established for a different regime under different
conditions. Here we study the FQR-T control and establish limits for overloaded systems. Unlike that previous
work, here the service rates may depend on both the customer class and the service pool in a very general way.
In particular, our X model does not satisfy the conditions of the previous theorems even under normal loads.

There is a substantial literature on averaging principles, e.g., see Khasminskii and Yin [25] and references
therein, but there is not one unified framework that can easily be applied to any model. Moreover, it is common
practice to use averaging principles as direct approximations, i.e., to simply replace a fast process by its long-
term average behavior. That is the classic approach for deterministic dynamical systems, e.g., see chapters 10
and 11 of Khalil [24]. We ourselves took that approach in Perry and Whitt [36]. It is significant that, unlike the
classical dynamical-systems approach, the AP in our case here is a result of the fast oscillations of a stochastic
process (the FTSP discussed above). We thus named this phenomenon a stochastic averaging principle in Perry
and Whitt [37], although we refer to it simply as an AP.

Averaging principles are relatively rare in operations research. See p. 71 of Whitt [47] for a discussion related
to the queueing literature. Two notable papers in the queueing literature are Coffman et al. [10], which considers
the diffusion limit of a polling system with zero switch-over times, and Hunt and Kurtz [18], which considers
large loss networks under a large family of controls. The limits via an AP in Hunt and Kurtz [18] are the
basis for other papers studying loss networks. We refer to Antunes et al. [1] and Zachary and Ziedins [49], and
references therein. The work in Hunt and Kurtz [18] is also closely related to our work because it considers the
fluid limits of such loss systems, with the control-driving process moving on a faster time scale than the other
processes considered.

For the important characterization step, we give two proofs, one in the main paper and the other in the
appendix. The shorter proof in the main paper closely follows Hunt and Kurtz [18], exploiting martingales and
random measures, building on Kurtz [27]. In contrast, our second approach exploits stochastic bounds, which
we also use in the important preliminary step establishing state-space collapse.

There is now a substantial literature on fluid limits for queueing models, some of which is reviewed in
Whitt [47]. For recent work on many-server queues, see Kang and Ramanan [21] and Kaspi and Ramanan [23].
Because of the separation of time scales here, our work is in the spirit of fluid limits for networks of many-server
queues in Bassamboo et al. [4, 5], but again the specifics are quite different. Their separation of time scales
justifies using a pointwise stationary approximation asymptotically, as in Massey and Whitt [31] and Whitt [46].

2. Preliminaries. In this section we specify the queueing model, which we refer to as the X model. We
then specify the FQR-T control. We then provide a short summary of the many-server heavy-traffic scaling and
the different regimes. We conclude with our conventions about notation.

2.1. The original queueing model. The Markovian X model has two classes of customers, initially arriving
according to independent Poisson processes with rates �̃1 and �̃2. There are two queues, one for each class,
in which customers that are not routed to service immediately upon arrival wait to be served. Customers are
served from each queue in order of arrival. Each class-i customer has limited patience, which is assumed to
be exponentially distributed with rate �i, i = 112. If a customer does not enter service before he runs out of
patience, then he abandons the queue. The abandonment keep the system stable for all arrival and service rates.

There are two service pools, with pool j having mj homogenous servers (or agents) working in parallel. This
X model was introduced to study two large systems that are designed to operate independently under normal
loads, but can help each other in the face of unanticipated overloads. We assume that all servers are cross
trained, so that they can serve both classes. The service times depend on both the customer class i and the server
type j and are exponentially distributed; the mean service time for each class-i customer by each pool-j agent
is 1/�i1 j . All service times, abandonment times, and arrival processes are assumed to be mutually independent.
The FQR-T control described below assigns customers to servers.
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We assume that, at some unanticipated time, the arrival rates change instantaneously, with at least one increas-
ing. At this time the overload incident has begun. We consider the system only after the overload incident
has begun, assuming that it is in effect at the initial time 0. We further assume that the staffing cannot be
changed (in the time scale under consideration) to respond to this unexpected change of arrival rates. Hence, the
arrival processes change from Poisson with rates �̃1 and �̃2 to Poisson processes with rates �1 and �2, where
�̃i <mi/�i1 i, i = 112 (normal loading), but �i > �i1 imi for at least one i (the unanticipated overload). (These
new arrival rates may not be known by the system manager.) Without loss of generality, we assume that pool 1
(and class 1) is the overloaded (or more overloaded) pool. The fluid model (ODE) is an approximation for the
system performance during the overload incident, so that we start with the new arrival rate pair 4�11�25. (The
overload control makes sense much more generally; we study its performance in this specific scenario.)

The two service systems may be designed to operate independently under normal conditions (without any
overload) for various reasons. In Perry and Whitt [35, 36] we considered the common case in which there is
no efficiency gain from service by cross-trained agents. Specifically, in Perry and Whitt [35] we assumed the
strong inefficient sharing condition

�111 >�112 and �212 >�2110 (1)

Under condition (1), customers are served at a faster rate when served in their own service pool than when they
are being served in the other-class pool. However, many results in Perry and Whitt [35] hold under the weaker
basic inefficient sharing condition: �111�212 ≥�112�211.

It is easy to see that some sharing can be beneficial if one system is overloaded, while the other is underloaded
(has some slack), but sharing may not be desirable if both systems are overloaded. To motivate the need for
sharing when both systems are overloaded, in Perry and Whitt [35] we considered a convex-cost framework.
With that framework, in Perry and Whitt [35] we showed that sharing can be optimal in the fluid approximation,
even if it causes the total queue length (queue 1 plus queue 2) to increase. Despite the optimality of the control
in the framework of Perry and Whitt [35], in this paper we do not assume that either the strong or the weak
inefficient sharing condition holds, because the FWLLN holds regardless of the service rates. We mention that
there can be other operational reasons for not sharing customers between pools during normal loads (e.g., to
avoid too much agent distraction) but to share during overloads (e.g., to provide some minimal service-level
constraints for both classes).

Let Qi4t5 be the number of customers in the class-i queue at time t, and let Zi1 j4t5 be the number of class-i
customers being served in pool j at time t, i1 j = 112. Given a stationary (state-dependent) routing policy, the
six-dimensional stochastic process

X64t5≡ 4Q14t51Q24t51Z1114t51Z1124t51Z2114t51Z2124t551 t ≥ 01 (2)

becomes a six-dimensional CTMC. (≡ means equality by definition.) In principle, the optimal control could
be found from the theory of Markov decision processes, but that approach seems prohibitively difficult. For a
complete analysis, we would need to consider the unknown transient interval over which the overload occurs,
and the random initial conditions, depending on the model parameters under normal loading. In summary, there
is a genuine need for the simplifying approximation we develop.

2.2. The FQR-T control for the original queueing model. The purpose of FQR-T is to prevent sharing
when the system is not overloaded and to rapidly start sharing when the arrival rates shift. If sharing is elected,
then we allow sharing in only one direction.

Assumption 2.1 (One-Way Sharing). Sharing is allowed in only one direction at any one time.

When sharing takes place, FQR-T aims to keep the two queues at a certain ratio, depending on the direction
of sharing. Thus, there is one ratio, r112, which is the target ratio if class 1 is being helped by pool 2, and another
target ratio, r211, when class 2 is being helped by pool 1. As explained in Perry and Whitt [35], appropriate ratios
can be found using the steady-state fluid approximation. In particular, the specific FQR-T control is optimal
in the special case of a separable quadratic cost function. More generally, fixed ratios are often approximately
optimal.

We now describe the control. The FQR-T control is based on two positive thresholds, k112 and k211, and
the two queue-ratio parameters, r112 and r211. We define two queue-difference stochastic processes D1124t5 ≡

Q14t5−r112Q24t5 and D211 ≡ r211Q24t5−Q14t5. As shown in Perry and Whitt [35], in that convex cost framework
there is no incentive for sharing simultaneously in both directions, implying that these ratio parameters should
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satisfy r112 ≥ r211; see Proposition EC.2 and (EC.11) of Perry and Whitt [35]. However, even without the cost
framework, we do not want sharing to ever occur in both directions simultaneously. Hence we make the following
assumption.

Assumption 2.2 (Ordered Ratio Parameters). The ratio parameters are assumed to satisfy r112 ≥ r211.

As long as D1124t5 ≤ k112 and D2114t5 ≤ k211 we consider the system to be normally loaded (i.e., not over-
loaded) so that no sharing is allowed. Hence, in that case, the two classes operate independently. Once one of
these inequalities is violated, the system is considered to be overloaded, and sharing is initialized. For example,
if D1124t5 > k112 and Z2114t5= 0, then class 1 is judged to be overloaded and service-pool 2 is allowed to start
helping queue 1: If a type-2 server becomes available at this time t, then it will take its next customer from the
head of queue 1. When D1124t5− k112 ≤ 0, new sharing is not initiated. Then new sharing stops until one of the
thresholds is next exceeded. However, sharing in the opposite direction with pool 1 servers helping class 2 is
not allowed until both Z1124t5= 0 and D2114t5 > k211.

It can be of interest to consider alternative variants of the FQR-T control just defined. For example, it may be
desirable to relax the one-way sharing rule imposed above. We might use additional lower thresholds for Z1124t5
and Z1124t5 to allow sharing to start more quickly in the opposite direction when the queue lengths indicate that
is desirable. However, we do not discuss such control variants here.

With the FQR-T control just defined, the six-dimensional stochastic process X6 ≡ 8X64t52 t ≥ 09 in (2) is
a CTMC. (The control depends only on the process state.) This is a stationary model, but we are concerned
with its transient behavior, because it is not starting in steady state. We aim to describe that transient behavior.
The control keeps the two queues at approximately the target ratio, e.g., if queue 1 is being helped, then
Q14t5 ≈ r112Q24t5. If sharing is done in the opposite direction, then r211Q24t5 ≈ Q14t5 for all t ≥ 0. That is
substantiated by simulation experiments, some of which are reported in Perry and Whitt [35, 36]. In this paper
we will prove that the ≈ signs are replaced with equality signs in the fluid limit.

2.3. Many-server heavy-traffic scaling. To develop the fluid limit, we consider a sequence of X systems,
8Xn

6 2 n≥ 19 defined as in (2), indexed by n (denoted by superscript), using the standard many-server heavy-traffic
scaling, i.e., with arrival rates and number of servers growing proportionally to n.

Assumption 2.3 (Many-Server Heavy-Traffic Scaling). As n→ �,

�̄n
i ≡

�n
i

n
→ �i and m̄n

i ≡
mn

i

n
→mi1 0 <�i1 mi <�1 (3)

and the service and abandonment rates held fixed.

We then define the associated fluid-scaled stochastic processes

X̄n
6 4t5≡ n−1Xn

6 4t51 t ≥ 01 (4)

where Xn
6 is defined as in (2) for each n.

For each system n there are thresholds kn112 and kn211 scaled as follows:

Assumption 2.4 (Scaled Thresholds). For k112, k211 > 0 and a sequence of positive numbers 8cn2 n≥ 19,

kni1 j/cn → ki1 j1 4i1 j5= 41125 or 421151 where cn/n→ 0 and cn/
√
n→ � as n→ �0 (5)

The first scaling by n in Assumption 2.4 is chosen to make the thresholds asymptotically negligible in
many-server heavy-traffic fluid scaling, so they have no asymptotic impact on the steady-state cost (in the
cost framework of Perry and Whitt [35]). The second scaling by

√
n in Assumption 2.4 is chosen to make

the thresholds asymptotically infinite in many-server heavy-traffic diffusion scaling, so that asymptotically the
thresholds will not be exceeded under normal loading. It is significant that the scaling shows that we should be
able to simultaneously satisfy both conflicting objectives in large systems.

We consider an overload incident in which class 1 is overloaded, and more overloaded than class 2 if both are
overloaded. Hence we primarily focus on the queue difference processes Dn

112. We redefine the queue-difference
process by subtracting kn112 from Qn

1 , i.e.,

Dn
1124t5≡Qn

14t5− kn112 − r112Q
n
24t51 t ≥ 00 (6)
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(Similarly, we write Dn
2114t5 ≡ r211Q

n
24t5 − kn211 − Qn

14t5.) We now apply FQR using the process Dn
112 in (6):

if Dn
1124t5 > 0, then every newly available agent (in either pool) takes his new customer from the head of the

class-1 queue. If Dn
1124t5≤ 0, then every newly available agent takes his new customer from the head of his own

queue.
Let

�n
i ≡

�n
i

�i1 im
n
i

1 and �i ≡ lim
n→�

�n
i =

�i

�i1 imi

1 i = 1120 (7)

Then �n
i is the traffic intensity of class i to pool i, and �i can be thought of as its fluid counterpart.

Our results depend on the system being overloaded. However, in our case, a system can be overloaded even
if one of the classes is not overloaded by itself. We define the following quantities:

qa
i ≡

4�i −�i1 imi5
+

�i
and sai ≡

(

mi −
�i

�i1 i

)+

1 i = 1121 (8)

where 4x5+ ≡ max8x109. It is easy to see that qa
i s

a
i = 0, i = 112. Note that qa

i is the steady state of the class-i
fluid-limit queue when there is no sharing, i.e., when both classes operate independently. Similarly, sai is the
steady state of the class-i fluid-limit idleness process. For the derivation of the quantities in (8) see Theorem 2.3
in Whitt [48], especially equation (2.19), and §5.1 in Perry and Whitt [35]. See also §6 in Perry and Whitt [37].

2.4. Conventions about notation. We use capital letters to denote random variables and stochastic pro-
cesses, and lowercase letters for deterministic counterparts. For a sequence 8Y n2 n≥ 19 (of stochastic processes
or random variables) we denote its fluid-scaled version by Ȳ n ≡ Y n/n. The fluid limit of stochastic processes Ȳ n

will be denoted by a lowercase letter y and sometimes by Ȳ . Let ⇒ denote convergence in distribution. Then
the fluid limits will be expressed as Ȳ n ⇒ y as n→ �.

We use the usual �, �, and �+ notation for the real numbers, integers, and nonnegative integers, respec-
tively. Let �k denote all k-dimensional vectors with components in �. For a subinterval I of 601�5, let
Dk4I5≡D4I1�k5 be the space of all right-continuous �k valued functions on I with limits from the left every-
where, endowed with the familiar Skorohod J1 topology. We let dJ1

denote the metric on Dk4I5. Because we will
be considering continuous limits, the topology is equivalent to uniform convergence on compact subintervals
of I . If I is an arbitrary compact interval, we simply write Dk. Let Ck be the subset of continuous functions
in Dk. Let e be the identity function in D≡D1, i.e., e4t5≡ t, t ∈ I .

We use the familiar big-O and small-o notations for deterministic functions: for two real functions f and g,
we write

f 4x5=O4g4x55 whenever lim sup
x→�

�f 4x5/g4x5�<�1

f 4x5= o4g4x55 whenever lim sup
x→�

�f 4x5/g4x5� = 00

The same notation is used for sequences, replacing x with n ∈�+.
For a, b ∈ �, let a ∧ b ≡ min 8a1 b9, a ∨ b ≡ max 8a1 b9, 4a5+ ≡ a ∨ 0, and 4a5− ≡ 0 ∨ −a. For a function

x2 601�5→� and 0 < t <�, let
�x�t ≡ sup

0≤s≤t

�x4s5�0

Let Y ≡ 8Y 4t52 t ≥ 09 be a stochastic process, and let f 2 601�5 → 601�5 be a deterministic function. We say
that Y is OP 4f 4t55, and write Y =OP 4f 5, if �Y �t/f 4t5 is stochastically bounded, i.e., if

lim
a→�

lim sup
t→�

P4�Y �t/f 4t5 > a5= 00

We say that Y is oP 4f 4t55 if �Y �t/f 4t5 converges in probability (and thus, in distribution) to 0, i.e., if
�Y �t/f 4t5 ⇒ 0 as t → �. If f 4t5 ≡ 1, then Y = OP 415 if it is stochastically bounded, and Y = oP 415 if
�Y �t ⇒ 0. We define OP 4f 4n55 and oP 4f 4n55 in a similar way, but with the domain of f being �+, i.e.,
f 2 �+ → 601�5. These properties extend to sequences of random variables and processes indexed by n if the
property holds uniformly in n.

3. Representation of the fluid limit. In this section we represent the fluid limit as a solution to an ODE
that is driven by a FSTP. In contrast to the six-dimensional scaled process X̄n

6 in (4), the ODE is only three-
dimensional. Hence, we start by briefly discussing the dimension reduction in §3.1. Afterward, we define the
FTSP in §3.2 and then present the ODE in §3.3. We have studied the FTSP and the ODE in Perry and Whitt [37],
to which we refer for more details. In §3.4 we state three main assumptions.
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3.1. Dimension reduction. We will making assumptions implying that we consider the system during an
overload incident in which class 1 is overloaded, and more so than class 2 if it is also overloaded. We will thus be
considering sharing in which only pool 2 may help class 1. We will thus have both service pools fully occupied,
with service pool 1 serving only class 1. We will thus have P4Bn

T 5→ 1 as n→ �, for all T , 0 <T <�, where
Bn
T is the subset of the underlying probability space defined by

Bn
T ≡ 8Zn

1114t5=mn
11 Z

n
2114t5= 01 Zn

1124t5+Zn
2124t5=mn

2 for 0 ≤ t ≤ T 90 (9)

On the set Bn
T the effective dimension is reduced from six to three. Carefully justifying this SSC will be the

topic of §6. Thus, in addition to the process Xn
6 in (2) for each n, we also consider the six-dimensional processes

Xn1∗
6 ≡ 4Qn

11Q
n
21m

n
1e1Z

n
11210e1mn

2e−Zn
1125 in D6 (10)

and the associated three-dimensional processes

Xn
3 ≡ 4Qn

11Q
n
21Z

n
1125 in D31 (11)

obtained by truncating the process Xn1∗
6 , keeping only the essential first, second, and fourth coordinates. (Note

that P4Xn1∗
6 =Xn

6 in D64601 T 755= P4Bn
T 5→ 1 as n→ �.) We obtain a further alternative representation for the

associated three-dimensional fluid-scaled processes X̄n
3 , denoted by X̄n in §6; see (45).

3.2. The fast-time-scale process (FTSP). Because we consider the system during an overload incident in
which class 1 is overloaded, and more so than class 2 if it is also overloaded, we will primarily consider only
the one queue difference processes Dn

112 in (6). The FTSP can perhaps be best understood as being the limit of
a family of time-expanded queue-difference processes, defined for each n≥ 1 by

Dn
e 4â

n1 s5≡Dn
1124t0 + s/n51 s ≥ 01 (12)

where Xn is the three-dimensional process in (11) and we condition on Xn4t05 = â n for some deterministic
vector â n assuming possible values of Xn4t05 ≡ 4Qn

14t051Q
n
24t051Z

n
1124t055. (The time t0 is an arbitrary initial

time.) We choose â n so that â n/n→ � as n→ �, where � ≡ 4q11 q21 z1125 is an appropriate fixed state (in three
dimensions) because we will have sharing in only one direction. The formal statement of the limit for Dn

e in (12)
is Theorem 4.4. Because we divide s in (12) by n, we are effectively dividing the rates by n. (See (A1)–(A2) for
the transition rates of Dn

112 itself.) We are applying a “microscope” to “expand time” and look at the behavior
after the initial time more closely; that is in contrast to the usual time contraction with conventional heavy-traffic
limits. See Whitt [45] for a previous limit using time expansion.

Let r ≡ r112 and let � ≡ 4q11 q21 z1125 be a possible state in the three-dimensional state space � ≡ 601�52 ×

601m27. Directly, we let the FTSP 8D4�1 s52 s ≥ 09 be a pure-jump Markov process with transition rates �4r5
−
4�5,

�415
−
4�5, �4r5

−
4�5, and �415

−
4�5 for transitions of +r , +1, −r , and −1, respectively, when D4�1 s5≤ 0. Similarly, let

the transition rates be �
4r5
+ 4�5, �415

+ 4�5, �4r5
+ 4�5, and �

415
+ 4�5 for transitions of +r , +1, −r , and −1, respectively,

when D4�1 s5 > 0.
We define the transition rates for D4�5 as follows: First, for D4�1 s5 ∈ 4−�107 with � ≡ 4q11 q21 z1125, the

upward rates are

�415
−
4�5≡ �11 and �4r5

−
4�5≡�112z112 +�2124m2 − z1125+ �2q20 (13)

Similarly, the downward rates are

�415
−
4�5≡�111m1 + �1q1 and �4r5

−
4�5≡ �20 (14)

Next, for D4�1 s5 ∈ 401�5, we have upward rates

�
415
+ 4�5≡ �1 and �

4r5
+ 4�5≡ �2q20 (15)

The downward rates are

�
415
+ 4�5≡�111m1 +�112z112 +�2124m2 − z1125+ �1q1 and �

4r5
+ 4�5≡ �20 (16)

As in §7.1 of Perry and Whitt [37], we identify important subsets of the state space �≡ 601�52 × 601m27:

�b
≡ 8q1 − rq2 = 091 �+

≡ 8q1 − rq2 > 091 �−
≡ 8q1 − rq2 < 090 (17)
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Let D4�1�5 be a random variable that has the steady-state limiting distribution of the FTSP D4�1 s5 as s → �

and let
�1124�5≡ P4D4�1�5 > 050 (18)

That is, �1124�5 is the probability that the stationary FTSP associated with � ∈� is strictly positive.
It turns out that D4�1�5 and �1124�5 are well defined throughout �. In �b the function �112 can assume its

full range of values, 0 ≤ �1124�5≤ 1; the boundary subset �b is where the AP is taking place. For all � ∈�+,
�1124�5 = 1; for all � ∈ �−, �1124�5 = 0. For �− to be a proper subspace of �, both service pools must be
constantly full. Thus, if � ∈ �−, then z111 = m1 and z112 + z212 = m2, but q1 and q2 are allowed to be equal to
zero.

An important role will be played by the subset � of �b such that the FTSP is positive recurrent. The AP
takes place only in the set �. In Theorem 6.1 of Perry and Whitt [37] we showed that positive recurrence of
the FTSP, and thus the set �, depends only on the constant drift rates in the two regions:

�+4�5≡ r4�
4r5
+ 4�5−�

4r5
+ 4�55+ 4�

415
+ 4�5−�

415
+ 4�55

�−4�5≡ r4�4r5
−
4�5−�4r5

−
4�55+ 4�415

−
4�5−�415

−
4�550

(19)

The FTSP 8D4�1 s52 s ≥ 09 is positive recurrent if (and only if) the state � belongs to the set

�≡ 8� ∈�2 �−4�5 > 0 >�+4�590 (20)

Let the other two subsets of �b be

�+
≡ 8x ∈�b

� �+4x5≥ 09 and �−
≡ 8x ∈�b

� �−4x5≤ 090 (21)

From Theorem 6.2 of Perry and Whitt [37], we obtain the following lemma, giving the limiting behavior of
the FTSP for any state in �.

Lemma 3.1 (Limiting Behavior of the FTSP). For all � ∈� and x ∈�,

lim
s→�

P4D4�1 s5≤ x5= F 4�1x5≡ P4�1 4−�1 x751 (22)

where F 4�1 ·5 is a cumulative distribution function (cdf ) associated with a possibly defective probability measure
P4�1 ·5 depending on the state �. Moreover,

for all � ∈� and x ∈�1 0 <F 4�1x5 < 1 and 0 <�1124�5 < 13

for all � ∈�+
∪�+ and x ∈�1 F 4�1x5= 0 and �1124�5= 13 (23)

for all � ∈�−
∪�− and x ∈�1 F 4�1x5= 1 and �1124�5= 00

Later in §7.2, we obtain a proper limiting steady-state distribution for the FTSP for all � in � by appending
states +� and −� to the state space � of the FTSP 8D4�1 s52 s ≥ 09. Lemma 3.1 then implies that P4�1�5= 1
for � ∈�, P4�1 8+�95= 1 for � ∈�+ ∪�+ and P4�1 8−�95= 1 for � ∈�− ∪�−.

3.3. The ordinary differential equation (ODE). We can now present the three-dimensional ODE in terms
of the FTSP D. Let x4t5 ≡ 4q14t51 q24t51 z1124t55 be the solution to the ODE at time t; let ẋ ≡ 4q̇11 q̇21 ż1125,
where ẋ4t5 is the derivative evaluated at time t and

q̇14t5≡ �1 −m1�111 −�1124x4t556z1124t5�112 + z2124t5�2127− �1q14t5

q̇24t5≡ �2 − 41 −�1124x4t5556z2124t5�212 + z1124t5�1127− �2q24t5 (24)

ż1124t5≡�1124x4t55z2124t5�212 − 41 −�1124x4t555z1124t5�1121

with �1124x4t55≡ P4D4x4t51�5 > 05 for each t ≥ 0, where D4x4t51�5 has the limiting steady-state distribution
as s → � of the FTSP D4�1 s5 for � = x4t5. (Recall also that z212 = m2 − z112.) Theorem 5.2 of Perry and
Whitt [37] shows that the ODE has a unique solution as a continuous function mapping 601�5 into � for any
initial value in �. Lemma 3.1 shows that �1124x4t55 is well defined for any x4t5 in �.
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Equivalently, we have the following integral representation of the ODE in (24):

z1124t5≡ z112405+�212

∫ t

0
�1124x4s554m2 − z1124s55ds −�112

∫ t

0
41 −�1124x4s555z1124s5ds1

q14t5≡ q1405+�1t −m1t −�112

∫ t

0
�1124x4s55z1124s5ds

−�212

∫ t

0
�1124x4s554m2 − z1124s55ds − �1

∫ t

0
q14s5ds1

q24t5≡ q2405+�2t −�212

∫ t

0
41 −�1124x4s5554m2 − z1124s55ds

−�112

∫ t

0
41 −�1124x4s555z1124s5ds − �2

∫ t

0
q24s5ds0

(25)

We will see that the integral representation in (25) is closely related to an associated integral representation
of X̄n ≡ 4Q̄n

11 Q̄
n
21 Z̄

n
1125; see (45); X̄n is replaced by the deterministic state x and the indicators 18Dn

1124s5>09 are
replaced by �1124x4s55.

It is easy to see that the right-hand side of the ODE is not a continuous function of x and, in particular, is not
locally Lipschitz continuous in x. Thus, proving that the ODE possesses a unique solution is not straightforward.
The proof of that statement is the main result in Perry and Whitt [37] and builds on matrix-geometric methods,
as well as heavy-traffic limit theorems for the FTSP; see Theorems 5.2 and 7.1 there. The matrix-geometric
representation of the FTSP also provides key tools for developing an algorithm to compute that unique solution.

3.4. Three main assumptions. We now introduce three main assumptions: Assumptions 3.1–3.3. All three
assumptions are assumed to hold throughout the paper, unless explicitly stated otherwise. These assumptions are
in addition to the four assumptions made in §2: Assumptions 2.1–2.4. (Here we do not require (1).) Our first
new assumption is on the asymptotic behavior of the model parameters; it specifies the essential form of the
overload. For the statement, recall the definitions in (3), (5), and (8), which describe the asymptotic behavior of
the parameters.

Assumption 3.1 (System Overload, with Class 1 More Overloaded). The rates in the overload are
such that the limiting rates satisfy

(1) �1q
a
1 >�112s

a
2 , and

(2) qa
1 > r112q

a
2 .

Condition 415 in Assumption 3.1 ensures that class 1 is asymptotically overloaded, even after receiving help
from pool 2. To see why, first observe that, since sa2 ≥ 0, qa

1 > 0, so that �1 > �111m1 and �1 > 1. Hence,
class 1 is overloaded. Next observe that �112s

a
2 = �11241 − �25

+, and that 41 − �25
+ is the amount of (steady-

state fluid) extra service capacity in pool 2, if it were to serve only class-2 customers. Thus, Condition 415 in
Assumption 3.1 implies that enough class-1 customers are routed to pool 2 to ensure that pool 2 is overloaded
when sharing is taking place. This conclusion will be demonstrated in §6. Condition 415 in Assumption 3.1 is
slightly stronger than Condition (I) of Assumption A in Perry and Whitt [37]. because here there is a strong
inequality instead of a weak inequality.

Condition 425 in Assumption 3.1 ensures that class 1 is more overloaded than class 2 if class 2 is also
overloaded. This condition helps ensure that there is no incentive for pool 1 to help pool 2, so that Zn

211 should
remain at zero.

Our second assumption is about the initial conditions. For the initial conditions, we assume that the overload,
whose asymptotic character is specified by Assumption 3.1, is ongoing or is about to begin. In addition, sharing
with pool 2 allowed to help class 1 has been activated by having the threshold kn112 exceeded by the queue
difference process Dn

112 and is in process. Thus actual sharing is being controlled by the difference process Dn
112

in (6). Here is our specific assumption.

Assumption 3.2 (Initial Conditions). For each n≥ 1, P4Zn
211405= 01Qn

i 405 > an1 i = 1125= 1,

X̄n405⇒ x405 ∈�∪�+
∪�+ as n→ �1 and Dn

112405⇒ L if x405 ∈�∪�+1

where 8an2 n≥ 19 is a sequence of real numbers satisfying an/cn → a, 0 <a≤ �, for cn in (5); Dn
112 is defined

in (6); X̄n ≡ 4Q̄n
11 Q̄

n
21 Z̄

n
1125; x405 is a deterministic element of �3; �, �+, and �+ are the subsets of � in (20),

(21), and (17); and L is a proper random variable, i.e., P4�L�<�5= 1.
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Because we are interested in times when sharing occurs with pool 2 helping class 1, in Assumption 3.2 we
assume that the scale of Qn

1405 is at least as large as that of the threshold kn112 (so either the threshold has already
been crossed, or it is about to be crossed). Note that we also assume that Dn

112405 ⇒ L, so that it is natural to
assume that Qn

2405 has the same order as Qn
1405; we elaborate in Remark 4.2 and Appendix E.

In Assumption 3.2 we do not allow x405 in �−, because such an initial condition may activate sharing in the
wrong direction, with pool 1 helping class 2, causing the system to leave the state-space �; see Remark 4.1.

As noted in §3.3, in Perry and Whitt [37] we required that the queue ratio parameter be rational in order to
establish results about the FTSP and the ODE.

Assumption 3.3 (Rational Queue Ratio Parameter). The queue ratio parameters r112 and r211 are
rational positive numbers.

Given Assumption 3.3, without loss of generality, we let the thresholds be rational (of the form kn112 =mn/k,
where r112 = j/k). We conjecture that Assumption 3.3 can be removed, but that condition has been used in Perry
and Whitt [37] to make the pure-jump Markov FTSP a quasi-birth-and-death (QBD) process, which in turn was
used to establish critical properties of the FTSP and the ODE. We use some of these properties in this paper as
well. By Assumption 3.3, r112 = j/k for positive integers j and k. The computational efficiency of the algorithm
to solve the ODE developed in §11 of Perry and Whitt [37] actually depends on j and k not being too large
as well, because the QBD matrices are 2m× 2m, where m≡ max 8j1 k9, see §6.2 of Perry and Whitt [37], and
the steady state of that QBD must be calculated at each discretization step in solving the ODE. Fortunately,
simulations show that the system performance is not very sensitive to small changes in r112, so that having m
be 5 or 10 seems adequate for practical purposes.

Relaxing Assumption 3.3 will have practical value only if an efficient algorithm for solving the ODE is
developed. We remark that computing the stationary distribution of a pure-jump Markov process can in general
be hard and time consuming, and that we need to compute the stationary distribution of a large number of
such processes in order to solve the ODE. Hence, the ability to analyze the FTSP as a QBD has an important
advantage, even if Assumption 3.3 is relaxed.

