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Routing mechanisms for stochastic networks are often designed
to produce state space collapse (SSC) in a heavy-traffic limit, i.e., to
confine the limiting process to a lower-dimensional subset of its full
state space. In a fluid limit, a control producing asymptotic SSC cor-
responds to an ideal sliding mode control that forces the fluid trajec-
tories to a lower-dimensional sliding manifold. Within deterministic
dynamical systems theory, it is well known that sliding-mode con-
trols can cause the system to chatter back and forth along the sliding
manifold due to delays in activation of the control. For the prelimit
stochastic system, chattering implies fluid-scaled fluctuations that are
larger than typical stochastic fluctuations.

In this paper we show that chattering can occur in the fluid limit of
a controlled stochastic network when inappropriate control parame-
ters are used. The model has two large service pools operating under
the fixed-queue-ratio with activation and release thresholds (FQR-
ART) overload control which we proposed in a recent paper. The
FQR-ART control is designed to produce asymptotic SSC by auto-
matically activating sharing (sending some customers from one class
to the other service pool) once an overload occurs. We have previously
shown that this control is effective and robust, even if the service rates
are less for the other shared customers, when the control parameters
are chosen properly. We now show that, if the control parameters
are not chosen properly, then delays in activating and releasing the
control can cause chattering with large oscillations in the fluid limit.
In turn, these fluid-scaled fluctuations lead to severe congestion, even
when the arrival rates are smaller than the potential total service rate
in the system, a phenomenon referred to as congestion collapse. We
show that the fluid limit can be a bi-stable switching system possess-
ing a unique nontrivial periodic equilibrium, in addition to a unique
stationary point.

1. Introduction. In this paper we study the fluid limit of a stochastic
system comprised of two service pools, each having its own arrival process
and own queue. The system is operating under the fixed-queue-ratio with
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activation and release thresholds (FQR-ART) overload control (specified in
§2.1 below), which was developed in [28, 32]. The control is designed to
automatically switch on sharing (serving some customers from the other
pool) when an unexpected overload occurs, and switch off sharing when the
overload incident is over, based only on the observed queue lengths. While
the control is switched on, it aims to hold the two queues nearly fixed at
some pre-specified ratio. From a many-server asymptotic perspective, the
fixed-queue-ratio goal is to produce state space collapse (SSC).

It is significant that when the control parameters are chosen appropriately,
the control is both effective and robust. In particular, it is successful in
automatically switching on and off as needed, and in producing the desired
SSC (again, automatically), even under unrealistically-extreme conditions;
see [31] for key theory, involving an averaging principle, and §4.3 in [33] for
important examples.

Nevertheless, in some extreme cases a performance degradation was dem-
onstrated via simulation in [32]. More specifically, with highly inefficient
sharing (the service rate is much less for the other customers), if the control
parameters are badly-chosen, a system that is recovering from an overload
incident, and is no longer overloaded, may get stuck in an oscillatory behav-
ior that is due to unintended on-and-off switchings of the control. We now
provide mathematical analysis that establishes key properties of this oscil-
latory behavior and provides a way to approximately quantify it. In [32] we
developed a fluid approximation that can be used, in addition to simulation,
to ensure that the bad behavior does not occur. Nevertheless, it is important
to carefully study the limitations of controls. The insights gained should be
useful for studying other overload controls.

A switching control. Most of the literature on control of queueing net-
works deals with ongoing operations, in which the control is operating con-
tinuously. Typically, it is also assumed that the arrival rates and total ser-
vice capacity are known. However, here we are considering the control in
[32] which automatically switches on and off, as was briefly described above.
The fluid analysis we perform thus falls within the settings of (deterministic)
switching dynamical systems [23].

A simple example of a switching system is the description of heated space.
If the target temperature is set to be T ◦

F , then a thermostat should turn the
heating on whenever the temperature drops below level T , and off when
it reaches the target again. The ideal dynamic system’s description then
has two phases: The reaching (transient) phase, which describes the system
until the temperature reaches level T , and the “sliding” phase, in which the
temperature remains fixed (“slides”) at T . Since heat is lost continuously, a
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true sliding phase requires that the thermostat switch the heating on and off
infinitely-many times during any time interval. In reality, a hysteresis control
is employed, namely, the thermostat turns the heat on when the temperature
reaches some level T� < T , and off when the temperature hits some level
Th > T . Hence, a more realistic description of the corresponding dynamical
system has the temperature chatter about level T , with this chattering being
faster and smaller the more accurate the thermostat is. If the chattering is
sufficiently small and fast, then the hysteresis dynamics approximate the
ideal sliding phase quite well.

The queueing system we consider here has important similarities with
the heating system describe above in that it is designed to “slide” on some
region of its state space. More importantly, as we explain below, many other
control mechanisms for queueing systems are designed for this purpose. The
difference between the “ideal” sliding and the dynamics that are experienced
in practice must be taken into account so as to avoid the harmful phenomena
described here.

State space collapse, sliding motion and chattering. Asymptotic
SSC in heavy-traffic limits is often a key step in developing effective (e.g.,
asymptotically optimal) controls for multidimensional stochastic networks;
e.g., [4, 14, 15, 31, 34, 41, 43, 49]. (Related ideas date back to [46], but
the systems there are uncontrolled.) As the term suggests, SSC means that
the limit process is of a lower dimension than the prelimit process. More
precisely, if SSC holds, then the limit process “collapses” (i.e., is confined)
to a lower dimensional subset of its full state space. It is significant that
SSC is often not only a mathematical tool that is employed to simplify
asymptotic analysis, but rather, as in [31], SSC may be a goal of the control.
We elaborate on the relation of SSC to optimal control in §9 below. See also
page 136 in [1].

In the context of a functional weak law of large numbers (FWLLN) or fluid
limit, asymptotic SSC corresponds to the limiting deterministic fluid process
exhibiting a sliding motion, i.e., all the fluid trajectories “slide” on a lower-
dimensional subspace, called a sliding manifold ; see, e.g., §14.1 in [21] and
§1.2.3 in [23]. In such cases, the fluid limit often has discontinuous dynamics
in its full state space; i.e., it is governed by an ordinary differential equation
(ODE) with a discontinuous right-hand side. The discontinuous dynamics
is often avoided by assuming that the initial condition is asymptotically on
the sliding manifold and restricting attention to the behavior of the limit on
that region of the state space. However, if the initial condition of the fluid
limit is not on the sliding manifold, the fluid trajectory must first go through
a transient period before reaching the manifold; see Theorem 3 in [4] and
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the explanation preceding it. (We remark that sliding manifolds should not
be confused with the invariant manifolds in [4], which are defined to be the
fixed points of the fluid limit. In particular, on the invariant manifold, the
fluid trajectories are constant functions, whereas on a sliding manifold, the
fluid limits may exhibit a transitory behavior.)

An effective SSC control must therefore (i) pull the system to the slid-
ing manifold without undue delay and (ii) ensure that the system remains
on the sliding manifold thereafter. For queueing networks, this may re-
quire specifying different routing rules for different regions of the state
space - on and off the sliding manifold. For example, suppose that the
state space S can be partitioned into three disjoint subsets M, M+ and
M−, where M is a sliding manifold, while M+ and M− are “above”
and “below” M. A sliding-mode control will direct trajectories starting in
M− upwards toward M, and downwards toward M from M+. Ideally, a
sliding-mode control that starts in M− will switch immediately once the
fluid trajectory hits M, aiming to keep that trajectory sliding on M af-
ter that hitting time. In reality, however, there may be a delay period
until the control switches, so that the trajectory will cross immediately
into M+ after hitting M. Once the control finally switches, the trajec-
tory is in M+ and the trajectory reverses its direction towards M, but
may again cross M, this time into M−, because of delays in switching
the control. This is the chattering phenomenon in the control literature;
see §14.1 in [21]. When this chattering occurs, the sliding manifold M be-
comes a switching manifold, because the system switches its dynamics each
time it crosses M. Figure 1 depicts a schematic representation of chattering
about a manifold M, denoted by the dashed line, in the two-dimensional
plane.

Fig 1. Schematic depiction of Chattering (solid line) about a sliding manifold M (dotted
line)

The queueing context.Within queuing theory, the current paper should
be considered in the context of instability of subcritical queueing networks,
and in particular, instability caused by the control. Subcritical queueing net-
works that become overloaded due to exercising a bad control are said to
experience congestion collapse, as in [39]; see §1 in [32] and §2.2 in [33].
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The first studies of unstable subcritical queueing networks are the Lu-
Kumar [25] and Rybko-Stolyar [37] networks. These networks were con-
structed as special, “atypical”, examples with the purpose of demonstrating
that sub-criticality is not sufficient for stability of queueing systems. It was
only later acknowledged that these two counterexamples are indicative of
general phenomena (see the discussion in §3 in [6]). For example, a two-
station multiclass stochastic network, operating under FIFO, was shown to
be unstable in [5]. The analysis there was carried out under the assumption
that the number of classes is very large, namely, jobs move through station
2 a large number of times (e.g., 1,600 times) before exiting the system; see
§2 in this reference. Nevertheless, a simulation experiment in [9] shows that
with only four visits to station 2, the system is already unstable. Similarly,
we consider extreme parameters for our instability analysis so as to permit
qualitative and quantitative analysis of the fluid model, and use simulation
to show that the oscillatory behavior can occur for the stochastic system
with realistic parameters.

The setting. In this paper we illustrate the chattering phenomenon in
a queueing network. Specifically, we consider a deterministic fluid approxi-
mation arising in the many-server heavy-traffic limit for a system with two
service pools, each having its own arrival process and designated queue,
that is operating under the FQR-ART overload control which we suggested
in [32]. Normally, the two pools process work from their designated queues
only. However, when an overload occurs due to an unexpected shift in the
arrival rates, the control automatically identifies which queue should receive
help and sharing begins, so that jobs from the overloaded queue are routed
to both service pools, according to a routing rule that will be specified be-
low.

The overload control was created for two call centers that normally op-
erate separately, but might benefit by assisting each other to respond to
unexpected overloads by temporarily serving some of the other customers.
Given this call center motivation, we refer to pools of agents and the cus-
tomers served in the other (not designated) pool as shared customers. When
sharing is activated, the goal is to maintain the two queues nearly fixed at
a pre-specified ratio during overload periods that is optimal with an appro-
priate cost formulation; see [28].

We showed that sharing can be effective even if sharing is inefficient, i.e.,
the shared customers are served at a slower rate. Since there is the possibility
of performance degradation if there is too much sharing, it is necessary to
choose the control parameters appropriately. The root cause of the chattering
discussed here is indeed the combination of excessive inefficient sharing and
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poorly chosen control parameters. To avoid excessive simultaneous sharing
of customers in both directions (“two-way sharing,”see §4.1 in [28]), sharing
with pool 1 helping queue 2 is activated only if the number of shared cus-
tomers in pool 2 is below a certain (small) threshold, and similarly in the
other direction. This latter restriction can cause delays in activating sharing
when the direction of overload switches. Once activated, the control aims
to produce asymptotic SSC by confining the queues to a certain region of
the state space in the fluid limit [31]. In the fluid limit, this SSC translates
to sliding motion on one of two sliding manifolds, each associated with one
direction of sharing. We elaborate in §2 below.

When sharing is inefficient and the control parameters are not chosen ap-
propriately, delays in activating the control can cause so much chattering
that the fluid trajectory hits both sliding manifolds, without remaining in
either, leading to complex chattering behavior. Here the chattering mani-
fests itself in periodic oscillations, which lead to inefficient utilization of the
service capacity. In turn, the inefficient utilization of agents creates severe
overloads, even though the arrival rates we consider are smaller than the
potential service capacity.

Chattering in sliding-mode controls is a well-known phenomenon in de-
terministic control theory. Indeed, chattering is considered to be the natural
“state of affairs”, whereas perfect sliding motion is considered ideal and un-
realistic; e.g., §14.1 in [21]. Accordingly, even though we focus on a single
system that operates under a specific control, our results have broader rel-
evance. In particular, similar phenomena should be expected to occur with
other SSC-inducing controls when there are deviations from ideal model-
ing assumptions, such as stationarity, or “convenient” initial conditions and
control settings.

Switching dynamical systems. The chattering found in the fluid model
implies that the ODE governing the evolution of the fluid trajectories
switches whenever the control is activated or released. Therefore, the ap-
propriate fluid model x := {x(t) : t ≥ 0} for the stochastic system is a
switching dynamical system ẋ = fσ(x)(x), where σ(x) achieves a finite set
of values, fi is a continuous function for each value i of σ, but the function
fσ is discontinuous [23]. As the notation suggests, the switching epochs are
state dependent (depending only on the value of the solution x), so that the
ODE is autonomous (time-homogeneous).

The framework of switching systems in general, and of systems with slid-
ing motion in particular, is outside the classical ODE and dynamical-systems
theory, because the right-hand side function fσ is not continuous, and so it is
not locally Lipshcitz. Hence, the conditions of the Picard-Lindelöf theorem,
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ensuring the existence of a unique solution to the ODE, are not satisfied.
In general, the existence of a unique solution to a switching system with
no sliding motion can only hold in the Carathéodory sense, namely, such a
solution is an absolutely-continuous function that satisfies the ODE almost
everywhere; see [23]. A solution with a sliding motion is generally consid-
ered to hold in the Filippov sense [12], In [30, 31] we have proved that a
unique solution exists for the fluid limit of our system during sliding motion
via a stochastic averaging principle (i.e., the control achieves the desired
asymptotic SSC).

Analytical contribution. In addition to exposing the chattering be-
havior discussed above, our current work has important analytical contri-
butions. We emphasize at the outset that the derivation of the fluid model,
which will also be shown to be the FWLLN in §I.2, and its quantitative
analysis is relatively standard. The stronger analytical contributions lie in
the nontrivial qualitative analysis of the fluid model. Specifically, we pro-
vide sufficient conditions for chattering to lead to endless oscillations, and
prove the existence of a periodic equilibrium. Furthermore, we provide a
simple algorithm to efficiently analyze the system for any given initial con-
dition.

It is known that even seemingly simple switching systems can experience
chaotic-like behavior, e.g., have infinitely-many periodic equilibria that are
dense in the state space, and exhibit high sensitivity to perturbations of the
initial condition (popularly known as “the butterfly effect”); see, e.g., [8, 11].
Such systems are clearly unamenable to long-run analysis. Even fluid models
of uncontrolled systems can have uncountably-many periodic equilibria [24].
However, numerical experiments suggest that our system has at most one
periodic equilibrium, and that it is bi-stable, i.e., any fluid trajectory can
have long-run behavior of only two kinds: either it converges to the periodic
equilibrium, or else it converges to the unique stationary point (which is
therefore asymptotically stable).

To conduct a more complete study of the (bi)stability properties of the
fluid model, we create an approximation to the fluid system. (Note that “sta-
bility” here does not refer to the prelimit queueing system which is always
stable due to assumed abandonment.) For that approximating dynamical
system we show that all oscillating solutions must converge to the unique
periodic equilibrium (of the approximating system), while all other solutions
converge to the unique stationary point, which is the same as that of the
fluid limit. In particular, the approximating system is bistable. We conjec-
ture that the same is true for the fluid limit (Conjecture 5.1 below), and
support this conjecture by numerical experiments in §7.
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To summarize, we develop and analyze two layers of approximations, one
being the fluid limit, which approximates the stochastic system, and the
other being an approximating dynamical system which serves as a simplified
approximation to the fluid limit, whose qualitative behavior is easier to
characterize.

Implications of the fluid analysis to the stochastic system. A
straightforward implication of our result that the fluid limit may oscillate
indefinitely is that the prelimit stochastic systems can experience congestion
collapse. Moreover, the fluid limit may oscillate, even though the stochastic
system in the pre-limit is an ergodic continuous-time Markov chain (CTMC)
and is therefore necessarily aperiodic with a unique equilibrium (stationary)
distribution. Since the CTMC converges to its unique stationary distribution
also for initial conditions that are associated with oscillatory fluid limits, one
concludes that the convergence rate of the CTMC to stationarity must be
prohibitively slow. We elaborate in §8.

Our fluid analysis also has indirect implications to the stochastic sys-
tem. Specifically, stochastic noise, which is not captured by the fluid ap-
proximation, may eventually push the system into the oscillatory behavior,
even if the system is unambiguously initialized in the attraction region of
the stationary point. This suggests that stochastic fluctuations can lead to
fluid-scaled fluctuations. In addition, oscillations can occur in the stochastic
system even if its fluid limit does not possess a periodic equilibrium, and
never oscillates. Therefore, studying the relatively simple fluid model is im-
portant for gaining insight into the dynamics of the stochastic system. See
the examples in §7.3 below.

Organization. The rest of the paper is organized as follows. We de-
scribe the stochastic model and the control in §2. In §2.2 we explain how to
construct a direct fluid model to approximate the system’s dynamics. The
switching fluid model is derived in §3. Qualitative analysis, including rele-
vant equilibrium and stability notions for dynamical systems, are rigorously
defined and analyzed in §4. In §5 we show that the fluid model can oscillate
indefinitely and when it does we show there exists a periodic equilibrium.
The approximating dynamical system to the fluid model is developed in
§6 and is shown to be bi-stable. Numerical examples and simulation ex-
periments are provided in §7. In §8 we study the implications of the fluid
analysis to the stochastic system, and in particular, to the long-run behavior
of the underlying CTMC. General takeaways from our results, applicable to
other systems and controls, are discussed in §9. We conclude in §10. Many
of the results are proved in the appendix, and additional results appear in
Sections F–J.
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2. The model. We start by reviewing the stochastic model which is
assumed Markovian, and in particular, it can be described as a CTMC. In
§2.2 we quickly develop the deterministic fluid model to the stochastic sys-
tem, which will be our focus in this paper. We defer the proof that the fluid
model is indeed a rigorous approximation via a FWLLN to the appendix;
see §I.2.

The model has two large service pools of many homogeneous agents in
a call center, each with its own arrival stream and designated queue for
waiting customers. We assume that customers have finite patience, and will
abandon if their wait time in queue exceeds their patience. The two pools
are designed to operate independently when both are normally loaded, i.e.,
to serve their own arrivals only, but all the agents can help both customer
classes.

Sharing of customers (namely, routing customers from one pool to be
served in the other pool) may be beneficial if one of the pools is overloaded,
even if sharing makes the second service pool overloaded as well, because
abandonment keep the two queues stable. Indeed, in [28] we showed that
sharing of customers may be optimal during overload periods in a deter-
ministic fluid approximation, assuming a convex holding cost is incurred
on the two queues. However, as we showed in Proposition 2 in [28], when
agents are less efficient in serving the other class, i.e., agents serve shared
customers slower on average than their designated customers, it is never op-
timal to share in both directions simultaneously. Nevertheless, since sharing
of customers in either direction takes place sometimes, and some sharing in
both directions simultaneously may also take place, the routing graph of the
system has the letter X shape, and is therefore called the X model in the
call-center literature.

Figure 2 is a schematic portrayed of the X model; the circles represent
the service pools, and the open-ended rectangle represent the buffers, and
the arrows connecting the circles to the rectangles represent the allowed
routing of customers to service. The solid arrows pointing to the buffers
represent input (due to arrivals), and the dotted arrows represent output
(due to abandonment from the buffers, and service completions from the
service pools). We also show a figure of the N model in Figure 3 in which
sharing of customers is possible in one direction only. We discuss related
known results concerning the N model in §9 below. (Figure 3 has no arrows
from the buffers since the N systems we discuss have no abandonment.)

In general, there is a fluid-optimal amount of sharing for any given pair
of arrival rates and so, to find how many agents in the helping pool should
be assigned to shared customers requires knowing the exact arrival rates
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Fig 2. The X model Fig 3. The N model

during the overload period. A simplification is achieved by observing that
the exact amount of sharing does not need to be determined at the outset,
since it can be achieved, at least approximately, if the two fluid queues are
kept at a fixed ratio during overload periods. We again refer to [28]. There
is a different optimal ratio for each direction of sharing, and the direction
of sharing depends on which pool is overloaded.

The above reasoning lead us to design the fixed queue ratio with thresholds
(FQR-T) overload control, which (i) is activated automatically once the
queue ratio exceeds a certain “activation threshold” (so that the system
is considered overloaded); (ii) aims to maintain the two queues at a pre-
specified fixed ratio (in the many-server asymptotics); (iii) class-i customers
are routed to pool j only if there are no class j customers in pool i, i �= j.

In time-varying settings, the direction of overload may switch, so that
the direction of sharing must switch as well. If the one-way sharing rule
in Condition (iii) above is forced, then substantial delays in switching the
direction of sharing may occur. We therefore modified FQR-T in [32] by
introducing release thresholds for the service process. Specifically, in the
modified fixed queue ratio with activation and release thresholds (FQR-ART)
control the one-way sharing rule is relaxed as follows: class-1 customers can
be routed to pool 2, provided that the number of class-2 customers in pool
1 is smaller than a release threshold τ2,1 > 0, and similarly in the other
direction. We elaborate in §2.1 below.

Cyclic routing graph. An important characteristic of the X model is
that its (undirected) routing graph is cyclic. In particular, it is the most
basic cyclic parallel server system (PSS). The X model is therefore easier to
study than other cyclic PSS’s but at the same time serves as a representative
to problems that are associated with its cyclic structure. Indeed, in [28] we
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showed that the QIR control from [15] can produce severe congestion collapse
if applied to the X model when the service rates of shared customers are
slower than those of designated ones. This congestion collapse cannot occur
in PSS’s having a tree graph; see Theorem 3.1 in [15].

As was mentioned above, the FQR-ART control aims to avoid simulta-
neous sharing of customers as much as possible, and to reduce the system
into an N model (as in Figure 3) at any given time that sharing take place,
although the some simultaneous sharing is possible, and the direction of
sharing may change with time. It is therefore compelling to compare our re-
sults regarding the X model to known results on the well-studied N model;
see, e.g, [2, 18, 20, 45] and references therein. In §9 we make such compar-
isons to indicate how our results here, as well as results from our previous
work on the X model, provide important insights to other SSC-inducing
controls, taking the N model as an example. We note that the N model has
the most basic tree structure of a PSS with more than one class of arrivals
and more than one service station, making it a “representative model” for
PSS’s with tree structures (in a similar manner to the X model being a
“representative model” for cyclic PSS’s). In particular, our insights are not
restricted to PSS’s with cyclic routing graphs.

2.1. The FQR-ART control. We will start by developing a deterministic
fluid approximation for the stochastic system directly, but to fully describe
the control, we must consider that fluid model from an asymptotic perspec-
tive. We therefore consider a sequence of X models indexed by superscript
n, where system n has mn

i agents in pool i and arrival rate λn
i of class-i cus-

tomers, i = 1, 2. We assume that the arrival rates and number of agents in
each pool grow proportionally to n as n → ∞, putting us in the many-server
heavy-traffic framework.

The control of each system n ≥ 1 is based on two activation thresholds,
kn1,2 and kn2,1, two release thresholds, τn1,2 and τn2,1, and two ratio parameters
r1,2 and r2,1. These ratios, which are independent of n, are chosen to be
optimal in a fluid model of an overloaded system (here we will consider
underloaded systems), as was mentioned above.

