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his paper investigates the possibility of predicting each customer’s waiting time in queue

before starting service in a multiserver service system with the first-come first-served
service discipline, such as a telephone call center. A predicted waiting-time distribution or an
appropriate summary statistic such as the mean or the 90th percentile may be communicated
to the customer upon arrival and possibly thereafter in order to improve customer satisfac-
tion. The predicted waiting-time distribution may also be used by the service provider to
better manage the service system, e.g., to help decide when to add additional service agents.
The possibility of making reliable predictions is enhanced by exploiting information about
system state, including the number of customers in the system ahead of the current customer.
Additional information beyond the number of customers in the system may be obtained by
classifying customers and the service agents to which they are assigned. For nonexponential
service times, the elapsed service times of customers in service can often be used to advantage
to compute conditional-remaining-service-time distributions. Approximations are proposed
to convert the distributions of remaining service times into the distribution of the desired
customer waiting time. The analysis reveals the advantage from exploiting additional
information. ‘
(Service Systems; Telephone Call Centers; Predicting Delays; Communicating Anticipated Delays;

Predicting Response Times)

1. Introduction

It is common practice in service systems to have
customers who cannot be served immediately upon
arrival wait in queue until system resources become
available to the customer. Traditionally, customers
have not been given estimates of their required wait-
ing times, i.e., the time until they can begin to receive
service. When the waiting times are sufficiently short,
there is usually little need for such information, but if
waiting times can be long (where what is “long”
depends on the context), then prediction can be im-
portant.

The gueue may physically contain the customers, as
in the lines in a bank or a supermarket, or it may not,
as in calls to a telephone call center or requests for
emergency (police, fire or medical) service. When the
queue physically contains the customers, the custom-
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ers are often able to directly estimate the waiting time,
so that customers may not gain much from additional
delay predictions. However, even if the queue physi-
cally contains the customers, it may be difficult for
customers to do the estimation. For example, in
amusement parks, customers are often unable to see
the full line, and they may not have the experience to
know how fast it moves. Thus, amusement parks have
increased customer satisfaction by having signs indi-

cating the expected waiting time from that point.
Predicting delays for customers is especially impor-
tant when customers do not have direct access to
system state information. For a long time in emer-
gency services, telephone dispatchers have tried to
indicate how long it will take before assistance will
arrive. Even with less critical services provided via
telephone, it has been recognized that customers be-
0025-1909/9%/4506/0870$05.00
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come dissatisfied with the service provider when they
are forced to wait “on hold” for long indeterminate
periods. Thus, it is now becoming more common in
telephone call centers to make announcements to
customers containing delay predictions. Making delay
predictions is one of several ways to improve cus-
tomer waiting experience; see Hui and Tse (1996),
Katz et al. (1991), Taylor (1994) and references therein.
The purpose of this paper is to study delay predic-
tions. A first question is whether or not uncertainty
about delays can be sufficiently small that point-
estimate delay predictions such as the mean can be of
value. We will show that the uncertainty about delays
tends to be large if no state information is used, but
that the uncertainty about delays typically can be
dramatically reduced if state information is used, so
that point-estimate prediction can indeed be of value.
Given that delay prediction can help, the second
question is how to actually make these predictions. In
this paper we propose several methods for making
delay predictions. We propose more than one method,
because we have found that there is not a single best
method for all circumstances. In proposing these pre-
diction methods, we are primarily concerned with
improving customer satisfaction, but delay predic-
tions can also be used for other purposes. For instance,
a service provider might provide additional service at
some other facility after the first service is complete.
The predicted delay at the first facility might enable
the service provider to better plan for the subsequent
service. The service provider also might use the delay
predictions to adjust its available service capacity, e.g.,
by adding agents when large delays are predicted.
To put our proposed prediction procedures in per-
spective, we first discuss current practice. Some ser-
vice providers identify a customer’s place in queue.
However, position information may not enable the
customer to determine how long the customer will
have to wait before beginning service. The customer
may not be able to determine how many agents are
fielding service requests or the rate at which the agents
are completing service requests. Other service provid-
ers may generate an estimate of the rate at which its
agents complete service requests from its customers. A
system having s agents each of whom, on average,
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complete service requests in # minutes, may predict
that a customer placed in queue at the kth position will
be able to begin service in kr/s minutes and complete
service in (1 + (k/s))r minutes. However, prediction
based on such long-run averages may be subject to
gross inaccuracies in specific instances. If long-run
averages are not met in specific instances, customers
may wait for a much longer time than is predicted.
Such customers, too, may become dissatisfied with the
service provider.