4. Main results. In this section we state the main results of the paper. In §4.1 we state the main theorem,
establishing the FWLLN via the AP, proving that the (unique) solution to the ODE (24) is indeed the fluid limit
of X̄n

6 . In §4.2 we establish convergence of the stationary distributions, showing that the order of the two limits
n → � and t → � can be interchanged in great generality. In §4.3 we establish asymptotic results about the
queue-difference stochastic process. We conclude in §4.4 by giving a brief overview of the following proofs.

4.1. The fluid limit. We are now ready to state our main result in this paper, which is a FWLLN
for scaled versions of the vector stochastic process 4Xn

6 1 Y
n
8 5, where Xn

6 ≡ 4Qn
i 1Z

n
i1 j5 ∈ D6 as in (2) and

Y n
8 ≡ 4An

i 1 S
n
i1 j1U

n
i 5 ∈D8, i1 j = 112, where An

i 4t5 counts the number of class-i customer arrivals, Sn
i1 j4t5 counts

the number of service completions of class-i customers by agents in pool j , and U n
i 4t5 counts the number of

class-i customers to abandon from queue, all in model n during the time interval 601 t7. For the FWLLN, we
focus on the scaled vector process

4X̄n
6 1 Ȳ

n
8 5≡ n−14Xn

6 1 Y
n
8 51 (26)

as in (4). To explicitly state the AP, we also consider the functions

än4t5≡

∫ t

0
18Dn

1124s5>09 ds and �4t5≡

∫ t

0
�1124x4s55ds1 t ≥ 01 (27)

where �1124 · 5 is defined in (18). In particular, �1124x4s55 is the probability that the stationary FTSP D4x4s51 ·5,
associated with x4s5, is strictly positive, where x4s5 is the value of the fluid limit of X̄n4s5 at time s, s ≥ 0.

Recall that Assumptions 2.1–2.4 and 3.1–3.3 are assumed to be in force throughout the paper.

Theorem 4.1 (FWLLN via the Stochastic Averaging Principle). As n→ �,

4X̄n
6 1 Ȳ

n
8 1ä

n5 ⇒ 4x61 y81�5 in D154601�551 (28)

where 4x61 y81�5 is a deterministic element of C154601�55, x6 ≡ 4qi1 zi1 j5, y8 ≡ 4ai1 si1 j1 ui5, i = 112; j = 112;
� in (27); z211 = s211 = m1 − z111 = m2 − z212 − z112 = 0e; x ≡ 4q11 q21 z1125 is the unique solution to the three-
dimensional ODE in (24) mapping 601�5 into �. The remaining limit function y8 is defined in terms of x6:

ai4t5≡ �it1 si1 j4t5≡�i1 j

∫ t

0
zi1 j4s5ds1 ui4t5≡ �i

∫ t

0
qi4s5ds for t ≥ 01 i = 1123 j = 1120 (29)
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We prove Theorem 4.1 by showing in §5.2 that the sequence 84X̄n
6 1 Ȳ

n
8 1ä

n52 n≥ 19 is C-tight in D154601�55
and by showing subsequently that the limit of every convergent subsequence of X̄n

6 must take values in � and
be a solution to the ODE (24), which has a unique solution by Theorem 5.2 of Perry and Whitt [37].

4.2. Limit interchange result. Under the FQR-T control operating during a single overload incident of
unlimited duration, the six-dimensional stochastic process Xn

6 ≡ 4Qn
i 1Z

n
i1 j3 i1 j = 1125 is a positive recurrent

irreducible CTMC for each n. Hence, X̄n
6 ≡ n−1Xn

6 has a unique steady-state (limiting and stationary) distribution
X̄n

6 4�5 for each n.
Theorem 8.2 of Perry and Whitt [37] implies that there exists a unique stationary point x∗ ≡ 4q∗

1 1 q
∗
2 1 z

∗
1125 in

the state space � to the three-dimensional limiting ODE in (24), where

z∗
112 =

�24�1 −m1�1115− r112�14�2 −m2�2125

r112�1�212 + �2�112

∧m21

q∗
1 =

�1 −m1�111 −�112z
∗
112

�1

and q∗

2 =
�2 −�2124m2 − z∗

1125

�2

0

(30)

Let x∗
6 be the six-dimensional version of x∗ ≡ 4q∗

1 1 q
∗
2 1 z

∗
1125 in (30), i.e.,

x∗

6 ≡ 4q∗

1 1 q
∗

2 1m11 z
∗

112101m2 − z∗

1125 for x∗
= 4q∗

1 1 q
∗

2 1 z
∗

11250 (31)

Observe that, if �2 −�212m2 > 0, then the numerator in the expression of z∗
112 is equal to �1�24q

a
1 − r112q

a
2 5 and

is strictly positive by Condition (2) in Assumption 3.1, so that 0 < z∗
112 ≤ m2. Moreover, by Corollary 8.2 in

Perry and Whitt [37], the two conditions in Assumption 3.1 guarantee that x∗ ∈�b ∪�+, and in particular, that
x∗ ∈�.

We now establish a limit interchange result.

Theorem 4.2 (Interchange of Limits). For each continuous bounded function f 2 �6 →�,

lim
n→�

lim
t→�

E6f 4X̄n4t557= lim
t→�

lim
n→�

E6f 4X̄n4t557= f 4x∗

651

where x∗
6 is defined in (31).

We will prove Theorem 4.2 by first proving the limit on the left side. For that, we can relax the assumptions.
In particular, we will show that the sequence of stationary distributions converges to the unique stationary point
of the ODE, without requiring Assumptions 3.2 and 3.3. Of course, Assumption 3.2 plays no role because it
concerns the initial conditions.

The current proof of Theorem 8.2 of Perry and Whitt [37] used for (30) does apply to Theorem 5.2 of Perry and
Whitt [37], which depends on Assumption 3.3, the technical assumption that r112 and r211 are rational numbers.
However, we now show that Theorem 8.2 of Perry and Whitt [37] actually does not depend on Assumption 3.3.

Lemma 4.1. Under the conditions of Theorem 8.2 of Perry and Whitt [37], excluding Assumptions 3.2
and 3.3 here, x∗ is the unique stationary point of the ODE.

Proof. Assume that the conditions of Theorem 8.2 of Perry and Whitt [37] are satisfied with an irrational
r ≡ r112. Construct a sequence of rational numbers 8rn2 n≥ 19 with rn → r as n→ �. Then, for all n sufficiently
large, the conditions of Theorem 8.2 of Perry and Whitt [37] are satisfied with rn. Let x∗

n be the unique stationary
point associated with rn. Then, by Theorem 8.1 of Perry and Whitt [37], x∗

n → x∗ as n→ �. �

The existence of a stationary point of an ODE necessarily implies the existence of a (constant) solution to
the ODE, but it does not require the existence of a unique solution to the ODE. Thus, the existence of a unique
solution provided by Theorem 5.2 of Perry and Whitt [37], which does use Assumptions 3.2 and 3.3, is not
needed. Moreover, Theorems 8.3 and 9.2 of Perry and Whitt [37] imply that x∗ is globally asymptotically stable
and x4t5 converges to x∗ exponentially fast as t → �. These too do not depend on Assumptions 3.2 and 3.3.

We now show that x∗
6 is the limit of the stationary sequence 8X̄n

6 4�52 n≥ 19 without assuming Assumptions
3.2 and 3.3. The proof of Theorem 4.3 appears in §8.1.

Theorem 4.3 (WLLN for the Stationary Distributions). Under the assumptions here, excluding
Assumptions 3.2 and 3.3, X̄n

6 4�5⇒ x∗
6 in �6 as n→ �, for x∗

6 in (31).
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Proof of Theorem 4.2. The iterated limit on the left holds by virtue of Theorem 4.3. The iterated limit
on the right holds because of Theorem 4.1 together with the fact that x∗

6 is a globally asymptotically stable
stationary point for the fluid limit, by (31) and Theorem 8.3 of Perry and Whitt [37]. �

Remark 4.1 (Starting in �−5. It is significant that the limit interchange in Theorem 4.2 is not valid
throughout �. If Assumption 3.2 holds, except that x405 ∈�−, then q1405−r112q2405 < 0. Together with Assump-
tion 2.2, that implies that, in some regions of �−, d211 ≡ r211q2405 − q1405 > 0; that can hold in �− because
r112q2405 can be larger than q1405. In those cases we have P4Dn

112405 < 05 → 1 and P4Dn
211405 > kn2115 → 1 as

n→ �. If we assume that P4Zn
112405=Zn

211405= 05= 1 for all n≥ 1, which is consistent with Assumption 3.2,
then, asymptotically, we will initially have sharing the wrong way, with pool 1 helping class 2. By the continuity,
there will be an interval 601 �7 for which

inf
80≤t≤�9

8d2114t59 > 00

Hence, asymptotically as n→ �, there will rapidly be sharing with pool 1 helping class 2. It can be shown that
there exists � > 0 and � > 0 such that P4Z̄n

2114�5 > �5 → 1 as n → �. This shows that the limit interchange is
not valid for every initial condition in �−.

4.3. The limiting behavior of the queue difference process. In this section we present important supple-
mentary results that help “explain” the AP, which takes place in �. The following results are not applied in the
proof of Theorem 4.1, but are also not immediate corollaries of the FWLLN; their proofs are given in §8.

For each n ≥ 1, let â n
6 be a random state of Xn

6 that is independent of subsequent arrival, service, and
abandonment processes, and let â n be the random state of Xn

3 associated with â n
6 as in (11).

Theorem 4.4. If â n
6 /n ⇒ �6, where �6 ≡ 4q11 q21m11 z112101m2 − z1125 with � ≡ 4q11 q21 z1125 ∈ � ⊂ �3 for

� in (20) and Dn
e 4â

n105 ⇒ D4�105 in � as n → �, where Dn
e is the time-expanded queue-difference process

in (12) and D is the FTSP in §3.2, then

8Dn
e 4â

n1 s52 s ≥ 09 ⇒ 8D4�1 s52 s ≥ 09 in D as n→ �3 (32)

i.e., we have convergence of the sequence of time-inhomogeneous non-Markov processes 8Dn
e 4â

n52 n≥ 19 to the
limiting time-homogeneous pure-jump Markov process D4�5.

The next results are about the queue-difference process Dn
112 itself (as opposed to the expanded queue dif-

ference process Dn
e ). Recall the definition of stochastic boundedness in §2.4. Recall also that tightness in � is

equivalent to stochastic boundedness in �, but not in D.

Theorem 4.5 (Stochastic Boundedness of Dn
112). If x4t05 ∈ � for some t0 ≥ 0, then there exists t2 > t0

such that x4t5 ∈� for all t ∈ 6t01 t27 and for all t1 satisfying t0 < t1 ≤ t2 the following hold:
(i) 8Dn

1124t52 n≥ 19 is stochastically bounded in � for each t satisfying t1 ≤ t ≤ t2.
(ii) 88Dn

1124t52 t ∈ I92 n≥ 19 is neither tight nor stochastically bounded in D4I5, I ⊆ 6t01 t27.
(iii) For any sequence 8cn2 n≥ 19 satisfying cn/ logn→ � as n→ �, it holds that

sup
t1≤t≤t2

8Dn
1124t5/cn9 ⇒ 0 as n→ �0 (33)

If x4t5 ∈� for all t ∈ 6t01�5 the above statements hold for any finite t2 > t0.

As an immediate corollary to (33) in Theorem 4.5, we have the following SSC of the queues. In particular,
that claim implies SSC of the fluid and diffusion scaled queues when the fluid limit x is in �.

Corollary 4.1 (SSC of Queue Process in�). For the interval 6t11 t27 in Theorem 4.5, dJ1
4Qn

11r112Q
n
25/cn⇒0

in D46t11 t275 as n → �, for every sequence 8cn2 n ≥ 19 satisfying cn/ logn → � as n → �. If x405 ∈ � and
we consider the interval 601 t27, then the result is strengthened to hold on 6t01 t27≡ 601 t27.

Because the sequence of queue-difference processes is not D tight, by virtue of Theorem 4.5, we cannot have
convergence of these processes in D. However, we can obtain a proper limit for the tight sequence of random
variables 8Dn

1124t52 n≥ 19 in � for each fixed t ∈ 6t11 t27 by exploiting the AP. See Whitt [46] for a similar result.

Theorem 4.6 (Pointwise AP). Consider the interval 6t11 t27 in Theorem 4.5. Then Dn
1124t5 ⇒ D4x4t51�5

in � as n→ � for each t, t1 ≤ t ≤ t2, where D4x4t51�5 has the limiting steady-state distribution of the FTSP
D4�1 s5 for � = x4t5.
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Remark 4.2 (Hitting Times of �). First, the stochastic boundedness in Theorem 4.5 actually holds at
time t0 and thus in the larger interval 6t01 t27 if t0 = 0 and x405 ∈ �, because of the assumed convergence of
Dn

112405 in Assumption 3.2. However, we cannot get the full convergence in Theorem 4.6 at t0 = 0 because the
limit L in Assumption 3.2 need not be distributed the same as D4x4051�5. Second, we may also have t0 > 0
because t0 is a hitting time of � from �−�. Even if x405 ∈ �, the fluid limit might leave � eventually, and
later return to � at some time t0; then x4t05 ∈ � but x4s5 y � for all s ∈ 4t0 − �1 t05 for some � > 0. If t0 is
such a hitting time of �, then we cannot obtain even a stochastic boundedness result at time t0, but we obtain
the pointwise convergence in Theorem 4.6 in the interval 4t01 t27, open on the left.

Finally, Theorem 4.6 can be applied to strengthen the conclusion of Theorem 4.4 by showing that
Dn

e 4X
n4t51 ·5 converges to a stationary FTSP D4x4t51 ·5, with Xn4t5 ≡ 4Qn

14t51Q
n
24t51Z

n
1124t55, and x4t5 ≡

4q14t51 q24t51 z1124t55 is the limit of X̄n4t5 at the fixed time t.

Corollary 4.2. Suppose that the condition of Theorem 4.5 holds. For each t such that the conclusion of
Theorem 4.5 (i) holds for an interval 6t11 t27, t1 ≤ t ≤ t2,

8Dn
e 4X

n4t51 s52 s ≥ 09 ⇒ 8D4x4t51 s52 s ≥ 09 in D as n→ �1

where the limiting FTSP D4x4t51 ·5 is a stationary process, i.e., D4x4t51 s5
d
=D4x4t51�5 for all s ≥ 0.

Proof. First, for Xn
6 4t5 as in Theorem 4.1 and x64t5 ≡ 4q14t51 q24t51m11 z1124t5101m2 − z1124t55, we have

â n
6 /n⇒ �6 by Theorem 4.1, where â n

6 ≡Xn
6 4t5, �6 ≡ x64t5 and � ≡ x4t5≡ 4q14t51 q24t51 z1124t55 is in � (because

of our choice of t). Moreover,

Dn
e 4X

n4t5105=Dn
1124t5 ⇒ D4x4t5105 d

=D4x4t51�5 in � as n→ �1

where the first equality holds by the definition of Dn
e , and the limit holds by applying Theorem 4.6. Hence, the

conditions in Theorem 4.4 hold, so that we have convergence in D of the process Dn
e 4X

n4t51 ·5 to the FTSP
D4x4t51 ·5. Since D4x4t5105 d

=D4x4t51�5, the limiting FTSP is stationary as claimed. �

4.4. Overview of the proofs. The rest of this paper is devoted to proving Theorems 4.1–4.6. We prove
Theorem 4.1 in §§5–7. Toward that end, in §5 we establish structural results for the sequence 84X̄n

6 1 Ȳ
n
8 52 n≥ 19,

where Xn
6 ≡ 4Qn

i 1Z
n
i1 j5 ∈ D6 as in (2) and Y n

8 ≡ 4An
i 1 S

n
i1 j1U

n
i 5 ∈ D8, i1 j = 112 and the associated fluid-scaled

process 4X̄n
6 1 Ȳ

n
8 5 in (26). In §5.1 we construct the stochastic processes 4Xn

6 1 Y
n
8 5 in terms of rate-1 Poisson

processes. In §5.2 we show that the sequence of stochastic processes 84X̄n
6 1 Ȳ

n
8 52 n ≥ 19 is C-tight in D14 and,

consequently, there are convergent subsequences with smooth limits. In §6 we show that the representation
established in §5.1 can be simplified under Assumptions 3.1–3.3, reducing the essential dimension from 6 to 3.
The final three-dimensional representation X̄n in (45) there explains the form of the ODE in (24).

Given the tightness established in §5.2, we prove the main Theorem 4.1 by characterizing the limit of all
convergent subsequences in §7. Given the SSC established in §6 and given that the three-dimensional ODE in
§3.3 has been shown to have a unique solution in Perry and Whitt [37], it suffices to show that the limit of any
subsequence must almost surely be a solution to the ODE. For that last step, our proof in §7 follows Hunt and
Kurtz [18], which draws heavily upon Kurtz [27]. It exploits our martingale representation in Theorem 6.3 and
basic properties of random measures from Kurtz [27]. We also have developed an alternative proof exploiting
stochastic bounds. It is given in §C in the appendix. Finally, in §8 we prove Theorems 4.3–4.6.

There is more in the appendix. In §A we present supporting technical results to prove the SSC results in §6. We
start by introducing auxiliary frozen queue difference processes in §A.1. We construct useful bounding processes
in §§A.2, A.3, and A.4. These are primarily for QBD processes, because we exploit a QBD representation for
the FTSP; see §6 of Perry and Whitt [37] for background. We establish extreme value limits for QBD processes
in §A.5. In §B we exploit the technical results in §A to prove three theorems stated in §6.

5. Preliminary results for Xn
6 . In this section we establish preliminary structural results for the vector

stochastic process 4Xn
6 1 Y

n
8 5, where Xn

6 ≡ 4Qn
i 1Z

n
i1 j5 ∈ D6 as in (2) and Y n

8 ≡ 4An
i 1 S

n
i1 j1U

n
i 5 ∈ D8, i1 j = 112 and

the associated fluid-scaled process 4X̄n
6 1 Ȳ

n
8 5 in (26). The results in this section do not depend on Assumptions

3.1–3.3. We do impose the many-server heavy-traffic scaling in §2.3.
In §5.1 we construct the stochastic processes 4Xn

6 1 Y
n
8 5 in terms of rate-1 Poisson processes. In §5.2 we show

that the sequence of stochastic processes 84X̄n
6 1 Ȳ

n
8 52 n ≥ 19 is C-tight in D14. In Corollary 5.1 we apply the

tightness to deduce smoothness properties for the limits of convergent subsequences.
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5.1. Representation of Xn
6 . In this section we develop representations for the basic CTMC Xn

6 with the
FQR-T control. At first in this section we do not require Assumptions 3.1–3.3, so that we can have sharing in
either direction, but in only one direction at any time. Let 4�n

11�
n
25 be the pair of fixed positive arrival rates in

model n, which here are unconstrained.
Following common practice, as reviewed in §2 of Pang et al. [34], we represent the counting processes in

terms of mutually independent rate-1 Poisson processes. We represent the counting processes An
i , Sn

i1 j , and U n
i

introduced in the beginning of §4.1 as

An
i 4t5≡N a

i 4�
n
i t51 Sn

i1 j4t5≡N s
i1 j

(

�i1 j

∫ t

0
Zn

i1 j4s5ds

)

1 U n
i 4t5≡N u

i

(

�i

∫ t

0
Qn

i 4s5ds

)

1 (34)

for t ≥ 0, where N a
i , N s

i1 j , and N u
i for i = 112; j = 112 are eight mutually independent rate-1 Poisson processes.

We can then obtain a general representation of the CTMC Xn
6 , which is actually valid for general arrival

processes with arrivals one at a time. Let Sn
1 ≡ Sn

111 +Sn
211, Sn

2 ≡ Sn
112 +Sn

212 and Sn ≡ Sn
1 +Sn

2 . Paralleling (6), let
Dn

2114t5≡ r211Q
n
24t5− kn211 −Qn

14t5.

Theorem 5.1 (General Representation of Xn
6 ). For each n≥ 1, the stochastic process Xn

6 is well defined
as a random element of D6 by (34) and

Qn
14t5 ≡ Qn

1405+

∫ t

0
18Zn

1114s−5+Zn
2114s−5=mn

19
dAn

14s5−

∫ t

0
18Dn

1124s−5>01Zn
2114s−5=01Qn

1 4s−5>09 dS
n4s5

−

∫ t

0
188Qn

1 4s−5>09∩48Zn
2114s−5>01Dn

2114s−5≤09∪8Zn
2114s−5=01Dn

1124s−5≤0959 dS
n
1 4s5−U n

1 4t51

Zn
1114t5 ≡ Zn

111405+

∫ t

0
18Zn

1114s−5+Zn
2114s−5<mn

19
dAn

14s5

−

∫ t

0
1848Zn

1124s−5>09∪8Dn
2114s−5≤095∩8Qn

1 4s−5=099 dS
n
1114s5−

∫ t

0
18Dn

2114s−5>01Zn
1124s−5=09 dS

n
1114s51

Zn
1124t5 ≡ Zn

112405+

∫ t

0
18Dn

1124s−5>01Zn
2114s−5=01Qn

1 4s−5>09 dS
n
2124s5

−

∫ t

0
188Dn

1124s−5≤09∪8Zn
2114s−5>099 dS

n
1124s50

Symmetry yields the parallel definitions of Qn
24t5, Z

n
2124t5 and Zn

2114t5 from Qn
14t5, Z

n
1114t5 and Zn

1124t5 by simply
switching the subscripts 1 and 2.

We remark that the representation of Xn
6 in Theorem 5.1 holds even without Assumptions 3.1–3.3.

Proof. Just as in Lemma 2.1 of Pang et al. [34], we can justify the construction by conditioning on the
initial values (the first term in each display) and the counting processes. With these sample paths specified,
we recursively construct the sample path of Xn

6 . By applying mathematical induction over successive transition
epochs of Xn

6 , we show that the sample paths are right-continuous piecewise-constant functions satisfying the
equations given.

To explain Qn
1 , the second term represents the increase by one at each class-1 arrival epoch when service

pool 1 is fully occupied; otherwise the arrival would go directly into service pool one. The third term represents
the decrease by one when any server completes service and sharing with pool 2 helping class 1 is actively
taking place; that requires that the class-1 queue length be positive (Qn

14s5 > 0); sharing with pool 2 helping
class 1 occurs when both Dn

1124s5 > 0 and Zn
2114s5= 0. The fourth term represents the decrease by 1 when any

pool-1 server completes service, provided that again the queue length is positive (Qn
14s5 > 0). There are two

scenarios: (i) 8Zn
2114s5 > 01Dn

2114s5≤ 09 and (ii) 8Zn
1124s5= 01Dn

1124s5≤ 09. In the first, pool 1 is helping class 2,
so type-1 servers take from queue 1 only when Dn

2114s5 ≤ 0. The second scenario is the relative complement
within the event 8Zn

2114s5 = 01Qn
14s5 > 09 of the event in the third term, i.e., pool 2 is allowed to help class 1,

but Dn
1124s5≤ 0, so that only type-1 servers take from queue 1 at time s.

To explain Zn
111, the second term represents the increase by one that occurs at each class-1 arrival epoch at

which service pool 1 has spare capacity (Zn
1114s5+Zn

2114s5 < mn
1). The third term represents the decrease by 1

that occurs when a server in pool 1 completes service of a class-1 customer, with pool 1 not helping class 2
48Zn

1124s5 > 09 ∪ 8Dn
2114s5 ≤ 095 when the class-1 queue is empty (Qn

14s5 = 0). The fourth term represents the
decrease by one that occurs when a server in pool 1 completes service of a class-1 customer, when pool 1 is
helping class 2 (8Dn

2114s5 > 01Zn
1124s5= 09).
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To explain Zn
112, the second term represents the decrease by one that occurs when a server in pool 2 completes

service of a class-2 customer, when class 2 is helping class 1 (8Dn
1124s5 > 01Zn

2114s5= 01Qn
14s5 > 09). The third

term represents the decrease by one that occurs when a server in pool 2 completes service of a class-1 customer,
when class 2 is not helping class 1 (8Dn

1124s5≤ 09∪ 8Zn
2114s5 > 09).

Because the model is fully symmetric, the processes Qn
2 , Zn

212, and Zn
211 are the symmetric versions of Qn

2 ,
Zn

212, and Zn
211, respectively, with the indices 1 and 2 switched. �

5.2. Tightness and smoothness of the limits. We do part of the proof of Theorem 4.1 here by establishing
tightness. For background on tightness, see Billingsley [7], Pang et al. [34], and Whitt [47]. We recall a few key
facts: tightness of a sequence of k-dimensional stochastic processes in Dk is equivalent to tightness of all the
one-dimensional component stochastic processes in D. For a sequence of random elements of Dk, C-tightness
implies D-tightness and that the limits of all convergent subsequences must be in Ck; see Theorem 15.5 of the
first 1968 edition of Billingsley [7]. Alternatively, Conditions (7.6) and (7.7) of Theorem 7.3 in Billingsley [7]
hold for processes in D if and only if conditions (13.4) and (13.5) of Theorem 13.2 of Billingsley [7] hold and
the limits of all convergent subsequences are in C; see the Corollary on p. 179 of Billingsley [7] or Theorem
VI.3.26 of Jacod and Shiryaev [19].

Theorem 5.2. The sequence 84X̄n
6 1 Ȳ

n
8 52 n≥ 19 in (26) is C-tight in D14.

Proof. It suffices to verify conditions (6.3) and (6.4) of Theorem 11.6.3 of Whitt [47], namely, to show that
X̄n405 is stochastically bounded (tight in �6) and appropriately controls the oscillations, using the modulus of
continuity on C. We obtain the stochastic boundedness at time 0 immediately from Assumption 3.2.

We now show that we can control the oscillations below. For that purpose, let w4x1 �1 T 5 be the modulus of
continuity of the function x ∈D, i.e.,

w4x1 �1 T 5≡ sup 8�x4t25− x4t15�2 0 ≤ t1 ≤ t2 ≤ T 1 �t2 − t1� ≤ �90 (35)

Using the representations in §5.1, for t2 > t1 ≥ 0 we have

�Q̄n
14t25− Q̄n

14t15� ≤
An

14t25−An
14t15

n
+

Sn4t25− Sn4t15

n
+

Sn
1114t25− Sn

1114t15

n
+

U n
1 4t25−U n

1 4t15

n

and similarly for Q̄n
2 . Hence, for any � > 0 and T > 0,

w4Qn
1/n1 �1 T 5≤w4An

1/n1 �1 T 5+w4Sn/n1 �1 T 5+w4Sn
111/n1 �1 T 5+w4U n

1 /n1 �1 T 50

Then observe that we can bound the oscillations of the service processes Sn
i1 j by the oscillations in the scaled

Poisson process N s
i1 j4n·5. In particular, by (34),

w4Sn
i1 j/n1 �1 T 5≤w4N s

i1 j4n�i1 jmj ·5/n1 �1 T 5≤w4N s
i1 j4n·5/n1 c�1 T 5 (36)

for some constant c > 0. Next for the abandonment process U n
i , we use the elementary bounds

Qn
i 4t5≤Qn

i 405+An
i 4t51

�U n
i 4t25−U n

i 4t15� =

∣

∣

∣

∣

Ni

(

�i

∫ t2

t1

Qn
i 4s5ds

)

∣

∣

∣

∣

≤ �Ni4n�4Q̄
n
i 405+ Ān

i 4T 554t2 − t155�0

Let qbd ≡ 24qi405 + T 5, where Q̄n
i 405 ⇒ qi405 by Assumption 3.2, and let Bn be the following subset of the

underlying probability space:
Bn ≡ 8Q̄n

i 405+ Ān
i 4T 5≤ qbd90

Then P4Bn5→ 1 as n→ � and, on the set Bn, we have

w4U n
i /n1 �1 T 5≤w4N u

i 4nqbd·5/n1 �1 T 5≤w4N u
i 4n·5/n1 c�1 T 5 (37)

for some constant c > 0.
Thus, there exists a constant c > 0 such that, for any � > 0, there exists n0 and � > 0 such that, for all n≥ n0,

P4Bn5 > 1 −�/2 and on Bn

w4Qn
i /n1 �1 T 5≤w4N a

i 4n·5/n1 c�1 T 5+ 2
2
∑

i=1

2
∑

j=1

w4N s
i1 j4n·5/n1 c�1 T 5+w4N u

i 4n·5/n1 c�1 T 50
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However, by the FWLLN for the Poisson processes, we know that we can control all these moduli of continuity
on the right. Thus we deduce that, for every � > 0 and � > 0, there exists � > 0 and n0 such that

P4w4Qn
i /n1 �1 T 5≥ �5≤ � for all n≥ n00

Hence, we have shown that the sequence 8Q̄n
i 9 is tight.

We now turn to the sequence 8Z̄n
1129. Let An

1124t5 denote the total number of class-1 arrivals up to time t, who
will eventually be served by type-2 servers in system n. Let Ān

112 ≡ An
112/n and S̄n

1124t5 ≡ Sn
1124t5/n, for Sn

1124t5
in (34). Since

Zn
1124t5=Zn

112405+An
1124t5− Sn

1124t51

we have

�Z̄n
1124t25− Z̄n

1124t15� ≤ Ān
1124t25− Ān

1124t15+ S̄n
1124t25− S̄n

1124t150

However, for An
1 in (34),

An
1124t25−An

1124t15≤An
14t25−An

14t150

Since Ān
1 ⇒ �1e in D, the sequence 8Ān

19 is tight. Together with (36), that implies that the sequence 8Z̄n
1129

is tight as well. Finally, we observe that the tightness of 8Ȳ n
8 9 follows from (36), (37), and the convergence

of Ān
i . �

Because the sequence 84X̄n
6 1 Ȳ

n
8 52 n≥ 19 in (26) is C-tight by Theorem 5.2, every subsequence that a further

subsequence that converges to a continuous limit. We now apply the modulus-of-continuity inequalities estab-
lished in the proof of Theorem 5.2 to deduce additional smoothness properties of the limits of all converging
subsequence.

Corollary 5.1. If 4X̄61 Ȳ85 is the limit of a subsequence of 84X̄n
6 1 Ȳ

n
8 52 n≥ 19 in D14, then each component

in D, say X̄i, has bounded modulus of continuity; i.e., for each T > 0, there exists a constant c > 0 such that

w4X̄i1 �1 T 5≤ c� w0p01 (38)

for all � > 0. Hence 4X̄61 Ȳ85 is Lipschitz continuous w.p.1, and is thus differentiable almost everywhere.

Proof. Apply the bounds on the modulus of continuity involving Poisson processes in the proof of The-
orem 5.2. For a Poisson process N , let N̂ n ≡

√
n4N̄ n − e5, where N̄ n4t5 ≡ N4nt5/n, t ≥ 0. By the triangle

inequality, for each n, � , and T ,

w4N̄ n1 �1 T 5≤
w4N̂ n1 �1 T 5

√
n

+w4e1 �1 T 5 ⇒ � as n→ �0

Because w4x1 �1 T 5 is a continuous function of x for each fixed � and T , we can apply this bound with the
inequalities in the proof of Theorem 5.2 to deduce (38). �

We remark in closing this section that Theorem 5.2 and Corollary 5.1 also hold with Assumption 3.2 replaced
by X̄n405⇒ x405 as n→ �, where x405 is a deterministic element of �3.