Let Qn
i (t) denote the number of class-i customers waiting in their desig-

nated queue at time t, and let Zn
i,j(t) denote the number of class-i customers

being served in pool j at time t. The FQR-ART is an overload control,
namely, it is designed to be activated and start customer sharing automati-
cally when an overload occurs. To define overloads, we consider the difference
processes. For t ≥ 0,

(2.1) Dn
1,2(t) ≡ Qn

1 (t)−r1,2Q
n
2 (t)−kn1,2, Dn

2,1(t) ≡ r2,1Q
n
2 (t)−Qn

1 (t)−kn2,1.
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As long as Dn
1,2 < 0 and Dn

2,1 < 0, the system is considered normally loaded.
Once one of these difference processes hits 0, which corresponds to the ratio
between the two queues hitting one of the activation thresholds, the system
is deemed overloaded, and sharing begins, provided that there is only a small
number of shared customers in the overloaded pool. By “small number” we
mean that the number of shared customers in the overloaded pool is no larger
than its associated release threshold. For example, if Dn

1,2(t) ≥ 0, then class
1 is judged to be overloaded (because then Qn

1 (t) − r1,2Q
n
2 (t) ≥ kn1,2) and

it is desirable to send class-1 customers to be served in pool 2. However,
sharing is allowed only if Zn

2,1(t) ≤ τn2,1. Similar rules apply to overloads in
the other direction. (It is important that τni,j are taken to be small numbers,
so that not too much harmful simultaneous sharing can occur. However,
these threshold must be strictly positive; see (3.21) below and §3 in [32].)

Once sharing is activated, say with class 1 receiving help from pool 2, the
routing rule is as follows: Any agent, from either pool, that becomes available
at any time t, will take his next customer from class 1 if Dn

1,2(t) > 0, and
will take his next customer from his designated queue otherwise. Observe
that this means that agents from pool 1 will only take customers from their
own queue, but some class 1 customers will be routed to pool 2. The routing
mechanism when class 2 is overloaded is similar, with Dn

2,1 replacing Dn
1,2,

and the labels of the thresholds switched.

2.2. A deterministic fluid model. If the arrival processes are independent
Poisson processes, and all service times and times to abandon are indepen-
dent exponential random variables, then the six-dimensional process

(2.2) Xn(t) = (Qn
i (t), Z

n
i,j(t); i, j = 1, 2), t ≥ 0,

is a CTMC. Our goal is to develop and then analyze a fluid approximation
for this CTMC, based on asymptotic considerations (which will be made
rigorous in §I.2).

When sharing is active, the control aims to keep the two queues at the
corresponding fluid-optimal ratio, either r1,2 or r2,1, depending on the direc-
tion of sharing. Minor modifications to the statement and proof of Corollary
4.1 in [31] show that, if the system is overloaded and there is no sharing
initially, then the control achieves asymptotic SSC in the fluid limit (or un-
der any scaling of the appropriate process in (2.1) that is larger than log n).
More general assumptions were considered in [32]. The mathematical sup-
port for the asymptotic SSC was a direct consequence of the aforementioned
stochastic averaging principle.

The oscillatory performance and its resulting congestion collapse we ana-
lyze here does not involve the averaging principle, because there is no SSC.



144 O. PERRY AND W. WHITT

Indeed, unlike the fluid models in [31] and [32], the fluid model we develop
here has an explicit solution. The challenges are associated with proving that
oscillations (and congested collapse) can be self-sustained and in studying
the long-run behavior of the fluid model.

It is significant that the fluid approximation for Xn is obtained as the
FWLLN for X̄n ≡ Xn/n, see §I.2. However, we start by deriving the fluid
model directly. (We refer to the fluid model as fluid approximation or limit,
depending on the context, as the terms are equivalent in our case.) For
each of the six stochastic processes comprising Xn in (2.2) there is a fluid
counterpart, namely a deterministic and almost-everywhere differentiable
function. We let x ≡ {x(t) : t ≥ 0} denote the fluid approximation of Xn,
where

x(t) = (q1(t), q2(t), z1,1(t), z1,2(t), z2,1(t), z2,2(t)), t ≥ 0,

and call a time t “regular” if x(t) is differentiable at t. In our case, any
compact interval will have at most a finite number of points that are not
regular.

To derive the fluid equations, we simply replace the instantaneous rates
of the stochastic processes at each time t with instantaneous rates of change
of the derivatives of their fluid counterparts, e.g., the instantaneous rate of
abandonment from queue 1 at time t in system n is θ1Q

n
1 (t), which becomes

θ1q1(t) in the fluid model. Similarly, the instantaneous rate of departure
from service in pool j at time t is μj,jZ

n
j,j(t) + μi,jZ

n
i,j(t) in system n is

replaced with the instantaneous processing rate μj,jzj,j(t)+μi,jzi,j(t) in the
fluid model. Combining all these instantaneous rates gives the derivative of
x(t) at a regular time t.

For example, if both queues are smaller than the activation thresholds at
a time t, then any newly-available agent in pool 1 will take his next customer
from queue 1 in the stochastic system. Similar reasonings applied to q2 give
that, if q1(t) < k1,2 and q2(t) < k2,1, and t is regular, then

q̇1(t) = λ1 − θ1q1(t)− μ1,1z1,1(t)− μ2,1z2,1(t),

q̇2(t) = λ2 − θ2q2(t)− μ2,2z2,2(t)− μ1,2z1,2(t).
(2.3)

We derive the full set of differential equations for the fluid model during
overload periods (due to congestion collapse) in §3.1 below.

The purpose of FQR-ART is to produce SSC in the fluid limit by sending
customers from one queue to both pools according to the routing rules de-
scribed above during overload periods. If the control is successful in achiev-
ing SSC, the six-dimensional fluid model is confined to one of the sliding
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manifolds

S1,2 ≡ {x ∈ S : q1 − r1,2q2 = k1,2, z1,1 + z2,1 = m1, z1,2 + z2,2 = m2},
S2,1 ≡ {x ∈ S : r2,1q2 − q1 = k2,1, z1,1 + z2,1 = m1, z1,2 + z2,2 = m2},

where S = R2
+ × [0,m1]× [0,m2] is the domain of x.

We note that with each of the two sliding manifolds in (2.2) there is
an associated fixed point to which the “sliding” fluid solutions converge as
t → ∞. In particular, letting x∗1,2 denote the stationary point on S1,2 and
assuming that x(0) ∈ S1,2 during an overload period with sliding motion on
S1,2, we have shown in [30] that x(t) → x∗1,2 as t → ∞, i.e., x∗1,2 is globally
asymptotically stable. If x(0) = x∗1,2, then x(t) = x∗1,2 for all t, so that the
set {x∗1,2} is the invariant manifold for the fluid model (sliding on S1,2), as
in [4].

The behavior of the fluid limit when sliding on one of these manifolds
can be thought of as an infinitely-fast chattering with infinitely-small fluc-
tuations of the queues about the corresponding activation threshold. This
view can be justified rigorously via the aforementioned stochastic averaging
principle; see §4 in [30] and Theorem 4.1 in [31].

Observe that the fluid model is essentially a three-dimensional process on
either one of these sliding manifolds, because knowing x3 ≡ (q1, z1,2, z2,1) for
example, is sufficient to determine the value of the remaining three processes.
Here, however, we are interested in bad oscillatory behavior when the fluid
model overshoots past the sliding manifold due to delay in activating the
control, where a delay is caused if zj,i(t0) > τj,i, at the time t0 in which
Si,j is hit. If no SSC occurs, we must consider all six components of the
fluid model and, as will become clear below, four different switching epochs
for each cycle. We can obtain considerable simplification by considering a
symmetric model. Symmetry reduces the amount of notation and, as will
become clear later, allows us to focus attention on two switching times in
each cycle instead of four.

A symmetric model. In order to expose the bad behavior that can
result from poorly chosen controls, we consider a special case that is easier
to analyze than the general model. In particular, we consider systems with
the following parameters

μ1,1= μ2,2 = 1, μ1,2 = μ2,1 = μ < 1, λ1 = λ2 = λ < 1, θ1 = θ2 = θ >0,

m1= m2 = 1, r1,2 = r2,1 = 1, τ1,2 = τ2,1 = τ > 0, k1,2 = k2,1 = κ.

(2.4)

Observe that time is measured in terms of μ1,1 and μ2,2 (which are normal-
ized to be equal to 1). In this model there are 5 parameters instead of 16
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in the general case. There is the triple of model parameters (λ, μ, θ) and
the pair of control parameters (κ, τ). Note that each of the pools is under-
loaded if there is no sharing that slows its potential service capacity, because
λi < μi,imi = 1, i = 1, 2.

In this model, there is sharing with all class-2 fluid sent to pool 1 if
q2(t) > q1(t) + κ and z1,2(t) ≤ τ ; there is sharing with all class-1 fluid sent
to pool 2 if q1(t) > q2(t) + κ and z2,1(t) ≤ τ ; there is complex sharing,
associated with sliding motion and described by the averaging principle if
q2(t) = q1(t)+ κ and z1,2(t) ≤ τ or if q1(t) = q2(t)+ κ and z2,1(t) ≤ τ ; there
is possibly sharing according to the spare capacity control described above
if q1(t) ≥ κ and z1,2(t) + z2,2(t) < m or q2(t) ≥ κ and z2,1(t) + z1,1(t) < m.
otherwise there is no sharing actively taking place.

We have assumed in (2.4) that λ < 1, so that either pool is underloaded
if it serves its own class only (because μi,imi = 1, i = 1, 2). It will be
convenient to assume that λ ≤ 1− τ . In that case, if class i fluid is sent to
pool j at time t, i �= j, then zj,i(t) ≤ τ and the instantaneous service rate
in pool i is

μzj,i(t)+ zi,i(t) = μzj,i(t)+ (1− zj,i(t)) ≥ μzi,j(t)+ 1− τ ≥ μzi,j(t)+λ ≥ λ,

implying that the instantaneous total service rate in pool i is larger than the
arrival rate to that pool so that qi is decreasing; see also (2.3). In addition,
to achieve explicit solutions to the ODE’s we develop, we will assume that
θ < μ. We summarize in the following assumption.

Assumption 1. The model parameters satisfy (2.4). Furthermore, λ ≤
1− τ and θ < μ.

Assumption 1 is not necessary for chattering and oscillations to occur,
and is taken in order to somewhat simplify the analysis. Since τ is small,
the condition λ ≤ 1 − τ is a slight strengthening of the condition λ < 1
in (2.4), and implies that either pool is underloaded when its own class
of customers receives help from the second pool, regardless of the value of
μ. To see this, observe that the instantaneous total service rate at pool j
at time t, if there is no routing of new class-i customers to that pool, is
μzi,j(t) + (1− zi,j(t)), and that

μzi,j(t) + (1− zi,j(t)) ≥ μzi,j(t) + 1− τ ≥ μzi,j(t) + λ > λ.

The condition θ < μ simplifies the exposition of the fluid model. Specifically,
As will be seen below, we provide closed-form solutions for the fluid model
which are not defined for θ = μ, e.g., see (3.6). Therefore, one needs to solve
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for the case θ = μ separately. Letting x(·, θ, μ) := {x(t; θ, μ) : t ≥ 0} denote
our solution for the fluid equations as a function of θ and μ, and defining
x(t, θ, θ) and x(t, μ, μ) to be the solution for the fluid equations when θ = μ,
it easily checked that our explicit solution x(·, θ, μ) is continuous in θ and in
μ. We further remark that our solution remains valid if θ > μ, but the sign
of some arguments changes.

Since the activation thresholds κ are strictly positive in the fluid model,
there is no ambiguity about the translation of the FQR-ART control to the
fluid model when there is no SSC. It is then entirely determined by the
processes

(2.5) d1,2(t) = q1(t)− q2(t)− κ and d2,1(t) = q2(t)− q1(t)− κ, t ≥ 0,

which are simply the fluid counterparts of (2.1). Due to the assumed symme-
try, the state space of the fluid model is R2

+× [0, 1]4 and the sliding manifold
are defined via

S1,2 ≡ {x ∈ S : d1,2 = 0, z1,1 + z2,1 = 1, z1,2 + z2,2 = 1}
S2,1 ≡ {x ∈ S : d2,1 = 0, z1,1 + z2,1 = 1, z1,2 + z2,2 = 1}.

(2.6)

For i, j = 1, 2, i �= j, we define S−i,j ≡ {x ∈ S : di,j < 0} and S+i,j ≡ {x ∈ S :
di,j > 0}.

If x(t) ∈ Si,j for all t over some interval I, then x is said to slide on the
sliding manifold Si,j . Chattering corresponds to the fluid trajectory hitting
and immediately crossing a sliding manifold, e.g., when it is moving from S−i,j
to S+i,j (necessarily via Si,j) without sliding on Si,j , and back from S+i,j to S−i,j .
It will be clear that chattering about one sliding manifold is not sustainable
unless the fluid trajectory makes it all the way to the second manifold.
When both manifolds are hit, we say that the fluid oscillates. Since we will
consider initial conditions in S+2,1, a full cycle is considered to end when

the fluid trajectory first enters S+2,1 after hitting S1,2. When chattering or
oscillations occur, the sliding manifolds in (2.6) become switching surfaces,
because the dynamics of the fluid model switches when it hits either of these
subspaces.

The state space. It is easily seen from (2.3) that q̇i(t) ≤ λ− θqi(t), and
that this inequality holds for all t ≥ 0 regardless of the routing. It follows
from the comparison principle for ODE’s, e.g., Lemma 3.4 in [21], that for
all t > 0, qi(t) ≤ max{qi(0), λ/θ}, i = 1, 2, and that, if qi(0) > λ/θ, then qi
must be strictly decreasing as long as qi(t) > λ/θ. Furthermore, qi can never
cross λ/θ from below, i.e., if qi(s) < λ/θ, then qi(t) < λ/θ for all t > s ≥ 0.
We can therefore assume without any loss of generality that qi(0) < λ/θ
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so that the state space of the symmetric model is the compact and convex
subset S ⊂ R6, where

(2.7) S ≡ [0, λ/θ]2 × [0, 1]4.

3. The switching fluid model. Consider a system that has just re-
covered from an overload, in which class 1 was receiving help from pool 2.
Suppose that λ1, which was greater than μ1,1m1 = 1 during the preceding
overload period, dropped to the value λ < 1 in (2.4) Since sharing was taking
place with pool 2 helping, we necessarily had z2,1 < τ and q1 − q2 = κ > 0
(x sliding on S1,2) during the overload period.

Assuming that z1,2 was larger than τ during the preceding overload period,
we designate by 0 the first time that z1,2 hits τ , so that sharing can begin
with pool 1 helping queue 2 if d2,1(0) > κ. Formally,

Assumption 2 (initial condition).

x(0) ∈ S, q1(0) > 0, d2,1(0) > 0, z1,2(0) = τ and 0 ≤ z2,1(0) < τ.

To describe the oscillatory behavior of the fluid model, we define the times

T1 ≡ inf {t ≥ 0 : d2,1(t) ≤ 0}, T2 ≡ inf{t ≥ 0 : z2,1(Σ1 + t) ≤ τ},
T3 ≡ inf{t ≥ 0 : d1,2(Σ2 + t) ≤ 0}, T4 ≡ inf{t ≥ 0 : z1,2(Σ3 + t) ≤ τ},

(3.1)

where,

(3.2) T0 ≡ Σ0 ≡ 0, Σk ≡
k∑

i=0

Ti and Ii ≡ [Σi−1,Σi), k = 1, 2, 3, 4.

Observe that T1 and T3 are the hitting times of the switching manifolds,
and are in fact the crossing times from above of these manifolds. At those
hitting times, ongoing sharing ends. The times T2 and T4 are the hitting
times (again, crossing times from above) of the release thresholds, so that
sharing can begin at those times. For example, if x(T2) ∈ S+1,2, then sharing
of class-1 fluid can begin at this time. See §3.2 below.

We refer to the times Σi as switching times, and to Ti as holding times
(the times between switching). The length of each interval Ii is Ti, i.e.,
|Ii| ≡ Σi − Σi−1 = Ti, 1 ≤ i ≤ 4. We will interchangeably write T1 or Σ1,
and T1 + T2 or Σ2, as convenient.

Clearly T1 > 0 for the initial condition in Assumption 2, but it is possible
that Ti = 0 for i > 1. Observe that if at the end of the first cycle x(Σ4)
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satisfies the same conditions specified for x(0) in Assumption 2, then x(Σ4)
can be taken as a new “initial condition” for the fluid model (which is time
homogeneous, as will be shown below), and a new cycle begins. Further-
more, if both fluid queues are strictly positive on [0,Σq) and z2,1(Σ1) > τ in
addition to d1,2(Σ2) > 0, then x(Σ2) can be thought of as a “mirror image”
of x(0) because we necessarily have 0 < z1,2(Σ2) < τ . In particular x(Σ2)
satisfies the conditions in Assumption 2, but with the labels (subscripts) re-
versed. Similarly, if both queues remain positive throughout [0,Σ3), then
x(Σ3) is a “mirror image” of x(Σ1) ≡ x(T1). This observation greatly sim-
plifies the search for a periodic equilibrium since, on the trajectory of a pe-
riodic equilibrium, it holds that xs(Σ2) = x(0) and xs(Σ3) = x(Σ1), where
xs := (q2, q1, z2,2, z2,1, z1,2, z1,1) (i.e., xs has the labels of x reversed). We can
then focus on analyzing a half cycle [0,Σ2] for the symmetric model.

Hence, we consider the fluid model as long as the conditions in Assumption
2 hold in the switching times, either for x or for xs. It will be seen below
that, for any initial condition in S, 0 ≤ zi,j ≤ 1, i, j = 1, 2. However, the
equations for q1 and q2 can become negative. We thus consider the fluid
model on [0,Σq), where

(3.3) Σq ≡ inf{t > 0 : min{q1(t), q2(t)} = 0}.

Since T1 > 0 for any initial condition satisfying Assumption 2, we necessar-
ily have Σ1 > T1 > 0. Similarly, if Σ2 > 0, then necessarily T3 > 0. It follows
that, if Σq < Σ4, then Σq ∈ I2 or Σq ∈ I4. On the other hand, if x(Σ4)
satisfies the conditions in Assumption 2, then Σq > Σ4. We then take x(Σ4)
as the initial condition for the second cycle, and start over. We will pro-
vide sufficient conditions for Σq to be infinite, in which case cycle-end time
Σ4 is the beginning of a new full cycle, and the fluid model keeps oscillat-
ing indefinitely. Since both queues are strictly positive throughout (despite
Assumption 1), we get congestion collapse that is due to self-sustained os-
cillations.

3.1. The switching fluid equations.

3.1.1. The equations on I1: Both pools serve queue 2 only. Recall that
over the interval I1 ≡ [0,Σ1) sharing takes place with both pools accepting
only fluid from queue 2 and no fluid from queue 1. For a given initial condi-
tion x(0) satisfying Assumption 2, and determined by specifying the triple
(q1(0), q2(0), z2,1(0)), the fluid equations for the service process are therefore

ż1,1(t) = −z1,1(t)μ1,1, z2,1(t) = 1− z1,1(t) and ż1,2(t) = −z1,2(t)μ1,2,
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so that

z1,1(t) = (1− z2,1(0))e
−t, z2,1(t) = 1− (1− z2,1(0))e

−t,

z1,2(t) = τe−μt and z2,2(t) = 1− τe−μt,
(3.4)

and the fluid equations for the queue processes are

q̇1(t) = λ− q1(t)θ,

q̇2(t) = λ− q2(t)θ − z1,1(t)μ1,1 − z2,1(t)μ2,1 − z1,2(t)μ1,2 − z2,2(t)μ2,2

= λ− q2(t)θ − [(1− z2,1(0))e
−t + 1− τe−μt]

− [1− (1− z2,1(0))e
−t + τe−μt]μ

= (λ− 1− μ)− q2(t)θ − (1− μ)(1− z2,1(0))e
−t + (1− μ)τe−μt.

(3.5)

For the given initial condition x(0), we can calculate the interval ter-
mination time T1 and the fluid performance functions in I1. Observe that
by first solving for the service processes in (3.4), the autonomous (time-
homogeneous) ODE for the queues becomes a nonhomogeneous first-order
linear ODE. Under the condition θ < μ in Assumption 1, the explicit solu-
tion to the ODEs (3.5) over [0, T1) is

q1(t) = q1(0)e
−θt +

(
λ

θ

)
(1− e−θt)

q2(t) = q2(0)e
−θt +

(
λ− 1− μ

θ

)
(1− e−θt)

−
(
(1− μ)(1− z2,1(0))

1− θ

)
(e−θt − e−t) +

(
(1− μ)τ

μ− θ

)
(e−θt − e−μt).

(3.6)

We see that q1(t) is strictly increasing in S and necessarily remains strictly
positive in the interval I1. Given the initial conditions in Assumption 2 and
the definition of Σ1 ≡ T1 in (3.1), this implies that both fluid queue lengths
are necessarily strictly positive in the interval I1, so that Σq > T1.

3.1.2. The equations on I2: No active sharing. Given any initial con-
dition (q1(0), q2(0), z2,1(0)), we can calculate T1 and the 6-tuple (qi(T1),
zi,j(T1)); i, j = 1, 2). These provide the initial condition for the second inter-
val I2 ≡ [Σ1,Σ2). We assume that z2,1(T1) > τ so that sharing with pool 2
helping queue 1 did not begin at time T1 and so T2 > 0. The fluid equations
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for the service process for t ∈ I2 are

ż2,1(t) = −z2,1(t)μ2,1, so that z2,1(T1 + t) = [1− (1− z2,1(0))e
−T1 ]e−μt

and z1,1(T1 + t) = 1− z2,1(T1 + t) = 1− [1− (1− z2,1(0))e
−T1 ]e−μt

ż1,2(t) = −z1,2(t)μ1,2, so that z1,2(T1 + t) = τe−μ(T1+t)

and z2,2(T1 + t) = 1− z1,2(T1 + t) = 1− τe−μ(T1+t).

(3.7)

As long as both queues remain positive, since there is no new sharing in
this second interval I2, at time T1 + t for t ∈ [0, T2], the queues evolve as
follows:

q̇1(T1 + t) = λ− q1(T1 + t)θ − z1,1(T1 + t)μ1,1 − z2,1(T1 + t)μ1,2(3.8)

= −(1− λ)− q1(T1 + t)θ + (1− μ)z2,1(T1)e
−μt

q̇2(T1 + t) = λ− q2(T1 + t)θ − z2,2(T1 + t)μ2,2 − z2,1(T1 + t)μ2,1

= −(1− λ)− q2(T1 + t)θ + (1− μ)z1,2(T1)e
−μt

under the new initial condition (q1(T1), q2(T1), z1,2(T1), z2,1(T1)).
Paralleling (3.6), we can solve these ODE’s explicitly: For all t ∈ [0, T2)

q1(T1 + t) = q1(T1)e
−θt +

λ− 1

θ
(1− e−θt) +

(1− μ)z2,1(T1)

μ− θ
(e−θt − e−μt)

q2(T1 + t) = q2(T1)e
−θt +

λ− 1

θ
(1− e−θt) +

(1− μ)z1,2(T1)

μ− θ
(e−θt − e−μt),

(3.9)

provided that T1 + t ≤ Σq.