We assume that customers are served one at a time,
each by one of several servers. A customer’s service
time may depend on the type of customer and the type
of server, but.otherwise (conditional on such informa-
tion) the successive service times are assumed to be
mutually independent. In that setting, we aim to
provide more accurate predictions of required waiting
times. Our main idea is to exploit additional informa-
tion, which often is readily available with modern
computer information systems. We propose classify-
ing each waiting customer and each customer being
served based upon known attributes of the customers
and possibly upon the agents that are providing the
service. Based upon these classifications, we estimate
the cumulative distribution function (cdf) of each
customer’s remaining service time. We then convert
these estimated remaining-service-time cdf’s into an
estimated waiting-time cdf.

A second main idea is to estimate the full waiting-
time cdf. Recognizing that the waiting time is usually
uncertain, we do'more than provide a single-number
prediction, such as the expected value. However, we
are primarily interested in the waiting-time cdf to
understand the reliability of point estimates such as
the mean. In predicting the entire waiting-time prob-
ability distribution; we recognize that there is a sepa-
rate question about what to say to customers. We
believe that often a good case can be made for full and
accurate disclosure, but that is a separate question
which we do not address; see Hui and Tse (1996) for
further discussion.

Here is how the rest of this paper is organized. We
start in §2 by discussing delay predictions in queues
with the first-come. first-served- discipline and expo-
nentially distributed service times. We indicate how

871

Copyright © 1999. All rights reserved.



WHITT
Predicting Queueing Delays

the predictions can be enhanced to account for reneg-
ing, drawing upon recent work in the companion
paper, Whitt (1999), which investigates how system
performance in M/M/s/r models with balking and
reneging is affected by communicating system-state
information. We also show how the value of informa-
tion can be quantified.

In §3 we consider the case in which customers can
be classified into two types, with different exponen-
tially distributed service times. We develop efficient
recursive algorithms for calculating the mean, vari-
ance, and the Laplace transform of the waiting time.
Values of the full cumulative distribution function of
the waiting time can be computed by numerically
inverting the Laplace transform, e.g., by the algorithm
in Abate and Whitt (1992, 1995). In §4 we develop
stochastic bounds and approximations for the
waiting-time cdf when the customers in the system
have exponential remaining service times with differ-
ent means.

In §5 we specify initial rough approximations for
the mean, variance, and Laplace transform of the
waiting time, exploiting the number of customers in
the system ahead of the customer in question, when
the service-time distribution is nonexponential. These
approximations serve as reference points for more
refined approximations. In §6 we develop a prediction
method for general (nonexponential) service-time dis-
tributions, exploiting the elapsed service times of
customers in service. We compute the conditional
remaining service-time cdf’s and use them to generate
an approximation for the waiting-time cdf.

In §7 we consider the special case in which all
remaining service times are known when the predic-
tion is to be made. It is significant that the general
approximation in §6 coincides exactly with a known
deterministic recursion in this case. Thus we see that
the approximation in §6 will be effective when there is
little uncertainty about the remaining service times.
We also suggest using the deterministic recursion
applied to the mean remaining service times as a
crude approximation requiring less information. As a
refinement, we suggest a fast simulation performed in
real time, randomly generating each remaining service
time.
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In §8 we consider special prediction methods for
customers near the front of the queue when there are
many servers. In §9 we consider simulation experi-
ments to validate the approximations. We make con-
cluding remarks in §10.

We close this introduction by mentioning previous
work on prediction by Stanford et al. (1983) and
Woodside et al. (1984). They focus on optimal predic-
tors of future waiting times and queue lengths given
past observations of these processes in a stationary
setting. In contrast, we emphasize prediction of the
waiting time of current customers based on extra
information in what may be a nonstationary setting.

2. Prediction with Exponential

Service Times

Throughout this paper we make three important as-
sumptions: First, there is a fixed number s of servers.
Second, the service discipline is first-come first-served
(FCES). Third, the service times at each server are
mutually independent (possibly depending on the
type of customer and/or the type of server) and
independent of the arrival process. In this section, we
assume in addition that all service times have a
common exponential distribution with mean p™".