6. Structural simplification. We now exploit Assumptions 3.1–3.3 to simplify the representation established
in §5.1 above, reducing the essential dimension from six to three, following the plan described in §3.1. We
first establish this dimension reduction over an interval 601 �7 and later, after Theorem 4.1 has been proved over
the same interval 601 �7, we show that all the results here, and thus Theorem 4.1 too, can be extended to the
interval 601�5.

Let

Tn
0 ≡ inf8t > 02 Zn

2114t5 > 0 or Qn
14t5= 0 or Qn

24t5= 090 (39)

By Assumption 3.2, both queues are initially strictly positive (so there is no idleness in either pool) and
Zn

211405= 0. Hence, Tn
0 > 0 for each n ≥ 1. Theorem 5.1 with the definitions in (34) implies the following

reduction from six dimensions to three over 601Tn
07. Let d

= denote equality in distribution for processes.
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Corollary 6.1. On the random interval 601Tn
07, X

n
6 =Xn1∗∗

6 w.p.1, where

Xn1∗∗

6 ≡ 4Qn
11Q

n
21m

n
111e1Z

n
11210e1mn

2e−Zn
11251

with

Qn
14t5≡Qn

1405+An
14t5−

∫ t

0
18Dn

1124s−5>09 dS
n4s5−

∫ t

0
18Dn

1124s−5≤09 dS
n
1114s5−U n

1 4t5

Qn
24t5≡Qn

2405+An
24t5−

∫ t

0
18Dn

1124s−5≤09 dS
n
2124s5−

∫ t

0
18Dn

1124s−5≤09 dS
n
1124s5−U n

2 4t5 (40)

Zn
1124t5≡Zn

112405+

∫ t

0
18Dn

1124s−5>09 dS
n
2124s5−

∫ t

0
18Dn

1124s−5≤09 dS
n
1124s51

and Xn1∗∗

6
d
=Xn1∗

6 , where Xn1∗
6 ≡ 4Qn1∗

1 1Qn1∗
2 1mn

111e1Z
n1∗
112 10e1mn

2e−Zn1∗
112 5 with

Qn1∗
1 4t5≡Qn1∗

1 405+N a
1 4�

n
1t5−N s

1114�111m
n
1t5−N s12

112

(

�112

∫ t

0
18Dn1∗

112 4s5>09Z
n1∗
112 4s55ds

)

−N s
212

(

�212

∫ t

0
18Dn1∗

112 4s5>094m
n
2 −Zn1∗

112 4s55ds

)

−N u
1

(

�1

∫ t

0
Qn1∗

1 4s5ds

)

1 (41)

Qn1∗
2 4t5≡Qn1∗

2 405+N a
2 4�

n
2t5−N s12

212

(

�212

∫ t

0
18Dn1∗

112 4s5≤094m
n
2 −Zn1∗

112 4s55ds

)

−N s
112

(

�112

∫ t

0
18Dn1∗

112 4s5≤09Z
n1∗
112 4s5ds

)

−N u
2

(

�2

∫ t

0
Qn1∗

2 4s5ds

)

1 (42)

Zn1∗
112 4t5≡Zn1∗

112 405+N s
212

(

�212

∫ t

0
18Dn1∗

112 4s5>094m
n
2 −Zn1∗

112 54s5ds

)

−N s
112

(

�112

∫ t

0
18Dn1∗

112 4s5≤09Z
n1∗
112 4s5ds

)

1 (43)

where N a
i , N u

i , N s
111, N s

i12, N s12
i12 for i = 112 are mutually independent rate-1 Poisson Processes and Dn1∗

112 4t5 ≡

Qn1∗
1 4t5− kn112 − r112Q

n1∗
2 4t5 as in (6).

Note that in two places in the three displays (41)–(43) we have introduced the new independent rate-1 Poisson
processes N s12

i12 . Note that Zn1∗
112 4t5 might be equal to zero for some or all t in 601Tn

07.
We next prove that Tn

0 is bounded away from zero asymptotically, i.e., that there exists a � > 0 such that
P4T n

0 ≥ �5→ 1 as n→ �. We do so in two parts (both proved in §B):

Theorem 6.1 (No Sharing in the Opposite Direction). There exists � > 0 such that �Zn
211�� ⇒ 0 as

n→ �.

Theorem 6.2 (Positive Queue Lengths). For � in Theorem 6.1,

P

(

inf
0≤t≤�

min8Qn
14t51Q

n
24t59 > 0

)

→ 1 as n→ �0

As an immediate consequence of Theorems 6.1 and 6.2, we obtain the following SSC result.

Corollary 6.2 (SSC of the Service Process). For � > 0 in Theorem 6.1, P4Tn
0 > �5 → 1 as n → �,

where Tn
0 is defined in (39); i.e.,

4mn
1e−Zn

1111Z
n
2111m

n
2e−Zn

112 −Zn
2125 ⇒ 40e10e10e5 in D34601 �75 as n→ �0

We make two important remarks about Corollary 6.2: First, the limit holds without any scaling. Second, here
we do not yet show that a limit of Z̄n

112 as n → � exists. We only show that, when analyzing the four service
processes Zn

i1 j , it is sufficient to consider Zn
112.

Recall that dJ1
denotes the standard Skorohod J1 metric and Xn1∗

6 is the essentially three-dimensional process
defined in (10). The following corollary is immediate from Corollary 6.2.

Corollary 6.3 (Representation via SSC). As n→ �, dJ1
4Xn

6 1X
n1∗
6 5⇒ 0 in D64601 �75, for Xn1∗

6 in (10),
� in Theorem 6.1 and 4Qn1∗

1 1Qn1∗
2 1Zn1∗

112 5 in (41)–(43).
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We now obtain further simplification using a familiar martingale representation, again see Pang et al. [34].
Henceforth, we work with the process Xn1∗

6 defined in Corollary 6.1, but omit the asterisks. Consider the repre-
sentation of Xn

3 in (41)–(43), and let

Mn1a
i 4t5≡N a

i 4�
n
i t5−�n

i t1

Mn1u
i 4t5≡N u

i

(

�i

∫ t

0
Qn

i 4s5ds

)

− �i

∫ t

0
Qn

i 4s5ds1

Mn1 s
i12 4t5≡N s

i124J
n
i124t55− J n

i124t51

Mn1 s12
i12 4t5≡N s12

i12 4J
n
i124t55− J n

i124t51

(44)

where J n
i124t5 are the compensators of the point processes in (41)–(43), i = 112, e.g.,

J n
1124t5≡�112

∫ t

0
18Dn

1124s5<09Z
n
1124s5ds0

The quantities in (44) can be shown to be martingales (with respect to an appropriate filtration); see Pang
et al. [34]. The following lemma follows easily from the functional strong law of large numbers (FSLLN) for
Poisson processes and the C-tightness established in Theorem 5.2.

Lemma 6.1 (Fluid Limit for the Martingale Terms). As n→ �,

n−14Mn1a
1 1Mn1a

2 1Mn1u
1 1Mn1u

2 1Mn1 s
112 1M

n1 s
212 1M

n1 s12
112 1Mn1 s12

212 5 ⇒ 40e10e10e10e10e10e10e10e5 in D84601 �750

Proof. By Theorem 5.2, the sequence 8X̄n
6 2 n ≥ 19 is tight in D. Thus any subsequence has a convergent

subsequence. By the proof of Theorem 5.2, the sequences 8J n
i1 j/n9 are also C-tight, so that 8J n

i1 j/n9, i = 112,
all converge along a converging subsequence as well. Consider a converging subsequence 8Xn9 and its limit X̄,
which is continuous by Theorem 5.2. Then the claim of the lemma follows for the converging subsequence
from the FSLLN for Poisson processes and the continuity of the composition map at continuous limits, e.g.,
Theorem 13.2.1 in Whitt [47]. In this case, the limit of each fluid-scaled martingale is the zero function 0e ∈D,
regardless of the converging subsequence we consider, and is thus unique. Hence we have completed the
proof. �

Hence, instead of X̄n
3 (the relevant components of X̄n1∗

6 ) in (41)–(43), we can work with X̄n ≡ 4Q̄n
11 Q̄

n
21 Z̄

n
1125

for

Z̄n
1124t5 ≡ Z̄n

112405+�212

∫ t

0
18Dn

1124s5>094m̄
n
2 − Z̄n

1124s55ds −�112

∫ t

0
18Dn

1124s5≤09Z̄
n
1124s5ds1

Q̄n
14t5 ≡ Q̄n

1405+ �̄n
1t − m̄n

1t −�112

∫ t

0
18Dn

1124s5>09Z̄
n
1124s5ds

−�212

∫ t

0
18Dn

1124s5>094m̄
n
2 − Z̄n

1124s55ds − �1

∫ t

0
Q̄n

14s5ds1 (45)

Q̄n
24t5 ≡ Q̄n

2405+ �̄n
2t −�212

∫ t

0
18Dn

1124s5≤094m̄
n
2 − Z̄n

1124s55ds

−�112

∫ t

0
18Dn

1124s5≤09Z̄
n
1124s5ds − �2

∫ t

0
Q̄n

24s55ds0

Theorem 6.3. As n→ �, dJ1
4X̄n

3 1 X̄
n5⇒ 0 in D34601 �75 as n→ �, where X̄n

3 is defined in (41)–(43), X̄n

is defined in (45) and � is as in Theorem 6.1.

Proof. It suffices to show that M̄n ⇒ 40e10e10e5 in D34601 �75 as n→ �, where

M̄n
≡ X̄n

3 − X̄n0 (46)

However, M̄n ⇒ 40e10e10e5 by virtue of Lemma 6.1 by the continuous mapping theorem with addition at
continuous limits. �

As a consequence of Theorem 6.3, henceforth we can focus on X̄n in (45) instead of X̄n
3 in (41)–(43). After

we prove Theorem 4.1, we can extend the interval 601 �7 over which all the previous results in this section hold
to the interval 601�5.
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Theorem 6.4 (Global SSC). All of the results above in this section extend from the interval 601 �7 to the
interval 601�5.

We prove Theorems 6.1 and 6.2 in §B, after establishing supporting technical results in §A. In §B.3, we prove
Theorem 6.4, under the assumption that Theorem 4.1 has been proved over 601 �7, which will be done in §7,
by showing that the interval over which the conclusion is valid can be extended from 601 �7 to 601�5, once
Theorem 4.1 has been proved over 601 �7. That will imply that Theorem 4.1 then holds over 601�5 as well.

7. Completing the proof of Theorem 4.1: Characterization. The C-tightness result in Theorem 5.2
implies that every subsequence of the sequence 84X̄n

6 1 Ȳ
n
8 52 n≥ 19 in (26) has a further converging subsequence

in D144601�55, whose limit is in the function space C144601�55. To establish the convergence of the sequence
84X̄n

6 1 Ȳ
n
8 59 we must show that every converging subsequence converges to the same limit.

Corollary 6.3 and Theorem 6.3 imply that we can simplify the framework over an initial time interval 601 �7.
In particular, it suffices to focus on the sequence 8X̄n9 in D34601 �75 given in (45), where the limits of the
subsequences will be in C34601 �75, but we will later show that this restriction can be relaxed. In particular, we
will show that convergence holds in D144601�55.

We achieve the desired characterization of X̄n in D34601 �75 by showing that the limit of any converging
subsequence is almost surely a solution to the ODE (24) over 601 �7. The existence and uniqueness of the
solution to the ODE has been established in Theorem 5.2 in Perry and Whitt [37]. As indicated in §4.4, we
have developed two different proofs, the first proof exploits random measures and martingales (Hunt and Kurtz
[18], Kurtz [27]); it is given here in §§7.2 and 7.3. The second exploits stochastic bounds as in the proof of
Lemma B.3; it is given in Appendix C. Both proofs start from the following subsection.

7.1. Proof of Theorem 4.1: Reduction to integral terms. Let X̄ be the limit of a converging subsequence
of 8X̄n2 n ≥ 19 in (45) in D4601 �75 for � in Theorem 6.3. We consider n ≥ 1 with the understanding that the
limit is through a subsequence. Many of the terms in (45) converge directly to their counterparts in (25) because
of the assumed many-server heavy-traffic scaling in §2.3 and the convergence X̄n ⇒ X̄ through the subsequence
obtained from the tightness. Indeed, the only exceptions are the integral terms involving the indicator functions.
Let Īnz1 i, Ī

n
q111 i, and Īnq121 i be the ith integral term in the respective expression for Z̄n

112, Q̄n
1 , and Q̄n

2 in (45), i = 112.
We first observe that these sequences of integral terms are tight.

Lemma 7.1 (Tightness of Integral Terms). The six sequences of integral processes 8Īnz1 i2 n ≥ 19,
8Īnq111 i2 n ≥ 19, and 8Īnq121 i2 n ≥ 19 involving the indicator functions appearing in (45) are each C-tight in
D4601 �75.

Proof. We consider only the integral term Īnq1111, because the others are treated in the same way. First, bound-
edness is elementary: 0 ≤ Īnq11114t5≤ tmn

2/n. Second, the modulus in (35) is easily controlled: w4Īnq11111 �1 T 5≤

�mn/n→ �m2. �
Hence, we can consider a subsequence of our original converging subsequence in which all these integral terms

converge to proper limits as well. Hence we have the following expression for X̄, the limit of the converging
subsequence:

Z̄1124t5= z112405+�212Īz114t5−�112Īz124t5

Q̄14t5= q1405+ �̄1t − m̄1t −�112Īq11114t5−�212Īq11124t5− �1

∫ t

0
Q̄14s5ds1 (47)

Q̄24t5= q2405+ �̄2t −�212Īq12114t5−�112Īq12124t5− �2

∫ t

0
Q̄24s5ds0

In (47), we have exploited the assumed convergence of the initial conditions in Assumption 3.2 to replace X̄405
by x405 in (47). At this point, it only remains to show that the terms Īz1 i, Īq111 i, and Īq121 i appearing in (47)
necessarily coincide almost surely with the corresponding terms in the integral representation (25) associated
with the ODE in (24) over the interval 601 �7. That will uniquely characterize the limit over that initial interval
601 �7 because, by Theorem 5.2 of Perry and Whitt [37], there exists a unique solution to the ODE.

Thus, it suffices to establish the following lemma, which we do in two different ways, one in the next two
sections and the other in Appendix C.

Lemma 7.2 (Representation of Limiting Integral Terms). For � in Theorem 6.3, the integral terms in
(47) necessarily coincide with the corresponding integral terms in (25) with X̄ substituted for x for 0 ≤ t ≤ � , e.g.,

Īq11114t5=

∫ t

0
�1124X̄4s55Z̄1124s5ds1 0 ≤ t ≤ �1 w0p010 (48)
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7.2. Exploiting random measures. For the rest of our proof of Lemma 7.2, we closely follow Hunt and
Kurtz [18], which applies Kurtz [27]. There are two key steps: (i) exploiting random measures and (ii) applying
a martingale representation to characterize the limit in terms of the steady-state distribution of the FTSP in §3.2.
This subsection is devoted to the first step; the next subsection is devoted to the second step.

We now introduce random measures in order to expose additional structure in the integral term Īq1111 in (47).
The random measures will be defined by setting

�n4601 t7×B5≡

∫ t

0
18Dn

1124s5∈B9
ds1 t ≥ 01 (49)

where B is a measurable subset of the set E of possible values of Dn
112. Given the definition of Dn

112 in (6), we
exploit Assumption 3.3 stating that r112 is rational and the assumption after it that the thresholds are rational as
well, so that we can have the state space E be discrete, independent of n. (This property is not necessary for
the analysis at this point, but it is a helpful simplification. The space E could even be taken to be a subset of �,
using the construction in §6 of Perry and Whitt [37] by renaming the states in E.) Of course, we are especially
interested in the case in which B is the set of positive values; then we focus on the associated random variables
�n4601 t7× 401�55, n≥ 1, as in (45).

As in Hunt and Kurtz [18] and Kurtz [27], it is convenient to compactify the space E. We do that here, first,
by adding the states +� and −� to E and, second, by endowing E with the metric and associated Borel �-field
from � induced by the mapping �2 E → 6−1117 defined by �4x5= x/41+�x�5. That makes E a compact metric
space. We then consider the space M ≡ M4S5 of (finite) measures � on the product space S ≡ 601 �7× E for
some � > 0, such that �4601 t7×E5 = t for all t > 0. Moreover, we endow M with the Prohorov metric, as in
(1.1) of Kurtz [27]. Because S is compact, the space M inherits the compactness; i.e., it too is a compact metric
space, by virtue of Prohorov’s theorem, Theorem 11.6.1 of Whitt [47].

Let P≡P4M5≡P4M4S55 be the space of probability measures on M4S5, also made into a metric space with
the Prohorov metric, so that convergence corresponds to the usual notion of weak convergence of probability
measures. As a compact metric space, M4S5 is a complete separable metric space, so that this is a standard
abstract setting for weak convergence of probability measures (Billingsley [7], Ethier and Kurtz [12], Whitt [47]).
By Prohorov’s theorem, this space P of probability measures on M4S5 also is a compact metric space.

Thus we have convergence of random measures �n ⇒ � as n → � if and only if E6f 4�n57 → E6f 4�57 as
n→ � for all continuous bounded real-valued functions f on M . On the other hand, by the continuous mapping
theorem, if we have �n ⇒ � as n→ �, then we also have f 4�n5⇒ f 4�5 as n→ � for each continuous function
on M . One reason that the random measure framework is convenient is that each continuous bounded real-valued
function f on S corresponds to a continuous real-valued function on M4S5 via the integral representation

f 4�5≡

∫

S
f 4s5d�4s50

As a consequence, if �n ⇒ � as n→ �, then necessarily also
∫

S
f 4s5d�n4s5 ⇒

∫

S
f 4s5d�4s5 in � as n→ �

for all continuous bounded real-valued functions f on S.
In our context it is important to observe what are the continuous functions on E after the compactification

above. The new topology requires that the functions have finite limits as k → +� or as k → −�. All the
functions we consider will be continuous on E because they take constant values outside bounded sets. We will
use the following stronger result, which is a special case of Lemma 1.5 of Kurtz [27].

Lemma 7.3 (Extended Continuous Mapping Theorem). If f is a continuous bounded real-valued func-
tion on S and 8fn2 n ≥ 19 is a sequence of measurable real-valued functions on S such that �fn − f �S → 0 as
n→ �, then

∫

S
fn4s5d�

n4s5 ⇒

∫

S
f 4s5d�4s5 in � as n→ �0

Proof. First, starting from the convergence �n ⇒ �, apply the Skorohod representation theorem to obtain
versions converging w.p.1, without changing the notation. Then, by the triangle inequality,

∣

∣

∣

∣

∫

S
fn4s5d�

n4s5−

∫

S
f 4s5d�4s5

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

S
fn4s5d�

n4s5−

∫

S
f 4s5d�n4s5

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

S
f 4s5d�n4s5−

∫

S
f 4s5d�4s5

∣

∣

∣

∣

≤ �fn − f �S�
n4S5+

∣

∣

∣

∣

∫

S
f 4s5d�n4s5−

∫

S
f 4s5d�4s5

∣

∣

∣

∣

→ 0 as n→ �1
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using the uniform convergence condition and the limit �n4S5 → �4S5 < � in the first term and the continuous
mapping in the second term. This shows convergence w.p.1 for the special versions and thus the claimed
convergence in distribution. �

The random measures we consider are random elements of M4S5, where S is the product space 601 �7×E.
These random measures can be properly defined by giving their definition for all product sets 601 t7×B, as we
have done in (49). The usual extension produces full random elements of M4S5.

We exploit the compactness of E introduced above to obtain compactness of P4M5 and thus relative com-
pactness of the sequence 84X̄n

6 1 �
n53n≥ 19.

Lemma 7.4 (Relative Compactness). The sequence 84X̄n
6 1 �

n53n ≥ 19 defined by (26) and (49) is rela-
tively compact in D64601 �75×M4S5 for any �> 0.

Proof. We already have observed that, because of the compactness imposed on E, the space P4M4S55 is
compact. By Theorem 5.2, the sequence 8X̄n

1122 n ≥ 19 is tight and thus relatively compact. However, relative
compactness of the components implies relative compactness of the vectors. Thus the sequence 84X̄n

6 1 �
n53n≥ 19

defined by (26) and (49) is relatively compact in D64601 �75×M4S5. �
Another crucial property of the random measures on the product space is that the random measures themselves

admit a product representation or factorization, as indicated by Lemma 1.4 of Kurtz [27]; also see Lemma 2 of
Hunt and Kurtz [18]. This result requires filtrations. For that, we observe that Xn

6 is a Markov process and �n
restricted to 601 t7×E is a function of the Markov process Xn

6 over 601 t7. Thus, we can use the filtrations Fn
t

generated by Xn
6 for each n≥ 1. In our context, we have the following consequence of Lemma 1.4 of Kurtz [27].

Lemma 7.5 (Factorization of the Limiting Random Measures). Let 4X̄1 �5 be the limit of a converging
subsequence of 84X̄n

6 1 �
n53n≥ 19 in D64601 �75×M4S5 obtained via Lemma 7.4. Then there exists ps ≡ ps4B5,

a measurable function of s for each measurable subset B in E and a probability measure on E for each s in
601 �7, such that, for all measurable subset B1 of 601 �7 and B2 of E,

�4B1 ×B25=

∫

B1

ps4B25ds0 (50)

As a consequence of the three lemmas above, we obtain the following preliminary representation.

Lemma 7.6 (Initial Representation of Limiting Integral Terms). Every subsequence of the sequence
84X̄n

6 1 �
n53n ≥ 19 defined by (26) and (49) in D64601 �75 × M4S5 as a further converging subsequence. Let

4X̄1 �5 be a limit of a convergent subsequence. For any �≤ � for � in Theorem 6.3, the integral terms in (47)
necessarily coincide with the corresponding integral terms in (45) with a probability p1124s5 substituted for
18Dn

1124s5>09 and X̄ substituted for x for 0 ≤ t ≤ �, in particular,

Īq11114t5=

∫ t

0
p1124s5Z̄1124s5ds1 0 ≤ t ≤ �1 w0p011 (51)

where Z̄112 is the component of X̄ and p1124s5 ≡ ps4401�55 for ps in (50), so that p1124s5 is a measurable
function of s with 0 ≤ p1124s5≤ 1, 0 ≤ s ≤ �.

Proof. By Lemma 7.4, we are justified in focusing on a converging subsequence with limit 4X̄1 �5, where
X̄ ≡ 4Q̄i1 Z̄i1 j5. For (51), we focus on 4Z̄1121 �5. As before, apply the Skorohod representation theorem to obtain
a version converging w.p.1 along the subsequence, without changing the notation. For the corresponding terms
indexed by n,

Īnq11114t5=�112

∫ t

0
Z̄n

1124s518Dn
1124s5>09ds =

∫ t

0
Z̄n

1124s5 �
n4ds ×dy51 (52)

so that we can apply Lemma 7.3 to deduce that

Īnq11114t5→ Īq11114t5≡�112

∫ t

0
Z̄1124s5 �4ds ×dy50

Finally, we apply Lemma 7.5 to show that the representation of � in (52) is equivalent to (51). �
It now remains to determine the term p1124s5 in the integrand of the integral (51). In the next section we will

show that we can write p1124s5= P4D4X̄4s51�5 > 05, thus completing the proof of Lemma 7.2.

7.3. A martingale argument to characterize the probability in the integrand. We now finish the proof
of Lemma 7.2 by characterizing the probability measure ps in Lemma 7.5.
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Proof of Lemma 7.2. We will prove that p1124s5= P4D4X̄4s51�55 > 0 for almost all s in the integral (51),
where D4X̄4s51�5 is a random variable with the steady-state distribution of the FTSP in §3.2 depending on the
state X̄4s5, which is the limit of the converging subsequence of the sequence 8X̄n2 n≥ 19. This step will make
(51) reduce to the desired (48).

We first comment on the exceptional sets. We establish the result w.p.1, so that there is an exceptional set,
say é , in the underlying probability space ì with P4é5= 0, such that we claim the conclusion of Lemma 7.2
holds in ì−é . However, for each � ∈ì−é , we find an exceptional set ë4�5 in 601 �7 where the Lebesgue
measure of ë4�5 is 0. However, the integral in Lemma 7.2 is unchanged if we change the definition of the
integrand on a set of Lebesgue measure 0. Hence, we can assume that p1124s5 = P4D4X̄4s51�5 > 05 for all s
in 601 �7 for each sample point � ∈ì−é . After doing that, we obtain the w.p.1 conclusion in Lemma 7.2.

We remark that it is possible to obtain a single exceptional set ë in 601 �7 such that p1124s5 =

P4D4X̄4s51�55 > 0 for all s ∈ 601 �7−ë w.p.1. The construction to achieve that stronger goal is described in
Example 2.3 of Kurtz [27] on p. 196. The conditions specified there hold in our context. Because that property
is not required here, we do not elaborate.

Continuing with the main proof, we now aim to characterize the entire probability measure ps on E appearing
in Lemma 7.5. We will do that by showing that ps satisfies the equation characterizing the steady-state distri-
bution of the FTSP D4X̄4s51 ·5 for almost all s with respect to Lebesgue measure (consistent with the notion of
an averaging principle). Because the FTSP D4X̄4s51 ·5, given X̄4s5, is a CTMC with the special structure (only
four transitions possible from each state, and only two different cases for these, as shown in (13)–(16)), just as
for finite-state CTMCs (in elementary textbooks), it suffices to show that

∑

i

ps48i95Qi1 j4X̄4s55= 0 for all j (53)

for almost all s in 601 �7 with respect to Lebesgue measure, where i and j are states of the FTSP and Qi1 j4X̄4s55
in (53) is the 4i1 j5th component in the infinitesimal rate matrix (generator) of the CTMC D4X̄4s51 ·5.

However, we will follow Hunt and Kurtz [18] and use the framework in §§4.2 and 8.3 of Ethier and Kurtz [12].
In particular, the FTSP satisfies the assumptions in Corollary 8.3.2 on p. 379 in Ethier and Kurtz [12]. As in (9)
of Hunt and Kurtz [18], this step corresponds to an application of Proposition 4.9.2 of Ethier and Kurtz [12],
but the simple CTMC setting does not require all the structure there. Following the proof of Theorem 3 in
Hunt and Kurtz [18] (and §2 of Kurtz [27]), we now develop a martingale representation for f 4Dn

1125, where
f is a bounded continuous real-valued function on the state space E of Dn

112. This construction is the standard
martingale associated with functions of Markov processes, just as in Proposition 4.1.7 of Ethier and Kurtz [12].
Because, Dn

112 is a simple linear function of the CTMC Xn
6 in (6), we can write f 4Dn

1125 = g4Xn
6 5 for some

continuous bounded function g. The martingale will be with respect to the filtration Fn
t generated by the Markov

process Xn
6 (as in Lemma 7.5).

Recalling that Dn
112 ≡ Qn

1 − r112Q
n
2 , we can write f 4Dn

1124t55 in terms of the independent rate-1 Poisson
processes in (34) as follows

f 4Dn
1124t55 ≡ f 4Dn

1124055−

∫ t

0
6f 4Dn

1124s−5+ 15− f 4Dn
1124s−557dN a

1 4�
n
1s5

−

∫ t

0
6f 4Dn

1124s−5− 15− f 4Dn
1124s−5574dN u

1 4�1Q
n
14s55+dN s

1114�111m
n
1s55

−

∫ t

0
18Dn

1124s5>096f 4D
n
1124s−5− 15− f 4Dn

1124s−5574dN s
1124�112Z

n
1124s55+dN s

2124�2124Z
n
2124s5555

−

∫ t

0
18Dn

1124s5≤096f 4D
n
1124s−5+ r5− f 4Dn

1124s−5574dN s
1124�112Z

n
1124s55+dN s

2124�2124Z
n
2124s5555

−

∫ t

0
18Dn

1124s5>096f 4D
n
1124s−5+ r5− f 4Dn

1124s−557dN u
s 4�2Q

n
24s55

−

∫ t

0
6f 4Dn

1124s−5− r5− f 4Dn
1124s−557dN a

2 4�
n
2s50

We next rewrite the representation for f 4Dn
1124t55 above to achieve a martingale representation. To that end, we

add and then subtract the appropriate Riemann integral from each of the integrals above, e.g.,
∫ t

0
6f 4Dn

1124s−5+ 15− f 4Dn
1124s−557dN a

1 4�
n
1s5

=

∫ t

0
6f 4Dn

1124s−5+ 15− f 4Dn
1124s−557dMn1a

1 4s5+

∫ t

0
6f 4Dn

1124s−5+ 15− f 4Dn
1124s−557�n

1 ds1
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for Mn1a
1 in (44). Note that an integral of a predictable process with respect to a martingale is again a martingale.

We thus achieve a modifies representation of f 4Dn
1124t55 in terms of martingales and their associated predictable

quadratic-variation processes; see, e.g., §3.5 in Pang et al. [34] for more details. Rearranging terms, so that all
the martingales in the modified representation appear on the left-hand side and letting Mn

f denote the sum of
those martingales, we have

Mn
f 4t5 ≡ f 4Dn

1124t55− f 4Dn
1124055−

∫ t

0
�n

16f 4D
n
1124s−5+ 15− f 4Dn

1124s−557ds

−

∫ t

0
4mn

1 + �1Q
n
14s556f 4D

n
1124s−5− 15− f 4Dn

1124s−557ds

−

∫ t

0
18Dn

1124s5>094�112Z
n
1124s5+�2124m

n
2 −Zn

1124s5556f 4D
n
1124s−5− 15− f 4Dn

1124s−557ds

−

∫ t

0
18Dn

1124s5≤094�112Z
n
1124s5+�2124m

n
2 −Zn

1124s5556f 4D
n
1124s−5+ r5− f 4Dn

1124s−557ds

−

∫ t

0
18Dn

1124s5>09�2Q
n
24s56f 4D

n
1124s−5+ r5− f 4Dn

1124s−557ds

−

∫ t

0
�n

26f 4D
n
1124s−5− r5− f 4Dn

1124s−557ds0 (54)

Note that Mn
f is a Fn

t -martingale itself.
It follows from essentially the same arguments as in the proof of Lemma 6.1 and the continuity of addition at

continuous limits, that M̄n
f ≡Mn

f /n⇒ 0e in D as n→ �, for Mn
f in (54). In addition, we have n−14f 4Dn

1124t55−

f 4Dn
11240555⇒ 0e in D since f is bounded. We write the remaining terms of M̄n

f as

D̄n
f 4t5 ≡ M̄n

f 4t5− n−14f 4Dn
1124t55− f 4Dn

11240555=

∫

401 t5×E
�̄n

16f 4y+ 15− f 4y57�n4ds ×dy5

−

∫

401t5×E
4m̄n

1 + �1Q̄
n
14s556f 4y− 15− f 4y57�n4ds ×dy5

−

∫

401 t5×E
18y>094�112Z̄

n
1124s5+�2124m̄

n
2 − Z̄n

1124s5556f 4y− 15− f 4y57�n4ds ×dy5

−

∫

401 t5×E
18y≤094�112Z̄

n
1124s5+�2124m̄

n
2 − Z̄n

1124s5556f 4y+ r5− f 4y57�n4ds ×dy5

−

∫

401 t5×E
18y>09�2Q̄

n
24s56f 4y+ r5− f 4y57�n4ds ×dy5−

∫

401 t5×E
�̄n

26f 4y− r5− f 4y57�n4ds ×dy50

By Lemmas 7.6 and 7.3, D̄n
f ⇒ D̄f = 0e as n→ � along the converging subsequence, where

D̄f ≡

∫

401 t5×Eã

�16f 4y+ 15− f 4y57 �4ds ×dy5−

∫

401 t5×E
4m1 + �1Q̄14s556f 4y− 15− f 4y57 �4ds ×dy5

−

∫

401 t5×E
18y>094�112Z̄1124s5+�2124m2 − Z̄1124s5556f 4y− 15− f 4y57 �4ds ×dy5

−

∫

401 t5×E
18y≤094�112Z̄1124s5+�2124m2 − Z̄1124s5556f 4y+ r5− f 4y57 �4ds ×dy5

−

∫

401 t5×E
18y>09�2Q̄24s56f 4y+ r5− f 4y57 �4ds ×dy5−

∫

401 t5×E
�26f 4y− r5− f 4y57 �4ds ×dy50 (55)

However, just as in Hunt and Kurtz [18], we can identify the limit D̄f in (55) as the integral with respect to
the random measure � of the infinitesimal generator of the FTSP D4X̄4s51 ·5 applied to the test function f . In
particular, for each sample point in the underlying probability space ì supporting 4X̄1 �5 except for a subset é
with P4é5= 0, from Lemma 7.5, we obtain

∫ t

0

∫

E
6Q4X̄4s55f 74y5ps4dy5ds = 0 for all t ≥ 0, (56)

where 6Q4X̄4s55f 74y5 is the generator of the CTMC D4X̄4s51 ·5 applied to f as a function of y in E. As a
consequence,

∫

E
6Q4X̄4s55f 74y5ps4dy5= 0 for almost all s with respect to Lebesgue measure. (57)
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It follows from Proposition 4.9.2 page 239 in Ethier and Kurtz [12], that ps is the (unique) stationary distribution
of the FTSP D4X̄4s51 ·5 for almost all s. (This step is equivalent to (53).) We apply Lemma 3.1 to conclude that
the FTSP D4�1 ·5 has a unique stationary distribution on E for all � ∈�. �

7.4. Proof of Theorem 4.1. We can now summarize the proof of our main result—the FWLLN via the AP.

Proof of Theorem 4.1. There are two steps: (i) establishing convergence over an initial interval and
(ii) expanding the interval of convergence. We consider slightly more general settings than in the statement
of the theorem, by considering the vector 4X̄n

6 1 Ȳ
n
8 1 �

n5 with the random measure �n replacing än. Note that
än4t5≡ �n4601 t7× 401�55 and �4t5≡ �4601 t7× 401�55 for än and � in (27), �n in (49), and � in (50).