3.1.3. The switching fluid model. The equations on I3 ≡ [Σ2,Σ3) and
I4 ≡ [Σ3,Σ4) are derived similarly to the equations for the intervals I1
and I2, assuming Σq < Σ4. We summarize in the following definition of the
direct fluid model. As was mentioned before, we consider the interval [0,Σq)
and provide sufficient conditions for Σq to be infinite. We further prove that
oscillations must end at time Σq when this time is finite.

For two real numbers a, b, let a∧ b ≡ min{a, b}. We will later also use the
notation a ∨ b for the maximum between the two numbers.

Definition 3.1 (switching symmetric fluid model). For any initial con-
dition x(0) satisfying Assumption 2, the fluid model for the symmetric sys-
tem is the solution x ≡ {x(t) : t ∈ [0,Σ4 ∧ Σq)} to the autonomous (time
invariant) switching ODE

(3.10) ẋ = fσ(x)(x), σ(x(t)) = 1, 2, 3, 4;
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where f1 is defined in (3.4)–(3.5), f2 is defined in (3.7)–(3.8), f3 satisfies the
equations of f1, but with the labels of the processes reversed, and f4 satisfies
and equations of f2, with the labels of the processes reversed. The switching
times Σi, 1 ≤ i ≤ 4, are determined by the value of the solution x(t) at time
t and are defined in (3.2). Furthermore, all points t ∈ [0,Σ4 ∧ Σq), except
for the switching times, are regular.

We refer to any specific solution to (3.10) as a fluid solution or a trajectory.
As was mentioned above, if x(Σ4) satisfies Assumption 2, then it serves as
an initial condition for the following cycle, so that (3.10) describes the fluid
dynamics beyond the first cycle in an obvious way. In §I.2 we will show that
the unique solution x to (3.10) with a given initial condition arises as the
FWLLN of X̄n in (2.2) as n → ∞ over any compact subinterval of [0,Σq).

3.2. The queue-difference process. Let

Δ(t) ≡ q2(t)− q1(t), t ≥ 0.

As indicated in (3.1), at time T1 we have Δ(T1) = κ. If Δ̇(T1) < 0, then
Δ(T1+t) < κ for all t in some interval (0, ε] for ε > 0. In that case, fluid from
queue 2 stops flowing into pool 1. At some point t0 > T1 we may have that
−Δ(t0) = κ, in which case sharing should begin with pool 2 helping queue
1, unless z2,1(t0) > τ , which means that x will cross the sliding manifold
S1,2 into S+1,2. We now study the difference process over [0,Σ2). In terms of
(3.6),

Δ(t) = Δ(0)e−θt − 1 + μ

θ
(1− e−θt)

(3.11)

−
(
(1− μ)(1− z2,1(0))

1− θ

)
(e−θt − e−t) +

(
(1− μ)τ

μ− θ

)
(e−θt − e−μt).

Lemma 3.1 (derivative of Δ over I1). The function Δ in (3.11) has a
negative derivative on I1 and is therefore strictly decreasing. In particular,

Δ̇(t) = −θΔ(t) + Ψ(t), t ∈ I1,(3.12)

where Δ(t) > 0 and

(3.13) Ψ(t) ≡ −(1+μ)−(1−μ)(1−z2,1(0))e
−t+(1−μ)τe−μt < 0, t ∈ I1,

so that Δ̇(t) < 0 and −ΨU ≤ Ψ(t) ≤ −ΨL, where

(3.14) 0 < ΨL ≡ 2μ− (1− μ)(1− τ) < 2 ≡ ΨU < ∞, t ∈ I1.
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Proof. The expression for the derivative (prior to time T1) follows im-
mediately from (3.5). The function Ψ(t) in (3.13) is strictly negative because
1 + μ > 1− μ > (1− μ)τe−μt for all t ≥ 0.

We also have an explicit expression for the difference at time t in terms
of its value at time 0. Specifically, (3.12) is a classic first-order ordinary
differential equation, which is known to have the explicit solution

(3.15) Δ(t) = Δ(0)e−θt + e−θt

∫ t

0
eθsΨ(s) ds, t ∈ I1,

where Ψ(s) is defined in (3.13) and is independent of Δ(0). Thus, Δ(t) is
a strictly increasing function of the initial difference Δ(0) > 0. In addition,
Ψ(s) and Δ(t) are increasing functions of z2,1(0) and τ . As a consequence,
T1 is strictly increasing function of Δ(0), z2,1(0) and τ . Moreover, for ΨL

and ΨU in (3.14) and t ∈ I1,

(3.16) Δ(0)e−θt −ΨU

(
1− e−θt

θ

)
≤ Δ(t) ≤ Δ(0)e−θt −ΨL

(
1− e−θt

θ

)
.

From (3.8), we immediately obtain an expression for the derivative of the
queue difference:

Δ̇(T1 + t) = −θΔ(T1 + t) +Ae−μt, 0 ≤ t ≤ T2,(3.17)

where Δ(T1) = κ and

(3.18) A ≡ (1− μ)(z1,2(T1)− z2,1(T1)) < 0.

Hence, Δ̇(t) < 0, so that d2,1(t) < 0 (q2(t) < q1(t) + κ) for all t ∈ I2.
Therefore, Δ̇(t) < 0 for all t ∈ [0,Σ2), so that Δ is strictly decreasing over
that interval, implying that the time T1 is well defined as the unique solution
t to the equation Δ(t) = κ.

Finally, (3.9) implies that the function Δ(t) can be expressed as

Δ(T1 + t) = κe−θt +Φ(t), 0 ≤ t ≤ T2,(3.19)

where, for all 0 ≤ t ≤ T2,

(3.20) Φ(t) ≡ Ae−θt

∫ t

0
eθse−μs ds = A

(
e−θt − e−μt

μ− θ

)
< 0,

with A < 0 in (3.18). In particular, Δ(T1 + t) < κ for all t ∈ I2, so that
there is no active sharing in I2.
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3.3. Conditions for finiteness of the switching times. From the definition
of T1 in (3.1) together with (3.16), we immediately get that T1 < ∞. Given
T1, we can apply (3.7) to obtain an equation for T2. If T1 is sufficiently large
so that z2,1(T1) > τ , then

z2,1(Σ2) ≡ z2,1(T1 + T2) = z2,1(T1)e
−μT2 = [1− (1− z2,1(0))e

−T1 ]e−μT2

= z1,2(0) = τ,

where the last equality follows from the definition of T2. As an immediate
consequence of (3.1), we have explicit formulas for T2:

(3.21) T2 =
loge (z2,1(T1)/τ)

μ
=

loge ([1− (1− z2,1(0))e
−T1 ]/τ)

μ
.

It is easy to check whether z2,1(T1) > τ so that T2 > 0; see (3.4) above. It
suffices to have e−T1 < 1− τ or, equivalently, T1 > − loge (1− τ).

Combining (3.7) with (3.21) to obtain an expression for z1,2(Σ2)

(3.22) z1,2(Σ2) = τe−μΣ2 .

We can apply (3.9) to calculate qi(Σ2) to verify that qi(Σ2) > 0 for i =
1, 2, ensuring that Σq ≥ Σ2. If x(Σ2) satisfies the conditions of x(0) in
Assumption 2 but with the labels of the processes reversed, then we can
again apply (3.7) (with the labels reversed) to conclude that T3 < ∞. If
T3 > 0, then T4 satisfies a similar equation to (3.21), but with T3 replacing
T1 and z1,2(T3) replacing z2,1(T1), provided that z1,2(T3) > τ .

4. Qualitative analysis. Just as for the stochastic system, it is im-
portant to identify the possible equilibrium behavior of the fluid models, as
well as its long-run behavior. We start with formally defining the relevant
equilibria for our fluid model and then stating the main results regarding
fluid model.

Recall that the state space of the fluid model is S in (2.7). For the general
discussion regarding the long-run behavior of the system, we consider all
the possible initial conditions, and therefore Assumption 2 is not enforced
in this section. Specifically, any γ ∈ S is allowed to be an initial condition.

Definition 4.1 (stationary point). A point x∗ ∈ S is stationary for
(3.10) if x(0) = x∗ implies that x(t) = x∗ for all t ≥ 0.

Definition 4.2 (periodic equilibrium). A non-constant solution u∗ ≡
{u∗(t) : t ≥ 0} to (3.10) is a periodic equilibrium, if there exists T > 0 such
that u∗(t+ T ) = u∗(t) for all t ≥ 0. The smallest such T is called the period
of u∗.
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Lyapunov stability of a stationary point. We will show that for any set of
parameters, the fluid model in Definition 3.1 has a unique stationary point
and that, in some cases, there also exists a unique periodic equilibrium.
We will then study the stability properties of the fluid model. There are
three types of stability notions corresponding to stationary points that are
relevant for us.

For a stationary point x∗, let Sx∗ ⊆ S be the stability region of x∗, i.e.,
if x(0) ∈ Sx∗ , then x(t) → x∗ as t → ∞. Note that, by the definition of x∗,
Sx∗ is not empty because it contains x∗.

Definition 4.3 (Lyapunov stability). A stationary point x∗ is said to
be

• unstable, if Sx∗ = {x∗};
• asymptotically stable, if Sx∗ contains an open neighborhood of x∗;
• globally asymptotically stable, if Sx∗ = S.

We note that for our system with the state space S in (2.7), subsets
of S � R6 are considered open in the relative topology induced on S by
the topology of R6. In particular, open subsets can contain points on the
boundary of S in R6.

Stability of a periodic equilibrium. When a periodic equilibrium u∗ exists, it
is possible for the fluid model to oscillate indefinitely, at least when the initial
condition is taken to be on the periodic equilibrium trajectory. However,
we would like to know if the periodic equilibrium is also asymptotically
stable in some sense, namely, if there exists a set Su∗ ⊆ S such that, if
x(0) ∈ Su∗ , then x(t) converges to the periodic equilibrium. We note that
convergence to periodic equilibrium cannot hold in the Lyapunov sense, as
in Definition 4.3, because there would typically be a time shift between the
converging solution and the periodic-equilibrium solution. We therefore say
that a solution x converges to a periodic equilibrium u∗ if its image “spirals”
toward the image of u∗ as time increases. (By spiraling we mean that the
image of x keeps moving in the direction of u∗ and gets closer to it as time
increases; see Lemma D.4 in the appendix.)

Consider a switching dynamical system ẋ = fσ(x) (not necessarily (3.10)).
The standard way of proving that a periodic equilibrium u∗ (assuming one
exists) with period T is stable, is to consider the intersection point ũ of
u∗ with a switching surface M, and show that any trajectory x that is
initialized on M sufficiently close to ũ, will reach M again after a time that
is approximately equal to the period T of u∗. If, in addition, the intersections
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of x with M converge to ũ, then u∗ is asymptotically stable; see, e.g., page
121 in [40].

To rigorously define the above asymptotic stability notion, and show that
it indeed implies the “spiraling motion” of solutions that are initialized suf-
ficiently close to a periodic equilibrium, we first make a simple observation:
When there are N > 1 switching surfaces Mi, 1 < i ≤ N , that are inter-
sected by a stable periodic equilibrium u∗, the intersections of x with Mi,
as well as the values of x at those intersection points, will converge to the
intersection points of u∗ with Mi and the values of u∗ at these epochs, re-
spectively, for each i ≤ N . Since this is the case for our system, we define
asymptotic stability in term of all four switching surfaces and the corre-
sponding switching times. To avoid introducing more notation, the definition
is given for our system directly.

Let Pu∗ denote the image of a periodic equilibrium u∗ having period T ;

Pu∗ ≡ {γ ∈ S : γ = u∗(t), 0 ≤ t < T}.

Since u∗(0) = u∗(T ), the set Pu∗ is an invariant set, namely, if y0 ∈ Pu∗

and y is the unique solution to ẏ = fσ(y) in (3.10) with initial condition
y(0) = y0, then y(t) ∈ Pu∗ for all t > 0.

Let x be a solution to (3.10) with x(0) /∈ Pu∗ and Σq = ∞ (so that x
oscillates indefinitely; we will show in Theorem 5.5 below that such solutions
exist). Note that if x is an oscillating solution to (3.10), then there exists a
t1 ≥ 0 such that x(t1) satisfies the conditions in Assumption 2. Due to the
time-homogeneity of x we can restart the ODE at the first time t1 ≥ 0 for
which x(t1) satisfies Assumption 2 by taking x(0) = x(t1). Then the solution
{x(t) : −t1 ≤ t < ∞} satisfies Assumption 2 at time 0.

For Ti and Σi in (3.1) and (3.2), let T
(k)
i and Σ

(k)
i be the value of holding

time Ti and switching time Σi, respectively, in the kth cycle of x, where

Σ
(1)
0 ≡ t1 (so that x(Σ

(1)
0 ) ≡ x(0) by definition) and Σ

(k+1)
0 ≡ Σ

(k)
4 , k ≥ 1.

Let T ∗
j denote holding time j, 1 ≤ j ≤ 4, and Σ

∗(k)
i denote switching time

i, 0 ≤ i ≤ 4, in the kth cycle of a periodic equilibrium u∗, with Σ
∗(0)
0 ≡ 0

and Σ
∗(k+1)
0 ≡ Σ

∗(k)
4 , k ≥ 1. Similarly, for an oscillating solution x, let

T
(k)
j , denote holding time j, 1 ≤ j ≤ 4, and Σ

(k)
i denote switching time i,

0 ≤ i ≤ 4, in the kth cycle of x, k ≥ 1, where Σ
(0)
0 ≡ 0 and Σ

(k+1)
0 ≡ Σ

(k)
4 ,

k ≥ 1.

Definition 4.4 (asymptotically stable periodic equilibrium). A periodic
equilibrium u∗ having period T is said to be asymptotically stable if there
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exists an open subset Su∗ of S which contains Pu∗ such that, if x(0) ∈ Su∗ ,
then for 1 ≤ i ≤ 4 and any t > 0,

(4.1) lim
k→∞

T
(k)
i = T ∗

i and lim
k→∞

sup
0≤s≤t

‖x(Σ(k)
0 + s)− u∗(Σ∗(k)

0 + s)‖ = 0.

5. Asymptotic behavior of the fluid model. In this section we es-
tablish results about the asymptotic behavior of the switching fluid model
in (3.10). We show that there always is the underloaded stationary point
equilibrium, to which the fluid model converges if it does not oscillate in-
definitely. We show that there exists an overloaded periodic equilibrium if
it oscillates indefinitely, and provide sufficient conditions for endless oscilla-
tions. For the discussion of equilibria, we no longer assume initial conditions
in Assumption 2; we allow arbitrary initial conditions in the state space S.
We also consider the system after time Σq in (3.3). The proofs of all the
results in this section are relegated to the Appendix.

5.1. Existence and asymptotic stability of a unique stationary point. If
there is no sharing actively taking place on an interval [0, T ], then the
stochastic system decomposes into two independent M/M/n+M (Erlang-
A) queuing systems. Let Y n

i (t) := Qn
i (t) + Zn

i,i(t) denote the total number

of customers in each of these systems and Ȳ n
i := Y n

i /n, i = 1, 2. Then the
fluid model for Ȳ n in the symmetric case we consider is the solution of the
ODE

ẏi = λ− μ(1 ∧ yi)− θ(yi − 1)+, i = 1, 2,

where a+ ≡ max{a, 0}. In this case we have the following elementary, but
important, result.

Theorem 5.1. If qi(0) ≤ κ, then no sharing will ever begin in the fluid
model and x(t) → x∗0 as t → ∞, where

(5.1) x∗0 ≡ (q∗1, q
∗
2, z

∗
1,1, z

∗
1,2, z

∗
2,1, z

∗
2,2) = (0, 0, λ, 0, 0, λ).

Hence, x∗0 is an asymptotically stable stationary point.

Remark 5.1. Having x∗0 in (5.1) be an asymptotically stable stationary
point depends critically on the assumption that κ > 0. If, instead, κ = 0,
then it is possible for x∗0 to be an unstable stationary point, so that x os-
cillates indefinitely for any initial condition x(0) �= x∗0. Instability of x∗0 has
important consequences for the stochastic system Xn, since stochastic fluc-
tuations may trigger undesirable sharing even if the system is initialized
at the neighborhood of x∗0. Therefore, stochastic fluctuations can quickly
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lead to fluid-scaled fluctuations, namely, to an oscillatory behavior. See the
simulations in §7.4 below. The moral is that there is a need to ensure that
the activation thresholds in the (finite) stochastic system are large enough
to be considered positive in fluid scale. The size of the stochastic fluctua-
tions of critically-loaded pools with no sharing can be estimated from the
established heavy-traffic limit approximations for the Erlang-A model in
[13].

Ideally, x∗0 in (5.1) would be a globally asymptotically stable stationary
point for the fluid model, since the system is underloaded (λ < 1) and
we want no sharing to take place, and indeed that will be the case with
appropriate controls. However, here we are interested in fluid models with
poorly chosen controls. Then solutions to (3.10) need not converge to x∗0, so
that Sc

x∗
0
�= φ, where, for a set A, Ac denotes the complement of A and φ

denotes the empty set.
Let S∗ := {γ∗ ∈ S : γ∗ is a stationary point}.

Theorem 5.2. S∗ = {x∗0} for x∗0 in (5.1); i.e., x∗0 is the unique stationary
point of the switching fluid model.

Due to Theorem 5.2, we can refer to x∗0 in (5.1) as the stationary point
with no sharing, or simply as the stationary point.

5.2. Only two possibilities. We now show that there are only two pos-
sibilities for the asymptotic behavior. Let O ⊂ S be the set of points such
that, if x(0) ∈ O, then the solution x to (3.10) switches infinitely often as
t → ∞, i.e., it oscillates indefinitely.

Theorem 5.3. Oc = Sx∗
0
for x∗0 in (5.1); i.e., if x(0) ∈ Oc, then x(t) →

x∗0 as t → ∞.

5.3. Existence of a periodic equilibrium. Theorem 5.3 shows that a so-
lution x to (3.10) either converges to x∗0 or oscillates indefinitely. We now
consider what happens if the solution oscillates indefinitely.

Theorem 5.4. If O �= φ, then there exists a periodic equilibrium u∗ ≡
{u∗(t) : t ≥ 0} to (3.10). In particular, if O �= φ, then there exists a initial
state vector x(0) satisfying Assumption 2 such that x(0) ∈ O and, for that
x(0), Σq > Σ2 and (q1(Σ4), q2(Σ4), z2,1(Σ4)) = (q1(0), q2(0), z2,1(0)), which
implies that T3 = T1, T4 = T2, so that Σ4 = 2Σ2,
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(q1(Σ4), q2(Σ4), z2,1(Σ4)) = (q1(2(T1 + T2)), q2(2(T1 + T2)), z2,1(2(T1 + T2)))

= (q2(T1 + T2), q1(T1 + T2), z1,2(T1 + T2))

= (q1(0), q2(0), z2,1(0)).

(5.2)

It is important that the condition in Theorem 5.4 can be satisfied, as the
following theorem shows.

Theorem 5.5. There exist parameter values for (2.4) and initial condi-
tions satisfying Assumption 2 for which O �= φ.

5.4. Conjectured bi-stability. Recall that Sx∗
0
is the stability set of x∗0 in

Definition 4.3 and Su∗ denotes the stability set of the periodic equilibrium u∗,
when it exists, in Definition 4.4. By Theorem 5.3, Sx∗

0
= Oc (the complement

of O), so that any fluid solution that does not oscillate indefinitely must
converge to x∗0, and it clearly holds that Su∗ ⊆ O. We conjecture that Su∗ ⊇
O as well, so that Su∗ = O. Formally,

Conjecture 5.1. If x(0) ∈ O, then there exists a unique periodic equi-
librium u∗ and x converges to u∗ as in (4.1). Therefore, Sx∗

0
∪ Su∗ = S,

namely the fluid model is bi-stable with all fluid trajectories converging to
one of the two equilibria as t → ∞.

Extensive numerical trials, some of which are presented in §7 below, indi-
cate that Conjecture 5.1 holds. Moreover, we next derive an approximating
system to (3.10) which is shown to be bi-stable.

6. Approximating dynamical system. Since we were unable to fully
characterize the asymptotic behavior of our initial fluid model, we now de-
velop an approximating fluid model that can be analyzed more easily; i.e.,
for which we can establish bistability and calculate the two equilibria. The
approximating system is easier to analyze because it is essentially a one-
dimensional system at the switching times. However, there are discontinu-
ities at some of the switching times, so the approximating fluid model is a dy-
namical system with jumps (alternatively, it can be represented as a hybrid
system with jumps); see [38] and [42]. The latter reference provides a general
framework for defining and analyzing solutions for dynamical systems with
jumps (see §1.5 of [42]), but the relative simplicity of our approximation
obviates the need for a general theory. Numerical examples confirm that the
approximating system serves as a useful approximation for the original fluid
model, allowing us to rapidly compute a periodic equilibrium.
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The approximation is obtained in five steps: First, we approximate the
solution x to (3.10) by a solution xa to

(6.1) ẋa = fσ(x
a, θa, τa),

for a given initial condition xa(0), where we supplement the argument xa

of fσ in (3.10) by the abandonment rate θa and the control parameter τa

of the approximating system. Second, we assume that there is no abandon-
ment, i.e., we let θa = 0. Third, approximate τ by 0 on the first and third
subintervals, i.e.,

(6.2) τa ≡
{

0 for 0 ≤ t < Σa
1 and Σa

2 ≤ t < Σa
3

τ for Σa
1 ≤ t < Σa

2 and Σa
3 ≤ t < Σa

4,

where the switching times Σa
i are defined analogously to (3.2), and are for-

mally defined in (6.5) below. Fourth, we let the initial condition for the
approximating system be defined by

(6.3) xa(0) = lim
τ→0

x(0), so that za1,2(0) = za2,1(0) = 0,

where x(0) is the initial condition in Assumption 2. Fifth, and finally, we
primarily focus on the three-dimensional function xa3 ≡ (Δa, za1,2, z

a
2,1) that

approximates the three-dimensional function x3 ≡ (Δ, z1,2, z2,1) obtained
from (3.10), ignoring the queue lengths. We will be assuming that the queue
lengths remain positive, which can be checked at the end. In general, our
analysis is valid until a queue length becomes 0. First, we focus on the
difference function because it is possible to do so and still have a bonafide
dynamical system, which is easier to analyze. Second, we are motivated to
ignore the queue lengths because we have less control over them without
abandonment; e.g., they can easily explode (diverge to infinity). However,
we will also state results for the full six-dimensional approximation xa.

Since the approximating queue lengths qa1 and qa2 can obtain any nonnega-
tive value, the full state space S ≡ [0, λ/θ]2× [0, 1]4 of the solutions to (3.10)
is replaced with Sa ≡ [0,∞)2 × [0, 1]4. Indeed Sa is obtained from S directly
because λ/θ → ∞ as θ → 0. The state space of xa3 is a-priori [0,∞)× [0, 1]4,
but we will show below that Δ is bounded from above.

Paralleling (3.1), the switching and holding times, and the intervals be-
tween switching times, are defined via

T a
1 ≡ inf {t ≥ 0 : qa2(t)− qa1(t) ≤ κ}

T a
2 ≡ inf{t ≥ 0 : za2,1(Σ

a
1 + t) ≤ τ},

T a
3 ≡ inf{t ≥ 0 : qa1(Σ

a
2 + t)− qa2(Σ

a
2 + t) ≤ κ}

T a
4 ≡ inf{t ≥ 0 : za1,2(Σ

a
3 + t) ≤ τ},

(6.4)
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where, with T a
0 ≡ Σa

0 ≡ 0,

(6.5) Σa
k ≡

k∑
i=0

T a
i and Ia

i ≡ [Σa
i−1,Σ

a
i ), k = 1, 2, 3, 4.

Paralleling (3.3), we let

(6.6) Σa
q ≡ inf{t > 0 : qa1(t) ∧ qa2(t) = 0}.

Our analysis will be valid for the full six-dimensional system on the interval
[0,Σa

q ], but we will not examine Σa
q until the end. In particular, we will show

that the system quickly converges to the (unique) periodic equilibrium, when
it exists, for any initial condition that is associated with an oscillating solu-
tion. We can therefore initialize the queues (which are unbounded) at large
values so that there is no time for them to reach 0 by the time convergence
to the periodic equilibrium is observed.

In examples we see that the approximating system approximates our orig-
inal system very well when the parameters θ and τ are suitably small. For
this approximating system, we establish the following two results (Theorems

6.1 and 6.2). Let Σ
a,(k)
4 and Δa,(k) be the values of the kth iteration, where we

apply the approximation above in the kth subinterval after making Σ
a,(k−1)
4

equal to time 0.
The first main result regarding the approximating system, Theorem 6.1

below, considers the case in which the approximating system converges to
its unique fixed point.

Theorem 6.1. Consider the approximating system defined in (6.1)–
(6.6).

(a) The unique stationary point x∗0 in (5.1) for the fluid model in §3 is
also the unique stationary point in R6 for the approximating system.

(b) If Δa(0) ≤ κ or if Δa,(k)(0) ≤ κ for some k ≥ 1, then xa(t) → x∗0 in
R6 for x∗0 in (5.1).

(c) Whenever xa(t) → x∗0 in R6 for x∗0 in (5.1), xa3(t) = (0, 0, 0) for all
sufficiently large t, namely, convergence to x∗0 occurs in finite time.

The next theorem considers the case in which the approximating system
possesses a periodic equilibrium, in addition to its unique stationary point
x∗0.

Theorem 6.2. Consider the approximating system defined in (6.1)–
(6.6).
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(a) If Δa,(k)(0) > κ for all k, then Δa,(k)(0) → Δa,(∞)(0) ∈ [κ + εaκ, (1 −
μ)(1− τ)/μ] as k → ∞, where εaκ ≡ − log(1− τ) > 0.

(b) If the condition in part (a) holds, and if Σa
q = ∞, then (i) there exists a

unique periodic equilibrium ua∗3 to the three-dimensional approximat-
ing system and (ii) the approximating system is bistable: There are
initial conditions for which xa(t) → x∗0 in R6 for x∗0 in (5.1) (which
may include having Σa

q < ∞); there are other initial conditions for
which Σa

q = ∞ and xa(t) fails to converge in R6 in the usual sense of
pointwise convergence, but xa3(t) → ua∗3 in R3 in the sense of Definition
4.4; and there are no other possibilities.

(c) For any given pair of control parameters (κ, τ), there exists μ∗ ≡
μ∗(κ, τ) such that, for any service rate μ ∈ (0, μ∗), the condition in
part (a) holds with Δa,(∞)(0) > κ, so that the conclusions of part (b)
hold, provided that Σa

q = ∞.

In particular, by Theorem 6.2 (b), when a periodic equilibrium exists to
the approximating system, then the system is bi-stable; each solution must
converge to one of the two equilibria x∗0 or ua∗3 . Otherwise, all solutions
converge to x∗0 (which is therefore a globally asymptotically stable stationary
point in this case).

The condition Σa
q = ∞ in part (b) of Theorem 6.2 is easy to check directly

by solving the simple equations for the full six-dimensional equation (6.1).
However, in Appendix F we show that, whether or not this condition holds
can be determined a posteriori by a simple calculation that depends only on
the periodic equilibrium, and does not depend on the transient behavior of
the fluid model.

In §6.1 and §6.2 we derive the solution to the approximating system over
the first and second intervals, [0,Σa

1) and [Σa
1,Σ

a
2), respectively. In §6.3 we

construct the solution after Σa
2. In §6.4 we consider a simple heuristic to pro-

vide an approximate explicit formula for the switching time T a
1 to facilitate

computations.
All the results in this section are proved in §D in the appendix. Further-

more, in §F we show how to apply the explicit formula in §6.4 to determine
if there will be congestion collapse. We establish conditions for a stronger
geometric rate of convergence and exponential stability in §H.

6.1. The approximation over the first interval Ia
1 = [0,Σa

1). The ODE’s
for xa over [0,Σa

1) are just as in (3.4)–(3.5), but with θ = τ = 0. Just as in
§3.1.1, qa1 is increasing while qa2 ≥ qa1 + κ, so Σa

q > Σa
1.
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It follows from (3.4) that, for xa(0) in (6.3) and 0 ≤ t < Σa
1,

(6.7)
z1,2(t) = 0 and z2,1(t) = 1− e−t, so that z1,1(t) = e−t and z2,2(t) = 1.

The value of T a
1 is determined by the process Δa ≡ qa2−qa1 , approximating

the corresponding difference process Δ. Taking θ = τ = 0 and z2,1(0) = 0
in (3.12)–(3.13), we have, for 0 ≤ t < Σa

1, Δ̇
a(t) = −(1 + μ)− (1− μ)e−t, so

that

(6.8) Δa(t) = Δa(0)− (1 + μ)t+ (1− μ)(1− e−t).

Since Δa(T a
1 ) = κ by definition, it follows that

(6.9) T a
1 =

Δa(0)− 1 + μ− κ

1 + μ
+

1− μ

1 + μ
e−Ta

1 .

Lemma 6.1. For any fixed Δa(0) > κ there exists a unique T a
1 > 0

satisfying (6.9). Furthermore, T a
1 is strictly increasing in Δa(0).

It follows from (6.7) that for Σa
1 ≡ T a

1 ,

(6.10) xa3(Σ1) = (κ, 0, 1− e−Ta
1 ),

which is well-defined by Lemma 6.1.

6.2. The approximation over the second interval Ia
2 = [Σa

1,Σ
a
2). The

equations for the service process over [Σa
1,Σ

a
2) are obtained from (3.7), but

with T a
1 replacing T1 and zai,j(T

a
1 ) replacing zi,j(T1), i, j = 1, 2. As in §3.1.2,

it is possible to have Σa
1 < Σa

q ≤ Σa
2, but we do not check that now.

Since the process z1,2 in (3.7) keeps decreasing and za1,2(T
a
1 ) = 0, it follows

from (6.10) and (3.7) that

(6.11) za1,2(T
a
1 + t) = 0 and za2,1(T

a
1 + t) = (1− e−Ta

1 )e−μt, 0 ≤ t < T a
2 .

Taking θ ↓ 0 and inserting the values of za1,2(T
a
1 ) and za2,1(T

a
1 ) from (6.10) in

(3.17), we see that

(6.12) Δ̇a(Σa
1 + t) = −za2,1(T

a
1 )(1− μ)e−μt = −(1− e−Ta

1 )(1− μ)e−μt,

for 0 ≤ t < T a
2 , where Δa(Σa

1) = κ.
By (6.4), T a

2 is the first time after Σa
1 that za2,1 hits τ , so that, paralleling

(3.21),

(6.13) T a
2 =

log(za2,1(T
a
1 )/τ)

μ
=

log((1− e−Ta
1 )/τ)

μ
.
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Clearly, if τ ↓ 0 then T a
2 → ∞, which is why we cannot replace τ with 0

over the second interval [Σa
1,Σ

a
2).

Inserting the value of T a
2 into the solution to (6.12) we obtain

Δa(Σa
2−) = κ− z2,1(T

a
1 )(1− μ)

μ

(
1− τ

za2,1(T
a
1 )

)
= κ− 1− μ

μ
(1− e−Ta

1 − τ),

where y(t−) ≡ lims↑t y(s) denotes the left limit at time t of a function y.
Hence,

(6.14) xa3(Σ
a
2−) =

(
κ− 1− μ

μ
(1− e−Ta

1 − τ), 0, τ

)
.

6.3. Continuing beyond Σa
2. As before, we can use the symmetry of xa3

and take xa3(Σ
a
2) to be the “initial condition” by reversing the labels. This

means that, as in (6.3), we take τ ↓ 0 in xa3(Σ
a
2). It follows immediately

from (6.14) that limτ↓0 xa3(Σ
a
2) �= xa3(Σ

a
2−). Hence, the approximation xa3,

and therefore xa, has a jump at time Σa
2, since the values of Δa(Σa

2−) and
z2,1(Σ

a
2−) both depend on τ . However, we can easily avoid having jumps in

the process Δa, which we want to avoid because it causes ambiguities about
the behavior of the queues at the jump times. To that end, we simply define

Δa(Σa
2) ≡ Δa(Σa

2−) = κ− 1− μ

μ
(1− e−Ta

1 − τ) and

z2,1(Σ
a
2) = lim

τ↓0
z2,1(Σ

a
2) = 0,

so that we have

(6.15) xa3(Σ
a
2) =

(
κ− 1− μ

μ
(1− e−Ta

1 − τ), 0, 0

)
.

As a consequence, only z2,1 jumps at the second switching time Σa
2. That dis-

continuity makes our fluid model a switching dynamical system with jumps,
as mentioned at the beginning of the section.

If Δa(Σa
2) > κ, then T a

3 > 0, and paralleling (6.9) and Lemma 6.1, T a
3 is

the unique strictly positive solution to

T a
3 =

Δa(Σa
2)− 1 + μ− κ

1 + μ
+

1− μ

1 + μ
e−Ta

3 .

Furthermore, paralleling (6.13), T a
4 = 1

μ log((1− e−Ta
3 )/τ), so that

Δa(Σa
4−) =

1− μ

μ
(1−e−Ta

3 −τ)−κ, za1,2(Σ
a
4−) = τ and za2,1(Σ

a
4−) = 0.
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If Δa(Σa
4−) > κ we define

Δa(Σa
4) ≡ Δa(Σa

4−) and za1,2(Σ
a
4) = lim

τ↓0
za1,2(Σ

a
4−) = 0

and start over.
The preceding shows that, just as for the original system, we can ex-

ploit the symmetry of the model and consider only the half cycle [0,Σa
2). In

particular, for a given initial condition Δa(0) we solve up to time Σa
2 and

take

(6.16) − xa3(Σ
a
2) =

(
1− μ

μ
(1− e−Ta

1 − τ)− κ, 0, 0

)

to be a new initial condition to solve beyond time Σa
2. It immediately follows

that

Lemma 6.2. Δa is bounded over [0,Σa
q). In particular, if Σa

4 < Σa
q , then

Δa(Σa
4) < Δa

bd ≡ 1−μ
μ (1− τ).

It is significant that at the switching times, xa3 depends only on the known
control parameters (κ, τ) and the one unknown T a

1 . Therefore, the approx-
imating system is reduced to an essentially one-dimensional system at the
switching times.

The approximating three-dimensional system. From the above, xa3 =
(Δa, z1,2, z2,1) is the unique solution over [0,Σa

q), for Σ
a
q in (6.6), to

(6.17) ẋa3 = f3
σ(xa

3)
(xa3, θ, τ

a) = f3
σ(xa

3)
(xa3, 0, τ

a), σ(xa3) = 1, 2, 3, 4,

with initial condition (6.3) and τa in (6.2), where f3
1 is defined in (3.4) and

(6.8), f3
2 is defined in (3.7) and (6.12), f3

3 satisfies the equations of f3
1 , but

with the labels reversed, and f3
4 satisfies the equations of f3

2 , with the labels
of the processes reversed.

6.4. A simple heuristic approximation for computation. The approxi-
mating system we have developed in this section has been useful to estalbish
the strong theoretical results in Theoreem 6.1, which supports what we see
for the original system in numerical examples. However, it is still not easy
to compute the periodic equilibrium of the approximating system. We must
either numerically solve the ODE’s or numerically solve for T a

1 in (6.9) in
order to evaluate the values of xa at the switching times. Hence, in the
present section we develop a simple heuristic approximation for T a

1 in (6.9).
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In particular, our approximation is obtained by simply omitting the second
exponential term on the right in (6.9), so that

(6.18) T a
1 ≈ Δ− 1 + μ− κ

1 + μ
.

Approximation (6.18) can be justified by observing that equation (6.9)
can be expressed abstractly as T a

1 = A + Be−Ta
1 for A > 0 and 0 < B < 1.

Since T a
1 > A and T a

1 − A < Be−A, T a
1 ≈ A whenever B is suitably small

or A is suitably large. In particular, the error is asymptotically negligible
as A increases. We remark that approximation (6.18) also coincides with
− log (ξ) ξ ≡ ξ(Δ) in (D.7), which can provide another way to derive the
approximation. We can combine (6.10) and (6.18) ot obtain an associated
approximation for za2,1(T

a
1 ).

With this heuristic approximation for za2,1(T
a
1 ), we have by (6.13) that

(6.19) T a
2 ≈ log ((1− ξ)/τ)

μ
,

so that (6.14) and (6.15) are respectively approximated by

xa(Σa
2−) ≈

(
κ− 1− μ

μ
(1− ξ − τ) , 0, τ

)

and xa(Σa
2) ≈

(
−κ+

1− μ

μ
(1− ξ − τ) , 0, 0

)
,

(6.20)

and xa(Σa
2) serves as the initial condition for the following cycle.

We can use this heuristic approximation to approximate the values of the
fluid model at the switching times, using an iterative algorithm, which is
described in §D.2.2. Furthermore, in §F we explain how this heuristic can
be employed to evaluate whether a periodic equilibrium exists. A numerical
example comparing the solution to the approximating system to the original
fluid solution is presented in §7.1 below.

7. Numerical examples. In this section we report the results of nu-
merical experiments based on numerical algorithms (numerical solutions of
the dynamical systems) and simulations. Throughout this section we con-
sider symmetric systems with parameters as in (2.4). In all our examples,
λ = 0.98, τ = 0.01 and κ = 0.1, but we vary the parameters θ and μ.
The initial condition in the numerical examples is taken in accordance with
Assumption 2.

We emphasize at the outset that μ in our numerical examples is taken
to be extremely small. (We also consider systems with no abandonment, or
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with very small abandonment rate, but this is prevalent in modeling.) How-
ever, as our simulation experiments below demonstrate, the oscillating fluid
models for systems with extreme parameters suggest possible bad oscillatory
dynamics in systems with more realistic parameters. In these more realistic
setting the behavior cannot be predicted analytically, since the stochastic
system is too complicated. Moreover, oscillations may even be overlooked in
practice, because sufficient abandonment keep the queues relatively small, so
that congestion collapse may fail to be noticed. Thus, we obtain important
practical insights by rigorously studying extreme cases.

The rest of this section is organized as follows. In §7.1 we consider a sys-
tem with no abandonment (θ = 0) and compare the results to the heuristic
approximating model in §6.4. We consider a similar system in §7.2 but in-
crease μ to show that x∗0 is globally asymptotically stable, thus showing the
dependence on μ of the long-run behavior of the fluid model, as was estab-
lished in §6. We add abandonment in §7.3 in comparison to the system in
§7.1 to numerically support the reasoning for the development of the approx-
imating system in §6. Finally, in §7.4 we present simulations of stochastic
systems for which the fluid limit has no oscillatory solutions, and show that
stochasticity may lead to substantial oscillations.

7.1. A system with no abandonment. We start with a system that has
no abandonment, i.e., θ = 0. The other parameters are λ = 0.98, τ = 0.01,
κ = 0.1 and μ = 0.1. The initial condition is q1(0) = 1 and q2(0) = 1.2,
so that d2,1(0) = 0.2 and Δ(0) = 0.1. We further take z1,2(0) = τ and
z2,1(0) = τ/2 = 0.005.

The time-dependent behavior of Δ is shown in Figure 4, whereas Figure
5 plots the image of (z2,1,Δ) (with time suppressed). As can be easily seen
from Figure 4, there are ten full cycles plotted in this example. However,
there are four loops visible in Figure 5, with each loop being a full cycle,
where a full cycle begins at a time t0 when z1,2(t0) hits τ from above, such
that Assumption 2 is satisfied at that hitting time. In this example, the
two variables (Δ, z2,1) spiral outward to the periodic equilibrium, namely,
the first cycle is the inner (smallest) loop, the second cycle is the second
smallest loop, etc. The fact that only four cycles are clearly visible in Figure
5 suggests that convergence to the periodic equilibrium is extremely fast in
terms of the number of periods. The fast convergence is also visible by in
Figure 4 itself. See §H for theoretical support.

Of course, the stability of (Δ, z1,2, z2,1) does not imply stability of system.
Indeed, Figure 6 suggests that q1 increases without bound, and by symmetry,
so is q2. Figure 7 shows that a substantial proportion of each pool has fluid
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Fig 4. increasing oscillations of the differ-
ence process Δ towards the periodic equi-
librium, with Δ(0) = 0.2 > κ, θ = 0 and
μ = 0.1.

Fig 5. spiraling of (z2,1,Δ) outward to-
wards the periodic equilibrium; θ = 0 and
μ = 0.1.

Fig 6. trajectory of q1 increases in oscilla-
tory manner; θ = 0, μ = 0.1.

Fig 7. sharing in both pools with z1,2(0) =
τ = 0.01 and z2,1 = 0.005, θ = 0, μ = 0.1.

Table 1

comparisons of the values obtained from the iterative algorithm for the approximating
system in §6, to those of the iterative algorithm in §C.3.1 for the original system.

Δ(0) z(T1) T1 T2

approximation 8.802 0.9992 7.093 46.044

original sys. 8.663 0.9992 7.270 46.044

from the other class for a non-negligible amount of time, which is the cause
for the congestion collapse observed in Figure 6. See §F.

Finally, in Table 1 we compare the numerical solution to the iterative
algorithm in §C.3.1 (in the “original sys.” row), to the heuristic approxima-
tions developed in §6.4. We note that L ≈ 0.44 < λ = 0.98 for L in (F.2).
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7.2. Bifurcation: μ = 0.3. The term “bifurcation” refers to a change in
the equilibrium behavior of a dynamical system as the value of one of its
parameters varies, while all other parameters remain unchanged. Following
the analysis in §6, we now take the same system considered in §7.1 but change
the value of μ. We do not carry out a full bifurcation analysis to find the
bifurcation point in which the equilibrium behavior of the system changes,
but instead consider a single value μ = 0.3. To see how the system converges
to the stationary point with no sharing, we change the initial condition in
§7.1 and take Δ(0) = 20. The trajectory of Δ is shown in Figure 8. (Note
however, that we cut the vertical axis in this figure at the value 3 to make
the oscillations more apparent.) Figure 9 shows the spiraling towards that
equilibrium point in the (z2,1,Δ) plane. Unlike the case depicted in Figure
5, now spiraling is “inward”, i.e., the largest loop corresponds to the first
cycle, and each of the four cycles is shorter than the previous one. we remark
that the heuristic approximation in §6.4 was stopped in the fifth iterations
since Δ(5) < 0.

Fig 8. decreasing oscillations of the differ-
ence process Δ towards its stationary point;
Δ(0) = 20, μ = 0.3, θ = 0.

Fig 9. spiraling “inward” of (z2,1,Δ) to the
stationary point, μ = 0.3, θ = 0.

Observe that even though the convergence to the stationary point is fast
in terms of the number of oscillations, it is very slow in continuous time. In
particular, the system oscillates for more than a hundred time units before
it ceases to oscillate.

7.3. Adding abandonment. For a numerical depiction of the approximat-
ing solution, we now consider a system with μ = 0.1 as in §7.1 but add
abandonment, taking θ = 0.01. As can be seen by comparing Figures 10
and 11 to Figures 4 and 5, the system with no abandonment serves as a
reasonable approximation for the a system with a small abandonment rate,
but the oscillations are smaller, as is intuitively expected.
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Fig 10. Increasing oscillations of the dif-
ference process Δ towards the periodic equi-
librium for the similar example as in Fig-
ure 4 but with positive abandonment rate
θ = 0.01.

Fig 11. image of (z2,1,Δ) spiraling outward
the periodic equilibrium for a similar exam-
ple as in Figure 5, but with positive aban-
donment rate θ = 0.01.

7.4. Simulations of systems with non-oscillating fluid limits. So far we
considered the fluid model (limit) alone. The numerical examples above show
that congestion collapse can occur for very extreme parameter values μ and
θ. In this section we show that the extreme examples provide important
insights for cases for which the fluid limit never oscillates.

It is significant that for a given stochastic system Xn which is approxi-
mated by a fluid model x, there is freedom in how to choose the limiting
thresholds. For example, if n = 100, then activation thresholds kni,j = 10
can be considered as being

√
n or as 0.1n. In the latter case, the stochastic

fluctuations are considered negligible with respect to the activation thresh-
olds, and κ = 0.1. However, in the first case, κ = 0, and so the stochastic
fluctuations are significant. Specifically, if κ = 0, then oscillations are much
more likely to occur because S1,2 = S2,1 in that case; see Remark 5.1.

System with a practically unstable stationary point. We simulated
a system with similar parameters to those in §7.1 taking n = 100, so that
there are 100 agents in each pool and λn = 98. As above, θ = 0.01. Since
κn = 0.1n, we take κn = 10, which we can also think of as being

√
n, i.e.,

κ = 0.
Figures 12 and 13 show a single sample path of the Qn

1 process and the
shared-customers processes for a system starting empty. Due to symmetry of
the parameters and the initial condition of the two pools, the fluid model will
unambiguously move through x∗0. Once x∗0 is hit, and since there is no sharing
at that hitting time, the fluid model must remain at that point. However,
random noise in the stochastic system causes sharing to begin, leading to
extreme oscillations. From the fluid model perspective, this suggests that



CHATTERING IN OVERLOAD CONTROL 171

Fig 12. simulated sample path of Qn
1 ; n =

100, λn = 98 κn = 10, θ = 0.01, μ = 0.1
Fig 13. simulated sample path of the num-
ber of shared customers in service in both
pools; n = 100, λn = 98 κn = 10, θ = 0.01,
μ = 0.1

random fluctuations (that are negligible in fluid scale) quickly push the fluid
limit from x∗0 to a state γ ∈ O, leading to fluid-scaled fluctuations.