(i) Establishing convergence over 601 �7. By Theorem 5.2, the sequence 84X̄n
6 1 Ȳ

n
8 52 n≥ 19 in (26) is C-tight

in D144601�55. By Lemma 7.4, 4X̄n
6 1 �

n5 is relative compact in D6 × M4S5. By Theorem 6.3, there exists
� > 0 such that the limit point of a converging subsequence of X̄n

6 in D64601 �75 is also the limit point of
X̄n1∗

6 in (10), whose representation is specified in (41)–(43). Thus, it suffices to next characterize the limit of a
converging subsequence of the sequence 4X̄n1 �n5, for 8X̄n9≡ 81/n4Qn

11Q
n
21Z

n
11259 in (45) over an interval 601 �7.

The characterization of the limit of X̄n
6 also characterizes the limit of �n because, as the proof of Lemma 7.5

demonstrates, each limit point of 4X̄n
6 1 �

n5 is of the form 4X̄61 �5, for � in (50). In particular, for any two Borel
sets B11B2,

�n4B11B25≡

∫

B1

18Dn
1124s5∈B29

⇒ �4B1 ×B25≡

∫

B1

ps4B25ds in D as n→ �1

where ps is the unique stationary distribution of the FTSP D4X̄64s51 ·5 for almost all s. Hence, if X̄ ≡ x6, and in
particular, the limit of X̄n

6 is unique, then ps ≡�1124x64s55 for almost all s, so that the limit � of �n is unique as
well.

With that characterization complete, we obtain the full convergence 4X̄n
6 1 Ȳ

n
8 1 �

n5⇒ 4x61 y81 �5 in D154601 �75
directly, exploiting Theorem 6.3. By Lemma 7.2, we complete the characterization step, showing that P4X̄ =

x5 = 1 in D34601 �75, where x is a solution to the ODE in (24) with the initial condition x405 specified by
Assumption 3.2.

(ii) Expanding in the interval of convergence. After establishing the convergence over an initial interval 601 �7,
we can apply Theorem 6.4 (which uses Theorem 4.1 over 601 �7) to conclude that any limit point of the tight
sequence X̄n

6 is again a limit of the tight sequence X̄n1∗
6 in (10) over the entire half line 601�5, showing that �

places no constraint on expanding the convergence interval. Moreover, by part (ii) of Theorem 5.2 in Perry and
Whitt [37], any solution to the ODE, with a specified initial condition, can be extended indefinitely, and is unique.
Hence that places no constraint either. Finally, the martingale argument allows us to uniquely characterize the
steady-state distribution of the FTSP D4�1 ·5 in §3.2 even when the state � is not in �, provided that we have
the SSC provided by Theorem 6.4. In particular, we will have either �1124�5= 1 or �1124�5= 0 if � y�. �

8. Remaining proofs of theorems in §4. We now provide the remaining proofs for four theorems in §4.
At this point, Theorem 4.1 has been proved.

8.1. Proof of Theorem 4.3. We will consider a sequence of stationary Markov processes 88X̄n
6 4t52 t ≥ 092

n ≥ 19, with X̄n
6 405

d
= X̄n

6 4�5 for each n ≥ 1. That initial condition makes the stochastic processes strictly
stationary. We will refer to these stationary processes as stationary versions of the processes X̄n

6 and denote
them by X̄n

s . We start by establishing tightness.

Lemma 8.1 (Tightness of the Sequence of Stationary Distributions). The sequences 8X̄n
6 4�52 n≥19

and 88X̄n
s 4t52 t ≥ 092 n≥ 19 are tight in �6 and D6, respectively.

Proof. First, for the tightness of 8X̄n
6 4�52 n ≥ 19 in �6, it suffices to treat the six components separately.

The tightness of 8Z̄n
i1 j4�52 n≥ 19 in � is immediate because 0 ≤ Z̄n

i1 j4�5≤mn
j /n, where mn

j /n→mj as n→ �.
The tightness of the queue lengths follows from Lemma A.5. In particular, since (i) Qn

i 4t5≤st Q
n
i1 bd4t5 for all t

and (ii) Qn
i 4t5 ⇒ Qn

i 4�5 and Qn
i1 bd4t5 ⇒ Qn

i1 bd4�5 as t → � for all n ≥ 1, we necessarily have Qn
i 4�5 ≤st

Qn
i1 bd4�5 for all n, because stochastic order is preserved under convergence. Since Q̄n

i1 bd4�5 ⇒ qi1 bd4�5 ≡

qi405 ∨ 4�i/�i5 as n → �, the sequence 8Q̄n
i1 bd4�52 n≥ 19 is stochastically bounded, which implies that the

sequence 8Q̄n
i 4�52 n≥ 19 is stochastically bounded as well. Because tightness of the marginal distributions

implies tightness of vectors, the sequence of steady-state random vectors 8X̄n4�52 n≥ 19 is tight in �6. Given
the tightness of 8X̄n

s 4059, the proof of tightness in D6 is identical to the proof of Theorem 5.2. �
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We next establish the analogue of the structural simplification results in §6. Let X̄4�5 ≡ 4Q̄i4�51 Z̄i1j4�55

be a limit of the stochastically bounded sequence 8X̄n
6 4�59. Let X̄ ≡ 4Q̄i1 Z̄i1j5 be a limit of the sequence

88X̄n
s 4t52 t ≥ 092 n≥ 19. Note that X̄ must itself be a stationary process.

Lemma 8.2. P4Z̄1114�5=m11 Z̄2114�5= 01 Z̄2124�5=m2 − Z̄1124�55= 1.

Proof. Let Īj4�5 ≡ mj − Z̄11j4�5 − Z̄21j4�5, j = 112. To prove the claim, we need to show that
P4Z̄2114�5 > 05= P4Īj4�5 > 05= 0. We will consider the sequence of stationary versions 8X̄n

s 9, and a limit X̄
of this sequence.

(i) P4Z̄211 = 0e5 = 1. We will show that the opposite assumption leads to a contradiction. Hence, suppose
that P4Z̄2114s5 > 05 > 0 for some s ≥ 0. The stationarity of Z̄211 implies that Z̄211405

d
= Z̄2114s5. Hence, we can

equivalently assume that P4Z̄211405 > 05 > 0.
Let B211 denote the set in the underlying probability space, of all sample paths of X̄ with Z̄211405 > 0. By the

contradictory assumption, P4B2115 > 0. Following the arguments in Lemma B.1, if Z̄211405 > 0, then Z̄1124t5 > 0
for all t ≥ 0, which implies that Z̄2114t5 > 0 for all t ≥ 0 in B211.

Consider a sample path in B211. Because of one-way sharing, Z̄112 = 0e, so that the only departures from Q̄1

are due to service completions in pool 1 and abandonment. Since Z̄111 ≤m1 w.p.1, Q̄1 is stochastically bounded
from below, in sample-path stochastic order, by the fluid limit of an Erlang-A model with m1 servers. At the
same time, Q̄2 is stochastically bounded from above by the fluid limit of an Erlang-A model with m2 servers.
Hence, there exists � > 0 such that, for some s ≥ 0,

rQ̄24t5− � ≤ rqa
2 < qa

1 ≤ Q̄14t5+ � for all t ≥ s1 (58)

where rqa
2 < qa

1 by Assumption 3.1. Now, because Q̄1 and Q̄2 are bounded with probability 1, we can find
s0 > 0 such that (58) holds with this s0 for all possible initial condition in B211. However, this implies that Z̄211

is strictly decreasing for all t ≥ s0 and for all sample paths in B211 (because no fluid can flow from queue 1 to
pool 2), so that Z̄2114t5 < Z̄2114s05 for all t > s0 in B211, contradicting the stationarity of Z̄211. Thus, P4B2115= 0.

(ii) P4Ī1 = Ī2 = 0e5= 1. We follow the proof of Theorem 6.2, building on the result P4Z̄2114�5= 05= 1 just
established. Recall that Ln

i ≡Qn
i +Zn

i11 +Zn
i12 −mn

i in (B9), representing the excess number of class-i customers
in the system, is stochastically bounded from below, in sample-path stochastic order, by the process Ln

b1 i, with
Ln
i1 b defined by imposing a reflecting upper barrier at kn112 for i = 112 and letting Ln

i1b405= Ln
i 405∧kn112. However,

here we are working with stationary versions. Because, the processes 4Ln
11L

n
25 are strictly stationary, so are the

reflected processes 4Ln
11 b1L

n
21 b5. Then U n ≥st U

n
b , where U n and U n

b and the linear functions of 4Ln
11L

n
25 and

4Ln
11 b1L

n
21 b5, respectively, defined in (B10). These processes U n and U n

b are also stationary processes.
However, just as in the proof of Theorem 6.2, U n

b is a birth and death process on the integers in 4−�107,
which is independent of Zn

112, with drift �n
b in (B11). Since �n

b/n→ �b > 0, the birth and death U n
b has a positive

drift for all n large enough. Consequently, −U n
b has the structure of the stationary queue length process in a

stable M/M/1 queue. Because the traffic intensity converges to a limit strictly less than one, the initial value,
and the value at any time, is stochastically bounded. Moreover, we can apply essentially the same extreme value
argument used in the proof of Theorem 6.2 to conclude that, for any � > 0, that P4�Īni �� > 05→ 0 as n→ �.
We thus conclude that P4�Īi�� = 05= 1, from which the conclusion follows, because the interval 601�5 can be
represented as the countable union of finite intervals of finite length, and the countable sum of 0 probabilities is
itself zero. �

A function Ȳ 2 �m →�k, m, k ≥ 1, is said to be locally Lipschitz continuous if for any compact set B, there
exists a constant K4B5 such that, for any s1 t ∈ B, �Ȳ 4s5− Ȳ 4t5� ≤ K4B5�s − t�. A locally Lipschitz continuous
function is absolutely continuous and is thus differentiable almost everywhere.

In the following we will consider two locally Lipschitz continuous functions V 2 �+

k →�+ and Ȳ 2 �+ →�+

k ,
and the “Lie derivative” V̇ 4Ȳ 4t55≡ ïV · Ȳ ′, where ïV denotes the gradient of V , and ïV · Ȳ ′ is the usual inner
product of vectors. Because both functions are differentiable almost everywhere, V̇ 4Ȳ 4t55 is understood to be
taken at points t for which both V and Ȳ are differentiable.

For a vector x ∈ �k, we let �x� denote its L1 norm, although any other norm in �k can be used in the
following. For the following we draw on §8.3 of Perry and Whitt [37].

Lemma 8.3. Let V 2 �+

k →�+ be locally Lipschitz continuous, such that V 4x5= 0 if and only if x = 0. Let
Ȳ 2 �+ → �+

k be Lipschitz continuous with constant N , such that Ȳ ≤ M , for some M > 0. If V̇ 4Ȳ 4t55 < 0 for
all t ≥ 0 for which Ȳ 4t5 6= 0, then Ȳ 4t5→ 0 as t → �.
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Proof. Let f 2 �+ → �+ be absolutely continuous, such that f 4t5 = 0 if and only if t = 0. If for almost
every t 6= 0, f ′4t5 < 0, then f 4t5→ 0 as t → �. We can apply that argument to the function f 4t5≡ V 4Ȳ 4t55 if
we show that V 4Ȳ 4t55 is locally Lipschitz continuous. To see that is the case, note that for all t > 0,

Ȳ 4s5≤ Ȳ 405+ �Ȳ 4s5− Ȳ 405� ≤M +Nt1 0 ≤ s ≤ t0

Therefore, for any 0 ≤ u≤ s ≤ t, �f 4s5− f 4u5� ≤K4B5N4s − u5, where B ≡ 8x ∈�+

k 2 �x� ≤M +Nt9. �

Proof of Theorem 4.3 We consider a converging subsequence 8X̄n′

s 2 n
′ ≥ 19 of the sequence 8X̄n

s 2 n ≥ 19
with limit X̄. By Lemma 8.2, we can consider it to be three-dimensional with components Q̄1, Q̄2, and Z̄112. By
Corollary 5.1, the limit X̄ is Lipschitz continuous in t, so that it is differentiable almost everywhere. Specifically,
X̄ is a limit of the sequence represented by (45), with X̄n405 d

= X̄n4�5 for all n ≥ 1. Then each component of
the converging subsequence 8X̄n′

s 9 in (45) converges to its respective limit (e.g., Q̄n′

1 to Q̄1). For our purposes
here, it is sufficient to conclude that X̄4t5 → x∗ w.p.1 as t → �. Hence, we will not characterize the limit of
X̄4t5 as t → �.

For the representation of the converging subsequence 8X̄n′

s 9 in (45), let

W̄ n′

≡ 4C − 15Z̄n′

112 +CQ̄n′

1 + Q̄n′

2 1

where C ≥ 1 will be specified later. Since X̄n′

s ⇒ X̄ by assumption, we can apply the continuous mapping
theorem to conclude that W̄ n ⇒ W̄ in D3 as n→ �, where

W̄ 4t5 ≡ 4C − 15Z̄1124t5+CQ̄14t5+ Q̄24t5

= 4C − 15Z̄112405− 4C�112 −�2125
∫ t

0
Z̄1124s5ds −�212m2t

+CQ̄1405+C4�1 −�111m15t −C�1

∫ t

0
Q̄14s5ds + Q̄2405+�2t − �2

∫ t

0
Q̄24s5ds1

with derivative

W̄ ′4t5= −4C�112 −�2125Z̄1124t5−C�1Q̄14t5− �2Q̄24t5+C4�1 −�111m15+�2 −�212m20

For x ∈ �3, let V 4x5 ≡ Cx1 + x2 + 4C − 15x3 and note that V̇ 4X̄5 ≡ ïV · X̄ ′ = W̄ ′, and that V is locally
Lipschitz continuous, where ïV denotes the gradient of V , and ïV · X̄ ′ is the usual inner product of vectors.
Now let Ȳ denote the derivative of X̄ shifted by x∗ for x∗ in (30), i.e., Ȳ ′ ≡ X̄ ′ + x∗. Hence, as in the proof of
Theorem 8.3 in Perry and Whitt [37], we have

V̇ 4Ȳ 5≡ −4C�112 −�2125Z̄1124t5−C�1Q̄14t5− �2Q̄24t50

If �112 >�212, then we let C = 1, and if �112 ≤�212 we let C be any number such that C >�212/�112 ≥ 1. With
this choice of C, we see that V̇ 4Ȳ 5 < 0. By Lemma 8.3, Ȳ 4t5 → 0, which implies that X̄4t5 → x∗ as t → �

w.p.1. (Note that Ȳ and X̄ are Lipschitz continuous and bounded, as required.)
For �> 0, let �V 4�5 ≡ 8x ∈ �32 �V 4x5− V 4x∗5� ≤ �9. By the monotonicity of V 4X̄5 established above, for

each �> 0 there exists T 4�1 X̄4055, such that X̄4t5 ∈ �V 4�5 for all t ≥ T 4�1 X̄4055. Because the queues Q̄1 and
Q̄2 are bounded w.p.1, we can uniformly bound T 4�1 X̄4055 (uniformly in X̄405). Hence, there exists T ≡ T 4�5,
such that X̄4t5 ∈ �V 4�5 w.p.1 for all t ≥ T . It follows from the stationarity of X̄ that X̄405 ∈ �V 4�5. Because this
is true for all � > 0, it must hold that X̄405 = x∗ which, by the equality in distribution X̄4�5

d
= X̄405, implies

that X̄4�5 = x∗ w.p.1. We have thus shown that the limit of all converging subsequences of 8X̄n4�52 n ≥ 19
is x∗ in (30), which implies the full convergence X̄n4�5 ⇒ x∗ as n → �. Moreover, since x∗ is the limit of a
stationary sequence, x∗ itself must be a stationary point for each fluid limit X̄ (i.e., if X̄405= x∗, then X̄4t5= x∗

for all t ≥ 0), and it is globally asymptotically stable, because X̄4t5→ x∗ as t → �, as was shown above. �

Note that none of the proofs in this section used the initial condition in Assumption 3.2, or the rationality of
the queue ratios in Assumption 3.3.
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8.2. Proof of Theorem 4.4. The claimed convergence in D is less complicated than it might appear, because
there is no spatial scaling. Consequently, all processes are pure-jump processes, having piecewise constant
sample paths, with only finitely many discontinuities in any bounded interval. Both processes have the same
four possible transitions from each state: ±1 or ± r for r ≡ r112. Hence, it suffices to show convergence in
distribution of the first k pairs of jump times and jump values for any k ≥ 1. That can be done by mathematical
induction on k.

We can start by applying the Skorohod representation theorem to replace the assumed convergence in dis-
tribution â n

6 /n ⇒ �6 and Dn
e 4â

n105 ⇒ D4�105 as n → � by convergence w.p.1 for alternative random vectors
having the same distribution. Hence, it suffices to assume that â n

6 /n→ �6 and Dn
e 4â

n105→D4�105 as n→ �

and w.p.1. (We do not introduce new notation.) Thus, for each sample point, we will have Dn
e 4â

n105=D4�105
for all n sufficiently large. Hence, we can assume that we start with equality holding.

Moreover, we can exploit the structure of pure-jump Markov processes. The FTSP is directly such a pure-
jump Markov process with transition rates given in (13)–(16). These rates were defined to be the limit of the
transition rates of the queue difference processes Dn

112, after dividing by n. The queue difference processes Dn
112

in (6) are not Markov, but they are simple linear functions of the pure-jump Markov process Xn
6 .

The transition rates for Dn
112 closely parallel (13)–(16). Because of the assumptions, we can work with the

three-dimensional random state â n ≡ 4Qn
11Q

n
21Z

n
1125 ∈ �3 with the understanding that the remaining compo-

nents of â n
6 are Zn

111 = mn
1 , Zn

211 = 0 and Zn
212 = mn

2 − Zn
112. Let Dn4â n1 t05 ≡ Dn

1124t05 under the condition that
Xn4t05= â n. When Dn4â n1 t05≤ 0, let the transition rates be �4r5

−
4n1â n5, �415

−
4n1â n5, �4r5

−
4n1â n5, and �415

−
4n1â n5

in (A1), for transitions of +r , +1, −r and −1, respectively. When Dn4â n1 t05 > 0, let the transition rates be
�
4r5
+ 4n1â n5, �415

+ 4n1â n5, �4r5
+ 4n1â n5, and �

415
+ 4n1â n5 in (A2), for transitions of +r , +1, −r and −1, respectively.

The many-server heavy-traffic scaling in (3) and the condition â n/n→ � imply that the transition rates of Xn
6

are of order O4n5 as n → �. However, the time expansion in (12) brings those transition rates back to order
O415. Indeed, from (13)–(16) and (A1)–(A2), we see that the transition rates of Dn

e 4â
n1 ·5, which change with

every transition of the CTMC Xn
6 , actually converge to the transition rates of the FTSP D4�1 ·5, which only

depend on the region (D> 0 and D ≤ 0).
The time until the first transition in the pure jump Markov process D4�1 ·5 is clearly exponential. Because

the queue lengths can be regarded as strictly positive by Theorem 6.2, the first transition of Dn
e 4â

n1 ·5 coincides
with the first transition time of the underlying CTMC Xn

6 , which also is exponential. Because the transition rates
converge, the time until the first transition of Dn

e 4â
n1 ·5 converges in distribution to the exponential time until

the first transition of the FTSP D4�1 ·5. Moreover, in both processes the jump takes one of four values ±1 or
±r . The probabilities of these values converges as well. Hence the random first pair of jump time and jump
value converges to the corresponding pair of the FTSP. The same reasoning applies to successive pairs of jump
times and jump values, applying mathematical induction. That completes the proof.

8.3. Auxiliary results for FTSPs. Before proving Theorems 4.5 and 4.6, we prove some auxiliary lemmas
that we employ in the proofs. We use stochastic bounds by frozen queue-difference stochastic processes as in
§A.1. The following lemma is proved much like Lemma B.3, exploiting the bounds in §A.2.

Lemma 8.4 (Bounding Frozen Processes). Suppose that x4t5 ∈ �, t1 ≤ t ≤ t2. For any t ∈ 6t11 t27 and
� > 0, there exist positive constants �1�, state vectors xm, xM ∈ � and random state vectors Xn

m, Xn
M , n ≥ 1,

such that �xm − x4t5�< �, �xM − x4t5�< �, n−1Xn
m ⇒ xm, n−1Xn

M ⇒ xM as n→ �,

Dn
f 4X

n
m1 ·5≤r D

n
f 4X

n4t51 ·5≤r D
n
f 4X

n
M 1 ·5 and

Dn
f 4X

n
m1 ·5≤r D

n
1124t5≤r D

n
f 4X

n
M 1 ·5 in D46t1 ∨ 4t − �51 4t + �5∧ t275 forall n≥ 11

(59)

and P4Bn4�1�55→ 1 as n→ �, where

Bn4�1�5≡ 8�n
+
4Xn

M5 <−�1 �n
−
4Xn

M5 > �1 �n
+
4Xn

m5 <−�1 �n
−
4Xn

m5 > �90 (60)

As a consequence, the bounding frozen processes Dn
f 4X

n
M 1 ·5 and Dn

f 4X
n
m1 ·5 in (59), and thus also the interior

frozen processes Dn
f 4X

n4t51 ·5, satisfy (20) on Bn4�1�5 and are thus positive recurrent there, n≥ 1.

Proof. We use the convergence X̄n ⇒ x provided by Theorem 4.1. Consider one t ∈ 6t11 t27. By the linearity
of the drift functions �+ and �− in (19), �n

+
4Xn4t55/n ⇒ �+4x4t55 and �n

−
4Xn4t55/n ⇒ �−4x4t55 for x4t5 ∈ �,

so that (20) holds. Hence there exists � > 0 such that

lim
n→�

P4�n
+
4Xn4t55 <−� and �n

−
4Xn4t55 > �5= 11

i.e., (A4) holds for â n =Xn4t5 with probability converging to 1 as n→ �.
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We now bound the drifts in (A3). We do that by bounding the change in the components of Xn4t5 in a short
interval around time t. To do that, we use the stochastic-order bounds in §A.2, constructed over the interval
6t1 ∨ 4t − �51 4t + �5 ∧ t27, with the construction beginning at the left endpoint t1 ∨ 4t − �5, just as in the
construction after time 0 in §A.2. Let I4t11�5 ≡ 6t1 ∨ 4t − �51 4t + �5∧ t27 and let � · �� denote the norm over the
interval I4t11 �5. To construct Xn

M , let

Xn
M+ ≡ 4Qn

11M 1Q
n
21M 1Z

n
M+5 and Xn

M− ≡ 4Qn
11M 1Q

n
21M 1Z

n
M−51

where

Qn
11M ≡ inf

t∈I4t11 �5
Qn

11 a4t5∨ 01 Qn
21M ≡ �Qn

21 b��1

Zn
M+ ≡ inf

t∈I4t11 �5
Zn

+
4t51 Zn

M− ≡ �Zn
−
��1

with Zn
+
4t5≡Zn

b4t5 and Zn
−
4t5≡Zn

a4t5 if �212 ≥�112, and Zn
+
4t5≡Zn

a4t5 and Zn
−
4t5≡Zn

b4t5 otherwise. We work
with the final value Xn

M+ ≡ Xn
M+44t + �5 ∧ t25, and similarly for Xn

M− . Let 8Dn
f 4X

n
M 1 s52 s ≥ 09 have the rates

determined by Xn
M− when Dn

f 4X
n
M 1 s5≤ 0, and the rates determined by Xn

M+ when Dn
f 4X

n
M 1 s5 > 0.

We do a similar construction for Xn
m. Let

Xn
m+ ≡ 4Qn

11m1Q
n
21m1Z

n
m+5 and Xn

m− ≡ 4Qn
11m1Q

n
21m1Z

n
m−51

where

Qn
11m ≡ �Qn

11 b��1 Qn
21m ≡ inf

t∈I4t11�5
Qn

21a4t5∨ 01

Zn
m+ ≡ �Zn

+
��1 Zn

m− ≡ inf
t∈I4t11�5

Zn
−
4t51

with Zn
+
4t5 ≡ Zn

a4t5 and Zn
−
4t5 ≡ Zn

b4t5 if �212 ≥ �112, and Zn
+
4t5 ≡ Zn

b4t5 and Zn
−
4t5 ≡ Zn

a4t5 otherwise (the
reverse of what is done in Xn

M ). Let 8Dn
f 4X

n
m1 s52 s ≥ 09 have the rates from Xn

m− when Dn
f 4X

n
m1 s5≤ 0, and the

rates from Xn
m+ when Dn

f 4X
n
m1 s5 > 0. By this construction, we achieve the ordering in (59). We cover the rates

of Dn
1124t5 too because we can make the identification: the rates of Dn

1124t5 given Xn4t5 coincide with the rates
of Dn

f 4X
n4t51 ·5.

It remains to find a � such that both the processes 8Dn
f 4X

n
m1 s52 s ≥ 09 and 8Dn

f 4X
n
M 1 s52 s ≥ 09 are asymptoti-

cally positive recurrent. To do so, we use Lemma A.3, which concludes that the bounding processes as functions
of � have fluid limits. By Lemma A.3, we can conclude that X̄n

m+ ≡ n−1Xn
m+ ⇒ x+

m , X̄n
m− ≡ n−1Xn

m− ⇒ x−
m ,

X̄n
M+ ≡ n−1Xn

M+ ⇒ x+

M and X̄n
M− ≡ n−1Xn

M− ⇒ x−
M in D3, where xm+ , x−

m , x+

M and x−
M are all continuous with

x+
m4t1 ∨ 4t − �55 = x−

m4t1 ∨ 4t − �55 = x+

M4t1 ∨ 4t − �55 = x−
M4t1 ∨ 4t − �55 = x4t1 ∨ 4t − �55 ∈ �. Hence, we can

find �′ such that xm4�5 ∈ � and xM4�5 ∈ � for all � ∈ 601 �′7. Hence, we can choose � such that the constant
vectors xm ≡ xm4�5 and xM ≡ xM4�5 both are arbitrarily close to x4t15.

Finally, we use the linearity of the drift function to deduce the positive recurrence of the processes depending
upon n. As n→ �,

�n
−
4Xn

m−5/n ⇒ �−4x
−

m51 �n
+
4Xn

m+5/n ⇒ �+4x
+

m51

�n
−
4Xn

M−5/n ⇒ �−4x
−

M51 and �n
+
4Xn

M+5/n ⇒ �+4x
+

M5 in �0 �

We immediately obtain the following corollary to Lemma 8.4, exploiting Corollary A.1.

Corollary 8.1. Let � ≡ 4j ∨ k5− 1 using the QBD representation based on r112 = j/k in §6 of Perry and
Whitt [37]. If, in addition to the conditions of Lemma 8.4,

Dn
f 4X

n
m105− � ≤st D

n
f 4X

n40 ∨ t − �5105≤st D
n
f 4X

n
M 105+ � and

Dn
f 4X

n
m105− � ≤st D

n
11240 ∨ t − �5≤st D

n
f 4X

n
M 105+ � in �1 n≥ 11

(61)

then, in addition to the conclusions of Lemma 8.4,

Dn
f 4X

n
m1 ·5− � ≤st D

n
f 4X

n4t51 ·5≤st D
n
f 4X

n
M 1 ·5+ �1

Dn
f 4X

n
m1 t5− � ≤st D

n
1124t5≤st D

n
f 4X

n
M 1 t5+ � in D46t1 ∨ 4t − �51 4t + �5∧ t2750

(62)
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The following lemmas correspond to the QBD structure of the FTSP. These results hold for QBD processes
much more generally, but we state them in terms of the FTSP.

Lemma 8.5 (Continuity of the Stationary Distribution of the FTSP). The FTSP stationary random
variable D4�1�5 is continuous in the metric (63) as a function of the state � in � and thus D4x4t51�5 is
continuous in the metric (63) as a function of the time argument t when x4t5 ∈�.

Proof. This result follows from Theorem 7.1 in Perry and Whitt [37], in particular from the stronger
differentiability of the QBD R matrix in an open neighborhood of each � ∈ �, building on Theorem 2.3 in
He [17]. The second statement follows from the first, together with the continuity of x4t5 as a function of t. �

Remark 8.1 (Continuity on �). Lemma 3.1 shows that the stationary distribution of the FTSP is well
defined on all of � provided that we extend the set of possible values of the FTSP to the space E ≡�∪ 8+�9∪

8−�9, as in §7.2. Following Theorem 7.1 of Perry and Whitt [37], we can show that Lemma 8.5 holds, not
only on �, but also on �, but that extension is not needed here.

Let �4t5 ≡ inf8u > 02 D4x4t51 u5 = s9, where s is a state in the state space of the QBD D. The next lemma
establishes the existence of a finite moment generating function (mgf) for �4t5 for a positive recurrent FTSP.

Lemma 8.6 (Finite mgf for Return Times). For x4t5 ∈ �, let � ≡ �4t5 be the return time of the positive
recurrent QBD D4x4t51 ·5 to a specified state s. Then there exists �∗ > 0 such that ��4�5 ≡ E6e�� 7 < � for all
� < �∗.