System with no oscillating solutions (O = φ). The fluid model gives
important insight that cannot be obtained analytically even for systems with
O = φ, i.e., systems that do not have oscillating fluid limits. We now take

n = 100 : λn = 98, μ = 0.5, θ = 0.5, τn = 1 and kni,j = 10,

with the rest of the parameters being the same as in §7.1. The parame-
ters θ and μ here are more likely in a practical call-center setting than the
parameters in the examples above.

To show that O = φ we solve the fluid model for an extreme example with
q1(0) = 1 and q2(0) = 1000, z1,2 = τ and z2,1 = 0. In the simulation however,
we have Zn

2,1 = 20 and Zn
1,2 = 0, which is a likely initial condition for a

system recovering from an overload in queue 2. (The initial conditions of the
stochastic system and the fluid model do not match because we want to show
that the fluid model does not oscillate, and has no periodic equilibrium.)

Figure 14 shows a single sample path of the shared-customers processes
from a single simulation run, and Figure 15 shows the fluid model of the
system with the initial condition specified above. We only show figures of
the shared customers service process, because both queues monotonically
decrease to 0 in the fluid model, whereas customer abandonment make the
oscillations of the queue processes unobservable in the simulation. From the
practical point of view, this means that oscillations may be hard to detect
in real time, unless one knows to look for them. Specifically, if the control
parameters are chosen in accordance with the fluid model so as to ensure that
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Fig 14. simulated sample path of
(Zn

1,2, Z
n
2,1) when O = φ; n = 100,

λn = 98, μ = 0.5, θ = 0.5, τn = 1 and
kn
i,j = 10

Fig 15. fluid model (z1,2, z2,1) when O =
φ with an extreme initial condition is seen
to converge to the stationary point with no
sharing

the system will not oscillate, and if only the queues are observed, then the
oscillations may not be captured by the controller. Indeed, the controller may
assume that sharing is initiated and stopped due to “legitimate” activations
of the control to respond to changes in the arrival rates

We note that Figure 14 shows only the time interval [0, 100] for clarity,
but that the oscillations continued for the full run time of the simulation,
which lasted 1500 time units. (As before, time here is measured in service
time units μi,i = 1, i = 1, 2.)

In ending we remark that the bad behavior shown here can be easily
avoided by increasing kni,j , as was discussed in Remark 5.1. A numerical
example, related to the one given here, is given in Section 4.1 in [32]; see
Figures 5 and 6 in that reference.

8. Implications of the fluid analysis for stochastic systems. In
this section we consider the implications of our fluid analysis to the (finite)
stochastic system which they approximate. These implications rely on the
fact that the fluid model can be achieved as a fluid limit in the many-server
heavy traffic limiting regime. That is, if Xn(0) ⇒ x(0) in R6, then, uniformly
on compact intervals, X̄n ⇒ x, where⇒ denotes convergence in distribution.
See Theorem I.1 in §I.2 below for the precise statement and proof of this
result.

Now, since for each fixed n ≥ 1, Xn is clearly an irreducible and positive
recurrent CTMC, it possesses a unique stationary distribution which is also
its limiting distribution. In particular, for some random variable Xn(∞)
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with values in R6, it holds that, regardless of the initial condition,

Xn(t) ⇒ Xn(∞) as t → ∞.

Given that the fluid limit of X̄n may oscillate indefinitely, and never con-
verge to its stationary point, it is not a-priori clear whether X̄n(∞) can be
approximated by x∗ for large n. The following weak law of large numbers
(WLLN) for the sequence {X̄n(∞) : n ≥ 1}, whose proof appears in §E,
shows that the sequence of “fluid-scaled” stationary distributions converges
to the stationary point x∗0 with no sharing, even if O �= φ, i.e., the fluid limit
may not converge to its stationary point x∗0.

Theorem 8.1 (WLLN for stationary distributions). X̄(∞) ⇒ x∗0, i.e.,
for each continuous and bounded function f : R6 → R,

lim
n→∞

lim
t→∞

E[f(X̄n(t))] = f(x∗0).

Note that taking the limits in Theorem 8.1 in the reverse order, namely,
first taking n → ∞ and then taking t → ∞, is not possible when O is not
empty, because the limit of x(t) as t → ∞ does not exist for all initial con-
ditions. We therefore cannot prove Theorem 8.1 using standard arguments,
as were laid out in the proof of Theorem 4 in [16].

8.1. On the rate of convergence to stationarity. The fact that Xn ⇒ x
uniformly on compact intervals together with Theorems 5.5 and 8.1 suggest
that the state space of the irreducible CTMC Xn is nearly decomposable
into two regions when O �= φ. In particular, the chain may spend a long time
in one region before eventually moving to the second region. For example,
if X̄n(0) ≈ x(0) ∈ O for n large, then Xn will approximately track the fluid
trajectory with that initial condition. The oscillations of X̄n can continue
for arbitrarily large time periods as n increases.

On the other hand, if Xn is initialized with no sharing and no queues,
then hitting the activation thresholds is a rare event asymptotically, and os-
cillations will not begin for a long time. However, the chain being irreducible,
must eventually visit a state in an “oscillating region” for the CTMC, trig-
gering oscillations that, as explained in the paragraph above, will take a long
time before finally ending, if n is large.

To make this discussion rigorous, consider a sequence of initial conditions
{Xn(0) : n ≥ 1} such that X̄n(0) ⇒ x(0) ∈ O as n → ∞. Since X̄n ⇒ x
uniformly over compact intervals, and x is oscillating, we see that for any
fixed t > 0 we can find N large enough, such that

(8.1) ‖X̄n(t)− X̄n(∞)‖tv > ε, for all n > N and for some ε > 0,



174 O. PERRY AND W. WHITT

where ‖ · ‖tv denotes the total-variation norm (here given in terms of the
random variables instead of their distributions); see, e.g., [10]. In particular,
despite the fact that X̄n(t) ⇒ X̄n(∞) as t → ∞ for any given n, and
moreover, the convergence rate to stationarity is exponentially fast as we
show below, the convergence rate to stationarity can be arbitrarily slow for
a sufficiently large system.

To see that (8.1) indeed holds for all n large enough, note that convergence
in total variation implies convergence in distribution (the two notions of
convergence are in fact equivalent on countable state spaces). We can use the
Lévy metric to measure distances between random variables corresponding
to convergence in distribution. Specifically, we let the distance between two
random variables X and Y with respective cumulative distribution functions
FX and FY , be

dL(X,Y ) ≡ dL(FX , FY )

≡ inf{ε > 0 : FX(x− ε)− ε ≤ FY (x) ≤ FX(x+ ε) + ε for all x}.

Then, for random variables Y and {Y n : n ≥ 1}, Y n ⇒ Y is equivalent
to dL(Y

n, Y ) → 0, and as mentioned above, if ‖Y n − Y ‖tv → 0, then
dL(Y

n, Y ) → 0 as n → ∞.
Now, take the contradictory assumption to (8.1), namely assume that

there exists a time t > 0, such that

‖X̄n(t)− X̄n(∞)‖tv < ε for all n ≥ 1 and ε > 0.

Then for this specific time t and for all n large enough, we have by the
triangular inequality that

dL(x(t), x
∗
0) ≤ dL(x(t), X̄

n(t)) + dL(X̄
n(t), X̄n(∞)) + dL(X̄

n(∞), x∗) < 3ε,

where the second inequality follows from Theorem I.1, our contradictory
assumption and Theorem 8.1, and the above holds for any fluid trajectory,
regardless of the initial condition. Hence, x∗0 is globally asymptotically stable,
in contradiction to the assumption that x(0) ∈ O.

The fact that Xn may converge extremely slowly to stationarity for large
n is not entirely straightforward, because Xn is an exponentially ergodic
CTMC, for each n ≥ 1, and therefore considered to converge “fast”. The
proof of the following theorem can be found in §E.

Theorem 8.2. Fix n ≥ 1. Then for any initial condition k ∈ Z6
+, there

exist positive constants Mk and α (where Mk depends on the initial state k
and α does not), such that

(8.2) ‖Xn(t)−Xn(∞)‖tv ≤ Mke
−αt
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9. Important takeaways for SSC-inducing controls. An SSC-in-
ducing control for a stochastic system is commonly designed in order to
achieve an optimal control for a diffusion approximation of the system. In
particular, stochastic networks can rarely be analyzed exactly, even under
a fixed control, and finding a “good” control that is nearly optimal (in
an appropriate sense), and is furthermore implementable, is a prohibitively
hard problem. The most prevalent approach to solving an optimal control
problem, initiated by Harrison [17], is to solve a related Diffusion Control
Problem (DCP) for the system in heavy traffic, and then translate the op-
timal control for the DCP into a control for the system it approximates. As
reviewed in [7], a key step in this procedure is to formulate an equivalent
workload formulation (EWF), in which the dimension of the workload pro-
cess is reduced. Thus, an optimal control for the approximating diffusion
process found via the DCP scheme, dictates an SSC-inducing control for the
stochastic system, which forces the asymptotic workload process to a lower-
dimensional “boundary” subset of its state space. In fact, the FQR-ART
control considered in this paper was developed by an analogous approach:
In [28] we optimized a fluid model of the stochastic system, and then pro-
posed a control to achieve the optimal fluid solution.

Before describing general insights obtained from our analysis here, we
mention that the FQR-ART control in the prelimit, and its limiting coun-
terpart, share some of the general characteristics of SSC-inducing control
and the resulting limiting control. First note that an optimal control for an
EWF is necessarily “bang-bang” with a singular part in the sense of [19],
namely, such a control uses the maximum “pushing” towards the boundary
set when the queue is away from it, and switches instantaneously between
the directions of pushing to maintain the queue on the boundary. Similarly,
the control process in both FQR-ART and the resulting limiting control use
the maximum force to push the queues toward the threshold and the bound-
ary set, respectively. See also the paragraph below the display of S1,2 and
S2,1 in §2.2, page 145.

We further observe that, in addition to the bang-bang portion, FQR-ART
also has a “no-action” zone associated with states in which both difference
processes are below the activation thresholds, or when one of the differ-
ence process is above its corresponding activation threshold, but the release
threshold prevents the control from being activated. Our analysis here re-
vealed that the no-action zone is responsible for the delayed activation of the
control, and to the resulting oscillations when the control parameters are not
chosen correctly. In that regard, we make the following general observation:
While much attention had been given in the literature to the difficulties in
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translating an optimal control for limiting approximations (typically diffu-
sion approximations) to a control for the underlying sequence of stochastic
systems, little attention was given to the difficulty in translating the asymp-
totic control parameters (when such a control is found) to a fixed system.
Our analysis sheds light to possible problems that can arise in this second
layer of translation. (Recall Remark 5.1 and the example in Figures 12–13.
We discuss this issue further in §J in the appendix.)

We next demonstrate with specific examples how our insights apply to
other models.

9.1. A comparison with the N model. To make the discussion concrete,
we now compare some conceptual similarities between our model and the
N model which was studied extensively in the single-server stations setting;
see, e.g., [18, 20] and [2]. We refer to these references for other works on
the N model in the conventional heavy traffic, and to [45] for a many-server
heavy-traffic study of an N system. (We further remark that the N model is
covered by the model considered in [15].)

The N model, depicted in Figure 3 above, has two single-server stations,
with the server in station 1 dedicated to serving class-1 jobs, while the
server in station 2 can handle both queues. (note that there are no arrows
representing abandonment from the queues.) A (non-idling) service policy
determines which queue server 2 should handle when both queues are non
empty. Similarly to our simulation experiments in [28], which showed that
the QIR control applied to a critically-loaded X system can lead to con-
gestion collapse (see §2 above), a simulation in [18] demonstrated that a
naive implementation of the cμ rule, under which server 2 always prioritizes
the class 1 queue, may lead to congestion collapse in a critically-loaded N
model.

A solution to a DCP for the N model led the authors in [2] to design a
threshold policy and prove that this policy is asymptotically optimal and
leads to SSC. Under that policy, server 2 helps queue 1 only when that queue
is larger than a threshold, and otherwise this server only serves its own queue.
It is further assumed that server 2 preempts the job it processes if it needs
to switch the class it serves. Note that this control uses the maximum force
to push queue 1 towards the threshold, and has a no-action zone associated
with queue 1 being below that threshold. Since the threshold is taken to
be O(log n) as n → ∞, asymptotic SSC about the threshold implies that
queue 1 is null in the diffusion limit. In particular, it is shown that the
two-dimensional queue process has all its mass on the class-2 queue, and
the idleness process has all its mass on server 2 (i.e., the class 1 queue is
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asymptotically null, and server 1 never idle). Observe that the no-action
zone shrinks to 0 as n increases, so that it does not appear in the limit.

It is significant that the asymptotics in [2] were achieved under the as-
sumption that server 2 can switch in zero time between the two queues.
This assumption is reasonable to make if the switching times in reality are
sufficiently small relative to the service time, but it is intuitively clear that
even short switching times will lead to diffusion-scaled chattering of queue 1
about the threshold. In fact, since server 2 switches infinitely-often between
the two queues in the limit over any finite time interval, non-zero switching
times may push the system to an overload, because switching times of server
2 essentially increase its idle period. Moreover, if the O(log n) threshold is
not chosen appropriately for a given stochastic system, and in particular,
if the the threshold is chosen to be too small, then, as in the example in
[18], server 2 will again spend too much time helping queue 1, leading to
congestion of its own queue.

Finally, the authors in [2] remark that a hysteresis control with two thresh-
olds can be employed to avoid chattering of the queue about the threshold
(see the remark at the bottom of p. 621 in this reference). Under this modi-
fied control, only once queue 1 crosses an upper threshold will server 2 switch
to help this queue, and that help is turned off only once the queue returns
to the lower threshold. It is again intuitively clear that, if the thresholds are
not chosen appropriately for the fixed system, namely, if the lower thresh-
old is too small and the upper one is too large, then server 2 may end up
spending too much time helping queue 1, leading queue 2 to increase without
bound in an oscillatory manner. Indeed, the two-thresholds control increases
the “no-action” zone, in turn, leading to increased delays in activating the
control.

10. Summary. In this paper we considered the FQR-ART overload
control applied to the cyclic X model, when the control parameters are badly
chosen. For the dynamical-system (fluid) limit, the purpose of the control is
to attract any fluid trajectory to one of two sliding manifolds during overload
periods, so as to maintain a pre-specified ratio between the two queues.

Switching fluid limit. We have shown that possible delays in activation
and release of the control can lead to chattering and resulting oscillations,
which translates to fluid-scaled fluctuations in the underlying stochastic sys-
tem. The pathological oscillatory behavior can be analyzed via a switching
dynamical system, as in Definition 3.1, within the framework of the many-
server heavy-traffic FWLLN (Theorem I.1 in §I.2). Theorems 5.2 and 5.4,
respectively, prove that the fluid limit has a unique stationary point and a
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non-trivial periodic equilibrium that is associated with the oscillatory mo-
tion. Sufficient conditions for endless oscillations were provided in Theorem
5.5.

Fluid stability. In Theorem 5.3 it was shown that any fluid trajectory
that ceases to oscillate must converge to the unique stationary point. A con-
venient approximating dynamical system to the fluid limit was developed
and shown to be bi-stable in §6. Specifically, all the trajectories of the ap-
proximating system were shown to converge to one of the two equilibria –
the stationary point x∗0 in (5.1), or a unique non-trivial periodic equilibrium.
Finally, a simple heuristic construction in §6.4 can be used to approximate
the values of the solutions to (3.10) at the switching times, and in particular,
the values of the periodic equilibrium at the switching times, when it exists.

Implications. Numerical examples in §7 show the effectiveness of the
approximating system. The simulation experiment in §7.4 demonstrates that
our fluid model provides important insights into the untractable behavior of
the underlying stochastic system, even when the fluid approximation itself
is not oscillating.

From the theoretical stochastic perspective, the results in §8 demonstrate
that, despite the fact that the stochastic system is an ergodic CTMC, and
is even exponentially ergodic by Theorem 8.2, an oscillatory behavior of
the fluid model implies that it may take very long time for the system to
converge to stationarity. In particular, exponential ergodicity should does
not necessarily imply “fast” convergence to stationarity.

From the practical perspective, the most important conclusion is that
the control parameters must be chosen with caution. For example, the bad
oscillatory behavior presented in §7.4 (which may be hard to detect in real
time) can be avoided by choosing appropriate activation thresholds. We
again refer to [32] for a further discussion.

APPENDIX A: OVERVIEW

This appendix contains supplementary material for the main paper. First,
in §B we give notation for sets used in the paper, as well as sets that are used
in the appendix. The proofs of the results in Section §5 appear in §C, and
the proofs of the results in §6 are presented in §D. Both §§C and D include
supporting results with their proofs, and efficient algorithms to compute the
respective ODE’s in switching times. The proofs of the theorems in §8 ap-
pear in §E. In §F we show how the approximating system can be employed
to check whether congestion collapse occurs, and in §G we present an algo-
rithm to compute the solution to the heuristic approximation suggested in
§6.4. In §H we establish stronger forms of convergence of solutions to the
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approximating system to their equilibrium behavior. In §I we show that the
fluid model we considered in the main paper arises as the fluid limit in a
many-server heavy-traffic fluid limit of the underlying model. The proof of
the FWLLN is given in §I.2, after a brief expansion on the stochastic model
and many-server scaling in §I.1. Finally, in §J we discuss implications of our
results here for the control of the stochastic system.

APPENDIX B: NOTATION OF SETS

Below is a list of the different sets that appear in the paper. Their first
appearance is in parenthesis.

• S∗ – the set of all stationary points (§5.1).
• M – switching (or sliding) manifold in a general system (§1).
• O – the invariant set of oscillating solution, i.e., if x(0) ∈ O, then x
oscillates indefinitely (§5.1).

• Pu∗ – the image of the periodic equilibrium u∗ (§4).
• S ≡ [0, λ/θ]2 × [0, 1]4 – the state space of the fluid model (§2.2).
• Si,j – the sliding manifold where di,j = κ (§2.2)
• Su∗ – the stability region of the periodic equilibrium u∗ (§4).
• Sx∗ – the stability region of a stationary point x∗ (§5.1).
• Sx∗

0
– the stability region of the stationary point x∗0 in (5.1) (Theorem

5.2).
• Sa ≡ [0,∞)2 × [0, 1]4 – the state space of the approximating system
(§6).

• Sε ≡ [ε, λ/θ]2 × [0, τ ], ε > 0 – the state space of of solutions in O
(§C.3.2).

• Sκ ≡ [κ + εκ, λ/θ] × [0, τ ], where εκ > 0 (Proof of existence part of
Theorem 5.4 in §C.3.3).

• Sμ ≡ [ΔM
μ − δμ,Δ

M
μ ], where ΔM

μ is defined in (D.2) and δμ in (D.8)
(Equation (D.5) in §D.2.3).

APPENDIX C: PROOF OF THE RESULTS IN SECTION 5

In this section we provide the proofs of the results in §5.

C.1. Proofs of Theorems 5.1, 5.2 and 5.3.

Proof of Theorem 5.1. No sharing will ever occur because qi = (yi −
1)+, and if yi(t) > 1, so that the queue is positive, then yi(t) is decreasing
at t, i = 1, 2. (Recall that λ < μ = 1.) Hence, even if di,j(0) = κ for
(i, j) = (1, 2) or (i, j) = (2, 1), then di,j(t) < κ for any t > 0 in some right-
neighborhood of 0. It follows that, if zi,j(0) > 0, i �= j, then zi,j is strictly
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decreasing, which implies that the service capacity in pool j is increasing.
In turn, qj must keep decreasing as long as it is strictly positive. Finally,
since yi is strictly decreasing as long as it is larger than λ and is strictly
increasing otherwise, we have

(C.1) yi(t) → λ as t → ∞.

Proof of Theorem 5.2. Suppose that γ∗ = (γ∗i , γ
∗
i,j ; i, j = 1, 2) ∈ S∗,

is such that γ∗ ∈ S1,2 ∪ S+1,2, so that γ∗1 ≥ κ. Consider the fluid model ini-
tialized at γ∗, i.e., x(0) = γ∗. If z2,1(0) = γ∗2,1 > 0, then by the rules of
FQR-ART, ż2,1(0) = −μ2,1z2,1(0) < 0, implying that z2,1 is strictly decreas-
ing. It follows that γ∗2,1 = 0, so that γ∗1,1 = 1 (because γ∗1 ≥ κ > 0). But
then

q̇1(0) = λ− μ1,1γ
∗
1,1 − θq1(0) < λ− 1 < 0,

which contradicts the supposition that γ∗ is a stationary point. Hence, S∗ ∩
(S1,2 ∪ S+1,2) = φ. Similar arguments apply to S∗ ∩ (S2,1 ∪ S+2,1). The same

reasoning for γ∗ ∈ S∗∩S−1,2∩S−2,1 implies that γ∗1,2 = γ∗2,1 = 0 and γ∗1 = γ∗2 = 0.
Then the arguments leading to (C.1) show that γ∗ = x∗0. Hence, we conclude
that S∗ = {x∗0}.

Proof of Theorem 5.3. Since x(0) ∈ Oc there exists a time t0 ≥ 0
such that x(t) /∈ S+1,2 ∪ S+2,1 for all t ≥ t0. If x(t) ∈ S−i,j for all t ≥ t0, then

żi,j(t) = −μzi,j(t), so that zi,j(t) = zi,j(t0)e
−μ(t−t0), t ≥ t0.

Then both z1,2 and z2,1 converge to 0, and it is easy to see from (2.3) (recall
that there is no new sharing taking place) that both queues will reach 0 in
finite time. Then, after qi reaches 0, all arriving fluid moves immediately
into service, so that ż2,2 = λ− z2,2, and we see that z2,2(t) → λ as t → ∞.

Now suppose that x ∈ S1,2 over an interval I. If z2,1 > τ over I, then
no fluid flows from q1 to pool 2, so that both queues evolve independently
according to (2.3). Since z1,2 and z2,1 are strictly decreasing over I, the same
arguments given above apply in this case. Therefore, assume that z2,1 ≤ τ
over an interval J ⊆ I so that sharing is allowed. By Assumption 1, q1 is
strictly decreasing on J , and the sliding motion implies that q̇1(t)−q̇2(t) = 0,
so that q2 is strictly decreasing as well (at exactly the same rate as q1). Now,
some of the service capacity of pool 2 is given to queue-1 fluid at any point,
so that, for t ∈ J ,

q̇1(t) < λ− z1,1(t)− μz2,1(t)− θq1(t)
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and q̇2(t) > λ− z2,2(t)− μz1,2(t)− θq2(t).

Recalling that q1(t) = q2(t) + κ and zi,i(t) = 1− zj,i(t) for t ∈ J , we have

0 = q̇1(t)− q̇2(t) < (1− μ)(z2,1(t)− z1,2(t))− θκ < (1− μ)(z2,1(t)− z1,2(t)),

so that z1,2(t) < z2,1(t). It follows that z1,2(t) ≤ τ and is decreasing on J . In
particular, both queues continue decreasing after the sliding motion is over.