Proof. As for any irreducible positive recurrent CTMC, a positive recurrent QBD is regenerative, with
successive visits to any state constituting an embedded renewal process. As usual for QBDs (see Latouche
and Ramaswami [28]), we can choose to analyze the system directly in continuous time or in discrete time
by applying uniformization, where we generate all potential transitions from a single Poisson process with a
rate exceeding the total transition rate out of any state. In continuous time we focus on the interval between
successive visits to the regenerative state; in discrete time we focus on the number of Poisson transitions between
successive visits to the regenerative state.

Let N be the number of Poisson transitions (with specified Poisson rate). The number of transitions, N , has
the generating function (gf) �N 4z5 ≡ E6zN 7, for which there exists a radius of convergence z∗ with 0 < z∗ < 1
such that �N 4z5 <� for z < z∗ and �N 4z5= � for z > z∗.

The mgf ��4�5 and gf �N 4z5 can be expressed directly in terms of the finite QBD defining matrices. It
is easier to do so if we choose a regenerative state, say s∗, in the boundary region (corresponding to the
matrix B in (6.5)–(6.6) of Perry and Whitt [37]). To illustrate, we discuss the gf. With s∗ in the boundary level,
in addition to the transitions within the boundary level and up to the next level from the boundary, we only need
consider the number of transitions, plus starting and ending states, from any level above the boundary down
one level. Because of the QBD structure, these key downward first passage times are the same for each level
above the boundary, and are given by the probabilities Gi1j 6k7 and the associated matrix generating function
G4z5 on p. 148 of Latouche and Ramaswami [28]. Given G4z5, it is not difficult to write an expression for the
generating function �N n4z5, just as in the familiar birth-and-death process case; e.g., see §4.3 of Latouche and
Ramaswami [28]. �

The next lemmas establish results regarding distances between processes in a discrete state apace. In particular,
we consider the state-space E of the processes Dn

112 and the FTSP D, which is a countable lattice. With the QBD
representation (achieved by renaming the states in E) the state-space E is a subset of �. To measure distances
between probability distributions on �, corresponding to convergence in distribution, we use the Lévy metric,
defined for any two cdf’s F1 and F2 by

L4F11 F25≡ inf 8� > 02 F14x− �5− � ≤ F24x5≤ F14x+ �5+ � for all x90 (63)

For random variables X1 and X2, L4X11X25 denotes the Lévy distance between their probability distributions.
(The Lévy metric is defined for probability distributions on �, but we will use it for processes defined on the
discrete space E.)

Lemma 8.7 (Uniform Bounds on the Rate of Convergence to Stationarity). For every t0 ∈ 6t11 t27
there exist � > 0 and constants �0 <� and �0 > 0, such that

L4D4x4t51 s51D4x4t51�55≤ �0e
−�0s in � (64)

holds for all t ∈ 6t1 ∨ 4t0 − �51 t0 + �7⊂ 6t11 t27.
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For our proof of Lemma 8.7, we also introduce the concept of uniformly 4u1�5-small sets on an interval,
which generalizes the concept of 4u1�5-small sets; for background see, e.g., Kontoyiannis and Meyn [26], Meyn
and Tweedie [32], and Roberts and Rosenthal [40]. For each (fixed) t ≥ 0 let P t

i1 j4u5 denote the transition
probabilities of 8D4x4t51 u52 u≥ 09:

P t
i1 j4u5≡ P4D4x4t51 u5= j �D4x4t5105= i51 i1 j ∈�0

Definition 8.1. A set C ⊆ � is 4u1�5-small, for a time u > 0 and for some � > 0, if there exists a
probability measure �t4 · 5 on � satisfying the minorization condition

P t
i1 j4u5≥ ��t4j51 i ∈C1 j ∈�0

We say that a set C is uniformly 4u1�5-small in the interval I , if C is 4u1�5-small for each process in the family
8D4x4t51 ·52 t ∈ I9, i.e., if C is 4u1�5-small for each D4x4t51 ·5 with the same u and �, t ∈ I .

Note that the probability measure �t in the minorization condition is allowed to depend on t in the definition
of uniformly 4u1�5-small.

Proof of Lemma 8.7. As above, let �4t5 denote the return time of the process D4x4t51 ·5 to the regeneration
state s∗, which, for concreteness, we take to be state 0, i.e., s∗ = 0. Consider the infinitesimal generator matrix
Q4t5 of the process D4x4t51 ·5. In a countable state space, every compact set is small (see, e.g., definition on
p. 11 in Kontoyiannis and Meyn [26]) and, in particular, 809 is a small set. (We show in (66) that 809 is in fact
uniformly 4u1�5-small.) Moreover, by Theorem 2.5 in Kontoyiannis and Meyn [26], the existence of a finite mgf
for the hitting time of the small set 809 is equivalent to the existence of a Lyapunov function V 2 � → 611�5,
which satisfies the exponential drift condition on the generator, Condition 4V45 in Kontoyiannis and Meyn [26]:

Q4t5V ≤ −ctV +dt18091 (65)

where ct and dt are strictly positive constants.
Consider the time t0 ∈ 6t11 t27. Then (65) holds at t0 with constants ct0 and dt0

. Since ct0 > 0 we can decrease it
such that (65) holds with strict inequality and the new ct0 is still strictly positive. We increase dt0

appropriately,
such that

∑

j q01j4t5V 4j5 <−ct0V 405+dt0
1809. The continuity of Q4t5 on 6t11 t27 as a function of t, which follows

immediately from the continuity of the rates (13)–(16) as functions of the continuous function x4t5, implies that
there exist � > 0 and two positive constants c0 and d0, such that (65) holds for all t ∈ 6t0 − �1 t0 + �7 with the
same constants c0 and d0. However, this is still not sufficient to conclude that the bounds in (64) are the same
for all t ∈ 6t0 − �1 t0 + �7; see Theorem 1.1 in Baxendale [6] (for discrete-time Markov chains).

Recall that for each fixed t, P t
i1j4s5 denotes the transition probabilities of the CTMC 8D4x4t51 s52 s ≥ 09.

We can establish uniform bounds on the convergence rates to stationarity by showing that 809 is uniformly
4u1�5-small in an interval 6t0 − �1 t0 + �7 for the family 8D4x4t51 ·52 t ∈ 6t0 − �1 t0 + �79, as in Definition 8.1.
In particular, we need to show that

P t
01 j4u5≥ ��t4j51 j ∈� (66)

holds for all t ∈ 6t0 − �1 t0 + �7 with the same � (but �t is allowed to change with t). This step, together with
the uniform bounds c0 and d0 in (65) established above, will be shown to be sufficient to conclude the proof.

Hence, it is left to show that (66) holds for all t ∈ 6t0 − �1 t0 + �7 with the same � > 0. This step is easy
because 809 is a singleton in a countable state space. Specifically, for each t we consider, we can fix any u> 0
and define �t4j5≡ P t

01j4u5. With this definition of �t we can take any �≤ 1 in (66). As in the discrete-time case
in Baxendale [6] (the strong aperiodicity condition (A3) in Baxendale [6] is irrelevant in continuous time), the
bounds on the convergence rates in (64) depend explicitly on � in the minorization condition (66), the bounds
in the drift condition (65), and the Lyapunov function V in (65). This can be justified by uniformization, but can
also be justified directly for continuous-time processes, e.g., from the expressions in Theorem 3 and Corollary
4 in Roberts and Rosenthal [40].

The uniform bounds on the rate of convergence to steady state established above by applying Roberts and
Rosenthal [40] are directly expressed in the total-variation metric. If the total variation metric can be made
arbitrarily small, then so can the Levy metric. Hence we have completed the proof.

Remark 8.2 (Bounds on Coupling Times). The bounds on the rate of convergence to stationarity of
Markov processes satisfying (65) and (66) in Roberts and Rosenthal [40] are obtained via the coupling inequal-
ity. In particular, we have provided explicit bounds for the time it takes a positive recurrent FTSP D4�1 ·5 (with
� ∈�), initialized at some finite time, to couple with its stationary version.
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The final auxiliary lemma relates the Lévy distance L in (63) between Dn
e 4X

n4u51 s05 in (12) and the FTSP
D4x4u51 s05 at a finite time s0.

Lemma 8.8. Suppose that x4t5 ∈� for t1 ≤ t ≤ t2. Then and for any fixed s0 > 0,

L4Dn
e 4X

n4u51 s051D4x4u51 s055→ 0 as n→ �1 uniformly in u ∈ 6t11 t270 (67)

Proof. If follows from the proof of Theorem 4.4 that, for the given � > 0, there exists �4t15, n04t15, and
s04t15 such that

L4Dn
e 4X

n4v51 s04t1551D4x4v51 s04t1555 < � for all t1 ≤ v ≤ 4t1 + �4t155∧ t2 and n≥ n04t15

exploiting the convergence X̄n ⇒ x and Dn4â n105 = Dn
1124t15 ⇒ D4x4t15105 = D4�105 for â n ≡ Xn4t15 and

� ≡ x4t15. We can apply this reasoning in an open interval about each u ∈ 6t11 t27. In particular, for the given
� > 0 and u ∈ 6t11 t27, there exists �4u5, n04u5, and s04u5 such that

L4Dn
e 4X

n4v51 s04u551D4x4v51 s04u555 < � for all 4u− �4u55∨ t1 ≤ v ≤ 4u+ �4u55∧ t2 and n≥ n04u50

However, because the interval 6t11 t27 is compact and the family of intervals 4t1 ∨ 4u− �4u551 4u+ �4u55∧ t25,
taken to be closed on the left at t1 and closed on the right at t2, is an open cover, there is a finite subcover.
Hence, all time points in 6t11 t27 are contained in only finitely many of these intervals. Hence, we can achieve
the claimed uniformity. Moreover, because the conclusion does not depend on the subsequence used at the initial
time t1, the overall proof is complete.

8.4. Proofs of Theorems 4.5 and 4.6. We apply the results in §8.3 to prove the theorems.

Proof of Theorem 4.5. First, if x4t05 ∈� then there exists t2 such that x4t5 ∈� over 6t01 t27 because � is
an open set and x is continuous. It is possible that the fluid limit never leaves � after time t0, in which case
x ∈� over 6t01�5. In the latter case we can consider any t2 > t0.

(i) We begin by showing that there exists �0 ≡ �4t05 > 0, such that Dn
1124t15 is tight in � for all t1 satisfying

t0 < t1 < t0 + �0. Henceforth, t1 denotes such a time point. We need to show that, for any � > 0, there exists
a constant K such that P4�Dn

1124t15� > K5 < � for all n ≥ 1. Overall we prove the claim in three steps: in the
first step we bound Dn

112 over 6t01 t0 + �07, in sample-path stochastic order, with positive recurrent QBDs but
with random initial conditions. In the second step, we show that these bounding QBDs are tight for each t1 as
above, by showing that they couple with stationary versions rapidly enough. In the third step we show that we
can extend the conclusion from the subinterval 6t11 t0 + �07 to the entire interval 6t11 t27.

Step 1. We apply Lemma 8.4 to find a �0 > 0 and construct random states Xn
m and Xn

M with the properties
stated there, such that rate order holds as in (59) in D46t01 t0 + �075, after we let Dn

f 4X
n
m1 t05 ≡ Dn

f 4X
n
M 1 t05 ≡

Dn
1124t05. Next, for all sufficiently large n, we bound the upper bounding process above and the lower bounding

process below in rate order, each by a FTSP with fixed states x̃m and x̃M but ordered so that strict rate order in
Lemma A.4 holds. Because xm and xM are in � and � is open, these new states x̃m and x̃M can be chosen to
be sufficiently near the initial states xm and xM that they too are in �. We let these FTSPs be given the same
initial conditions depending on n, consistent with above. For that purpose, we put the initial condition in the
notation; i.e., we let D4�1b1 ·5 ≡ D4�1 ·5 given that D4�105 = b. We combine the rate order just established
with Corollary 8.1 to obtain the sample-path stochastic order

D4x̃m1D
n
1124051 nt5− � ≤st D

n
1124t5≤st D4x̃M 1D

n
1124051 nt5+ � (68)

for all n≥ n0 for some n0.
So far, we have succeeded in bounding Dn

1124t5 above (and below) stochastically by a positive recurrent FTSP
with random initial conditions, in particular starting at Dn

112405. It suffices to show that each bounding FTSP
with these initial conditions in stochastically bounded at any time t1 ∈ 4t01 t0 + �07. We show that next.

Step 2. We now show that the two bounding processes in (68) are indeed stochastically bounded at such t1.
We do that by showing that they couple with the stationary versions of these FTSPs with probability converging
to 1 as n → �. Since x4t05 ∈ �, we can apply Theorem 4.1 to deduce that X̄n4t05 ⇒ x405 as n → �, which
implies that Dn

112405= o4n5 as n→ �. If we consider the FTSP without the scaling by n in (68), it suffices to
show, for t1 as above, the bounding processes recover from the o4n5 initial condition within o4n5 time, which
will be implied by showing that the coupling takes place in time o4n5.
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We show that by applying Lemma 8.7 and Remark 8.2. They imply that the time until the FTSP in (68)
couples with its stationary version is bounded by constants depending on ct0 and dt0

in (65) and � in (66),
as well as the Lyapunov function V in (65). Now, D4x̃M 1 t05=Dn

1124t05 by construction, and x4t05 ∈�, so that
D4x̃M 1 t05 = o4n5. Hence, V 4D4x̃M 1 t55 = o4n5 for all t ≥ t0, for V in (65). In particular, we see that the time
until D4x̃M 1 t05 couples with it stationary version, when initialized at Dn

1124t05, is o4n5. Together with (68), that
implies the claim. That is, we have shown that Dn

1124t15 is tight in � for all t1, t0 < t1 < t0 + �0.
Step 3. To extend the result to the interval 6t11 t27 we observe that we can repeat the reasoning above

for any starting point t ∈ 6t11 t27 (since x4t5 ∈ � for all t ∈ 6t11 t27), achieving an uncountably infinite cover for
6t11 t27 of intervals of the form 6t1 t + �4t57. Because the interval 6t11 t27 is compact, the uncountably infinite
cover of these intervals, made open at the left unless the left endpoint is t1 and made open on the right unless
the right endpoint is t2, has a finite subcover. As a consequence, the entire interval 6t11 t27 is covered by only
finitely many of these constructions, and we can work with the finite collection of closures of these intervals.

In particular, since the sequence 8Dn
1124t152 n ≥ 19 is stochastically bounded, we can apply the construction

over an interval of the form 6t11 t
′7 for t1 < t′ ≤ t2. As a consequence we obtain stochastic boundedness for each

t in 6t11 t
′7. If t′ < t2, then we continue. We then can choose a second interval 6t′′1 t′′′7 such that t1 < t′′ ≤ t′ < t′′′.

We thus can carry out the construction over 6t′′1 t′′′7. Since t′′ ≤ t′, we already know that the sequence of random
variables 8Dn

1124t
′′53n ≥ 19 is stochastically bounded from the first step. Thus, in finitely many steps, we will

deduce the first conclusion in (i). If x405 ∈� and we take t0 = 0, then Dn
1124t05 is tight in � because Dn

112405⇒ L
by Assumption 3.2, so the result holds on 6t01 t27≡ 601 t27.

(ii) To prove the statement in (ii) we observe that Theorem 4.4 implies that the oscillations are asymptotically
too rapid for the sequence 8Dn

1122 n ≥ 19 to be tight in D over any finite interval. Moreover, there is a finite
interval over which a single frozen-difference process serves as a lower bound, by Lemma 8.4. Because of the
scaling by n, the maximum in the lower bound QBD over this interval will be unbounded above (actually of
order O4logn5 by reasoning as in Lemma A.6). Thus, the sequence of stochastic processes 8Dn

1122 n≥ 19 is not
even stochastically bounded over any finite subinterval of 6t01 t27.

(iii) We apply Lemma A.6 to establish (33). We can bound the supremum of Dn
1124t5 over the interval 6t11 t27

by the supremum of the finitely many frozen queue-difference processes. Because the rates are of order n,
Lemma A.6 implies (33). Once again, the result can be extended to hold on 6t01 t27≡ 601 t27 if x405 ∈� by the
assumed convergence Dn

112405⇒ L in Assumption 3.2. �
Proof of Theorem 4.6. For any given t with t1 < t ≤ t2 and � > 0, we will show that we can choose n0

such that L4Dn
1124t51D4x4t51�55 < � for all n≥ n0, where L is the Lévy metric in (63). Since 8Dn

1124t152 n≥ 19
is stochastically bounded, it is tight. Hence, we start with a converging subsequence, without introducing sub-
sequence notation. The result will not depend on the particular converging subsequence we choose.

Hence, we start with Dn
1124t15 ⇒ L, where L is a proper (almost surely finite) random variable. We will

then let D4x4t15105 = L to obtain Dn
1124t15 ⇒ D4x4t15105, as required to apply Theorem 4.4 at t1. If t > t1,

then for all sufficiently large n, t − s/n ≥ t1, in which case we can write Dn
1124t5 = Dn

1124t − s/n + s/n5 =

Dn
e 4X

n4t − 4s/n551 s5, where Dn
e is the expanded queue-difference process defined in (12), with t − s/n≥ t1 so

that x4t − s/n5 ∈�. Hence we can write

L4Dn
1124t51D4x4t51�55 ≤ L4Dn

e 4X
n4t − s/n51 s51D4x4t − s/n51 s55

+L4D4x4t − s/n51 s51D4x4t − s/n51�55

+L4D4x4t − s/n51�51D4x4t51�550 (69)

For t and any � > 0 given, we first choose � so that t− �≥ t1 and x remains in � throughout 601 t+ �7, which
is always possible because x4t5 ∈�, t > t1, x is continuous and � is an open subset of �. (We use the condition
that t > t1 here.) In addition, we choose � sufficiently small that the third term in (69) is bounded as

L4D4x4u51�551D4x4t51�55 < �/3 for all u1 t − �≤ u≤ t + �1

which is possible by virtue of Lemma 8.5. Given t, �, and �, we choose s0 sufficiently large that the second
term in (69) is bounded as

L4D4x4u51 s051D4x4u51�55 < �/3 for all u1 t − �≤ u≤ t + �1

which is possible by Lemma 8.7. Finally, we choose n0 sufficiently large that s0/n < � for all n ≥ n0 and the
first term in (69) is bounded as

L4Dn
e 4X

n4u1 s0551D4x4u51 s055 < �/3 for all u1 t − �≤ u≤ t + �1
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which is possible by Lemma 8.8. That choice of �, s0, and n0 makes each term in (69) less than or equal to �/3
for all n≥ n0, thus completing the proof.

9. Conclusion and further research. In this paper we proved a FWLLN (Theorem 4.1) for an overloaded
X model operating under the FQR-T control (§2.2), with many-server heavy-traffic scaling (§2.3). Theorem 4.1
shows that the fluid-scaled version of the six-dimensional Markov chain Xn

6 , whose sample-path representation
appears in Theorem 5.1, converges to a deterministic limit, characterized by the unique solution to the three-
dimensional ODE (24), which in turn is driven by the FTSP in §3.2. We also proved a WLLN for the stationary
distributions (Theorem 4.3) that justifies a limit interchange in great generality (Theorem 4.2).

Finally, in §4.3 we presented results regarding the queue difference process and SSC for the queues when the
fluid limit is in �. in particular, Theorem 4.5 proved statements regarding the tightness of Dn

1124t5 in �, and
nontightness in D. Corollary 4.1 shows that SSC for the queues hold under any scaling larger than O4logn5,
depending only on whether the fluid limit x is in �. Theorem 4.6 establishes a pointwise AP result, which is
not an immediate corollary of the AP in the FWLLN.

Proof of the FWLLN. We proved the FWLLN in three steps, (i) showing that the sequence of processes
8X̄n

6 2 n ≥ 19 is tight and every limit is continuous (Theorem 5.2); (ii) simplifying the representation in Theo-
rem 5.1 to the essentially three-dimensional representation in (45) (Corollary 6.4); and (iii) characterizing the
limit via the averaging principle (AP) (§7). Characterizing the fluid limit of that three-dimensional process was
challenging because the sequence of queue-difference processes 88Dn

1124t52 t ≥ 092 n ≥ 19 in (6) does not con-
verge to any limiting process as n → �. Instead, we have the AP, which can be better understood through
Theorems 4.4–4.6.

Because of the AP, the indicator functions 18Dn
1124s5>09 and 18Dn

1124s5≤09 in the representation (45) are replaced in
the limit with appropriate steady-state quantities related to the FTSP D4x4t51 ·5, e.g., 18Dn

1124s5>09 is replaced in
the limit with

�1124x4s55≡ P4D4x4s51�5 > 05= lim
t→�

1
t

∫ t

0
18D4x4s51 u5>09 du0

Our proof of the AP in §7 is based on the framework established by Kurtz [27]. In the appendix we present
a different proof of the AP that is weaker, because it only characterizes the FWLLN in the set �. However,
it has the advantage of being intuitive, with an explicit demonstration of the separation of time scales, which
takes place in �. Moreover, this proof continues the bounding logic of §§A and B, and thus follows naturally
from previous results established in the paper. Both proofs have merits, and can be useful in other models where
separation of time scales occur in the limit.

Results for QBD processes. In the process of proving the SSC in Theorem 6.4 and Theorems 4.5 and 4.6,
we established some general results for QBDs, which are interesting in their own right. First, we established
an extreme-value result in Lemma A.6. Then, in §8.3 we established the continuity of stationary distributions
(Lemma 8.5), finite mgf for return times (Lemma 8.6), and uniform ergodicity for a family of ergodic QBD
processes (Lemma 8.7). To the best of our knowledge, those results are not stated in the existing literature.

The control. The FQR-T control is appealing, not only because it is optimal during the overload incident in
the fluid limit Perry and Whitt [35], but also because the FQR-T control produces significant simplification of
the limit, because it produces a strong form of SSC. Specifically, by Theorem 6.4, the four-dimensional service
process is asymptotically one dimensional, with Zn

112 alone characterizing limits under any scaling. By Theorem
4.5, the two-dimensional queue process is asymptotically one dimensional under any scaling larger than O4logn5
(in particular, under fluid and diffusion scaling). This latter result holds unless class 1 is so overloaded that there
is not enough service capacity in both pools to keep the desired ratio between the two queues (in which case the
fluid limit will not be in �). Hence, the six-dimensional Markov chain describing the system during overloads
in the prelimit is replaced by a simplified lower dimensional deterministic function, which is easier to analyze.
In addition, these SSC results are crucial to proving the FCLT for the system (Perry and Whitt [38]).

Further research. As Lemma B.1 and the proof of Theorem 6.4 reveal, one-way sharing, which we suggested
in Perry and Whitt [35] as a means to prevent unwanted simultaneous sharing of customers in finite systems
(where the thresholds themselves may not be sufficient to prevent two-way sharing) has shortcomings; see
Remark B.1. For example, in the limiting fluid model, if after some time the overload switches over, so that
queue 2 should start receiving help from pool 1, then the one-way sharing rule will not allow class-2 customers to
be sent to pool 1 because, as was shown in the proof of Theorem 6.4, z1124t5 > 0 for all t > 0. As a consequence,
in large systems, a significant amount of time must pass before sharing in the opposite direction is allowed.
This problem with one-way sharing can be remedied by dropping that rule completely, or by introducing lower
thresholds on the service process; again see Remark B.1. We have begun studying such alternative controls.
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Appendix. This Appendix has six sections. In §A we establish important technical results to be used to
prove the results in §6. In §B we apply the results in §A to prove the results in §6. In §C we present an
alternative proof of Lemma 7.2 and thus an alternative proof of the FWLLN in Theorem 4.1. In §D we show
how to present the process Dn

∗
in step 1 of the proof of Lemma B.3 as a QBD for each n. In §E we explain

why Assumption 3.2 about the initial conditions is reasonable. Finally, in §F we list all the acronyms used in
this paper.

Appendix A. Supporting technical results. In this section we establish supporting technical results that we
will apply to prove the results in §6. In §A.1 we introduce a frozen queue difference process, which “freezes”
the state of the slow process (X̄n in (45)), so that the fast process (the queue difference process Dn

112 in (6)) can
be considered separately. Like the FTSP in §3.2, the frozen process is a pure-jump Markov process. To carry
out the proofs, we exploit stochastic bounds. Hence, we discuss them next in §§A.2, A.3, and A.4. Because the
FTSP and the frozen processes can be represented as QBD processes, as indicated in §6 of Perry and Whitt [37],
we next establish extreme value limits for QBDs in §A.5. We establish continuity results for QBDs, used in the
alternative proof of characterization, in §C.3.

A.1. Auxiliary frozen processes. Our proof of Theorem 6.1 will exploit stochastic bounds for the queue
difference process Dn

211. Our alternative proof of Theorem 4.1 will exploit similar stochastic bounds for the
queue difference process Dn

112. These processes, Dn
211 and Dn

112, are non-Markov processes whose rates at each
time t are determined by the state of the system at time t, i.e., by Xn

6 4t5, and are thus hard to analyze directly.
To circumvent this difficulty, we consider related auxiliary processes, with constant rates determined by a fixed
initial state â n ≡Xn

6 405. The construction is essentially the same for the two processes Dn
211 and Dn

112. Because
we are primarily concerned with Dn

112, we carry out the following in that context, with the understanding that
there is a parallel construction for the process Dn

211.
When we work with Dn

112, we exploit the reduced representation involving Xn in (45). Let Dn
f 4â

n5 ≡

8Dn
f 4â

n1 t52 t ≥ 09 denote this new process with fixed state â n ≡ 4Qn
11Q

n
21Z

n
1125. Conditional on â n, Dn

f 4â
n5 is

a QBD with the same fundamental structure as the FTSP defined in §3.2. We use the subscript f because we
refer to this constant-rate pure-jump Markov process as the frozen queue-difference process, or alternatively, as
the frozen process, thinking of the constant transition rates being achieved because the state has been frozen at
the state â n.

As in §3.2, the rates of the frozen process are determined by â n ≡ 4Qn
11Q

n
21Z

n
1125 and by its position. Also,

as in §3.2, let r ≡ r112. The frozen process Dn
f 4â

n5 has jumps of size +r1+11−r1−1 with respective rates
�
4r5
+ 4n1â n5, �415

+ 4n1â n5, �4r5
−
4n1â n5, �415

−
4n1â n5 when Dn

f ≤ 0, and jumps of size +r , +1, −r , −1 with respective
rates �

4r5
+ 4n1â n5, �415

+ 4n1â n5, �4r5
+ 4n1â n5, �415

+ 4n1â n5 when Dn
f > 0.

Analogously to (13)–(16), in the nonpositive state space these rates are equal to

�415
−
4n1â n5≡ �n

1 and �4r5
−
4n1â n5≡�112Z

n
112 +�2124m

n
2 −Zn

1125+ �2Q
n
21

�415
−
4n1â n5≡�111m

n
1 + �1Q

n
1 and �4r5

−
4n1â n5≡ �n

21
(A1)

and in the positive state space, these rates are equal to

�
415
+ 4n1â n5≡ �n

1 and �
4r5
+ 4n1â n5≡ �2Q

n
21

�
415
+ 4n1â n5≡�111m

n
1 +�112Z

n
112 +�2124m

n
2 −Zn

1125+ �1Q
n
1 and �

4r5
+ 4n1â n5≡ �n

2 0
(A2)

Using these transition rates, we can define the drift rates for Dn4â n5, paralleling (19). Let these drift rates in
the regions 401�5 and 4−�107 be denoted by �n

+
4â n5 and �n

−
4â n5, respectively, then

�n
+
4â n5≡ 6�n

1 −�111m
n
1 + 4�212 −�1125Z

n
1124t5−�212m

n
24t5− �1Q

n
14t57− r6�n

2 − �2Q
n
24t571

�n
−
4â n5≡ 6�n

1 −�111m
n
1 − �1Q

n
14t57− r6�n

2 + 4�212 −�1125Z
n
1124t5−�212m

n
2 − �2Q

n
24t570

(A3)

Just as for the FTSP, Dn
f 4â

n5 is, conditional on â n, a positive recurrent QBD if an only if

�n
+
4â n5 < 0 <�n

−
4â n50 (A4)
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The constant-rate pure-jump Markov process Dn
f 4â

n5 will frequently appear with â n being a state of some pro-
cess, such as Xn4t5, We then write Dn

f 4X
n4t55≡ 8Dn

f 4X
n4t51 s52 s ≥ 09, where it is understood that Dn

f 4X
n4t55

d
=

Dn
f 4â

n5 under the condition that â n d
= Xn4t5. It is important that this frozen difference process Dn

f 4â
n5 can be

directly identified with a version of the FTSP defined in §3.2, because both are pure-jump Markov processes
with the same structure. Indeed, the frozen-difference process can be defined as a version of the FTSP with
special state and basic model parameters �n

i and mn
j , and transformed time. To express the relationship, we first

introduce appropriate notation. Let D4�i1mj1 �1 s5 denote the FTSP, as defined in §3.2 with transition rates in
(13)–(16) as a function of the arrival rates �i, i = 112, the staffing levels mj , j = 112, and the state �, where
s is the time parameter as before. (We now will allow the parameters �i and mj to vary as well as the state.)
With that new notation, we see that the frozen process is equal in distribution to the corresponding FTSP with
new parameters, in particular,

8Dn
f 4�

n
i 1m

n
j 1 â

n1 s52 s ≥ 09 d
= 8D4�n

i /n1m
n
j /n1ân/n1ns52 s ≥ 091 (A5)

with the understanding that the initial differences coincide, i.e.,

D4�n
i /n1m

n
j /n1ân/n105≡Dn

f 4�
n
i 1m

n
j 1 â

n1050

This can be checked by verifying that the constant transition rates are indeed identical for the two processes,
referring to (13)–(16) and (A1)–(A2). Since �n

i /n → �i, i = 112 and mn
j /n → mj , j = 112, by virtue of the

many-server heavy-traffic scaling in (3), we will have the transition rates of D4�n
i /n1m

n
j /n1ân/n1 ·5 converge to

those of D4�5≡D4�i1mj1 �1 ·5 whenever ân/n→ �.

A.2. Bounding processes. We will use bounding processes in our proof of Theorem 6.1 and later results.
We construct the bounding processes so that they have the given initial conditions at time 0 and satisfy FWLLNs
with easily determined continuous fluid limits, coinciding at time 0. We thus control the initial behavior.

We first construct w.p.1 lower and upper bounds for Zn
112. Recall that N s

i1j , i1 j = 112, are the independent
rate-1 Poisson processes used in (34). Let

Zn
a4t5=Zn

112405−N s
112

(

�112

∫ t

0
Zn
a4s5ds

)

1

Zn
b4t5=Zn

112405+N s
212

(

�212

∫ t

0
4mn

2 −Zn
b4s55ds

)

0

(A6)

Lemma A.1. For all n≥ 1 and t ≥ 0, Zn
a4t5≤Zn

1124t5≤Zn
b4t5 w.p.1.

Proof. The bounding processes Zn
a and Zn

b are both initialized as Zn
112405 at time 0. They are defined in

terms of the same rate-1 Poisson processes as Zn
112, so that the three processes can be compared for each sample

path. The lower-bound process Zn
a is the pure death process obtained by routing no new class-1 customers to

pool 2 and letting all initial ones depart after receiving service. Hence, Zn
a is decreasing monotonically to zero.

The upper-bound process Zn
b is a pure birth process obtained by having pool 2 not serve any of its initial class 1

customers and by assigning every server in pool 2 that completes service of a class 2 customer to a new class 1
customer, assuming that such customers are always available. Hence, Zn

b is increasing monotonically to mn
2 . The

given process Zn
112 necessarily falls in between, where Zn

112 is defined in (43) with the asterisk omitted. That is
so because, whenever Zn

112 is equal to Zn
b , every jump up in Zn

112 is also a jump up in Zn
b , but not vice versa;

whenever Zn
112 is equal to Zn

a every jump down in Zn
112 is also a jump down in Zn

a , but not vice versa. This
is because jumps are generated by the same Poisson processes, but for Zn

112 jumps occur only if the indicator
functions in the respective Poisson processes are equal to one. �

We next construct w.p.1 lower and upper bounds for Qn
i . The upper bound processes will have the speci-

fied arrivals but no departures, whereas the lower bound process will have no arrivals but maximum possible
departures. Both processes will start at the initial values.

For i, j = 112, let N a
i , N s

i1 j , and N u
i be the previously specified independent rate-1 Poisson processes used in

(34), and let

Qn
i1a4t5=Qn

i 405−

2
∑

k=1

2
∑

j=1

N s
k1 j4�k1 jm

n
j t5−N u

i 4�iQ
n
i 4055t1

Qn
i1 b4t5=Qn

i 405+N a
i 4�

n
i t51 t ≥ 00

(A7)
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Lemma A.2. For all n≥ 1 and t ≥ 1,

4Qn
11a4t51Q

n
21a4t55≤ 4Qn

14t51Q
n
24t55≤ 4Qn

11b4t51Q
n
21b4t55 w.p.1.

Proof. Just as in Lemma A.1, we get a w.p.1 comparison because we construct both systems using the same
rate-1 Poisson processes. The upper bound is immediate, because the two systems being compared have the same
initial value and the same arrivals, but the upper bound system has no service completions or abandonments. For
the lower bound, we separately consider the fate of new arrivals, customers initially in service and customers
initially in queue. However, we allow the identity of departing customers to shift, which does not affect the
result. In the lower bound system new arrivals never enter, so they necessarily leave sooner. Allowing for identity
shift, customers initially in queue abandon as rapidly as possible in the lower bound system, because the rate is
fixed at the initial rate �iQ

n
i 405. Of course, some customers from queue may enter service. But all customers in

service leave at least as quickly in the lower bound system because all servers are working continuously. In the
lower bound system we act as if all servers in each pool are simultaneously serving customers of both classes.
Hence, we do not need to pay attention to the service assignment rule. The identity of customers may change
in this comparison, but the order will hold for the numbers. Hence the proof is complete.

Unlike the processes in Corollary 6.1, we can easily establish stochastic-process limits for the asso-
ciated fluid-scaled bounding processes, and these continuous limits coincide at time 0. Let Xn

a1b ≡

4Qn
11a1Q

n
21a1Z

n
a1Q

n
11b1Q

n
21b1Z

n
b5.

Lemma A.3. As n → �, X̄n
a1b ⇒ xa1b in D6, where xa1b ≡ 4q11 a1 q21 a1 za1 q11 b1 q21 b1 zb5 is an element of C6

with
za4t5= z112405−�112

∫ t

0
za4s5ds1

zb4t5= z112405+�212

∫ t

0
zb4s5ds1

(A8)

qi1 a4t5= qi405−

2
∑

k=1

2
∑

j=1

�k1 jmj t + �iqi405t1

qi1 b4t5= qi405+�it1 t ≥ 00

(A9)

Proof. The stated convergence is a relatively simple application of the continuous mapping theorem. In
particular, we first exploit the continuity of the integral representation, Theorem 4.1 in Pang et al. [34], to
establish the convergence 4Z̄n

a1 Z̄
n
b5⇒ 4za1 zb5. The queue length bounds are simple linear functions. �

We will apply the bounding results above in §B.1, starting with the proof of Lemma 6.1.

A.3. Rate order for FTSPs. Given that we can represent frozen processes as FTSPs with appropriate state
parameters �, as shown in (A5), it is important to be able to compare FTSPs with different state parameters.
We establish such a comparison result here for the FTSP in §3.2 using rate order. We say that one pure-jump
Markov process Y1 is less than or equal to another Y2 in rate order, denoted by Y1 ≤r Y2, if all the upward
transition rates (with same origin and destination states) are larger in Y2 and all the downward transition rates
(with same origin and destination states) are larger for Y1. The following lemma is an immediate consequence
of the definition of rates in (13)–(16).

Lemma A.4 (Rate Order for FTSPs). Consider the FTSP in §3.2 for candidate states �4i5 ≡

4q
4i5
1 1 q

4i5
2 1 z

4i5
1125, i = 112. (a) If �112 ≥�212 and

4−q
415
1 1 q

415
2 1 z

415
1125≤ 4−q

425
1 1 q

425
2 1 z

425
1125 in �31

then
D4�4151 ·5≤r D4�4251 ·50

(b) If �112 ≤�212 and
4−q

415
1 1 q

415
2 1−z

415
1125≤ 4−q

425
1 1 q

425
2 1−z

425
1125 in �31

then
D4�4151 ·5≤r D4�4251 ·50
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We will apply the rate order to get a sample path stochastic order, involving coupling; see Kamae et al. [20],
Whitt [44], Ch. 4 of Lindvall [30], and §2.6 of Müller and Stoyan [33]. We briefly discuss those bounds for
a sequence of stochastic processes 8Y n2 n ≥ 19. We will bound the process Y n, for each n ≥ 1, by a process
Y n
b ; i.e., for each n, we will establish conditions under which it is possible to construct stochastic processes

Ỹ n
b and Ỹ n on a common probability space, with Ỹ n

b having the same distribution as Y n
b , Ỹ n having the same

distribution as Y n, and every sample path of Ỹ n
b lies below (or above) the corresponding sample path of Ỹ n. We

will then write Y n
b ≤st 4≥st5Y

n. However, we will not introduce this “tilde” notation; instead, we will use the
original notation Y n and Y n

b . As a first step, we will directly give both processes, Y n and Y n
b identical arrival

processes, the Poisson arrival processes specified for Y n. We will then show that the remaining construction
is possible by increasing (decreasing) the departure rates so that, whenever Y n = Y n

b , any departure in Y n also
leads to a departure in Y n

b . That is justified by having the conditional departure rates, given the full histories of
the systems up to time t, be ordered.

When r112 = 1, rate order directly implies the stronger sample path stochastic order, but not more generally,
because the upper (lower) process can jump down below (up above) the lower (upper) process when the lower
process is at state 0 or below, while the upper process is just above state 0. Nevertheless, we can obtain the
following stochastic order bound, involving a finite gap. For the following we use the rational form r112 = j/k,
j1 k ∈ �+ and the associated integer-valued QBD, as in §6 of Perry and Whitt [37]. (Recall Assumption 3.3.)
There is no gap when r112 = 1 because then j = k = 1 and the jump Markov process and associated QBD process
both are equivalent to a simple birth-and-death process.

Corollary A.1 (Stochastic Bounds from Rate Order for FTSPs). Consider the FTSP in §3.2 with
QBD representation based on r112 = j/k as in §6 of Perry and Whitt [37], for candidate states �4i5 ≡

4q
4i5
1 1 q

4i5
2 1 z

4i5
1125, i = 112.

(a) If �112 ≥�212 and
4−q

415
1 1 q

415
2 1 z

415
1125≤ 4−q

425
1 1 q

425
2 1 z

425
1125 in �31

then
D4�4151 ·5≤st D4�4251 ·5+ 4j ∨ k5− 10

(b) If �112 ≤�212 and
4−q

415
1 1 q

415
2 1−z

415
1125≤ 4−q

425
1 1 q

425
2 1−z

425
1125 in �31

then
D4�4151 ·5≤st D4�4251 ·5+ 4j ∨ k5− 10

Proof. We can do the standard sample path construction: Provided that the processes are on the same side
of state 0 in the QBD representation, we can make all the processes jump up by the same amount whenever the
lower one jumps up, and make all the processes jump down by the same amount whenever the upper one jumps
down. However, there is a difficulty when the processes are near the state 0 in the QBD representation (which
involves the matrix B for the QBD). When the upper process is above zero and the lower process is at or below
zero, the lower process can jump over the upper process by at most 4j ∨k5−1, and the upper process can jump
below the lower process by this same amount. But the total discrepancy cannot exceed 4j ∨ k5− 1, because of
the rate order. Whenever the desired order is switched, no further discrepancies can be introduced. �

The complexity of the proof in Appendix C is primarily because of the fact that we allow general rational
ratio parameters. If r112 = r211 = 1, the proof can be much shorter, directly exploiting the sample path stochastic
order in Corollary A.1 (where there is no gap).

Remark A.1 (Rate Order Comparisons for Queue Difference Processes). In the rest of this paper, in
particular in the proof of Lemma B.3 in §B.1, Theorem 4.1 in §C, and Theorem 4.5 in §8.4, we will combine
the results in this subsection and earlier subsections to establish rate order and sample path stochastic order
comparisons between queue difference processes and associated frozen difference processes. A typical initial
rate order statement will be of the form

Dn
112 ≤r D

n
f 4â

n5 in D4601 �75 (A10)

for some � > 0, which we now explain. First, Dn
112 is a function of the Markov process Xn

6 , which has state-
dependent rates. Thus the “transition rates” of Dn

112 are understood to be functions of time t and Xn
6 4t5, the state

of the Markov process Xn
6 at time t, which includes the value of Dn

1124t5. However, the right side of (A10) is
interpreted quite differently. We regard Dn

f 4â
n5, conditional on the random state vector â n, as a homogenous
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pure-jump Markov process constructed independently of Xn
6 , with new rate-1 Poisson processes, as in §5.1.

However, we deliberately construct the random fixed state vector â n as a function of Xn
6 in order to facilitate

comparison of rates. Thus, Dn
f 4â

n5 and Xn
6 , and thus Dn

112, are dependent, but they are conditionally independent
given the random state vector â n. Thus, the conclusion in (A10) means that the transition rates at each time t
for each value of Xn

6 4t5 are ordered. If the two processes are in the same state at some time t, then the two
processes can make transitions to the same states, and each upward transition rate of Dn

f 4â
n5 is greater than

or equal to the corresponding upward transition rate of Dn
112, whereas each downward transition rate of Dn

f 4â
n5

is less than or equal to the corresponding downward transition rate of Dn
112. That rate ordering then allows the

sample path stochastic order comparisons, as in Corollary A.1.

A.4. A sample path stochastic order bound. For the proof of Theorem 4.3 in §8, we also need an upper
bound process, unlike Qn

i1 b4t5 in (A7), that does not explode as t → �. Hence, we now establish an elemen-
tary sample path stochastic order bound on the queue lengths that is stronger than the w.p.1 upper bound in
Lemma A.2. Each of the two upper bound stochastic processes has the structure of the queue length in an
M/M/� model, with a service rate equal to the abandonment rate here, for which asymptotic results have been
established (Pang et al. [34]).

Lemma A.5 (Sample Path Stochastic Order for the Queue Lengths). For i = 112 and n≥ 1, let

Qn
i1 bd4t5=Qn

i 405+N a
i 4�

n
i t5−N u

i

(

�i

∫ t

0
Qn

i1 bd4s5ds

)

1 t ≥ 00

Then
Qn

i1 bd4t5 ⇒ Qn
i1 bd4�5 as t → �1

where Qn
i1 bd4�5 has a Poisson distribution with mean �n

i /�i and

Q̄n
i1 bd ≡ n−1Qn

i1 bd ⇒ qi1 bd in D4601�55 as n→ �1

where qi1 bd evolves deterministically according to the ODE q̇i1 bd4t5= �i −�iqi1 bd4t5, starting at qi1 bd405≡ qi405
for qi405 part of x405 in Assumption 3.2. Thus,

qi1 bd4t5≤ qi1 bd4�5≡ qi405∨ 4�i/�i50

Moreover,
4Qn

11Q
n
25≤st 4Q

n
11 bd1Q

n
21 bd5 in D24601�550

Proof. We apply Assumption 3.2 to get the intial queue lengths to converge. Just as for Qn
i1 b in Lemma A.2,

the upper bound system here provides no service completion at all. However, unlike the upper bound Qn
i1 b in

Lemma A.2, here abandonment from queue is allowed. Here we have sample path stochastic order because we
can construct the two systems together, keeping the upper bound system greater than or equal to Qn

i 4t5 for all t.
Whenever the constructed processes are equal, they can have the same abandonments, because the abandonment
rate in both systems will be identical. �

A.5. Extreme-value limits for QBD processes. To prove Theorem 6.1 in §B.1, we exploit extreme-value
limits for QBD processes. Because we are unaware of any established extreme-value limits for QBD processes,
we establish the following result here. Recall that a QBD has states 4i1 j5, where i is the level and j is the phase.
If we only consider the level, we get the level process; it is an elementary function of a QBD.

Lemma A.6 (Extreme Value for QBD). If L is the level process of a positive recurrent (homogeneous)
QBD process (with a finite number of phases5, then there exists c > 0 such that

lim
t→�

P4�L�t/ log t > c5= 00

Proof. Our proof is based on regenerative structure. The intervals between successive visits to the state
401 j5 constitute an embedded renewal process for the QBD. Because the QBD is positive recurrent, these cycles
have finite mean. Given the regenerative structure, our proof is based on the observation that, if the process L
were continuous real valued with an exponential tail, instead of integer valued with a geometric tail, then we
could establish the conventional convergence in law of �L�t − c log t to the Gumbel distribution, which implies
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our conclusion. Hence, we bound the process L above w.p.1 by another process Lb that is continuous real
valued with an exponential tail and which inherits the regenerative structure of L.

We first construct the bounding process Lb and then afterward explain the rest of the reasoning. To start,
choose a phase determining a specific regenerative structure for the level process L. Let Si be the epoch cycle i
ends, i ≥ −1, with S−1 ≡ 0, and let L4n5 be the set of states in level n. For each cycle i, we generate an
independent exponential random variable Xi and take the maximum between L4t5 and Xi for all Si−1 ≤ t < Si
such that L4t5y L405; i.e., letting 8Xi2 i ≥ 09 be an i.i.d. sequence of exponential random variables independent
of L and letting C4t5 be the cycle in progress at time t, Lb4t5 ≡ L4t5∨XC4t518L4t5yL4059. Clearly, Lb inherits
the regenerative structure of L and satisfies L ≤ Lb almost surely. Moreover, by the assumed independence,
for each x > 0 and t ≥ 0,

P4Lb4t5 > x5= P4L4t5 > x5+P4X > x5−P4L4t5 > x5P4X > x51

where X is an exponential random variable distributed as Xi that is independent of L4t5. We now consider the
stationary version of L, which makes Lb stationary as well. We let the desired constant c be the mean of the
exponential random variables Xi. If we make c sufficiently large, then we clearly have P4Lb4t5 > x5∼ e−x/c as
x → �, because the first and third terms become asymptotically negligible as x → �. (We choose c to make
L4t5 asymptotically negligible compared to X.)

It now remains to establish the conventional extreme-value limit for the bounding process Lb. For that,
we exploit the exponential tail of the stationary distribution, just established, and regenerative structure. There
are two approaches to extreme-value limits for regenerative processes, which are intimately related, as shown
by Rootzén [41]. One is based on stationary processes, and the other is based on the cycle maxima, i.e.,
the maximum values achieved in successive regenerative cycles. First, if we consider the stationary version,
then we can apply classical extreme-value limits for stationary processes as in Leadbetter et al. [29]. The
regenerative structure implies that the mixing condition in Leadbetter et al. [29] is satisfied; see Section 4 of
Rootzén [41].

However, the classical theory in Leadbetter et al. [29] and the analysis in Rootzén [41] applies to sequences
of random variables as opposed to continuous-time processes. In general, the established results for stationary
sequences in Leadbetter et al. [29] do not extend to stationary continuous-time processes. That is demonstrated by
extreme-value limits for positive recurrent diffusion processes in Borkovec and Klüppelberg [9] and Davis [11].
Proposition 3.1, Corollary 3.2, and Theorem 3.7 of Borkovec and Klüppelberg [9] show that, in general, the
extreme-value limit is not determined by the stationary distribution of the process.

However, continuous time presents no difficulty in our setting, because the QBD is constant between successive
transitions, and the transitions occur in an asymptotically regular way. It suffices to look at the embedded
discrete-time process at transition epochs. That is a standard discrete-time Markov chain associated with the
continuous-time Markov chain represented as a QBD. Let N4t5 denote the number of transitions over the
interval 601 t7. Then Lb4t5 = Ld4N 4t55, where Ld4n5 is the embedded discrete-time process associated with
Lb. Since N4t5/t → c′ > 0 w.p.1 as t → � for some constant c′ > 0, the results directly established for the
discrete-time process Dd are inherited with minor modification by Lb. Indeed, the maximum over random
indices already arises when relating extremes for regenerative sequences to extremes of i.i.d. sequences; see
p. 372 and Theorem 3.1 of Rootzén [41]. In fact, there is a substantial literature on extremes with a random
index, e.g., see Proposition 4.20 and (4.53) of Resnick [39] and also Silvestrov and Teugels [42]. Hence, for
the QBD we can initially work in discrete time, to be consistent with Leadbetter et al. [29] and Rootzén [41].
After doing so, we obtain extreme-value limits in both discrete and continuous time, which are essentially
equivalent.

So far, we have established an extreme-value limit for the stationary version of Lb, but our process Lb is
actually not a stationary process. So it is natural to apply the second approach based on cycle maxima, which
is given in Rootzén [41], Asmussen [2], and Section VI.4 of Asmussen [3]. We would get the same extreme-
value limit for the given version of Lb as the stationary version if the cycle maximum has an exponential tail.
Moreover, this reasoning would apply directly to continuous time as well as discrete time. However, Rootzén [41]
has connected the two approaches (see p. 380 of Rootzén [41]), showing that all the versions of the regenerative
process have the same extreme-value limit. Hence, the given version of the process Lb has the same extreme-
value limit as the stationary version, already discussed. Moreover, as a consequence, the cycle maximum has
an exponential tail if and only if the stationary distribution has an exponential tail. Hence, we do not need to
consider the cycle maximum directly. �
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Appendix B. Proofs of three theorems from §6. In this section we prove the three theorems in §6.

B.1. Proof of Theorem 6.1. Theorem 6.1 is an immediate consequence of the following three lemmas:
Lemmas B.1, B.2, and B.3.

Lemma B.1. If z112405 > 0, then, for all T > 0, P4inf0≤t≤T Z̄
n
1124t5 > 05 → 1 as n → �. As a consequence,

Zn
211 ⇒ 0 as n→ �.

Proof. By Assumption 3.2, Z̄n
112405⇒ z112405. From Lemma A.1 we know that Zn

112 ≥Zn
a in D for all n≥ 1

w.p.1. From Lemma A.3, we know that Z̄n
a ⇒ za in D as n→ �, for za in (A8). However, the integral equation

for za in (A8) is equivalent to the ODE ża4t5= −�112za4t5 with initial value za405= z112405. Since z112405 > 0
by assumption, it follows that za4t5≥ za405e

−�112t > 0 for all t ≥ 0. Thus P4inf0≤s≤t Z
n
a4s5 > 05→ 1 as n→ �.

Lemma A.1 implies that the same is true for Zn
112, which proves the first claim of the lemma. The second claim

that Zn
211 ⇒ 0 as n→ � follows from the first together with the one-way sharing rule. �

Remark B.1 (Implications for One-Way Sharing Rule). The conclusion of Lemma B.1 reveals a dis-
advantage of the one-way sharing rule for very large systems. The lemma concludes that, for large n, if for some
� > 0 and t0 ≥ 0 Zn

1124t05 > �n, then Zn
1124t5 is very likely not to reach zero for a long time, thus preventing

sharing in the opposite direction, even if that would prove beneficial to do so at a later time, e.g., because there
is a new overload incident in the opposite direction.

In practice, we thus may want to relax the one-way sharing rule. One way of relaxing the one-way sharing
rule is by dropping it entirely, and relying only on the thresholds kn112 and kn211 to prevent sharing in both
directions simultaneously (at least until the arrival rates change again). Another modification is to introduce
lower thresholds on the service processes, denoted by sni1 j , i 6= j , such that pool 2 is allowed to start helping
class 1 at time t if Dn

211 > kn211 and Zn
1124t5 < sn112, and similarly in the other direction. We do not analyze either

of these modified controls in this paper.

Given Lemma B.1, it remains to consider only the case z112405 = 0. Hence, we assume that z112405 = 0 for
the rest of this section. Here is the outline of the proof: We first prove (Lemmas B.2 and B.3) that Zn

211 is
asymptotically null over an interval 601 �7, for some � > 0. We then prove that Z̄n

1124t5 must become strictly
positive before time � in fluid scale. By Assumption 2.2, the optimal ratios for FQR-T satisfy r112 ≥ r211. In
Lemma B.2 we consider the cases (i) x405 ∈�∪�+ with r112 > r211 and q1405 > 0 and (ii) x405 ∈�+; in Lemma
B.3 we consider the remaining cases, i.e., x405 ∈�∪�+ with r112 = r211 or q1405= 0. Unlike the definition of
Dn

112 in (6), let Dn
211 be defined by

Dn
2114t5≡ r211Q

n
24t5−Qn

14t51 t ≥ 00 (B1)

Lemma B.2. Assume that z112405= 0. If either one of the following two conditions hold (i) x405 ∈�∪�+,
r112 > r211 and q1405 > 0, or (ii) x405 ∈�+, then there exists � , 0 < � ≤ �, such that

lim
n→�

P

(

sup
t∈601 �7

Dn
2114t5≤ 0

)

= 1

for Dn
211 in (B1), so that �Zn

211�� ⇒ 0 as n→ �.

Proof. We first show that the appropriate conditions hold in fluid scale at the origin. We start by assuming
that x405 ∈�∪�+, which implies that d112405≡ q1405−r112q2405= 0. Since q1405 > 0 by assumption, q2405 > 0
too. Since r112 > r211 by assumption, d211405 = r211q2405− q1405 < r112q2405− q1405 = 0, so that we also have
d211405 < 0. If (ii) holds, so that x405 ∈�+, then d211405 < 0 by definition of �+.

Given Assumption 3.2, we also have X̄n405⇒ x405 in �∪�+∪�+. Hence, the fluid-scaled queueing processes
converge to these initial values. In particular, we necessarily have Dn

211405/n ⇒ d211405 < 0 as n → �. Hence,
there exists c > 0 such that P4Dn

211405 <−cn5→ 1 as n→ �. Our goal now is to show that there exists � > 0
such that P4sup0≤t≤� D

n
2114t5 > 05→ 0. That will imply the desired conclusion.

It only remains to show that the change in these quantities has to be continuous in fluid scale. For the purpose
of bounding Dn

211 = r211Q
n
2 − Qn

1 above, it suffices to bound Qn
2 above and Qn

1 below, as we have done in
Corollary A.1. Hence Dn

211 ≤st D
n
u1211 ≡ r211Q

n
21 b −Qn

11 a. By Lemma A.3, D̄n
u1211 ⇒ du

211 ≡ r211q21 b − q11 a, where
the limit function du

211 evolves continuously, starting with du
211405 = d211405 < 0. Hence there is a time � ′ such

that du
2114t5 < 0 for all 0 ≤ t ≤ � ′. Asymptotically, by the FWLLN, the same will be true for the fluid scaled

queue difference process D̄n
u1211. Hence, we deduce that P4sup0≤t≤� 8D

n
u12114t59 > 05 → 0 as n → � for any �

with 0 < � < � ′. Since Dn
211 ≤st D

n
u1211, the same is true for Dn

211. That completes the proof. �
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The proof of Lemma B.2 relies on a fluid argument because, under its assumptions and Assumption 3.2,
Dn

211405/n converges to a strictly negative number as n → �. In particular, the difference Dn
211405 without

centering by kn211 is order OP 4n5 away from the threshold kn211. That fluid reasoning fails when r211 = r112 ≡ r or
when q1405= 0 because in either of these cases, q1405− r112q2405= q1405− r211q2405= 0. (By Assumption 3.2,
q2405= 0 if q1405= 0.) In these cases we will rely on the threshold kn211 to prevent class-2 customers to be sent
to pool 1, and construct a finer sample-path stochastic-order bound for the stochastic system. Below we remove
the centering by the threshold in Dn

211.

Lemma B.3. Assume that z112405 = 0 and that q1405 − r211q2405 = 0 4necessarily, x405 y �+, i.e., x405 ∈

�∪�+5. In this case, there exists � , 0 < � ≤ �, such that

lim
n→�

P

(

sup
t∈601 �7

Dn
2114t5≤ kn211

)

= 11

for Dn
211 in (B1). Hence, �Zn

211�� ⇒ 0 as n→ �.

Proof. We start by showing that P4Dn
211405≤ 05→ 1 as n→ �. That follows because, by Assumption 2.2

and the definitions (6) and (B1),

Dn
211405≡ r211Q

n
2405−Qn

1405≤ r112Q
n
2405−Qn

1405= −Dn
112405− kn1120

Assumptions 2.4 and 3.2 then imply that Dn
112405⇒ L and kn112 → � as n→ �, which together imply the initial

conclusion. Going forward, it suffices to assume that we initialize by Dn
211405= 0.

The rest of our proof follows three steps: In the first step, paralleling Lemma A.4 and Corollary A.1, we con-
struct a QBD that bounds Dn

211 (without centering by kn211) in rate order, which enables us to obtain a stochastic
order bound for Dn

211; see Remark A.1. The bound is constructed over an interval 601 �7. In the second step,
we show how to choose � small enough so that the QBD bound is asymptotically positive recurrent. In the
third step, we “translate” the QBD bound to a time-accelerated QBD, in the spirit of (A5), and employ the
extreme-value result for the time-accelerated QBD in Lemma A.6 to conclude the proof.

Step 1. We construct a stochastic-order bound for Dn
211, building on rate order. For � > 0, let

Xn
∗
4t5≡ 4Qn

11 b4t51Q
n
21 a4t51Z

n
b4t55 and â n

� ≡Xn
� ≡ 4Qn

11�1Q
n
21 �1Z

n
� 51 (B2)

where
Qn

11 � ≡ �Qn
11 b��1 Qn

21 � ≡ inf
0≤t≤�

Qn
21a4t5∨ 01 and Zn

� ≡ �Zn
b��

using the processes defined in (A6) and (A7). By Lemmas A.1 and A.2, for all n≥ 1,

4Qn
14t51−Qn

24t51Z
n
1124t55≤ 4Qn

11 �1−Qn
21 �1Z

n
� 5 in �3 for all t ∈ 601 �7 w.p.10 (B3)

As in §A.1, let Dn
f 4â

n
� 5 be the frozen difference process associated with Dn

211 and â n
� in (B2). (Recall that we

are considering Dn
211 here and not Dn

112.) However, to obtain positive results, we want to consider the process
Dn

f 4â
n
� 5 only for nonnegative values. We obtain such a process by working with the associated reflected process,

denoted by
Dn1∗

f ≡Dn1∗
f 4â5≡ 8Dn1∗

f 4â1 t52 t ≥ 091 â ∈�3

obtained by imposing a reflecting lower barrier at 0, where â specifies the fixed rates of Dn1∗
f 4â5. We omit â

from the notation for statements that hold for all â ∈�3. The reflected process Dn1∗
f is always nonnegative and

has the same state space as the nonnegative part of the state space of Dn
211. Within the QBD framework used

in §6 of Perry and Whitt [37], we obtain the reflected process by omitting all transitions down below level 0;
the specific QBD construction is given in Appendix D.

It follows from (B3) and Theorem A.4 that we have rate order. By the analog of Lemma A.1, there exists a
constant K such that we have sample path stochastic order in D4601 �75, i.e.,

Dn
211 ≤st D

n1∗
f 4â n

� 5+K in D4601 �75 for all n≥ 11 (B4)

for â n
� in (B2).
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Step 2. We now show that we can choose � > 0 so that there exist sets En in the underlying probability
space such that Dn1∗

f 4â n
� 5 is positive recurrent in En and P4En5→ 1 as n→ �. Paralleling (A4) (for the frozen

process associated with Dn
112), the set En here is

En
≡ 8�∗4â

n
� 5 < 091 (B5)

where �∗ is the drift for Dn1∗
f . To find � > 0 such that P4En5 → 0 for En in (B5), we analyze the asymptotic

behavior of â n
� ≡Xn

� in (B2).
First, by Lemma A.3, X̄n

∗
⇒ x∗ ≡ 4q11 b1 q21 a1 zb5 in D3 as n → �, where the components of x∗ are given in

(A9) and x∗405 = x405 by construction. Then, by the continuous mapping theorem for the supremum function,
e.g., Theorem 12.11.7 in Whitt [47],

X̄n
� ≡Xn

� /n⇒ x� ≡ 4q11 �1 q21 �1 z�5 in �3, as n→ �1 (B6)

where
q11 � ≡ �q11 b��1 q21� ≡ inf

0≤t≤�
q21a4t5∨ 0 and z� ≡ �zb�� 0

Since x405 ∈�∪�+ by the assumption of the lemma, �−4x4055 > 0, where �− is the drift for the FTSP in (19)
associated with Dn

112.
For � ≡ �4t5≡ 4q11 b4t51 q21 a4t5∨01 zb4t55 let �̂r4�5≡ �2, �̂r4�5≡�2124m2 −zb4t55+�24q21a4t5∨05, �̂14�5≡

�111m1 +�112zb4t5+�1q11b4t5 and �̂14�5≡ �1. Let D∗4�5 be the reflected FTSP corresponding to Dn1∗
f 4â n

� 5. The
process D∗4�5≡ 8D∗4�1 t52 t ≥ 09 has upward jumps of size r211 with rate �̂r4�5 and downward jumps of size r

with rate �̂r4�5. It has upward jumps of size 1 with rate �̂14�5, and downward jumps of size 1 with rate �̂14�5.
By Theorem 7.2.3 in Latouche and Ramaswami [28], D∗4�5 is positive recurrent if and only if �∗4�5 < 0, where

�∗4�5≡ r2114�̂r4�5− �̂r4�55+ 4�̂14�5− �̂14�551 � ∈�30 (B7)

Replacing � with �� ≡ x� , we have that D∗4��5 is positive recurrent if and only if �∗4��5 < 0. Hence, it suffices
to show that �∗4x�5 < 0 for some � > 0. We do that next.

We consider the two possible cases of the condition imposed in the lemma: (i) r211 = r112 and (ii) q1405 =

q2405= 0 (with zb405= z112405= 0 in both cases). First, in case (i), �∗4x∗4055= −�−4x4055 for �−4�5 in (19),
�∗4�5 in (B7) and � = x405. Because we have already observed that �−4x4055 > 0, we necessarily have
�∗4x∗4055 < 0.

In case (ii) with r112 > r211 and q1405 = q2405 = 0 (and again z112405 = 0), �∗4x∗4055 = r2114�1 −�111m15+

4�2 −�212m25, so that �∗4x∗4055 < 0 if and only if 4�1 −�111m15+r2114�2 −�212m25 < 0. However, this inequality
must hold because, by Assumption 3.2, �−4x4055 > 0, so that �−4x4055= 4�1 −�111m15− r1124�2 −�212m25 > 0.
Since r211 < r112, it follows that here too �∗4x∗4055 < 0.

Finally, the continuity of x∗ and �∗4x∗5 imply that we can find � > 0 and � > 0 such that sups∈601�7 �∗4x∗4s55 <

−� < 0. In particular, for that choice of � , �∗4x�5 <−�. Hence, P4En5= P4�∗4â
n
� 5 < 05→ 1, because �∗4X̄

n
∗
5⇒

�∗4x∗5 in D and �∗4â
n
� 5⇒ �∗4��5 in � as n→ � by the continuous mapping theorem.