The same arguments give that, if x ever slides on S2,1, then both queues
are strictly increasing to 0. Hence, the processes z1,2 and z2,1 never increase
above τ during sliding motion, so that both queues are strictly decreasing
to 0. After qi hits 0, zj,i decreases monotonically to 0 and zi,i converges to
λ.

C.2. Bounds to guarantee oscillations. We now provide auxiliary
results, needed for the proof of Theorem 5.5, providing sufficient conditions
for endless oscillations of solutions to (3.10) and congestion collapse. In
§§C.2.1 and C.2.2 we construct simple bounds on T1 and x(T1), and bounds
on T2 and the values of x over [Σ1,Σ2), respectively. Universal bounds on
the solution x and the holding times, and a numerical example, are given in
§C.2.3.

C.2.1. Auxiliary results: Bounds on T1 and x(T1). We can apply (3.16)
to obtain bounds on T1.

Corollary C.1 (bounds on T1). Under the initial conditions in As-
sumption 2, the interval end time T1 is bounded above and below by

(C.2) 0 <
θκ+ΨL

θΔ(0) + ΨL
≤ e−θT1 ≤ θκ+ΨU

θΔ(0) + ΨU
< 1,

for ΨL and ΨU in (3.14), from which we deduce that

1 <
θΔ(0) + ΨU

θκ+ΨU
≤ eθT1 ≤ θΔ(0) + ΨL

θκ+ΨL
< ∞,

and

0 < log

(
θΔ(0) + ΨU

θκ+ΨU

)
≤ θT1 ≤ log

(
θΔ(0) + ΨL

θκ+ΨL

)
< ∞.

The associated bounds on T1, denoted by TL
1 ≡ TL

1 (Δ(0)) and TU
1 ≡ TU

1 (Δ(0)),
are both strictly increasing functions of Δ(0), both approaching 0 as Δ(0) ↓ κ
and ∞ as Δ(0) ↑ ∞. In particular,

TL
1 ≡

(
1

θ

)
log

(
θΔ(0) + ΨU

θκ+ΨU

)
=

(
1

θ

)
log

(
1 +

Δ(0)− κ

(ΨU/θ) + κ

)
≤ Δ(0)− κ

ΨU + θκ
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and

TU
1 ≡

(
1

θ

)
log

(
θΔ(0) + ΨL

θκ+ΨL

)
=

(
1

θ

)
log

(
1 +

Δ(0)− κ

(ΨL/θ) + κ

)
≤ Δ(0)− κ

ΨL + θκ

so that

0 < TU
1 − TL

1 =

(
1

θ

)(
log

(
1 +

Δ(0)− κ

(ΨL/θ) + κ

)
− log

(
1 +

Δ(0)− κ

(ΨU/θ) + κ

))

=

(
1

θ

)(
log

(
θΔ(0) + ΨL

θκ+ΨL

)(
θκ+ΨU

θΔ(0) + ΨU

))
.

Proof. Exploit (3.16) with the equation Δ(T1) = κ characterizing T1.

The bounds we have just obtained on T1 can be used to obtain bounds
on q1(T1). Recall that κ < Δ(0) and ΨL < ΨU < 0. Applying (C.2) with
(3.6), we immediately obtain

Corollary C.2 (bounds on q1(T1)). q1(t) is bounded from below by qL1
and from above by qU1 , where, for ΨL and ΨU in (3.14),

0 < qL1 (T1) ≡
λ

θ
−
(
λ

θ
− q1(0)

)(
θκ+ΨL

θΔ(0) + ΨL

)

≤ q1(T1) ≤
λ

θ
−
(
λ

θ
− q1(0)

)(
θκ+ΨU

θΔ(0) + ΨU

)
≡ qU1 (T1) < ∞.

Similarly, Applying (3.4), we have

Corollary C.3 (bounds on z2,1(T1)).

0 < zL2,1(T1)) ≡ 1− e−T1 < z2,1(T1)) < 1− (1− τ)e−T1 ≡ zU2,1(T1)) < 1.

C.2.2. Bounds on T2 and {x(t) : T1 ≤ t ≤ T1 + T2). For bad oscillatory
behavior, we will want to see that q2(T1 + t) remains positive and, further-
more that d2,1 < 0. to ensure that the initial conditions in Assumption 2
hold at the switching time Σ2 ≡ T1+T2 with the index labels reversed. From
Corollary C.2, we obtain the following

Corollary C.4 (lower bounds on the queue lengths on [T1, T1 +T2)).

q2(T1)− κ = q1(T1) ≥ qL1 (T1) =
λ

θ
−

(
λ

θ
− q1(0)

)(
θκ+ 2

θΔ(0) + 2

)
,
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so that, for i = 1, 2,

qi(T1 + t) ≥ qL1 (T1)e
−θt −

(
1− λ

θ

)
(1− e−θt)

=

(
λ

θ
−
(
λ

θ
− q1(0)

)(
κ+ 2

Δ(0) + 2

))
e−θt −

(
1− λ

θ

)
(1− e−θt),

which is a strictly decreasing function of t. As a consequence, a sufficient
condition for both q1(t) and q2(t) to remain positive throughout [T1, T1+T2]
is for(

λ

θ
−
(
λ

θ
− q1(0)

)(
θκ+ 2

θΔ(0) + 2

))
e−θT2 >

(
1− λ

θ

)
(1− e−θT2),

for which a sufficient condition is(
λ

θ
−
(
λ

θ
− q1(0)

)(
θκ+ 2

θΔ(0) + 2

))
e−θTU

2 >

(
1− λ

θ

)
(1− e−θTU

2 ),

where

TU
2 ≡ loge ([1− (1− z2,1(0))e

−TU
1 ]/τ)

μ
≤ loge ([1− (1− τ)e−TU

1 ]/τ)

μ
.

for TU
1 in Corollary C.1.

C.2.3. Universal bounds. We now consider the performance over a range
of initial conditions. First, we introduce lower and upper bounds on the
initial difference Δ(0) ≡ q2(0)− q1(0). We assume that

(C.3) 0 < κ < ΔL(0) ≤ Δ(0) ≤ ΔU (0) < ∞

uniformly enforcing Assumption 2. We also assume that the smaller queue
length is bounded below and above by

(C.4) 0 < qL1 (0) ≤ q1(0) ≤ qU1 (0) <
λ

θ
< ∞,

again uniformly enforcing Assumption 2.
Now let TL∗

1 be the lower bound TL
1 for T1 in Corollary C.1 when Δ(0) =

ΔL(0) and let TU∗
1 be the lower bound TU

1 for T1 in Corollary C.1 when
Δ(0) = ΔU (0).

Lemma C.1 (universal bounds on T1). For all initial conditions satisfy-
ing (C.3) and (C.4),

0 < TL∗
1 ≤ T1 ≤ TU∗

1 < ∞.
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Proof. Apply Corollary C.1.

Lemma C.2 (universal bounds on z2,1(T1) and T2). If, together with
(C.3) and (C.4),

(C.5) 1− e−TL∗
1 > τ,

then
1− e−T1 > τ, τ < z2,1(T

L∗
1 ) ≤ z2,1(T1) ≤ z2,1(T

U∗
1 )

and

(C.6) TL∗
2 ≡ loge (z2,1(T

L∗
1 )/τ)

μ
≤ T2 ≤

loge (z2,1(T
U∗
1 )/τ)

μ
≡ TU∗

2

for all initial conditions satisfying (C.3) and (C.4).

Proof. Apply (3.4) and (3.21) together with Lemma C.2.

If a periodic equilibrium exists, then the value of z1,2(Σ2) will equal to
z2,1(σ2) on that equilibrium, as explained below (3.2) in §3. See also (5.2)
in Theorem 5.4. We put the results above together to obtain bounds on
z1,2(T1 + T2), which will serve as the new value of z2,1(0) in a continuation
of the algorithm beyond time Σ2 = T1 + T2.

Lemma C.3 (universal bounds on z1,2 (Σ2)). If conditions (C.3), (C.4)
and (C.5) hold, then

0 < zL∗1,2(T1 + T2) ≡ e−μTU∗
1 z2,1(T

U∗
1 ) ≤ z1,2(T1 + T2) ≤ e−μTL∗

1 z2,1(T
L∗
1 )

≡ zU∗
1,2(T1 + T2) < τ

for all initial conditions satisfying (C.3) and (C.4).

Proof. Apply (3.22) together with the lemmas above.

Next we consider the queue lengths at time T1 + T2.

Lemma C.4 (universal lower bounds on the queue lengths at time T1+T2).
If (C.3), (C.4) and (C.5) hold, then

q2(T1)− κ = q1(T1) ≥ qL∗1 (T1) ≡
λ

θ
−
(
λ

θ
− qL1 (0)

)(
θκ+ 2

θΔL(0) + 2

)
,
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for all initial conditions satisfying (C.3) and (C.4), where qL1 (0) and ΔL(0)
are given in (C.3) and (C.4). If, in addition,

(C.7) qL∗1 (T1 + T2) ≡ qL∗1 (T1)e
−θTU∗

2 >

(
1− λ

θ

)
(1− e−θTU∗

2 ),

then the two queue lengths q1(t) and q2(t) remain positive throughout [T1, T1+
T2] for all initial conditions satisfying (C.3) and (C.4).

Proof. Apply Corollary C.4 and (C.6).

Finally, we obtain lower and upper bounds on the queue difference at time
T1 + T2.

Lemma C.5 (universal bounds on the queue difference at time T1 + T2).
If conditions (C.3), (C.4) and (C.5) hold, then

ΔL(T1 + T2) ≡ κe−θTU∗
2 −AU

(
e−θTL∗

2 − e−μTU∗
2

μ− θ

)

≤ Δ(T1 + T2) ≤ ΔU (T1 + T2)

≡ κe−θTL∗
2 −AL

(
e−θTU∗

2 − e−μTLU∗
2

μ− θ

)

for all initial conditions satisfying (C.3) and (C.4), where TL∗
2 and TU∗

2 are
given in (C.6) and

AL ≡ (1− μ)(zL∗1,2(T1)− zU∗
2,1(T1)) ≤ A ≤ (1− μ)(zU∗

1,2(T1)− zL∗2,1(T1)) ≡ AU

for A in (3.18).

A numerical example. Consider the bounds in Lemma C.5. Since κ is taken
to be relatively small,

ΔL(T1 + T2) ≈ AU

(
e−θTL∗

2 − e−μTU∗
2

μ− θ

)
.

In addition, AU ≤ (1 − μ)(τ − 1), so that, for given μ and τ , A in this
lemma is bounded from above by a constant. These observations help to
determine an initial value ΔL(0) for which (C.14) will be satisfied. For the
same parameters in §7 μ = 0.1, λ = 0.98, τ = 0.01, κ = 0.1 and θ = 0.01,
the constant bound of AU is −0.891 and ΔL(T1+T2) ≥ 6.21. Hence, (C.14)
holds for some values of Δ(0) in the interval (κ, 6.21). For example, taking
ΔL(0) = 4, ΔU (0) = 7 and qL1 (0) = 1, we obtain ΔL(Σ1) ≈ 6 > ΔL(0) and
qL1 (Σ1) = 1.8 > qL1 (0).
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C.3. Proofs of Theorems 5.4 and 5.5. To establish these results,
we exploit an algorithm for efficiently computing a solution to the switching
model in (3.10) and efficiently calculating the periodic equilibrium if it exists.
The algorithm improves on the piecewise numerical solution of the piecewise
ODE in (3.10) by exploiting the exact formulas in §3. We can recursively
calculate the values at the switching times Σi and then afterwards calculate
the trajectory in between. By iterating, we can easily determine numerically
if the solution converges to the stationary point or not. Numerical experience
indicates that if the solution oscillates indefinitely, then it rapidly converges
to a periodic equilibrium. In particular, the algorithm identifies the periodic
equilibrium. However, more is required to provide a mathematical proof of
existence, uniqueness and convergence.

C.3.1. An efficient algorithm for the periodic equilibrium. A periodic
equilibrium u∗ has an important closure property: If u∗(t) satisfies Assump-
tion 2 for some t, then u∗(t + Σ4) = u∗(t). Due to the symmetry of our
model, we can relate the system state at time t + Σ2 to the system state
at time t. The state at time t+Σ2 should coincide with the state at time t
with the labels reversed. That is, we should have

q1(t+Σ2) = q2(t) > 0, q2(t+Σ2) = q1(t) > 0

z1,2(t+Σ2) = z2,1(t) and z2,1(t+Σ2) = z1,2(t) = τ.
(C.8)

with the condition that the pools remain full throughout:

z1,1(s) + z2,1(s) = 1 and z2,2(s) + z1,2(s) = 1, 0 ≤ s ≤ t+Σ2.

(Observe that the labels of the processes in the second equality in (5.2) are
reversed.) If indeed we can establish the closure property in (C.8), then we
will have proved that there exists a periodic equilibrium.

It is natural to search for the equilibrium by iterating: We pick a candi-
date initial vector x3(0) ≡ (q1(0), q2(0), z2,1(0)), letting z1,2(0) = τ , so that
Assumption 2 holds. We then solve for T1, T2, and (q1(T1 + T2), q2(T1 +
T2), z1,2(T1+T2)), as indicated above. we then redefine (q1(0), q2(0), z2,1(0))
to be (q2(T1 + T2), q1(T1 + T2), z1,2(T1 + T2)) and repeat the calculation.

If at some iteration we obtain an unreasonable value for x3, e.g., qi < 0,
i = 1 or i = 2, or Δ ≤ κ, then the algorithm is stopped and we conclude
that the solution corresponding to the initial condition we chose converges
to x∗0 (due to Theorem 5.3). However, a pathological case has Δ > κ for all
iterations, but Δ → κ. Let Δ∗ and T ∗

1 denote the limit of Δ and T1 when the
algorithm is iterated indefinitely. Observe that Δ∗ = κ implies T ∗

1 = 0, so
that the corresponding limiting solution u∗ is necessarily a constant function.



CHATTERING IN OVERLOAD CONTROL 187

This case is clearly a pathology, due to the uniqueness of the stationary point
x∗0. The following lemma ensures that such a pathological behavior of the
algorithm is not possible. In particular, if at some iteration of the algorithm
Δ is too close to κ, then this is also the last iteration.

Lemma C.6. There exists εκ > 0 such that, if κ < Δ(0) < κ + εκ, then
x(Σ2) > −κ. In particular x(0) ∈ Oc, so that x(t) → x∗0 as t → ∞.

Proof. By Lemma 3.1, Δ is bounded from above by the linear function
−ΨL. Hence, for any δ1 > 0 we can find ε1 > 0 such that, if κ < Δ(0) < κ+ε1,
then 0 < T1 < δ1. The explicit expressions of z2,1 in (3.4) and T2 in (3.21)
show that, for any z2,1(0) and δ2 > 0, we can choose δ1 sufficiently small to
ensure that T2 < δ2 (even if T2 > 0). Hence, for any δ > 0, we can find ε > 0
such that, if κ < Δ(0) < κ + ε, then Σ2 < δ, by first choosing δ2 and then
an appropriate δ1 to ensure that δ1 + δ1 ≤ δ. The continuity of Δ implies
that there exists a δκ > 0 such that, if Σ2 < δκ, then Δ(Σ2) > −κ. It follows
that for all t in some right neighborhood of Σ2 both z1,2(t) and z2,1(t) are
strictly less than τ , so that both queues are strictly decreasing.

Now, if x ever hits Si,j , (i, j) = (1, 2) or (i, j) = (2, 1), after time Σ2, then
it can not cross it to S+i,j . To see this, suppose for example that x hits S2,1
at some time t > Σ2. Since x evolves according to the ODE’s (3.4) - (3.5)
when in S+2,1, the derivative of Δ(t) ∈ S+2,1 is strictly negative; see Lemma
3.1. Moreover, sharing is allowed to start immediately because z1,2 < τ .
Therefore, if Δ(0) < κ+ εκ, then x(0) ∈ Oc, so that x(t) → x∗0 as t → ∞ by
Theorem 5.3.

Let Δ(k) be the value of Δ at the kth iteration of the algorithm. It follows
from Lemma C.6 that

Corollary C.5. If x(0) ∈ O, then Δ(k) ∈ [κ + εκ, λ/θ], k ≥ 1, for
εκ > 0 in Lemma C.6.

C.3.2. Proof of Theorem 5.5.

Proof. We first impose conditions on the model parameters and ini-
tial conditions so that the iterative algorithm in §C.3.1 mapping the initial
state vector x3(0) ≡ (q1(0), q2(0), z2,1(0)) into the state vector x3(Σ2) ≡
(q1(Σ2), q2(Σ2), z1,2(Σ2)) and then iterated again to map x3(0) into x3(Σ4) ≡
(q1(Σ4), q2(Σ4), z2,1(Σ4)) is a map of the convex compact subset Sε of the
Euclidean space R3 into itself, where Sε is the subset Sε ≡ [ε, λ/θ]× [ε, λ/θ]×
[0, τ ] for some ε > 0.
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For that purpose, we introduce lower and upper bounds on the initial
queue difference Δ(0),

(C.9) 0 < κ < ΔL(0) ≤ Δ(0) ≡ q2(0)− q1(0) ≤ ΔU (0) < ∞,

and assume that the smaller queue length q1(0) is bounded below as well as
above by

(C.10) 0 < qL1 (0) ≤ q1(0) ≤ qU1 (0) <
λ

θ
< ∞,

both consistent with Assumption 2.
We can apply (3.16) to establish upper and lower bounds on T1, as shown

in Corollary C.1. Those bounds are
(C.11)

TL
1 ≡

(
1

θ

)
log

(
θΔL(0) + ΨU

θκ+ΨU

)
≤ T1 ≤ TU

1 ≡
(
1

θ

)
log

(
θΔU (0) + ΨL

θκ+ΨL

)

where ΔL(0) and ΔU (0) come from (C.9) and ΨU and ΨL are upper bounds
on Ψ in (3.13) and (3.14). We then impose an upper bound on τ by requiring

τ < 1− e−TL
1 , which imposes an upper bound on T2, i.e.,

(C.12) T2 ≤ TU
2 ≡ loge (z2,1(T

U
1 )/τ)

μ
.

If, in addition,

qL1 (T1 + T2) ≡
[
λ

θ
−
(
λ

θ
− qL1 (0)

)(
θκ+ 2

θΔL(0) + 2

)]
e−θTU

2

>

(
1− λ

θ

)
(1− e−θTU

2 ),

(C.13)

then the two queue lengths both remain positive throughout the interval
[0, T1+T2] and q1(T1+T2) ≥ qL1 (T1+T2) in (C.13), as shown in Lemma C.5.
(If necessary, we redfine qL1 (0) so that qL1 (T1 + T2) ≥ qL1 as well as (C.10).)
Finally, if

(C.14) 0 < κ < ΔL(0) ≤ Δ(T1 + T2) ≡ q2(0)− q1(0) ≤ ΔU (0) < ∞,

then we can iterate without limit, with Σq = ∞. Condition (C.14) can be
checked after the first iteration. However, sufficient conditions for (C.14) to
hold without performing the first iteration are given in Lemma C.5. Numer-
ical examples confirm that all these conditions can be satisfied, thus proving
Theorem 5.5.
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C.3.3. Proof of Theorem 5.4.

Proof. For a solution x with x(0) ∈ O, Σq = ∞, so that the algorithm
can be iterated indefinitely. In each iteration, the algorithm acts as a map
of the vector x3(0) = (q1(0), q2(0), z2,1(0)) to x3(Σ4) (with x3(Σ4) serving
as the initial condition for the following iteration). Therefore, the algorithm
maps the compact and convex set [0, λ/θ]×[κ, λ/θ]×[0, τ ] into itself. As long
as the solution oscillates, we can restrict attention to the two-dimensional
process x2 ≡ (Δ, z2,1), because Δ(0) = Δ(Σ4) = κ. In particular, at each it-
eration of the algorithm we compute Δ(Σ2) and use it as the initial condition
for the next iteration.

Corollary C.5 implies that for this two-dimensional process x2, the algo-
rithm acts as a map from the space Sκ ≡ [κ + εκ, λ/θ] × [0, τ ] into itself,
where εκ > 0. The explicit solution to the ODE (3.10) over [0,Σ4] and to Δ
in (3.15) and (3.19) shows that this map is continuous. Hence, by Brouwer’s
fixed point theorem (e.g., Theorem 5.28 in [36]) there exists a fixed point
to this map in the set Sκ. That fixed point cannot be also a fixed point of
(3.10), due to Theorem 5.2, i.e., due to the uniqueness of x∗0. It follows that
there exists a solution to (3.10) satisfying (C.8) which is not a constant.
Necessarily, such a solution is a non-trivial periodic equilibrium.

APPENDIX D: PROOF OF THE RESULTS IN SECTION 6

D.1. Proof of Lemma 6.1. Define the function F : B → R+, where

B ≡ (κ,∞)× (0,∞) and F (Δ, T ) ≡ Δ− 1 + μ− κ

1 + μ
+

1− μ

1 + μ
e−T − T,

and the function

h(T ) ≡ Δ− 1 + μ− κ+ (1− μ)e−T − (1 + μ)T.

Note that h(0) > 0 and h(T ) → −∞ as T → +∞. Furthermore, h′(T ) < 0,
so that h(T ) is strictly decreasing.

It follows that for any fixed Δ > κ, there exists a unique T > 0, such that
(Δ, T ) ∈ B and F (Δ, T ) = 0. In addition, it clearly holds that ∂F

∂Δ and ∂F
∂T

exist in B and are continuous, and that ∂F
∂T �= 0 for all real T . Then by the

implicit-function theorem there exists a unique continuously-differentiable
function T (Δ), such that F (Δ, T (Δ)) = 0 over the domain B, and

dT

dΔ
= −

∂
∂ΔF
∂
∂T F

=
1

(1− μ)e−T + (1 + μ)
> 0,

so that T is strictly increasing in Δ.
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In passing we note that the point (Δ0, T0) ≡ (1 − μ + κ, 0) satisfies
F (Δ0, T0) = 0. However, this point is not in B, so there is no contradic-
tion to the claim that there exists a function T (Δ) as in the proof of Lemma
6.1.

D.2. Proof of Theorems 6.1 and 6.2.

D.2.1. Proof of Theorem 6.1. Recall that the ODE (6.17) is solved until
time Σa

4, and can then be continued beyond that time by taking xa3(0) ≡
xa3(Σ

a
4) to be a new initial condition provided that xa3(Σ

a
4) satisfies (6.3), i.e.

if Δa(Σa
4) > κ. However, if Δa(Σa

4) ≤ κ, then the ODE does not follows the
switching pattern in (6.17). The next lemma shows that, in this case, the
solution will converge to x∗0 and will therefore cease to oscillate.

Lemma D.1. If Δa(0) ≤ κ, but all other conditions in (6.3) hold, then
xa(t) → x∗0 for x∗0 in (5.1).

Note that the lemma considers the full six-dimensional approximation xa,
and not only the three-dimensional restriction xa3.

Proof. The initial condition has za1,2(0) = za2,1(0) = 0, so that za1,1(0) =
za2,2(0) = 1. Hence, both pools serve only their own fluid queues, as long as
qi(t) − qj(t) < κ, for both (i, j) = (1, 2) and (i, j) = (2, 1). Therefore (see
(2.3))

q̇1(t) = q̇2(t) = λ− 1 < 0, 0 ≤ t < Σa
q ,

so that Δ̇a(t) = 0 on [0,Σa
q), and no sharing can begin during that interval.

At time Σa
q at least one of the queues hits 0, say qai . If the other queue is

still positive at that time, then it continues to decrease at the same constant
rate as before. Since |qai (Σa

q) − qaj (Σ
a
q)| = qaj (Σ

a
q) < κ, j �= i, the difference

between the two queues can never become larger than κ, so that the positive
queue must also hit 0 at a finite time after Σq. Therefore, letting tj denote
the time at which queue j hits 0, i = 1, 2, we have

qi(t) = 0 and żi,i(t) = λ− zi,i(t), for all t > tj ≥ Σa
q . Furthermore, tj < ∞.

It follows that zi,i(t) → λ as t → ∞, so that xa(t) → x∗0 as stated.

It follows from (6.16) and Lemma D.1 that, if at the end of cycle we have
−Δa(Σa

2) ≤ κ, then Σa
q < ∞ and xa(t) → x∗0 as t → ∞. In addition, Δa(t)

was just shown to reach 0 in finite time, and za1,2 and za2,1 each reach 0 in
finite time by construction. Therefore, xa3(t) reaches (0, 0, 0) in finite time.
Using similar arguments to those in Theorem 5.2, we can prove that
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Lemma D.2. x∗0 in (5.1) is the unique stationary point of the approxi-
mating system. Furthermore, if xa3 does not oscillate indefinitely, then
xa3(t) = (0, 0, 0) for all large enough t, so that xa(t) → x∗0 as t → ∞.

Lemmas D.1 and D.2 together complete the proof of Theorem 6.1.

D.2.2. Proof of Theorem 6.2. To study possible oscillatory behavior of
the approximating system in (6.17) we use an iterative algorithm, similar to
the one in §C.3.1, based on the arguments in §6.3.
An iterative algorithm for the approximating system. In the iterative algo-
rithm each (half) cycle of xa corresponds to an iteration. We use a super-
script (k) denote the kth iteration of the algorithm, and drop the superscript

“a” for ease of notation, e.g., T
(1)
1 is the value of T a

1 in (6.9) in the first cycle
of xa, or equivalently, the first iteration of the algorithm.

We start by choosing a value Δ(0) ≡ Δ(0) > κ and use it to numerically

compute T
(1)
1 via (6.9). The obtained value of T a

1 is then used to compute
Δ(1) ≡ Δa(Σa

4) = −Δa(Σa
2) via (6.15). We continue iterating this way until

one of two things occur: either we see Δ(k) > κ for all k or else we observe
Δ(k) ≤ κ for some k ≥ 1, in which case the algorithm is stopped.

Similar to Lemma C.6 and Corollary C.5 we can show that there ex-
ists εaκ > 0 such that, if the algorithm can be iterated indefinitely, then
Δ(k) > κ+ εaκ for all k ≥ 1. Of course, for the approximating system we can
characterize εaκ explicitly, and its value can serve as an approximation for
the value of εκ in Corollary C.5.

Lemma D.3. A necessary condition for endless oscillation is that, for
all k ≥ 1, Δ(k) > κ + εaκ, where εaκ ≡ − log(1 − τ). In particular, if κ <
Δ(k) < κ− log(1−τ) for some k ≥ 1, then Δ(k+1) < 0, so that the algorithm
is stopped.

Proof. For εaκ in the statement of the lemma, assume that κ < Δ(k) ≤
κ+ εaκ, for some k ≥ 1. Then by (6.9)

T
(k+1)
1 ≤ κ+ εaκ − 1 + μ− κ

1 + μ
+

1− μ

1 + μ
e−T

(k+1)
1 <

εaκ − 1 + μ

1 + μ
+

1− μ

1 + μ

<
εaκ

1 + μ
.

Therefore, T
(k+1)
1 < εaκ ≡ − log(1− τ). It follows from (6.16) that Δ(k+1) <

0.
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As was mentioned above, the approximating fluid model is a switching dy-
namical system with jumps. In this new setting, the approximating fluid so-
lutions are elements in the space D ≡ D[0,∞) of real-valued right-continuous
functions with limits everywhere, which we endow with the Skorohod J1
topology, which we denote by dt. Specifically, we consider the topological
space (D, J1), as in §3.3 of [48]. We have xk → x in (D, J1) as k → ∞ if, for
each t that is a continuity point of x,

dt(xk, x) ≡ ||xk(λk(·))− x||t ∨ ||λk − e||t → 0 as n → ∞,

where e : [0, t] → [0, t] is the identity function e(s) ≡ s, 0 ≤ s ≤ t, λk is
a homeomorphism of [0, t] and || · ||t is the uniform norm applied to func-
tions on the finite interval [0, t]. Note that convergence in J1 reduces to
uniform convergence over bounded intervals whenever the limit function is
continuous, as is the case for all the solutions of (3.10).

We generalize Definition 4.4 by replacing the uniform metric in (4.1) with
the Skorohod metric. We then say that a solution xa spirals towards ua∗
if (4.1) holds for xa and ua∗, but with the Skorohod J1 metric replacing the

uniform metric. In our application we will let λk(Σ
(k)
0 ) = Σ

∗(k)
0 . After making

that small perturbation of the switching times, so that they are aligned, we
have uniform convergence over [0, t].

The next lemma shows that spiraling of a solution xa to ua∗ follows from
the first limit in (4.1) and convergence of xa to ua∗ at the four switching
times. Its elementary proof is omitted.

Lemma D.4. Suppose that a periodic equilibrium ua∗, having period T ,
exists for (6.17). If

(I) lim
k→∞

T
(k)
i = T ∗

i and (II) lim
k→∞

‖x(Σ(k)
i )− u(Σ

∗(k)
i )‖ = 0, 1 ≤ i ≤ 4,

for some solution xa �= ua∗, then xa spirals towards ua∗. In particular,

lim
k→∞

dt(x(Σ
(k)
0 + ·), ua∗(Σ

(k)
∗ + ·)) = 0,

for each continuity point t of x(Σ
(k)
0 + ·).

We are now prepared to prove Theorem 6.2 (a) and (b).

Proof of Theorem 6.2 (a) and (b). Lemma D.3 implies that a solu-
tion to the approximating system that oscillated indefinitely is bounded
away from κ. Together with Lemma 6.2, this implies that Δ(k) is confined
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to the compact interval IΔ ≡ [κ + εaκ, (1 − μ)(1 − τ)/μ]. Moreover, Δ(k)

is strictly monotone in T
(k)
1 by (6.16), which is itself strictly monotone in

Δ(k−1) by Lemma 6.1, k ≥ 1. Hence, the sequence {Δ(k) : k ≥ 0} is mono-
tone and bounded, and therefore converges to a limit Δa,(∞) ∈ IΔ. Since x∗0
is the unique stationary point of the approximating system and Δa,(∞) > κ
cannot be part of a stationary solution, the limit Δa,(∞) must be a point
on a periodic equilibrium, which is clearly unique. This proved (a). Part
(b) of the theorem follows from Lemma D.4, together with Lemma D.3 and
Theorem 6.1.

D.2.3. Proof of Theorem 6.2 (c). It remains to show that the conditions
of part (b) of Theorem 6.2 can be satisfied, i.e., there exist parameters for
which Δ(k) > κ for all k ≥ 0 and Δ(k) → Δ(∞) > κ. To prove this, consider
Δ(k−1) > 1−μ+κ and observe that, since (1−μ)/(1+μ) < 1, (6.9) implies
that

(D.1) 0 <
Δ(k−1) − 1 + μ− κ

1 + μ
< T

(k)
1 <

Δ(k−1) − 1 + μ− κ

1 + μ
+ 1, k ≥ 1.

By Lemma 6.2, Δ(k−1) is bounded from above by Δa
bd ≡ (1 − μ)(1 − τ)/μ.

Therefore, consider Δ(0) ∈ [Δm
μ ,ΔM

μ ], where

(D.2) Δm
μ ≡ 1− μ+ κ and ΔM

μ ≡ Δa
bd ≡ (1− μ)(1− τ)/μ.

Note that Δm
μ > κ+ εaκ for εaκ in Lemma D.3 if τ is small, as we assume, and

1−μ > εaκ, which we require. The requirement that Δm
μ < ΔM

μ , gives rise to
quadratic equation in μ whose roots are

μ1 =
2 + κ− τ −

√
(κ− τ)2 + 4κ

2

and μ2 =
2 + κ− τ +

√
(κ− τ)2 + 4κ

2
,

(D.3)

which are easily seen to satisfy 0 < μ1 < 1 < μ2. Therefore, we henceforth
consider μ ∈ (0, μ1) such that 1 − μ > εaκ ≡ − log(1 − τ), so that μ <
1 + log(1− τ).

Next, we introduce a mapping taking Δ(0) = Δ into a function of T a
1 ,

where T a
1 ≡ T a

1 (Δ) is the unique positive solution to (6.9); specifically, let

(D.4) T : Δ �→ −κ− 1− μ

μ
e−Ta

1 +
1− μ

μ
(1− τ),

so that T (Δ(k−1)) = Δ(k), k ≥ 1.
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For fixed μ ∈ (0, μ1) and 0 < δμ < ΔM
μ −Δm

μ to be specified below, let

(D.5) Sμ ≡ [ΔM
μ − δμ,Δ

M
μ ].

Note that the end points of Sμ depend on μ, and that
⋃

μ Sμ = [1 + κ,∞),
where the union is taken over all the values of μ ∈ (0, μ1), for μ1 in (D.3). In
particular, the left end point of Sμ is bounded from below whereas its right
end point is unbounded as μ ↓ 0. Nevertheless, Sμ is compact for any fixed
μ ∈ (0, μ1).

Lemma D.5 (sufficient condition for endless iterations). For a given pair
of control parameters (κ, τ) and μ1 in (D.3), there exists μ∗ ∈ (0, μ1) such
that T : Sμ → Sμ for all μ ≤ μ∗.

Proof. Observe that by (D.1) and (D.4)

T (Δ) = −κ− 1− μ

μ
e−Ta

1 +
(1− μ)(1− τ)

μ

> −κ+
1− μ

μ
(1− τ − e

−Δ−1+μ−κ
1+μ ),

(D.6)

so that T (Δ) > Δm
μ whenever the following inequality holds

(D.7) ξ(Δ) ≡ e−
Δ−1+μ−κ

1+μ < 1− τ + μ(1− 2κ/(1− μ)).

To see that (D.7) does hold for all μ ≤ μ∗, for some μ∗ as in the statement of
the lemma, observe that ξ(Δ) decreases to 0 as Δ increases to ∞ and that
the right-hand side of (D.7) is bounded from below by 1− τ as μ decreases
to 0. Since Δm

μ → 1+κ and ΔM
μ → ∞ as μ ↓ 0, we can find μ∗ small enough

and Δ large enough such that, for all μ ≤ μ∗ and Δm
μ < Δ < ΔM

μ , (D.7)
holds for that Δ.

Choose c > 0 such that 1− τ − c > 0 and fix 0 < ε < c. Take μ∗ smaller
if needed, so that for any μ ∈ (0, μ∗), it holds that ξ(Δ) < ε whenever
Δ > 1−μ

μ (1 − τ − c) − κ. Then by (D.6) T (Δ) > 1−μ
μ (1 − τ − ε) − κ >

1−μ
μ (1− τ − c)− κ. The statement of the lemma follows by taking

(D.8) δμ ≡ (1− μ∗)c/μ∗ + κ,

where we take μ∗ sufficiently small to have ΔM
μ − δμ > Δm

μ , i.e., 1−μ
μ (1− τ −

c)− κ > 1− μ+ κ := Δm
μ . That is, T (Δ) ∈ Sμ as stated.

We use Lemma D.5 to obtain geometric rates of convergence to equilib-
rium in §H.
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APPENDIX E: PROOF OF THE RESULTS IN SECTION 8

Proof of Theorem 8.1. For each n ≥ 1 consider the CTMC Xn ini-

tialized with its stationary distribution, namely, Xn(0)
d
= Xn(∞), n ≥ 1.

The sequence Xn(∞) is tight in R6 because each sequence of elements in
the vector X̄n is tight in R. This follows immediately for Z̄n

i,j(0), which
are bounded from below by 0 and from above by some c > 1, i, j = 1, 2.
Tightness of Q̄n

1 (0) and Q̄n
2 (0) follows from the infinite-server stochastic-

order bound on the queues in Lemma A.5 in [31]. In particular, Q̄n
i ≤st Q̄

n
i,bd

pathwise, where Qn
i,bd is the number-in-system process in an M/M/∞ queue

with arrival rate λn
i and service rate θ. See also the proof of Theorem 8.2

where a similar bound is constructed.
By Theorem I.1, the sequence of processes {X̄n : n ≥ 1} is tight in D6,

and we can therefore consider a converging subsequence of processes, whose

initial conditions X̄n′
(0)

d
= X̄n′

(∞) also converge to some limit

X̄(0) ≡ (Q̄i(0), Z̄i,j(0); i, j = 1, 2) in R6.

Since the initial condition is distributed according to the stationary dis-
tribution of X̄n, each of the CTMC’s in the prelimit is stationary, and it
follows that any limit of X̄n must also be stationary process. In particular,

Z̄i,j(t)
d
= Z̄i,j(0) for all t ≥ 0 and (i, j) = (1, 2) or (i, j) = (2, 1).

First observe that, if Z̄1,2(0) = Z̄2,1(0) = 0 and Q̄i(0) < κ w.p.1, then the two
pools and their associated queues operate as two independent underloaded
M/M/mi systems and therefore X̄(0) = x∗0 w.p.1, implying that X̄n(∞) ⇒
x∗0.

It follows from the routing rules of FQR-ART that for any sample path
for which both Z̄1,2(0) and Z̄2,1(0) are strictly positive, at least one of these
processes must be strictly decreasing over some interval (0, ε), ε > 0, con-
tradicting the stationarity of X̄. Therefore, if Z̄i,j(0) > 0, then Z̄j,i(0) = 0,
i �= j w.p.1.

Assume, for example, that P (Z̄1,2(0) > 0) > 0. Then there exists a mea-
surable set B1,2 in the underlying probability space, such that all the sample
paths in B1,2 have Z̄1,2(0) > 0 and Z̄2,1(0) = 0. Now, if d1,2(0) �= 0, where

d1,2(t) ≡ Q̄1(t)− rQ̄2(t)− κ,

then Z̄1,2 is strictly increasing or strictly decreasing over some right neigh-
borhood of 0, because d1,2 is necessarily continuous by Theorem I.1. Hence,
d1,2(t) = 0, so that q1(t) ≥ κ w.p.1 for all t ≥ 0. In turn, Z̄1,1(t) = m1
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w.p.1 for all t ≥ 0. However, this is impossible, because λ1 < μ1,1m1, so that
Q̄1(t) must be strictly decreasing if Q̄1(0) > 0. It follows that P (B1,2) = 0.
Symmetric arguments give that P (Z̄2,1(0) > 0) = 0 as well.

It follows that, if Q̄i(0) > 0, then Q̄i must be strictly decreasing on some
right neighborhood of 0, because Z̄i,i(0) = mi. Hence, Q̄i(0) = 0. Then the X
model is asymptotically two independent M/M/n+M systems with service
rate equals to 1 and arrival rate λn < n. Paralleling (C.1), we conclude
that X̄(0) = x∗0 w.p.1, so that X̄n′

(∞) ⇒ x∗0 as n′ → ∞. The statement of
the theorem follows because the converging subsequence we considered was
arbitrary.

Proof of Theorem 8.2. Consider the queue process Qn
bd := {Qn

bd(t) :
t ≥ 0} in an M/M/∞ system that has arrival rate 2λn and service rate
θ. Then Qn

bd is distributed the same as the sum of the two queues in the
X system in which the service process is “shut off” so that all the output
from the two queues is due to abandonment. Specifically, we construct the
X model and the M/M/∞ system on the same probability space by giving
both the same initial condition and the same Poisson arrival processes (ex-
ploiting the fact that a superposition of two independent Poisson processes
is a Poisson process with the sum of the rates). If Qn

Σ(t) = Qn
bd(t) and there

is an abandonment from Qn
Σ, then we can generate an abandonment from

Qn
bd; see, e.g., [47]. Therefore, Q

n
bd is never below Qn

Σ.
It is well-known that the Markovian infinite-server queue is exponentially

ergodic, see, e.g., Proposition 7.2 in [35]. However, we need to show that
this implies that the same holds for Xn. We thus use the exponential drift
condition on the generator of Xn whose state space is

Ξ ≡ Z2
+ × {0, 1, . . .mn}4.

For x ∈ Ξ, let V (x) := (1 + γ)x1+x2 , for some γ > 0 which is characterized
below. For Qn

bd we consider the corresponding function U(q) = (1+ γ)q, q =
x1 + x2. Then V : R6 → [1,∞) is a norm-like function, namely V (x) → ∞
as ‖x‖ → ∞ (we use the standard norm on R6). Similarly, U : R → [1,∞)
is a norm-like Lyapunov function for the generator of Qn

bd.
Due to the sample-path stochastic order relation between Qn

Σ and Qn
bd,

we have QV ≤ QbdU , where Q denotes the generator matrix of Xn and
Qbd denotes the generator matrix of Qn

bd. Now, if we show that, for some
compact set C ⊂ Ξ, the following exponential drift condition holds

QbdU ≤ −cV + d1C ,

for strictly positive constants c and d and γ, then the statement of the
theorem will follow from Theorem 2.5 in [22], because QV ≤ QbdU.
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To that end, we recall that the off-diagonal components of Qbd are given
by

qi,i+1 = 2λn, qi,i−1 = kθ, and qi,j = 0 for |i− j| > 1, i ≥ 1.

Then for k ≥ 1

(QbdU)(k) = −θkγ[(1 + γ)k−1 − (1 + γ)k] + 2λn[(1 + γ)k+1 − (1 + γ)k]

= −γ(1 + γ)k−1(θk − 2λn(1 + γ)).

The RHS in the above display is negative for all states k satisfying θk −
2λn(1 + γ) > 0, or equivalently,

(E.1) k >
2λn

θ
(1 + γ).

If 2λn/θ /∈ Z+, then we can always choose γ > 0 small enough such that
(E.1) holds for all k /∈ C ≡ {0, 1, . . . , �2λn/θ�}. Otherwise, if 2λn/θ is an
integer, we can simply make C larger, e.g., take C ≡ {0, 1, . . . , 2λn/θ + 1},
so that (E.1) holds for any state k /∈ C if γ < θ/2λn.

Remark E.1. In general, the exponential drift condition in the above
proof should hold for a “small set” C; see, e.g., [22]. In a discrete state space,
as is the case here, any compact set is small.

APPENDIX F: CHECKING FOR CONGESTION COLLAPSE

When there is no abandonment, we cannot expect that the queues in an
oscillating system will remain finite as time increases. Indeed, if

(F.1) lim
t→∞

1

t

∫ t

0
(zi,i(s) + μzi,j(s))ds < λ, i, j = 1, 2,

then the queues are not rate stable, i.e., the long-run average input rate λ
is larger than the long-run average throughput rate, so that the queues will
increase without bound. We now show how to estimate whether (F.1) holds.

In particular, we now show that the simplified heuristic approximation in
§6.4 facilitates verification of (F.1) for a system that is known to converge
to the unique periodic equilibrium. Let Σ∗

i and T ∗
i denote the switching

and holding times of the periodic equilibrium, 1 ≤ i ≤ 4. Without loss of
generality, consider pool 1. (Due to the symmetry, it is sufficient to check
whether (F.1) holds for one of the pools.) Then, for

ζ(s) ≡ za1,1(s) + μza2,1(s) = 1− (1− μ)za2,1(s),
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(F.1) becomes

L ≡ lim
t→∞

1

t

∫ t

0
ζ(s)ds =

1

Σ∗
4

∫ Σ∗
4

0
ζ(s)ds

=
1

Σ∗
4

[∫ T ∗
1

0
ζ(s)ds+ ζ(T ∗

1 )

∫ T ∗
2

0
ζ(s)ds+ (Σ∗

4 − Σ∗
2)

]
,

where the first equality follows from the asymptotic periodicity of the so-
lution, and the second equality follows from the symmetry of the model.
Recall also that za2,1 ≡ 0, so that za1,1 = 1 over [Σ∗

2,Σ
∗
4], which gives the last

term in the square brackets. We can use the last value of ξ(k) obtained from
the algorithm above to serve as our approximation for ξ∗ ≡ ξ(Δa

∗), for ξ(·)
in (D.7), together with (6.7) and (6.11) to approximate L.

Using the fact that Σ∗
4 = 2Σ∗

2, we have (since Σ∗
4 − Σ∗

2 = Σ∗
2)

L = 1− 1− μ

2Σ∗
2

[∫ Σ∗
2

0
za2,1(s)ds+Σ∗

2

]

≈ 1 + μ

2
− 1− μ

2[− log (ξ∗) + log ((1− ξ∗)/τ)/μ]

×

⎡
⎢⎢⎣
∫ − log (ξ∗)

0
(1− e−s)ds+ (1− ξ∗)

∫ log

(
1−ξ∗

τ

)
μ

0
e−μsds

⎤
⎥⎥⎦

=
1 + μ

2
− (1− μ)[− log (ξ∗) + ξ∗ − 1 + (1 + ξ∗ − τ)/μ]

2[− log (ξ∗) + log ((1− ξ∗)/τ)/μ]
,

(F.2)

with the approximation following by, first noting that Σ∗
2 = T ∗

1 + T ∗
2 and,

second, replacing T ∗
1 and T ∗

2 with (6.18) and (6.19), respectively.
Note that, unlike the original system (3.10), in the approximating system

we can first compute the periodic equilibrium, when it exists, via the itera-
tive algorithm, and then check whether the system goes through congestion
collapse. The heuristic approximation given here facilitates this inspection,
via the computation in (F.2). More specifically, if a periodic equilibrium of
(6.17) is found, and if this periodic equilibrium is associate with congestion
collapse, then the queues necessarily increase to infinity as time increases,
provided that xa3 converges to ua∗ before either queue hits 0. We can then
make sure that Σa

q = ∞ simply by initializing the two queues of the six-
dimensional vector xa(0) at sufficiently large values, so that either queue
does not reach state 0 during the first few cycles (i.e., before xa3 is suffi-
ciently close to ua∗). Here, congestion collapse means that the queues will
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have an increasing trend in the sense that each queue will be larger at the
beginning of a cycle than its value at the beginning of the previous cycle.
On the other hand, if the periodic equilibrium is not associated with conges-
tion collapse, i.e., the total average service rate during the periodic cycle is
smaller than the arrival rate, then the queues will have a decreasing trend,
so that they must eventually reach 0, regardless of their initial condition.
We conclude that there is no need to actually determine the exact values
of the initial queue lengths, or to check wether Σa

q = ∞, but only to check
wether a periodic equilibrium is associated with congestion collapse.