Step 3. Finally, we apply the extreme-value result in Lemma A.6 to the stochastic upper bound K +

Dn1∗
f 4â n

� 5 in (B4) for â n
� in (B2). For that purpose, observe that, paralleling (A5), 8Dn1∗

f 4â n
� 1 s52 s ≥ 09 d

=

8D∗4â n
� /n1ns52 s ≥ 09 for Dn1∗

f and D∗ defined above, with â n
� /n ⇒ x� in (B6). For the rest of the proof, we

apply the Skorohod representation theorem to replace the convergence in distribution by convergence â n
� /n→ x�

w.p.1, without changing the notation.
By the arguments above

P4�Dn
211��/ logn> c5≤ P44K + �Dn1∗

f 4â n
� 5��5/ logn> c5= P44K + �D∗4â n

� /n5�n�5/ logn> c50 (B8)

To apply Lemma A.6 to the final term in (B8), we want to replace â n
� /n≡ X̄n

� by a vector independent of n, say
x�, such that D∗4x�5 is positive recurrent and, for some n0, X̄n

� ≤ x� for all n≥ n0. Then we can apply Lemma
A.6 to get, for n≥ n0,

P44K + �D∗4â n
� /n5�n�5/ logn> c5≤ P442K + �D∗4x�5�n�5/ logn> c5→ 0 as n→ �0

That implies the claim because of the way the thresholds are scaled in Assumption 2.4.
We conclude by showing how to construct the vector x� such that D∗4x�5 is positive recurrent and, for some n0,

â n
� /n = X̄n

� ≤ x� for all n ≥ n0. If q21 � > 0, then choose � such that 0 < � < q21 � and let x� ≡ 4q11 �1 q21 �1 z�5 ≡

4q11 � + �1 q21 � − �1 zb + �5. Otherwise, let x� ≡ 4q11 � + �101 zb + �5. Clearly x� ≤ x� for all � > 0, so that
8D∗4x�1 t52 0 ≤ t ≤ �9 ≤st K + 8D∗4x�1 t52 0 ≤ t ≤ �9 and, by the choice of � , we can find � > 0 small enough
so that �∗4x�5 < 0, so that D∗4x�5 is positive recurrent. �
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B.2. Proof Theorem 6.2. Define the processes

Ln
1 ≡Qn

1 +Zn
111 +Zn

112 −mn
1 and Ln

2 ≡Qn
2 +Zn

211 +Zn
212 −mn

21 (B9)

representing the excess number in system for each class. Note that 4Ln
i 5

+ = Qn
i , i = 112. For all n sufficiently

large, we will bound the two-dimensional process 4Ln
11L

n
25 below in sample-path stochastic order by another

two-dimensional process 4Ln
11 b1L

n
21 b5, n≥ 1.

We construct the lower-bound process 4Ln
11 b1L

n
21 b5 by having Ln

i1 b405= Ln
i 405∧kn112, i = 112, and by increasing

the departure rates in both processes Ln
1 and Ln

2 , making it so that each goes down at least as fast, regardless of
the state of the pair. First, we place reflecting upper barriers on the two queues. This is tantamount to making
the death rate infinite in these states and all higher states. We place the reflecting upper barrier on Ln

i at kn112,
where kn112 ≥ 0. This necessarily produces a lower bound for all n. By the initial conditions assumed for the
queue lengths in Assumption 3.2, we have P44Ln

11 b4051L
n
21 b4055= 4kn1121 k

n
11255→ 1 as n→ �.

With the upper barrier at kn112, the departure rate of Ln
14t5 at time t > 0 is bounded above by �111m

n
1 +

�112Z
n
1124t5+�1k

n
112, based on assuming that pool 1 is fully busy serving class 1, that Ln

14t5 is at its upper barrier,
and that Zn

1124t5 agents from pool 2 are currently busy serving class 1 in the original system. With the upper
barrier at kn112, the departure rate of Ln

24t5 at time t is bounded above by �2124m
n
2 −Zn

1124t55+ �2k
n
112, based on

assuming that pool 2 is fully busy with Zn
1124t5 agents from pool 2 currently busy serving class 1, and that Ln

24t5
is at its upper barrier kn112. Thus, we give Ln

11 b and Ln
21 b these bounding rates at all times.

As constructed, the evolution of 4Ln
11 b1L

n
21 b5 depends on the process Zn

112 associated with the original system,
which poses a problem for further analysis. However, we can avoid this difficulty by looking at a special linear
combination of the processes. Specifically, let

U n
≡�2124L

n
1 − kn1125+�1124L

n
2 − kn1125 and U n

b ≡�2124L
n
11b − kn1125+�1124L

n
21b − kn11250 (B10)

By the established sample-path stochastic order 4Ln
11 b1L

n
21 b5≤st 4L

n
11L

n
25, the initial conditions specified above

and the monotonicity of the linear map in (B10), we get the associated sample-path stochastic order U n
b ≤st U

n.
The lower-bound stochastic process U n

b has constant birth rate �n
b =�212�

n
1 +�112�

n
2 and constant death rate

�n
b ≡ �2124�111m

n
1 +�112Z

n
1124t5+ �1k

n
1125+�1124�212m

n
2 −�212Z

n
1124t5+ �2k

n
1125

= �2124�111m
n
1 + �1k

n
1125+�1124�212m

n
2 + �2k

n
11250

In particular, unlike the pair of processes 4Ln
11b1L

n
21b5, the process U n

b is independent of the process Zn
112. Con-

sequently, U n
b is a birth and death process on the set of all integers in 4−�107. Since P44Ln

11 b4051L
n
21 b4055 =

4kn1121 k
n
11255→ 1 as n→ �, P4U n

b 405= 05→ 1 as n→ �.
The drift in U n

b is

�n
b ≡ �n

b −�n
b =�2124�

n
1 −mn

1�111 − �1k
n
1125+�1124�

n
2 −mn

2�212 − �2k
n
11250 (B11)

Hence, after scaling, we get �n
b/n→ � (recall that kn112 is o4n5), where

�b ≡�2124�1 −m1�1115+�1124�2 −m2�2125 > 01 (B12)

with the inequality following from Assumption 3.1.
Now we observe that −U n

b is equivalent to the number in system in a stable M/M/1 queueing model with
traffic intensity �n

∗
→ �∗ < 1, starting out empty, asymptotically. Let Q∗ be the number-in-system process in an

M/M/1 system having arrival rate equal to �∗ ≡ �212�111m1 +�112�212m2, service rate �∗ ≡ �212�1 +�112�2,
and traffic intensity �∗ ≡ �∗/�∗ < 1. Observe that the scaling in U n

b is tantamount to accelerating time by a
factor of order O4n5 in Q∗. That is, 8−U n

b 4t52 t ≥ 09 can be represented as 8Q∗4cnt52 t ≥ 09, where cn/n → 1
as n → �. We can now apply the extreme-value result in Lemma A.6 for the M/M/1 queue above (since the
M/M/1 birth and death process is trivially a QBD process) to conclude that �Q∗�t = OP 4log t5. This implies
that −U n

b / logn is stochastically bounded.
From the way that the reflecting upper barriers were constructed, we know at the outset that Ln

11 b4t5 ≤

kn112 and Ln
21 b4t5 ≤ kn112. Hence, we must have both Ln

11 b − kn112 and Ln
21 b − kn112 nonpositive. Combining this

observation with the result that 4−U n
b 5/ logn is stochastically bounded, we deduce that both 4kn112 −Ln

11 b5/ logn
and 4kn112 − Ln

21 b5/ logn are stochastically bounded, i.e., the fluctuations of Ln
i1 b below kn112 are OP 4logn5. The

result follows because −Ln
i ≤st −Ln

i1 b, i = 112, and from the choice of kn112, which satisfies kn112/ logn → � as
n→ � by Assumption 2.4.
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B.3. Proof of Theorem 6.4. We now show that the interval 601 �7 over which the conclusions in §6 are
valid can be extended from 601 �7 to 601�5 after Theorem 4.1 has been proved over the interval 601 �7.

For this purpose, we use the processes Ln
1 and Ln

2 defined in (B9). By Lemma B.1, we only need to consider
the case z112405= 0. By Lemmas B.2 and B.3, there exists � > 0 such that

lim
n→�

P4�Dn
211�� < kn2115= 10

Hence, the claim of the theorem will follow from Lemma B.1 if we show that for some t0 satisfying 0 < t0 ≤ �
it holds that z1124t05 > 0, where z112 is the (deterministic) fluid limit of Z̄n

112 as n → �, which exists by
Theorem 4.1. We will actually show a somewhat stronger result, namely, that for any 0 < � ≤ �, where � is
chosen from Lemma C.1 and thus Theorem 4.1, there exists t0 < � such that z1124t05 > 0. We prove that by
assuming the contradictory statement: for some 0 < � ≤ � and for all t ∈ 601 �7, z1124t5= 0.

By our contradictory assumption above, Z̄n
112 = oP 415, i.e., �Zn

112/n�� ⇒ 0. Recall also that Zn
211 = oP 415 over

601 �7 (since � ≤ � , and � is chosen according to Lemmas B.2 and B.3). Hence, by our contradictory assumption
and by our choice of �, there is negligible sharing of customers over the interval 601 �7. We can thus represent
Ln
i in (B9), i = 112 by

Ln
i 4t5= Ln

i 405+N a
i 4�

n
i t5−N s

i1 i

(

�i1 i

∫ t

0
4Ln

i 4s5∧ 05ds
)

−N u
i

(

�i

∫ t

0
4Ln

i 4s5∨ 05ds
)

+ oP 4n51 (B13)

for i = 112 and 0 ≤ t ≤ � as n → �, where N a
i , N s

i1 i, and N u
i are independent rate-1 Poisson processes. The

oP 4n5 terms are replacing the (random-time changed) Poisson processes related to Zn
112 and Zn

211, which can be
disregarded when we consider the fluid limits of (B13). The negligible sharing translates into the oP 4n5 term in
(B13) by virtue of the continuous mapping theorem and Gronwall’s inequality, as in §4.1 of Pang et al. [34].

Letting L̄n
i ≡ Ln

i /n, i = 112, and applying the continuous mapping theorem for the integral representation
function in (B13), Theorem 4.1 in Pang et al. [34], (see also Theorem 7.1 and its proof in Pang et al. [34]), we
have 4L̄n

11 L̄
n
25⇒ 4L̄11 L̄25 in D4601 �75 as n→ �, where, for i = 112,

L̄i4t5= L̄i405+ 4�i −�i1 imi5t −
∫ t

0
6�i1 i4L̄i4s5∧ 05+ �i4L̃i4s5∨ 057ds1 0 ≤ t ≤ �1

so that
L̄′

i4t5≡
d

dt
L̄i4t5= 4�i −�i1 imi5−�i1 i4L̄i4t5∧ 05− �i4L̃i4t5∨ 051 0 ≤ t ≤ �0

By Assumption 3.2, both pools are full at time 0, so that Li405≥ 0. Moreover, for i = 112, L̄e
i ≡ 4�i −�i1 i5/�i

is an equilibrium point of the ODE L̄′
i, in the sense that, if L̄i4t05= L̄e

i , then L̄i4t5= L̄e
i for all t ≥ t0. (That is, L̄e

i

is a fixed point of the solution to the ODE.) It also follows from the derivative of L̄i that L̄i is strictly increasing
if L̄i405 < L̄e

i , and strictly decreasing if L̄i405 > L̄e
i , i = 112.

Recall that �1 > 1, so that �1 − �111m1 > 0. Together with the initial condition, L1405 ≥ 0, we see that, in
that case, L̄14t5≥ 0 for all t ≥ 0. First assume that �2 ≥ 1 . Then, by similar arguments, L̄24t5≥ 0 for all t ≥ 0.
In that case, we can replace L̄i with qi4t5= 4L̄i4t55

+, i = 112, where qi is the fluid limit of Q̄n
i over 601 �7. We

can then write, for t ∈ 601 �7,

q14t5= q1405− 4�1 −�111m15t − �1

∫ t

0
q14s5ds1

q24t5= q2405− 4�2 −�212m25t − �2

∫ t

0
q24s5ds1

so that, for t ∈ 601 �7,

d1124t5 = qa
1 + 4q1405− qa

1 5e
−�1t − r4qa

2 + 4q2405− qa
2 5e

−�2t5

= 4qa
1 − rqa

2 5+ 4q1405− qa
1 5e

−�1t − r4q2405− qa
2 5e

−�2t0 (B14)

First assume that x405 ∈�∪�+, so that d112405= 0. From (B14),

d′

1124t5≡
d

dt
d1124t5= −�14q1405− qa

1 5e
−�1t + r�24q2405− qa

2 5e
−�2t0

Hence, d′
112405 = �1 − �111m1 − �1q1405 − r4�2 − �2125 + r�2q2405. If follows from (19) and the assumption

z112405= 0, that d′
112405= �−4x4055. By assumption, x405 ∈�∪�+, so that d′

112405= �−4x4055 > 0 (that follows
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from the definition of � and �+ in (20) and (21) and the fact that �− > �+). Hence, d112 is strictly increasing
at 0. Now, since d112405 = 0, we can find t1 ∈ 401 �7, such that d1124t5 > 0 for all 0 < t < t1. This implies that
P4inf0<t≤t1

Dn
1124t5 > 05→ 1 as n→ �. The same is true if x405 ∈�+.

Since �Zn
112/n�� ⇒ 0, as a consequence of our contradictory assumption, it follows from the representation of

Zn
112 in Theorem 5.1 that

Z̄n
1124t5= n−1N s

2124�212m
n
2t5+ oP 415 as n→ �0 (B15)

However, by the FSLLN for Poisson processes, the fluid limit z112 of Z̄n in (B15) satisfies z1124t5=�212m2t > 0
for every 0 < t ≤ t1. We thus get a contradiction to our assumption that z1124t5= 0 for all t ∈ 601 �7.

For the case �2 < 1 the argument above still goes through, but we need to distinguish between two cases:
L̄2 = 0 and L̄2 > 0. In both cases L̄2 is strictly decreasing. In the first case, this implies that L̄2 is negative
for every t > 0. It follows immediately that q14t5− rq24t5 > 0 for every t > 0. If L̄2405 > 0, then necessarily
L̄1405 > 0, and we can replace L̄i with qi, i = 112, on an initial interval (before L̄2 becomes negative). We then
use the arguments used in the case �2 ≥ 1 above. �

In the proof of Theorem 6.4 we have shown that, if z112405 = 0, then z1124t5 > 0 for all t > 0. We prove in
Appendix E that the two queues must also become strictly positive right after time 0, if they are not strictly
positive at time 0.

Appendix C. Alternative proof of characterization using stochastic order bounds. In this appendix we
present an alternative proof of Lemma 7.2 and thus an alternative proof of the FWLLN in Theorem 4.1. At the
beginning of §7 we observed that it suffices to characterize the limiting integral terms in (47); i.e., it suffices to
prove Lemma 7.2. In §7 we accomplished that goal by using the martingale argument of Hunt and Kurtz [18]
and Kurtz [27]. Here we show that same goal can be achieved with stochastic bounds, exploiting Lemma 8.4
and similar reasoning. However, we prove less than the full Theorem 4.1 here. Our proof here is under the
special case of Assumption 3.2 for which x405 ∈�. For this special case we carry out the characterization over
the full interval 601�5 if x4t5 remains within � for all t ≥ 0. Otherwise, we complete the characterization proof
over 601 TA7, where

TA ≡ inf 8t > 02 x4t5 6∈�90 (C1)

Since x is continuous and � is an open subset of �, we know that TA > 0. A first step is to do the characterization
over an interval 601 �7 for some � > 0. We start in §C.1 by indicating how the interval of convergence can
be extended given that the first step has been carried out. Next in §C.2 we prove Theorem 4.1 subject to
Lemma C.2, establishing convergence of integral terms over the interval 601 �7. For that purpose, we state
Lemma C.4 establishing a sample path stochastic order bound that we will use to prove Lemma C.2 in §C.3
we establish continuity results for QBD processes. We then prove Lemmas C.2 and C.4, respectively, in §C.4
and §C.5.

C.1. Extending the interval of convergence. Unlike the first proof, with this second proof we only establish
convergence in D144601 TA75 if TA <�, for TA in (C1). We now show how we achieve this extension.

As in the first proof, after establishing the convergence over an initial interval 601 �7 with � ≤ � , we apply
Theorem 6.4 to conclude that any limit point of the tight sequence X̄n

6 is again a limit of the tight sequence
X̄n1∗

6 in (10) over the entire half line 601�5, showing that � places no constraint on expanding the convergence
interval. Moreover, by part (ii) of Theorem 5.2 in Perry and Whitt [37], any solution to the ODE, with a specified
initial condition, can be extended indefinitely, and is unique. Hence that places no constraint either.

However, for this second method of proof, we do critically use that fact that x4t5 ∈�, 0 ≤ t ≤ �, in order to
prove the characterization. (This is proved in Lemma C.1.) However, we can extend the interval of convergence
further. Given that we have shown that X̄4t5 = x4t5 ∈ � for � in (20) over a time interval 601 �7, and thus
established the desired convergence X̄n ⇒ x over that time interval 601 �7, we can always extend the time interval
to a larger interval 601 �′7 for some �′ with �′ >�. To do so, we repeat the previous argument treating time � as
the new time origin. That directly yields X̄4t5= x4t5 ∈�, and thus convergence X̄n ⇒ x, over the time interval
6�1�′7. However, we can combine that with the previous result to obtain X̄4t5= x4t5 ∈�, and thus convergence
X̄n ⇒ x, over the longer time interval 601 �′7. Let � be the supremum of all � for which the expansion of
convergence to 601 �7 is valid. We must have X̄4t5= x4t5 ∈�, and thus convergence X̄n ⇒ x, over the interval
601 �5, open on the right. The interval is 601�5 if � = �. Suppose that � <�. In that case, we can next apply
continuity to extend the interval of convergence to the closed interval 601 �7. Since X̄4t5= x4t5, 0 ≤ t < �, x is
continuous and X̄ is almost surely continuous, we necessarily have X̄4�5 = x4�5 w.p.1 as well. We claim that
� ≥ TA ≡ inf8t ≥ 02 x4t5y�9. If not, we can do a new construction yielding X̄4t5= x4t5, first for � ≤ t < �′ and
then for 0 ≤ t ≤ �′, �′ > �, contradicting the definition of �. Hence, we have extended the domain of convergence
to 601 TA7 if TA <� and to 601�5 otherwise, as claimed.
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C.2. Reduction to convergence of integral terms. Because each of these integrals in (47) can be treated
in essentially the same way, we henceforth focus only on the single term Īq11114t5 and establish (48).

Recall that X̄ is the limit of the converging subsequence of 8X̄n2 n≥ 19 in D34601 �75 for � in Theorem 6.3.
An important first step is to identify an initial interval 601 �7, 0 <�< �1 over which X̄ ∈�. We apply the proof
of Lemma 8.4 to prove the following lemma.

Lemma C.1 (State in � Over 601 �7). There exists � with 0 <�≤ � for � in Theorem 6.3 such that

P4X̄n4t5 ∈�10 ≤ t ≤ �5→ 1 as n→ �1

for � in (20), so that P4X̄4t5 ∈� 0 ≤ t ≤ �5= 1.

Proof. Recall that we have assumed that Assumption 3.2 holds with x405 ∈�. We can apply the first step
of the proof of Lemma 8.4 to obtain the stochastic bound over an initial interval 601 �7 for some �> 0. Since the
FTSP D4�1 ·5 is positive recurrent if and only if � ∈� for � in (20). By Lemma 8.4, Df 4X

n
m1 ·5 and Df 4X

n
M 1 ·5

are positive recurrent on Bn4�1�5 in (60). Thus, by Corollary 8.1, Df 4X
n4t51 ·5 is positive recurrent on Bn4�1�5

as well for 0 ≤ t ≤ �. Hence, the claim holds. �

The next important step is the following lemma, proved in §C.4, after establishing preliminary bounding
lemmas.

Lemma C.2 (Convergence of the Integral Terms). There exists � with 0 <�≤ � for � in Theorem 6.3,
such that for any � > 0 and t with 0 ≤ t < �, there exists � ≡ �4�1�1 t5 with 0 <� < �− t and n0 such that

P

(

∣

∣

∣

∣

1
�

∫ t+�

t
18Dn

1124s5>09Z̄
n
1124s5 ds −�1124X̄4t55Z̄1124t5

∣

∣

∣

∣

> �

)

< � for all n≥ n00 (C2)

To apply Lemma C.2 to prove Lemma 7.2, we exploit the absolute continuity of Īq1111, established now.

Lemma C.3 (Absolute Continuity of Īq1111). The limiting integral term Īq1111 almost surely satisfies

0 ≤ Īq11114t + u5− Īq11114t5≤m2u for all 0 ≤ t < t + u< �1 (C3)

and so Īq1111 is the cumulative distribution function corresponding to a finite measure, having a density h
depending on X̄. As a consequence, for all � > 0, there exists u0 > 0 such that

∣

∣

∣

∣

Īq11114t + u5− Īq11114t5

u
−h4t5

∣

∣

∣

∣

< � (C4)

for all u< u0.

Proof. Since

Īnq11114t + u5− Īnq11114t5=

∫ t+u

t
18Dn

1124s5>09Z̄
n
1124s5ds ≤ umn

2/n1

Inq11114t5 is a nondecreasing function with 0 ≤ Inq11114t + u5 − Inq11114t5 ≤ mn
2 for all 0 ≤ t < t + u ≤ � . Hence,

Inq11114t5 is a cumulative distribution function associated with a finite measure. The convergence obtained along
the subsequence based on tightness then yields

0 ≤ Īq11114t + u5− Īq11114t5≤m2u for all 0 ≤ t < t + u≤ �0

Hence, Īq1111 has a density with respect to Lebesgue measure, as claimed. �

Proof of Lemma 7.2. Given Lemma C.2, for any � > 0, we can find � and n0 such that (C2) is valid for
all n≥ n0. Hence, we can let n→ � and conclude that, for any � > 0, we can find � such that

P

(

∣

∣

∣

∣

1
�
4Īq11114t +�5− Īq11114t55−�1124X̄4t55Z̄1124t5

∣

∣

∣

∣

> �

)

< �0 (C5)

However, given that (C4) and (C5) both hold, we conclude that we must almost surely have h4t5 =

�1124X̄4t55Z̄1124t5, which completes the proof. �
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We now apply bounds to prove Lemma C.2. The comparisons in Lemma 8.4 and Corollary 8.1 are important,
but they are not directly adequate for our purpose. The sample-path stochastic order bound in Corollary 8.1
enables us to prove Lemma C.2, and thus Theorem 4.1, for the special case of r112 = 1, because then � = 0,
where � is the gap in Corollary 8.1, but not more generally when the gap is positive. However, we now show that
an actual gap will only be present rarely, if we choose the interval length small enough and n big enough. We use
the construction in the proof of Lemma 8.4 exploiting the fact that we have rate order, where the bounding rates
can be made arbitrarily close to each other by choosing the interval length suitably small. We again construct
a sample path stochastic order, but for the time averages of the time spent above zero. We prove the following
lemma in §C.5. We use it to prove Lemma C.2 in §C.4.

Lemma C.4. Suppose that conditions of Lemma 8.4 hold. Then, for any � > 0, there exists n0 and � with
0 < � ≤ � for � in Lemma 8.4, such that, in addition to the conclusions of Lemma 8.4 and Corollary 8.1, the
states xm1 xM ∈ � and random vectors Xn

m1X
n
M , and associated frozen processes Dn

f 4X
n
m5 and Dn

f 4X
n
M5 can be

chosen so that on Bn4�1�5 4defined as in (60) with � instead of � and necessarily P4Bn4�1�55→ 1 as n→ �5,
first

Dn
f 4X

n
m105=Dn

f 4X
n
M 105=Dn

112405 (C6)

and, second,
1
t

∫ t

0
18Dn

f 4X
n
m1 s5>09 ds − � ≤st

1
t

∫ t

0
18Dn

1124s5>09 ds ≤st

1
t

∫ t

0
18Dn

f 4X
n
M 1 s5>09 ds + � (C7)

for n≥ n0 and 0 ≤ t ≤ �; i.e., there is sample path stochastic order in D4601 �75 for n≥ n0.

C.3. Continuity of the FTSP QBD. In the current proof of Lemma 7.2 and thus Theorem 4.1, we will
ultimately reduce everything down to the behavior of the FTSP D. First, we intend to analyze the inhomogeneous
queue-difference processes Dn

1124â
n5 in (6) in terms of associated frozen processes Dn

f 4â
n5 introduced in §A.1,

obtained by freezing the transition rates at the transition rates in the initial state â n. In (A5), we showed
that the frozen-difference processes can be represented directly in terms of the FTSP, by transforming the
model parameters 4�i1mj5 and the fixed initial state � and scaling time. We will appropriately bound the
queue-difference processes Dn4â n5 above and below by associated frozen-queue difference processes, and then
transform them into versions of the FTSP D. For the rest of the proof of Theorem 4.1 in §7, we will exploit a
continuity property possessed by this family of pure-jump Markov processes, which exploits their representation
as QBD processes using the construction in §6 of Perry and Whitt [37]. We will be applying this continuity
property to the FTSP D.

To set the stage, we review basic properties of the QBD process. We refer to §6 of Perry and Whitt [37]
for important details. From the transition rates defined in (13)–(16), we see that there are only eight different
transition rates overall. The generator Q (in (65) of Perry and Whitt [37]) is based on the four basic 2m× 2m
matrices B, A0, A1, and A2, involving the eight transition rates (as shown in (66) of Perry and Whitt [37]). By
Theorem 6.4.1 and Lemma 6.4.3 of Latouche and Ramaswami [28], when the QBD is positive recurrent, the
FTSP steady-state probability vector has the matrix-geometric form �n = �0R

n, where �n and �0 are 1 × 2m
probability vectors and R is the 2m×2m rate matrix, which is the minimal nonnegative solutions to the quadratic
matrix equation A0 +RA1 +R2A2 = 0, and can be found efficiently by existing algorithms, as in Latouche and
Ramaswami [28]; see Perry and Whitt [37] for applications in our settings. If the drift condition (20) holds, then
the spectral radius of R is strictly less than one and the QBD is positive recurrent (Corollary 6.2.4 of Latouche
and Ramaswami [28]). As a consequence, we have

∑�

n=0 R
n = 4I −R5−1. Also, by Lemma 6.3.1 of Latouche

and Ramaswami [28], the boundary probability vector �0 is the unique solution to the system �04B+RA25= 0
and �1 = �04I −R5−11 = 1. See §6.4 of Perry and Whitt [37] for explicit expressions for �1124�5 for � ∈�.

As in Lemma 8.6, we also use the return time to a fixed state, � , and its mgf ��4�5 with a critical value
�∗ > 0 such that ��4�5 < � for � < �∗ and ��4�5 = � for � > �∗. We will be interested in the cumulative
process

C4t5≡

∫ t

0
4f 4D4s55−E6f 4D4�5575ds t ≥ 01 (C8)

for the special function f 4x5 ≡ 18x≥09. Cumulative processes associated with regenerative processes obey CLTs
and FCLTs, depending upon assumptions about the basic cycle random variables � and

∫ �

0 f 4D4s55ds, where
we assume for this definition that D405 = s∗; see §VI.3 of Asmussen [3] and Glynn and Whitt [13]. From
Bolthausen [8], we have the following CLT with a Berry-Esseen bound on the rate of convergence (stated in
continuous time, unlike Bolthausen [8]): For any bounded measurable function g, there exists t0 such that

�E6g4C4t55/
√
t7−E6g4N401�2557� ≤

K
√
t

for all t > t01 (C9)
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where

�2
≡E

[(

∫ �

0
f 4D4s55−E6f 4D4�557ds

)2]

1 (C10)

again assuming for this definition that D405 = s∗. The constant K depends on the function g (as well as the
function f in (C8)) and the third absolute moments of the basic cycle variables defined above, plus the first
moments of the corresponding cycle variables in the initial cycle if the process does not start in the chosen
regenerative state.

There is significant simplification in our case, because the function f in (C8) is an indicator function. Hence,
we have the simple domination

∫ �

0
�f 4D4s5�ds =

∫ �

0
f 4D4s55ds ≤ � w.p.10 (C11)

As a consequence, boundedness of absolute moments of both cycle variables reduces to the moments of the
return times themselves, which are controlled by the mgf.

We will exploit the following continuity result for QBDs, which parallels previous continuity results for
Markov processes, e.g., Karr [22] and Whitt [43].

Lemma C.5 (Continuity of QBDs). Consider a sequence of irreducible, positive recurrent QBDs having
the structure of the fundamental QBD associated with the FTSP in §3.2 and §6 in Perry and Whitt [37]
with generator matrices 8Qn2 n ≥ 19 of the same form. If Qn → Q as n → � 4which is determined by the
convergence of the eight parameters5, where the positive-recurrence drift condition (20) holds for Q, then there
exists n0 such that the positive-recurrence drift condition (20) holds for Qn for n≥ n0. For n≥ n0, the quantities
4R1�01�1��1 �

∗1�N 1 z
∗1�21K5 indexed by n are well defined for Qn, where �2 and K are given in (C9)

and (C10), and converge as n → � to the corresponding quantities associated with the QBD with generator
matrix Q.

Proof. First, continuity of R, �0, and � follows from the stronger differentiability in an open neighborhood
of any � ∈�, which was shown to hold in the proof of Theorem 5.1 in Perry and Whitt [37], building on Theorem
2.3 in He [17]. The continuity of �2 follows from the explicit representation in (C10) (which corresponds to
the solution of Poisson’s equation). We use the QBD structure to show that the basic cycle variables � and
∫ �

0 f 4D4s55ds are continuous function of Q, in the sense of convergence in distributions (or convergence of
mgfs and gfs) and then for convergence of all desired moments, exploiting (C11) and the mgf of � to get the
required uniform integrability. Finally, we get the continuity of K from Bolthausen [8] and the continuity of
the third absolute moments of the basic cycle variables, again exploiting the uniform integrability. We will have
convergence of the characteristic functions used in Bolthausen [8]. However, we do not get an explicit expression
for the constants K. �

We use the continuity of the steady-state distribution � in §C.4; specifically in (C19). In addition, we use the
following corollary to Lemma C.5 in (C18) in §C.4. We use the notation in (A5).

Corollary C.1. If 4�̄n
i 1 m̄

n
j 1 �̄n5 → 4�i1mj1 �5 as n → � for our FTSP QBDs, where (20) holds for

4�i1mj1 �5, then for all � > 0 there exist t0 and n0 such that

P

(

∣

∣

∣

∣

1
t

∫ t

0
18D4�ni 1m

n
j 1 �n1 s5>09 ds −P4D4�i1mj1 �1�5 > 05

∣

∣

∣

∣

> �

)

< �

for all t ≥ t0 and n≥ n0.