APPENDIX G: AN ALGORITHM TO COMPUTE THE HEURISTIC
APPROXIMATION IN SECTION 6.4

We start by choosing a value Δ(0) such that ξ(1) ≡ ξ in (D.7) is sufficiently

small (e.g., ξ(1) < 0.05) and T
(1)
1 in (6.18) is strictly positive. Given ξ(1),

we compute Δ(1)(Σ
(1)
2 ) in (6.20), and take Δ(1)(0) = −Δ(1)(Σ

(1)
2 ) in order

to compute ξ(2) via (D.7). As before, we continue iterating until we see
convergence to a legitimate value, i.e., Δ(k) converges to some Δa

∗ > κ and
ξ(k) converges to a value ξ∗ < 1, or we obtain an illegitimate value at some
iteration, i.e., Δ(k) < κ or ξ(k) > 1 for some k ≥ 1. In the latter case,
the algorithm is stopped. The latter case indicates that the solution xa

converges to x∗0. If the initial condition for the algorithm is extreme, i.e.,
Δ(0) is taken to be very large, then stopping the algorithm suggests that a
periodic equilibrium does not exist.

APPENDIX H: STRONGER NOTIONS OF CONVERGENCE AND
STABILITY

In Lemma D.5 we showed that for any κ and τ we can find μ∗, such that
the iterative algorithm for the approximating system acts as a map from
the space Sμ in (D.5) into itself, thus ensuring that the algorithm can be
iterated indefinitely. We now use Lemma D.5 and its proof to show that the
iterative algorithm in §D.2.2 converges geometrically fast to the point Δa

∗
on the periodic equilibrium, when ua∗ ∈ Sμ. The fast monotone convergence
to equilibrium is seen also in the numerical experiments in §7.

Theorem H.1 (geometric rate of convergence). Fix c ∈ (0, 1 − τ) and
consider μ ≤ μ∗, for μ∗ in Lemma D.5. Consider the solution xa to the
approximating system for a given initial condition Δ(0) = Δ(0) ∈ Sμ. Then
for any ρ ∈ (0, 1) there exists a μ∗∗ ≤ μ∗ such that, for all μ ≤ μ∗∗ and δμ
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in (D.8),

|Δ(k) −Δa
∗| ≤

ρk

1− ρ
|Δ(1) −Δ(0)| ≤ δμ

ρk

1− ρ
.

In particular, xa3 converges to ua∗ geometrically fast in the number of cycles.

Note that the statement of the theorem implies that there exists a unique
asymptotically-stable periodic equilibrium in Sμ, as we already know.

Proof. For any μ ≤ μ∗, T maps Sμ into itself by Lemma D.5, in which
case, for any Δ1,Δ2 ∈ Sμ, (D.4) gives

|T (Δ1)− T (Δ2)| =
1− μ

μ
e

1−μ+κ
1+μ |e−Δ1/(1+μ) − e−Δ2/(1+μ)|

≤ 1− μ

μ
e

1−μ+κ
1+μ e−

1−μ
μ

(1−c)+κ 1

1 + μ
|Δ1 −Δ2|.

(H.1)

The inequality follows because, for g(Δ) ≡ e−Δ/(1+μ),

|ġ(Δ)| ≤ K ≡ 1

1 + μ
e
− 1−μ

μ
(1−c)+κ

, Δ ∈ Sμ ≡ [ΔM
μ − δμ,Δ

M
μ ],

for δμ in (D.8), implying that g(·) is Lipschitz continuous with a best Lips-
chitz constant that is no larger than K over the domain Sμ.

The RHS of the inequality in (H.1) clearly decreases to 0 as μ ↓ 0 for any
two fixed Δ1 and Δ2. Hence, for any ρ ∈ (0, 1) we can find μ∗∗ small enough,
such that |T (Δ1) − T (Δ2)| < ρ|Δ1 − Δ2| for all μ ≤ μ∗∗. In particular, if
μ ≤ μ∗∗, then T is a contraction mapping from the compact interval Sμ into
itself.

Let T (k) denote the kth iteration of the map (D.4), i.e., T (k) ≡ T ◦· · · ◦T ,
where the composition map ◦ is taken k times. Then T (k)(Δ(0)) = Δ(k),
k ≥ 1, and the claim follows from the Banach fixed point theorem.

By Lemma D.4, the three-dimensional solution xa3 to (6.17) “spirals” to-
ward ua∗. Using Theorem H.1, we next prove a stronger result, stating that
the rate of convergence of an oscillating solution to the approximating sys-
tem (in continuous time) is exponential.

Let Pa
∗ denote the image of the periodic equilibrium ua∗;

Pa
∗ ≡ {γ ∈ Sa : γ = ua∗(t), 0 ≤ t < Σ∗

4},

where Sa in §6 is the state space of the approximating system. Recall that
the convergence of xa3 to ua∗ holds under the Skorohod metric defined in
§D.2.2.
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Theorem H.2 (exponential stability). Under the conditions of Theorem
H.1 ua∗ is exponentially stable, i.e., there exist constants ϑ, β > 0 such that

inf
u∈Pa∗

‖xa3(λ(t))− u‖ < ϑe−βt, t ≥ 0,

where λ(·) is a homeomorphism of [0, t] satisfying λ(Σ
(k)
0 ) = Σ

∗(k)
0 for all

k ≥ 1 such that the kth cycle falls in [0, t].

Proof. It follows from Lemma D.4 and Theorem H.1 that, for all k ≥ 1

and t > Σ
(k)
∗ ,

‖xa3(λ(t))− ua∗(t)‖ < ‖xa3(λ(Σ
(k)
0 ))− ua∗(0)‖ ≤ ‖xa3(Σ

(0)
0 )− ua∗(0)‖
1− ρ

ek log (ρ).

Since xa3 and ua∗ are uniformly bounded from above by ΔM
μ in (D.2), the

upper bound in (D.1) together with (6.13) give

Σ
(k)
2 − Σ

(k)
0 = T

(k)
1 + T

(k)
2 <

ΔM
μ − 1 + μ− κ

1 + μ
+ 1 +

log(1/τ)

μ
≡ R,

so that Σ
(k)
4 − Σ

(k)
0 < 2R, for all k ≥ 1. In particular, the length of any full

cycle of any possible solution, including the periodic equilibrium, is smaller

than 2R. Since ‖xa3(Σ
(0)
0 ) − ua∗(0)‖ ≤ δμ, for δμ in (D.8), the statement of

the theorem follows by taking ϑ ≡ δμ/(1− ρ) and β ≡ − log(ρ)/2R.

In ending we remark that the exponential bound on the rate of conver-
gence to ua∗ should in general depend on the initial condition, as seen in the
proof of Theorem H.2. In particular, exponential stability should in general
be defined via ‖xa3(t)−ua∗(t)‖ < ϑ‖xa3(0)−ua∗(0)‖e−βt for β, ϑ > 0. However,
we obtain the bound in the statement of the theorem since all the solutions
we consider have values in Sμ, and are therefore uniformly bounded.

APPENDIX I: THE FLUID MODEL AS A LIMIT

The focus of the paper is on a fluid approximation for the stochastic X
model under FQR-ART. In this section we prove that the switching fluid
model arises as a many-server heavy-traffic fluid limit when a fluid-scaled
sequence of these stochastic systems is considered. The proof of the func-
tional weak law of large numbers (FWLLN) is given in §I.2, but we first
expand on the stochastic model and many-server scaling in §I.1. We empha-
size that, unlike the fluid limit proved in [31], the proof of the FWLLN here
is standard because it does not include the stochastic averaging principle.
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I.1. More on the stochastic model and heavy-traffic scaling.
We now briefly expand on the review of the stochastic model, which was
described in §2, and the heavy-traffic scalings. We consider a Markovian
model, i.e., we assume that both arrival processes are independent (time-
homogeneous) Poisson processes, and that service times, as well as patience
times of customers waiting in queue, are exponentially distributed. Specif-
ically, we assume that the class-i arrival rate in system n is λn

i , a class-i
customer receives an exponentially-distributed service time in pool j with
mean 1/μi,j , and a class-i customer has exponentially distributed patience
with mean 1/θi, i, j = 1, 2. Customers who do not enter service before run-
ning out of patience will abandon the queue. (There is no abandonment
from service.) All random variables are independent of each other and of
the two arrival processes. Since FQR-ART is a Markovian control, in that
the routing and scheduling decisions are a function of the state of the sys-
tem and are independent of its history, it is easy to see that Xn in (2.2) is
a six-dimensional time-homogeneous CTMC.

Due to abandonment of waiting customers, defining overloads is not en-
tirely straightforward because a service pool can be considered normally
loaded even if the traffic intensity to that pool is larger than 1. Our defi-
nition of overloads is taken from an asymptotic perspective. In particular,
pool i is considered overloaded if ρi > 1, where

ρi ≡ lim
n→∞

ρni ≡ lim
n→∞

λn
i /(μi,im

n
i ), i = 1, 2.

On the other hand, we can have ρi ≤ 1 with class i overloaded because there
are many shared customers in pool i. This latter type of overload may be
intentional, if sharing is deemed beneficial and is employed to alleviate an
overload in the other class, or it may be caused by a harmful execution of
the control, namely it is due to congestion collapse.

For any fixed n we must take kn1,2 to be sufficiently large so as to ensure
that sharing begins only when the corresponding pool is genuinely over-
loaded due to a high arrival rate. In addition, τn1,2 should be sufficiently
small to ensure that there is only a negligible amount of simultaneous two-
way sharing. (Simultaneous sharing can occur because the direction of over-
load switches.) On the other hand, τn1,2 must be sufficiently large to be hit
in a reasonable time. We refer to §§2.2 and 3.2 in [32] for elaborations on
the reasonings behind the way we choose the thresholds. For our purposes
here we simply enforce the following scaling assumption:

Assumption 3 (scaling parameters). For strictly positive numbers mi,
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λi, ki,j and τi,j, i, j = 1, 2,

mn
i /n → mi, λn

i /n → λi, kni,j/n → ki,j

and τni,j/n → τi,j as n → ∞.

Note that the first two limits in this assumption put us in the many-server
heavy-traffic framework. The assumption that τi,j > 0 will be relaxed for
the approximating system for the fluid limit. See also J.1 below.

I.2. The FWLLN. Paralleling (3.1), we define for each n ≥ 1

T n
1 ≡ inf{t ≥ 0 : Qn

2 (t)− rQn
1 (t) ≤ κn}

and T n
2 ≡ inf{t ≥ 0 : Zn

2,1(T n
1 + t) = τn}.

We also defined stopping times Tn
3 , T

n
4 and Σn

i , 1 ≤ i ≤ 4 corresponding to
the remaining holding times and switching times in (3.2).

Let

Σn
q := inf{t ≥ 0 : min{Qn

1 (t), Q
n
2 (t)} = 0}

and Σq := inf{t ≥ 0 : min{q1(t), q2(t)} = 0}.

As before, inf(φ) ≡ ∞. Since FQR-ART is non-idling, there cannot be any
idleness in the system as long as both queues are strictly positive, i.e., if
both queues are initially positive, then

Zn
1,1(t) + Zn

2,1(t) = Zn
2,2(t) + Zn

1,2(t) = n for all t ≤ Σn
q .

Notation. To present our results, we need to introduce some basic nota-
tion and refer to [48] for background. For d ≥ 1, let Dd[0, t] denote the
space of real-valued and right continuous Rd-valued functions on an inter-
val [0, t] ⊆ R+ that have limits from the left everywhere, endowed with the
usual J1 Skorohod topology. Let Cd[0, t] ⊂ Dd[0, t] denote the (sub)space of
Rd-valued continuous functions defined on [0, t]. Recall that the J1 topology
is equivalent to the uniform topology in Cd(I) for any compact interval I.
We use ⇒ to denote convergence in distribution. We let e denote the iden-
tity function, e(t) = t, and a ∧ b ≡ min{a, b}. Finally, we add a ‘bar’ to any
fluid-scaled element (process or random variable), e.g., X̄n ≡ Xn/n.

Theorem I.1 (FWLLN). If X̄n(0) ⇒ x(0) in R6 for some deterministic
element x(0) ∈ R6 satisfying Assumption 2, then

X̄n ⇒ x in D6[0,Σ4 ∧ Σq ∧ t] as n → ∞, for all t ≥ 0,
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where x is a deterministic element of C6 and is the unique solution to the
switching ODE ẋ = fσ(x), for fσ in (3.10). Moreover,

n−1(T n
i ,Σn

i ,Σ
n
q ; 1 ≤ i ≤ 4) ⇒ (Ti,Σi,Σq; 1 ≤ i ≤ 4) in R9 as n → ∞,

with +∞ being a possible value as a limit of these stopping times.

By +∞ being a possible value, e.g., Σn
q ⇒ +∞, we mean that P (Σn

q >
M) → 1 as n → ∞ for all M > 0.

Note that, if x(0) satisfies Assumption 2, then necessarily Σq > 0. If, in
addition, the fluid model is in the invariant set O, then the convergence can
be extended in an obvious way to any compact interval of [0,∞) because
Σq ≡ ∞. Otherwise, Σq < ∞ and since λ < 1, class-i fluid will stop flowing
to pool j, i �= j. Since P (|Σn

q − Σq| > ε) → 0 as n → ∞ (recall that
convergence in distribution is equivalent to convergence in probability when
the limit is deterministic), this show that sharing of customers will end at
approximately time Σq in a large stochastic system.

The proof of Theorem I.1 follows standard pre-compactness arguments,
combined with applications of the continuous-mapping theorem. We again
refer to [48] for the general framework. We therefore start by representing
the sample paths of Xn in terms of independent Poisson processes; see [27].

To simplify notation, let

An
1,2(s) ≡ {{Dn

1,2(s) > 0} ∩ {Zn
2,1(s) ≤ τn}}

An
2,1(s) ≡ {{Dn

2,1(s) > 0} ∩ {Zn
1,2(s) ≤ τn}},

Lemma I.1 (martingale representation of Xn). If min{Qn
1 (0), Q

n
2 (0)} >

0, then on the random interval [0,Σn
q ],

Qn
1 (t) = Mn

1 (t) + λt−
∫ t

0
θQn

1 (s)ds(I.1)

−
∫ t

0
1An

1,2(s)

(
Zn
1,1(s) + μZn

1,2(s) + μZn
2,1(s) + Zn

2,2(s)
)
ds

−
∫ t

0
(1− 1An

1,2(s)
− 1An

2,1(s)
)
(
Zn
1,1(s) + μZn

2,1(s)
)
ds,

Qn
2 (t) = Mn

2 (t) + λt−
∫ t

0
θQn

2 (s)ds

−
∫ t

0
1An

2,1(s)

(
Zn
1,1(s) + μZn

1,2(s) + μZn
2,1(s) + Zn

2,2(s)
)
ds

−
∫ t

0
(1− 1An

1,2(s)
− 1An

2,1(s)
)
(
Zn
2,2(s) + μZn

1,2(s)
)
ds,
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Zn
1,2(t) = Mn

1,2(t) +

∫ t

0
1An

1,2(s)
Zn
2,2(s)ds−

∫ t

0
(1− 1An

1,2(s)
)μZn

1,2(s)ds,

Zn
2,1(t) = Mn

2,1(t) +

∫ t

0
1An

1,2(s)
Zn
1,1(s)ds−

∫ t

0
(1− 1An

2,1(s)
)Zn

2,1(s))ds,

Zn
1,1(t) = n− Zn

2,1(t),

Zn
2,2(t) = n− Zn

1,2(t),

where Mn
i and Mn

i,j, i, j = 1, 2, are square-integrable martingales.

The expressions for all martingale terms in (I.1) can be inferred from (I.2)
below. They are not presented explicitly since, as will be argued in the proof
of Theorem I.1 below, they are asymptotically negligible under fluid scaling,
and therefore play no role in the fluid limit.

Proof. We use independent unit-rate Poisson processes to represent each
of the component processes in (I.1). For example, the representation of Qn

1

over [0,Σn
q ] is

Qn
1 (t) = Na

1 (λn
1 t)−Nu

1

(
θ1

∫ t

0
Qn

1 (s)ds

)

−N+
1

(∫ t

0
1An

1,2(s)

(
μ1,1Z

n
1,1(s) + μ1,2Z

n
1,2(s) + μ2,1Z

n
2,1(s) + μ2,2Z

n
2,2(s)

)
ds

)

−N−
1

(∫ t

0
(1− 1An

1,2(s)
− 1An

2,1(s)
)
(
μ1,1Z

n
1,1(s) + μ2,1Z

n
2,1(s)

)
ds

)
,

where Na
1 , N

u
1 , N

+
1 and N−

1 are mutually independent unit rate (homoge-
neous) Poisson processes.

Next, we exploit the fact that each of the Poisson processes in (I.1) minus
its random intensity function constitutes a square-integrable martingale by
Lemma 3.2 in [27], e.g.,

(I.2) Mn,u
1 ≡ Nu

1

(
θ1

∫ t

0
Qn

1 (s)ds

)
− θ1

∫ t

0
Qn

1 (s)ds

is a square-integrable martingale. Thus, subtracting and then adding all the
random intensities of the Poisson processes, and using the fact that a sum
of martingales is again a martingale, we achieve the representation in the
statement for Qn

1 over the said interval. The representations for the other
processes follow similar arguments.
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Proof of Theorem I.1. Minor adjustments to the proof of Theorem
5.2 (and Corollary 5.1) in [31] give that {X̄n : n ≥ 1} is C-tight in D6 with
all limits being almost-everywhere differentiable. Those modifications to the
aforementioned proof are straightforward, and are therefore omitted.

Next, by Doob’s martingale inequality, the fluid-scaled martingales in
(I.1) are asymptotically negligible, namely, M̄n

i ⇒ 0e and M̄n
i,j ⇒ 0e in D,

i, j = 1, 2, since these martingales are square integrable.
Given the initial condition, we have 1An

1,2(s)
= 0 and 1An

2,1(s)
= 1 over the

interval [0, T n
1 ∧ Σn

q ). Since any limit point of X̄n is continuous, we must
have that P (T n

1 ∧ Σn
q > ε) → 1 for some ε > 0. Therefore, it is easy to see

from the representation of X̄n with the indicator functions being constants
over the interval [0, ε), that any limit point of X̄n satisfies to the integral
version of the ODE’s in (3.4) and (3.5), whose unique solution implies that
X̄n converges to that solution x over [0, ε).

If T1 < Σq, then the initial interval of convergence can be extended to
[0, T1), and by Theorem 13.6.4 in [48], it holds that T n

1 ⇒ T1 in R as n → ∞.
Moreover, we have X̄n(T1) ⇒ x(T1), so that 1An

1,2(s)
= 1An

2,1(s)
= 0 over the

interval [T n
1 , (T n

1 + T n
2 ) ∧ Σn

q ) implies that

lim
n→∞

P (1An
1,2(s)

= 1An
2,1(s)

= 0 ; s ∈ (T1,Σ2 ∧ Σq) = 1.

Once again, plugging the constant values of the indicator functions to the
representation (I.1) shows that any limit point of X̄n satisfies the integral
version of the ODE’s in (3.7) and (3.8), whose unique solution on [T1, (T1 +
T2) ∧Σq) implies convergence of the sequence X̄n to x. Moreover, we again
have T n

2 ⇒ T2 in R as n → ∞. Since T1 and T2 are deterministic, joint
convergence of (T n

1 , T n
2 ) to (T1, T2) holds in R2 (e.g., Theorem 11.4.5 in

[48]), so that T n
1 + T n

2 ≡ Σn
2 ⇒ Σ2 in R as n → ∞.

The weak convergence of X̄n to x and Σn
i to Σi can be extended to any

compact subinterval of [0,Σ4∧Σq] by exactly the same arguments. If Σq > Σ4

we can then take x(Σ4) as a new initial condition and continue the proof
inductively for all compact subinterval of [0,Σq).

APPENDIX J: IMPLICATIONS FOR THE CONTROL OF THE
STOCHASTIC SYSTEM

J.1. Rescaling the thresholds.

Implications to the activation thresholds. As indicated in Assumption 3, the
activation thresholds are asymptotically positive in fluid scale. This requires
us to consider extreme cases with small abandonment rates and service rates
for shared customers. In the worst case (leading to the biggest buildup of
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queues) the abandonment rate is strictly smaller than the service rate of
shared customers (and both are small).

For a given stochastic system there is freedom in choosing how to model
the scaling of the thresholds. It is important that this freedom leads to
ambiguities that must be accounted for. For example, if for n = 100, mn

1 =
mn

2 = 100 and we take kn1,2 = kn2,1 = 10, then we can think of the activation
thresholds as being equal to 0.1n or

√
n. From the fluid perspective, there

are important difference between the two scalings. If the latter holds, then
κ = 0 so that S1,2 = S2,1 and the fluid model can cross from S−1,2 to S+2,1,
and vice versa, in zero time. In this case, chattering and oscillations, as
defined above, coincide, and are clearly more likely to occur. In particular,
this suggests that oscillations can occur in the stochastic system even if a
fluid approximation with κ > 0 does not oscillate at all, because a more
appropriate approximation for the given system would be to assume that
κ = 0; see Remark 5.1 below.

Implications to the release thresholds. There are important inconsistencies
regarding the rescaling of the release thresholds. For example, in a system
having 100 agents in each pool and arrival rate λn = 98, we may take τni,j = 3.
With these parameters, and regardless of the value of μ, pool j is clearly not
overloaded at time t if Zn

i,j(t) ≤ τn, and the fluctuations of the queue must
therefore be considered to be of order o(n). However, the fluctuations of the
queue will often be larger than τn, which is considered to be asymptotically
positive under fluid scaling. Specifically, whereas

‖Qn‖T /τn ⇒ 0 as n → ∞, for all T > 0, where ‖Qn‖T ≡ sup
0≤t≤T

Qn(t),

we have ‖Qn‖T >> τn for any reasonable value of n (which is not unrealisti-
cally large) and over intervals [0, T ], with T = O(1) (e.g, T ≈ 1/μ1,1.) It fol-
lows that, relative to the stochastic fluctuations, it is appropriate to think of
the release thresholds as being o(n) (even O(1)!). On the other hand, from a
fluid-limit perspective, τn must satisfy Assumption 3, namely be strictly pos-
itive asymptotically in fluid scale, since otherwise Z̄n

i,j := Zn
i,j/n will not be

hit this threshold in finite time when it is strictly decreasing; see §3.2 in [32].
We can think of the release thresholds as having a duality property in

the fluid model: When zi,j ≤ τ their affect on the system’s performance is
negligible, and we can consider them to be 0, i.e., τni,j = o(n). Whenever
zi,j > τ and is decreasing, we must think of τ as being strictly positive, so
that τn is as in Assumption 3, to ensure that zi,j can hit τ in finite time. We
take advantage of this duality property when constructing an approximation
for the fluid model in §6.4.
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