Proof. First apply Lemma C.5 for the steady-state probability vector �, to find n0 such that
�P4D4�n

i 1m
n
j 1 �n1�5 > 05−P4D4�i1mj1 �1�5 > 05�< �/2 for all n≥ n0. By the triangle inequality, henceforth

it suffices to work with P4D4�n
i 1m

n
j 1 �n1�5 > 05 in place of P4D4�i1mj1 �1�5 > 05 in the statement to be

proved. By (C9), for any M , there exists t0 such that for all t ≥ t0,

P

(

∣

∣

∣

∣

1
t

∫ t

0
18D4�ni 1m

n
j 1 �n1 s5>09 ds −P4D4�n

i 1m
n
j 1 �n1�5 > 05

∣

∣

∣

∣

>
M
√
t

)

<P4�N401�24�n
i 1m

n
j 1 �n55�>M5+

K4�n
i 1m

n
j 1 �n5

√
t

0 (C12)

We get (C12) from (C9) by letting f 4x5= 1401�54x5 in (C8) and letting g4x5= 18�x�>M94x5 in (C9).
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Next, choose M so that P4�N401�24�i1mj1 �55�>M5< �/2. Then, invoking Lemma C.5, increase n0 and t0
if necessary so that ��24�n

i 1m
n
j 1 �n5−�24�i1mj1 �55� and �K4�n

i 1m
n
j 1 �n5−K4�i1mj1 �5� are sufficiently small

so that the right side of (C12) is less than �/2 for all n≥ n0 and t ≥ t0. If necessary, increase t0 and n0 so that
M/

√
t0 < �/2. With those choices, the objective is achieved. �

C.4. Proof of Lemma C.2. In this subsection we give the first of two long proofs of previous lemmas.
We now prove Lemma C.2, which completes the alternate proof of Theorem 4.1 in the case r112 = 1, because
then Corollary 8.1 holds with gap � = 0. In that case, Corollary 8.1 directly implies that Lemma C.4 holds with
� = 0. Lemma C.4, which is proved in the following subsection, is required to treat more general r112.

First, let �> 0, � > 0 and t with 0 < t < � be given, where the � is chosen as in Lemma 8.4 (with �≤ � for �
in Theorem 6.3). Here we will be introducing a new interval 6t1 t+�7, where 0 <� ≡ �4t5≡ �4t1 �1�5 < �− t,
so that 6t1 t +�7⊂ 601 �7. Moreover, we will make � < � for � existing via Lemma C.4. Lemmas 8.4 and C.4
hold on the interval 6t1 t + �7, where � ≡ �4t5 satisfies 0 < � < �− t. We will be choosing � with 0 <� < �.

Before we started with regularity conditions at time 0 provided by Assumption 3.2. We now will exploit
tightness to get corresponding regularity conditions at time t here. In particular, before we started with the con-
vergence X̄n405⇒ x405 in �3, where x405 ∈� based on Assumption 3.2. Now, instead, we base the convergence
X̄n4t5⇒ X̄4t5 at time t on the convergence established along the converging subsequence (without introducing
new subsequence notation). We apply Lemma C.1 to deduce that P4X̄4t5 ∈�5= 1. Because the frozen processes
to be constructed are Markov processes, we can construct the processes after time t, given only the value of
Xn4t5, independently of what happens on 601 t7. Before, we also started with Dn

112405 ⇒ L, where L is a finite
random variable. Instead, here we rely on the stochastic boundedness (and thus tightness) of 8Dn

1124t52 n ≥ 19
in � provided by Theorem 4.5. As a consequence, the sequence 84Xn4t51Dn

1124t552 n ≥ 19 is tight in �2. Thus
there exists a convergent subsequence of the latest subsequence we are considering. Hence, without introducing
subsequence notation, we have 4X̄n4t51Dn

1124t55⇒ 4X̄4t51L4t55 in �2 as n→ �, where 4X̄4t51L4t55 is a finite
random vector with P4X̄4t5 ∈�5= 1.

We use the same construction used previously in the proofs of Lemmas 8.4 and C.4, letting � decrease
to achieve new requirements in addition to the conclusions deduced before. We now regard t as the time
origin for the frozen difference processes. Given Dn

1124t5, let the two associated frozen difference processes be
8Dn

f 4X
n
M 1 s52 s ≥ t9 and 8Dn

f 4X
n1�
m 1 s52 s ≥ 09. We directly let

Dn
f 4X

n
M 1 t5=Dn

f 4X
n
m1 t5=Dn

f 4X
n4u51 t5=Dn

1124t51 u≥ t1 (C13)

so that we can invoke property (C6) at time t in our application of Lemma C.4 here. As before, the initial
random states Xn

M and Xn
m and their fluid-scaled limits are chosen to achieve the goals before and here.

We now successively decrease upper bounds on � and increase lower bounds on n until we achieve (C2) in
Lemma C.2. First, we can apply Lemma 8.4 to find an n1 such that P4Bn4�1 �55 > 1 − �/6 for n≥ n1. We next
apply Lemma C.4 to conclude that there exists �1 such that the following variants of the integral inequalities in
(C7) hold with probability at least 1 − �/6 as well:

1
�

∫ t+�

t
18Dn

f 4X
n
m1 s5>09 ds −

�

6m2

≤
1
�

∫ t+�

t
18Dn

1124s5>09 ds ≤
1
�

∫ t+�

t
18Dn

f 4X
n
M 1 s5>09 ds +

�

6m2

(C14)

for all � ≤ �1. (We divide by m2 because we will be multiplying by z1124t5.)
We now present results only for Xn

M , with the understanding that corresponding results hold for Xn
m. We

represent the bounding frozen queue-difference processes directly in terms of the FTSP, using the relation (A5),
with the notation introduced there:

8Dn
f 4�

n
i 1m

n
j 1X

n
M 1 t + s52 s ≥ 09 d

= 8D4�n
i /n1m

n
j /n1X

n
M/n1 t + sn52 s ≥ 090 (C15)

Upon making a change of variables, the bounding integrals in (C14) become

1
�

∫ t+�

t
18Dn

f 4�
n
i 1m

n
j 1X

n
M 1 s5>09 ds

d
=

1
n�

∫ t+n�

t
18D4�ni /n1m

n
j /n1X

n1�
m /n1 s5>09 ds0 (C16)

For each integer k, we can apply Lemma C.5 to obtain the iterated limits

lim
n→�

lim
s→�

P4D4�n
i /n1m

n
j /n1X

n
M/n1 s5= k5= lim

s→�
lim
n→�

P4D4�n
i /n1m

n
j /n1X

n
M/n1 s5= k51 (C17)
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where the limit is P4D4xM 1�5= k5≡ P4D4�i1mj1 xM 1�5= k5. In particular, the limit for the model parameters
first implies convergence of the generators. The convergence of the generators then implies convergence of the
processes. Finally Lemma C.5 implies convergence of the associated steady-state distributions.

By Corollary C.1, we also have the associated double limit for the averages over intervals of length O4n5 as
n→ �. As n→ �,

1
n�

∫ t+n�

t
18D4�ni /n1m

n
j /n1X

n
M /n1 s5>09 ds ⇒ P4D4�i1 mj1 xM 1 �5 > 05≡�1124xM50 (C18)

Invoking Lemma C.5, choose �2 less than or equal to the previous value �1 such that

��1124xm5−�1124X̄4t55� ≤
�

6m2

for all � ≤ �20 (C19)

For that �2, applying (C18), choose n2 ≥ n1 such that for all n≥ n2,

P

(

∣

∣

∣

∣

1
n�2

∫ t+n�2

t
18D4�ni /n1m

n
j /n1X

n
M /n1 s5>09 ds −�1124xM5

∣

∣

∣

∣

>
�

6m2

)

<
�

6
0 (C20)

We now use the convergence of X̄n along the subsequence over 601 t7 together with the tightness of the
sequence of processes 8X̄n2 n≥ 19 to control Z̄n

112 in an interval after time t. In particular, there exists �3 ≤ �2

and n3 ≥ n2 such that

P

(

sup
u2 t≤u≤t+�3

8�X̄n4u5− X̄4t5�9 > �/6
)

< �/6 for all n≥ n30 (C21)

For the current proof, we will use the consequence

P

(

sup
u2 t≤u≤t+�3

8�Z̄n
1124u5− Z̄1124t5�9 > �/6

)

< �/6 for all n≥ n30 (C22)

We let the final value of � be �3. We now show the consequences of the selections above. We will directly
consider only the upper bound; the reasoning for the lower bound is essentially the same. Without loss of
generality, we take � ≤ 1 ∧m2. From above, we have the following relations (explained afterward) holding with
probability at least 1 − � (counting �/6 once each to achieve �xM − X̄4t5� ≤ �/6, �xm − X̄4t5� ≤ �/6, (C14),
(C22) and twice for (C20)):

4a5
∫ t+�

t
18Dn

1124s5>09Z̄
n
1124s5ds ≤

(

Z̄1124t5+
�

6

)

∫ t+�

t
18Dn

1124s5>09 ds

4b5 ≤

(

Z̄1124t5+
�

6

)

(

∫ t+�

t
18Dn

f 4�
n
i 1m

n
j 1X

n
M 1 s5>09 ds +

��

6m2

)

4c5 d
=

(

Z̄1124t5+
�

6

)

(

∫ �

0
18D4�ni /n1m

n
j /n1X

n
M /n1 t+sn5>09 ds +

��

6m2

)

4d5 d
=

(

Z̄1124t5+
�

6

)

�

(

1
n�

∫ n�

0
18D4�ni /n1m

n
j /n1X

n
M /n1 t+s5>09 ds +

�

6m2

)

4e5 ≤

(

Z̄1124t5+
�

6

)

�
(

�1124xM5+
2�

6m2

)

4f5 ≤

(

Z̄1124t5+
�

6

)

�
(

�1124X̄4t55+
3�

6m2

)

4g5 ≤ Z̄1124t5�1124X̄4t55� +
�1124X̄4t55

6 �� +
1
2�� +

��2

12m2

4h5 ≤ Z̄1124t5�1124X̄4t55� +
3
4
��

≤ 4Z̄1124t5�1124X̄4t55+ �5� for all n≥ n0 ≡ n30

(C23)

We now explain the steps in (C23): First, for (a) we replace Z̄n
1124s5 by Z̄1124t5 for t ≤ s ≤ t + � by applying

(C22). For (b), we apply Lemma C.4. For (c), we use the alternative representation in terms of the FTSP in
(C15). For (d), we use the change of variables in (C16). For (e), we use (C20), exploiting the convergence
in (C18). For (f), we use (C19). Step (g) is simple algebra, exploiting Z̄1124t5 ≤ m2. Step (h) is more algebra,
exploiting �1124X̄4t55≤ 1, and � ≤ 1 ∧m2. That completes the proof of the lemma. �
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C.5. Proof of Lemma C.4. We will directly show how to carry out the construction of the sample path
order for stochastic processes having the same distributions as the terms in (C7). We will show that the interval
601 �7 can be divided into a large number (O4n5) of alternating subintervals, each of length O41/n5, such that
full sample path order holds on one subinterval, and then the processes are unrelated on the next subinterval.
We will then show, for an appropriate choice of �, that these intervals can be chosen so that the first intervals
where order holds are much longer than the second intervals where the processes are unrelated. Hence we will
deduce for this construction that the inequalities in (C7) holds w.p.1 for all n sufficiently large. We will specify
the steps in the construction and explain why they achieve their goal, while minimizing the introduction of new
notation. We highlight twelve key steps in the argument.

An integer state space. We exploit Assumption 3.3 to have r112 be rational, and then use the integer state space
associated with the QBD representation in §6 of Perry and Whitt [37]. However, we do not directly exploit
the QBD structure; instead we directly work with the CTMCs with transitions ±j and ±k, where j and k are
positive integers. We will reduce the analysis to consideration of homogeneous CTMCs.

Exploiting Lemma 8.4, but reducing the length of the interval. We construct the states xm1 xM ∈�, and random
vectors Xn

m1X
n
M , and associated frozen processes Dn

f 4X
n
m5 and Dn

f 4X
n
M5 exactly as in Lemma 8.4, but we adjust

the specific values to make them closer together at time 0 as needed by choosing � to be suitably smaller than
the � needed in Lemma 8.4. It is significant that here � can be arbitrarily small; we only require that � > 0.

Initializing at time 0. By Assumption 3.2, we have X̄n ⇒ x405 ∈�⊂�3 and Dn
112405⇒ L ∈�. Since x405 is

deterministic, we immediately have the joint convergence 4X̄n1Dn
1124055⇒ 4x4051L5 ∈�4; apply Theorem 11.4.5

of Whitt [47]. We then apply the Skorohod representation theorem to replace the convergence in distribution with
convergence w.p.1., without changing the notation. Hence, we can start with 4X̄n1Dn

1124055 → 4x4051L5 ∈ �4

w.p.1. With that framework, we condition on Dn
112405. We then initialize the processes Dn

f 4X
n
m105 and Dn

f 4X
n
M 105

to satisfy Dn
f 4X

n
m105=Dn

f 4X
n
M 105=Dn

112405, as in (C6).
Coupling over an initial random interval. Given identical initial values, we can apply the rate order in

Lemma 8.4 to construct versions of the processes that will be ordered w.p.1 over an initial interval of random
positive length, just as in Corollary 8.1. Let �n be the first time that the sample path order is violated. The rate
order implies that �n > 0 w.p.1 for each n ≥ 1. The coupling is performed over the interval 601 �n7. At random
time �n, we must have all three processes in the boundary set of states 8j2 −�+ 1 ≤ j ≤ �9, where �≡ j ∨ k.
That is so, because violation of order only need occur when, just prior to the order violation, we have −� <
Dn

f 4X
n
m5 ≤ 0 < 1 ≤ Dn

f 4X
n
M5 < �, where the rates are no longer ordered properly, because the processes are in

different regions. At time �n, either the upper process jumps down below the lower process or the lower process
jumps up over the upper process.

A new construction using independent versions when order is first violated. At time �n, the order is first
violated and would remain violated over an interval thereafter. However, at this time �n, we alter the construction.
At this random time �n we temporarily abandon the coupling based on rate order. Instead, going forward from
time �n, we construct independent versions of the three processes being considered. More precisely, the three
processes are conditionally independent, given their initial values at time �n. The idea is to let them evolve in
this independent manner until the three processes reach a state in which the desired sample path ordering does
again hold. We do this in a simple controlled manner. We wait until, simultaneously, the upper bound process
Dn

f 4X
n
M 1 �n + t5 exceeds a suitably high threshold, the lower bound process Dn

f 4X
n
m1 �n + t5 falls below a suitably

low threshold, and the interior processes Dn
1124�n + t5 is in a middle region. At such a random (stopping) time,

the three processes will necessarily be ordered in the desired way. After that time, we can use the coupling
again.

Avoiding working directly with Dn
112. However, since Dn

1124�n + t5 is an inhomogeneous CTMC, and thus
difficult to work with, we avoid working with it directly. Instead, we simultaneously construct new upper and
lower bound frozen processes, D̃n

f 4X
n
M5 and D̃n

f 4X
n
m5 starting at time �n, coupled with 8Dn

1124�n + t52 t ≥ 09,
initialized by stipulating that D̃n

f 4X
n
M 1 �n5 = D̃n

f 4X
n
m1 �n5 = Dn

1124�n5. These new processes are coupled with
8Dn

1124�n + t52 t ≥ 09, but conditionally independent of the independent versions of the other two processes
8Dn

f 4X
n
M 1 �n + t52 t ≥ 09 and 8Dn

f 4X
n
m1 �n + t52 t ≥ 09. We again can apply Lemma 8.4 to obtain rate order, but

again we cannot have full sample path order, because of the gap. Nevertheless, we can now apply Corollary 8.1
to conclude that we have the sample path stochastic order

D̃n
f 4X

n
m1 �n + t5−�≤st D

n
1124�n + t5≤st D̃

n
f 4X

n
M 1 �n + t5+� in D46�n1 �750

We thus can do a sample path construction to achieve

D̃n
f 4X

n
m1 �n + t5−�≤Dn

1124�n + t5≤ D̃n
f 4X

n
m1 �n + t5+� for 0 ≤ t ≤ �− �n w0p010 (C24)
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Stopping times for desired order to be achieved. We now define stopping times for the order to be achieved.
Let

�n ≡ inf 8t > 02 Dn
f 4X

n
M 1 �n + t5 > 2�1 Dn

f 4X
n
m1 �n + t5 <−2�1 −�< D̃n

f 4X
n
M 1 �n + t5 < �91 (C25)

with the three processes Dn
f 4X

n
M5, D

n
f 4X

n
m5, and D̃n

f 4X
n
M5 in (C25) being mutually conditionally independent,

given that all three are initialized at time �n with the final values there obtained from the evolution of the coupled
processes up until time �n. (We have conditional independence given the vector of initial values at time �n.) We
can combine (C25) with (C24) to conclude that we have the appropriate order at time �n +�n, in particular,

Dn
f 4X

n
m1 �n +�n5≤Dn

1124�n +�n5≤Dn
f 4X

n
M 1 �n +�n5 w.p.1.

We not only obtain the desired order at time �n +�n, but the stopping time �n depends on the three processes
8Dn

f 4X
n
M 1 �n + t52 t ≥ 09, 8Dn

f 4X
n
m1 �n + t52 t ≥ 09, and 8D̃n

f 4X
n
M 1 �n + t52 t ≥ 09, which are independent homoge-

neous CTMCs conditional on their random state vectors Xn
M and Xn

m, respectively. Thus the stopping time is with
respect to the three-dimensional vector-valued CTMC (conditional on the random state vectors Xn

M and Xn
m).

Alternating cycles using coupled and independent versions. Going forward after the time �n +�n for �n in
(C25), we again construct coupled processes just as we did at time 0. However, now we initialize by having
the specified states coincide at time �n +�n; i.e., Dn

f 4X
n
M 1 �n +�n5=Dn

f 4X
n
m1 �n +�n5=Dn

1124�n +�n5. Hence,
we can repeat the coupling done over the initial interval 601 �n7. In particular, we can apply the ordering of the
initial states and the rate ordering to construct new coupled versions after time �n +�n. We can thus repeat the
construction already done over the time interval 601 �n7 after time �n +�n. The coupled construction beginning
at time �n + �n will end at the first subsequent time that the order is violated. At this new random time
(paralleling �n), we must have all three processes in the boundary set of states 8j2 − �+ 1 ≤ j ≤ �9. In this
way, we produce a sequence of alternating intervals, where we perform coupling on one interval and then create
independent versions on the next interval.

Applying a FWLLN after scaling time by n. Because the transition rates of Dn
112 and all the other processes

are O4n5, there necessarily will be order O4n5 of these cycles in any interval 601 �7. However, we scale time
by n, replacing t by nt, just as in (A5), (C15), and (C16) to represent all processes as FTSPs with random
parameters depending on n, converging to finite deterministic limits. Once we scale time by n in that way, the
scaled transition rates converge to finite limits as n→ �, but the relevant time interval becomes 601 n�7 instead
of 601 �7, as in (C16). We can thus apply a FWLLN to complete the proof.

Regenerative structure as a basis for the FWLLN. As a formal basis for the FWLLN, we can apply regenerative
structure associated with successive epochs of order violation starting from coupling, but a regenerative cycle
must contain more than two successive intervals; we do not have an alternating renewal process. Such order-
violation epochs necessarily occur in the boundary region 8j2 −�+1 ≤ j ≤ �9, where �≡ j∨k. Hence, there are
at most 42�53 vectors of values for the three processes. Moreover, there necessarily will be one of these vectors
visited infinitely often. Successive visits to that particular state vector after coupling thus serve as regeneration
points for the entire process. That is, there is an embedded delayed renewal process. We next ensure that the
times between successive regeneration times have finite mean values, with the correct asymptotic properties
as n → �. That justifies the FWLLN. In particular, we can apply a FWLLN for cumulative processes, as in
Glynn and Whitt [13]. For the particular QBD processes being considered, there is continuity of the asymptotic
parameters, as indicated in Lemma C.5.

Finite mean time between regenerations of order O41/n5. From basic CTMC theory, it follows that the first
passage times �n in (C25) have finite mean values that are of order O41/n5. In particular, E6�n7 < cn11 < �,
where ncn11 → c1 > 0. It is more difficult to treat the mean time over which the order is valid during a single
coupling, i.e., the initial time �n and the subsequent random times that which the order is valid during the
coupling. However, we can truncate the variables at finite constant times in order to ensure that the FWLLN
reasoning can be applied; e.g., we replace �n by �̃n ≡ �n ∧ cn12 <�, where ncn12 → c2 > 0. We can later choose
c2 large enough so that the inequalities in (C7) hold for the specified �. Finally, the total number of these cycles
until the designated initial state vector appears again is a random variable. Because the successive vector of
initial state vectors visited on successive cycles is a finite-state discrete-time Markov chain, the random number
of cycles within a regeneration interval is a random variable with finite mean, say cn13, with cn13 → c3 > 0 as
n→ �. As a consequence, the mean time between successive regenerations is cn14 <�, where ncn14 → c4 > 0
as n→ �.

The proportion of time that order holds. Finally, it is important that we can control the proportion of time
that order holds in any interval 601 t7, 0 < t ≤ �, as stated in (C7), for an appropriate choice of �. As a basis
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for that control, we exploit the fact that the distribution of �n, the length of the first interval during which
order violation is allowed, and the random lengths of all subsequent intervals on which the desired sample path
order is violated, depend on the states of the three processes at time �n, i.e., upon Dn

f 4X
n
m1 �n5, D

n
f 4X

n
M 1 �n5, and

Dn
1124�n5. However, because the violation necessarily occurs in the boundary region 8j2 −�+1 ≤ j ≤ �9, where

� ≡ j ∨ k, there are at most 2� possible values for each process, and thus at most 42�53 vectors of values for
the four processes. Because this number is finite, the violation interval lengths (like �n) can be stochastically
bounded above, independent of the specific values at the violation point. Moreover, this can be done essentially
independently of �. On the other hand, the length of the intervals on which the coupling construction remains
valid necessarily increases as we decrease � and appropriately increase c2 and cn12 in the paragraph above. Thus,
for any � > 0, we can achieve the claimed ordering in (C7) for all n ≥ n0 by an appropriate choice of �, c2,
and n0. �

Appendix D. The bounding QBD in Lemma B.3. We now describe how to present the process Dn
∗

in
Step 1 of the proof of Lemma B.3 as a QBD for each n. We assume that r211 = j/k for j1 k ∈ �+, and let
m≡ j ∨ k. We define the process D̃n

∗
≡ kQn

21∗ − jQn
11∗. Thus, D̃n

∗
is Dn

∗
with an altered state space. In particular,

each process is positive recurrent if and only if the other one is.
We divide the state space �+ ≡ 8011121 0 0 0 9 into level of size m: Denoting level i by L4i5, we have

L405= 40111 0 0 0 1m− 151 L415= 4m1m+ 11 0 0 0 12m− 15 etc.

The states in L405 are called the boundary states. Then the generator matrix Q4n5 of the process Dn
∗

has the
QBD form

Q4n5
≡

























B4n5 A
4n5
0 0 0 : : :

A
4n5
2 A

4n5
1 A

4n5
0 0 : : :

0 A
4n5
2 A

4n5
1 A

4n5
0 : : :

0 0 A
4n5
2 A

4n5
1 : : :

000
000

000
000

























0

(All matrices are functions of Xn
∗
. However, to simplify notation, we drop the argument Xn

∗
, and similarly in the

example below.)
For example, if j = 2 and k = 3, then

B4n5
=









−�n + �̂n
è 0 �̂n

2

�̂n
è −�n 0

�̂n
è 0 −�n









1 A
4n5
0 =









�̂n
3 0 0

�̂n
2 �̂n

3 0

0 �̂n
2 �̂n

3









1

A
4n5
1 =











−�n 0 �̂n
2

0 −�n 0

�̂n
2 0 −�n











1 A
4n5
2 =









�̂n
3 �̂n

2 0

0 �̂n
3 �̂n

2

0 0 �̂n
2









1

where �̂n
è ≡ �̂n

3 + �̂n
2 and �n ≡ �̂n

è + �̂n
2 + �̂n

3 .
Let A4n5 ≡ A

4n5
0 +A

4n5
1 +A

4n5
2 . Then A4n5 is an irreducible CTMC infinitesimal generator matrix. It is easy to

see that its unique stationary probability vector, �4n5, is the uniform probability vector, attaching probability 1/m
to each of the m states. Then by Theorem 7.2.3 in Latouche and Ramaswami [28], the QBD is positive recurrent
if and only if �A4n5

0 1 < �A
4n5
2 1, where 1 is the vector of all 1s. This translates to the stability condition given in

the proof of Lemma B.3.

Appendix E. Positivity of fluid limit. In this appendix we explain why Assumption 3.2 about the initial
conditions is reasonable. First, the assumed convergence Dn

112405⇒ L if x405 ∈� is natural, since that conver-
gence holds whenever x4t5 ∈ �, provided that t is not a hitting time of the set � from � − �, by virtue of
Theorem 4.6 and Remark 4.2. We can take time 0 to be a time shortly after a hitting time of �.
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We now elaborate on another part of Assumption 3.2, namely, the assumed initial values for each n. Observe
that, given the convergence X̄n ⇒ x established in Theorem 4.1, we necessarily have Zn

1124t5=OP 4n5 (and thus
Zn

2114t5 = 0) and Qn
i 4t5 = OP 4n5, i = 112, if z1124t5 > 0 and qi4t5 > 0, i = 112, where x ≡ 4q11 q21 z1125 is the

fluid limit. However, in general we may not have such strict positivity in the components of the fluid limit at
time 0. (Recall that Assumption 3.2 allows Qn

i 405= o4n5, i = 112, and Zn
112405 is allowed to be 0.) Nevertheless,

we now show that we do necessarily have strict positivity of the components of x4t5 for all t > 0 small enough,
even if that property does not hold at time 0.

For a vector y ∈�3, we write y > 0 if the (strict) inequality holds componentwise.

Proposition E.1. The fluid limit x satisfies x4t5 > 0 for all t > 0 sufficiently small.

Proof. The statement follows immediately for the case x405 > 0 because of the continuity of x. We thus
assume that at least one component of x405 is not strictly positive. If z112405= 0, then it was shown in the proof
of Theorem 6.4 that z1124t5 > 0 for all t > 0. Now note that, by the assumption on the initial condition x405 in
Assumption 3.2, q1405≥ rq2405, so that if q1405= 0, then we must have q2405= 0 as well. We prove the result
for the three possible regions of x405 in Assumption 3.2, namely, �+, �+, and �, separately.

(i) x405 ∈ �+. In this case, q1405 > 0 and �1124x4055 = 1, so we need to consider the case q2405 = 0.
Plugging these values of �1124x4055 and q2405 in the equation for q̇2 in (24), we see that q̇2405= �2 > 0, so that
q2 is strictly increasing at time 0, and the result follows.

(ii) x405 ∈ �+. It is shown in Lemma 7.2 in Perry and Whitt [37] that if x405 ∈ �+, then for all t > 0
sufficiently small, x4t5 ∈�−�− −�−, i.e., q14t5≥ rq24t5 for all t ∈ 401 �17, for some �1 > 0. As in the previous
case, �1124x4055= 1 and, assuming q2405= 0, we have that q2 is strictly increasing at time 0, so that q24t5 > 0
for all t satisfying 0 < t ≤ �2, for some �2 > 0. Then, with �≡ �1 ∧ �2, q14t5 > 0 for all t ∈ 401 �7.

(iii) x405 ∈�. By Theorem 5.2 in Perry and Whitt [37], the fluid limit x is right differentiable at zero and is
differentiable on an open interval 401 �5 for some �> 0. For i = 112, if qi4t5= 0, then q̇i4t5 cannot be negative
by Theorem 5.1 in Perry and Whitt [37]. Hence, because we are considering the case qi405 = 0, we have two
possibilities: either q̇i405= 0 or q̇i405 > 0.

Our proof builds on the fact that ẋ4t5 is itself a continuous function of t. That is so because the right-hand side
of each component of ẋ4t5 in (24) includes the system’s parameters, the Lipschitz-continuous fluid limit x4t5,
and the function �1124x4t55. However, �1124x5 is locally Lipschitz continuous as a function of x by Theorem
7.1 in Perry and Whitt [37], and in particular, �1124x4t55 is a continuous function of x4t5, which is itself a
continuous function of t. Hence, �1124x4t55 is continuous in t, and so is q̇i4t5, i = 112. As a consequence, if
q̇i405 > 0, then q̇i4t5 > 0 for all t in some neighborhood of 0, so that qi is strictly increasing on a positive
interval, i = 112.

Hence it remains to consider the case in which q̇i405= 0 for i = 1 or i = 2. Assuming that to be the case, we
will show that q̇j405= 0 for j 6= i, j = 112. Indeed, if q̇j405 > 0, then qj must be increasing at a neighborhood
of time 0, so that x4t5 y � for all t > 0 small enough, contradicting the fact that � is an open set. Hence, the
proof of the proposition for the case x405 ∈� will follow if we assume that qi405= q̇i405= 0 for both i = 1 and
i = 2, and show that we reach a contradiction. We consider two subcases, depending on whether �112 >�212 or
�112 ≤�212.

If �112 >�212, then define the function V 4x4t55 = q14t5+ q24t5. It is shown in the proof of Theorem 5.1 in
Perry and Whitt [37] that V is strictly increasing whenever x4t5 ∈�, so that at least one queue is increasing at
time 0. Once again, this means that the second queue must also be strictly increasing, for otherwise x will leave
� immediately after time 0, so the statement is proved.

If �112 ≤ �212, then define the function V 4x4t55 = 41 + �5q14t5 + q24t5 + �z1124t5, for arbitrary � > 0. We
again use the proof of Theorem 5.1 in Perry and Whitt [37] to conclude that V is strictly increasing at time 0.
However, in that case, even though q̇i405= 0, i = 112, V can be increasing because ż112405 > 0. Assume that is
the case, and consider the ODE (24). (Recall that qi405= q̇i405= 0, i = 1 and 2.)

It follows from the assumption ż112405 > 0 and the equation for ż112 in (24), that

�1124x40554�112z112405+�212z2124055 > �112z1120 (E1)

Then, by the assumption q̇1405= q1405= 0, we have

0 = q̇1405= �1 −�111m1 −�1124x40554�112z112405+�212z2124055 < �1 −�111m1 −�112z1124051

where the inequality follows from (E1). Hence, �112z112405 > �1 −�111m1, which further implies that

z112405 > sa2 1 (E2)
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for sa2 in (8). From the equation for q̇2405 in (24) (recalling that q2405= 0 by assumption), we get

q̇2405= �2 −�112z112405−�212z212405+�1124x40554�112z112405+�212z2124055 > �2 −�212z2124051

where again, the inequality follows from (E1). Now, since z212405=m2 − z112405, we have

q̇2405 > �2 −�212m2 +�212z112405 > �2 −�212m2 +�212s
a
2 ≥ 01

where the second inequality follows from (E2), and the third from Assumption 3.1. This contradicts the assump-
tion that q̇2405= q̇1405= 0. Hence the proof is complete. �

Appendix F. List of acronyms. In this appendix we list all the acronyms used in the paper and refer to the
sections where they are introduced and discussed.

AP—averaging principle (§1 and Perry and Whitt [36, 37])
CTMC—continuous time Markov chain (§1)
FCLT—functional central limit theorem (§1)
FQR-T—fixed queue ratio control with thresholds (§§1 and 2.2)
FSLLN—functional strong law of large numbers (§6)
FTSP—fast-time-scale process (§§1 and 3.2)
FWLLN—functional weak law of large numbers (§§1 and 4.1)
ODE—ordinary differential equation (§§1 and 3.3)
QBD—quasi-birth-and-death process (§3.3 and Perry and Whitt [37])
QR-T—not fixed queue ratio control with thresholds (§1 and Perry and Whitt [35])
SSC—state-space collapse (§§1 and 6)
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