If we are given no state information, then the
natural prediction is the cdf of the steady-state waiting
time W, which requires that the queueing model be
fully specified and that the arrival process be station-
ary with the property that the steady-state waiting-
time cdf can be calculated. For example, if there is
unlimited waiting space and if the arrival process is a
renewal process, then we have the GI/M/s model.
Then the steady-state waiting-time cdf has the form
P(W, = t) = 1 — pe™™, where the two parameters p
and b depend on the interarrival-time cdf, s and w;
e.g., see Gross and Harris (1985). The most natural
special case is a Poisson arrival process, yielding the
M/M/s model.

If we learn only that a customer must wait before
beginning service, it is natural to use the conditional
steady-state waiting-time cdf given that the wait is
strictly positive, ie., P(W, = tIW, > 0). For the
GI/M/s model, this conditional cdf is exponential. In
this setting it is evident that a single point estimate
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such as the mean is not very reliable. In contrast, we
will show that additional information tends to make
the conditional waiting-time cdf concentrate more
about its mean, so that a single point estimate such as
the mean becomes much more reliable.

Throughout this paper we assume that we learn at
least the number of customers already in the system
when each arrival occurs. We may also learn more. For
example, we may learn the elapsed service times for
each customer in service. However, with exponential
service times, the elapsed service times provide no
benefit, because by the lack-of-memory property of
the exponential distribution, the remaining service
time for each customer in service has an exponential
distribution with mean w™, independent of the
elapsed service time.

For a specified model, such as GI/M/s, the addi-
tional information clearly helps, as we will discuss
below. Perhaps, even more important, however, is the
fact that prediction depends much less upon the
model when we learn additional state information.
When we learn the current state information, we do
not need to know anything about the arrival process.
The arrival process can be arbitrary, which we denote
by A, even nonstationary. The prediction also does not
depend upon blocking and balking (customers leaving
immediately upon arrival). Thus the prediction ap-
plies to the A/M/s/r model, where  is the number of
waiting spaces. Moreover, the prediction can be done
any time after arrival, not just upon arrival. In addi-
tion, the relevant information is only s, u™ and the
number of customers in the system.

For the A/M/s/r model, whenever all servers are
busy, the time until the next service completion is
exponentially distributed with mean 1/su, indepen-
dent of the previous history. Hence, the waiting time
before starting service for an arrival finding s + k
customers in the system is the sum of k + 1 iid.
exponential random variables each with mean 1/5u,
which has an Erlang (gamma) distribution. In this
context, we can immediately see the advantage of the
additional state information, because for k > 0 the
Erlang distribution is much more concentrated about
its mean than the exponential steady-state distribution
(conditional on all servers being busy) in the GI/M/s
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model. Conditioning on the state information, the
mean and standard deviation of the steady-state wait-
ing time before starting service, W, are

k+1 vk +1

EW= and SD(W) =

2.1)

We can also calculate the full cumulative distribution
function (cdf) of the waiting time P(W = ¢), t = 0. The
Erlang cdf is available in closed form, e.g., see p. 11 of
Feller (1971). It can also be computed easily by numer-
ical transform inversion, as we indicate for a more
general case below. Except for very small k, a normal
approximation works well, which depends only on
the mean and standard deviation in (2.1). The cdf and
the standard deviation also reveal the potential error
in any single point estimate such as the mean. It is
natural to describe the reliability of the mean as a
point estimate by the ratio SD(W)/EW. Note that
with iid. exponential service times this ratio has the
remarkably simple form

SD(W)/EW =1/ Jk + 1, 2.2)

independent of p and s. Formula (2.2) is a useful
rough guide more generally. For example, when k + 1
= 25 (100), we anticipate about 20% (10%) error due
to uncertainty.

It is reasonable to normalize by the mean service
time, so that waiting times are viewed in relation to
mean service times. This is equivalent to setting p = 1
in (2.1). The formulas in (2.1) show the advantage of
large scale. When s is big, either EW and SD(W) are
both small (when k is small) or the ratio SD(W)/EW is
small (when & is large).

ExamrLe 2.1. Thinking of a large telephone call
center, natural values for s and k might be s = 400 and
k =80: By (2.1), with a mean service time of u™' = 5
minutes, the mean wait before beginning service is
about 1 minute. Using the normal approximation, a
95% confidence interval for the mean is approximately
EW = 25D(W) or (47 seconds, 74 seconds). The mean
is a reasonably reliable prediction because the upper
and lower limits of the confidence interval differ from
it by only 20%. The customer might be told that his
expected wait is 1 minute and that the chance of the
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wait exceeding 75 seconds is only 0.025. The 90th
percentile is 70 seconds. To keep things simple while
trying not to disappoint customers, the customer
might be given the single estimate of 70 seconds.

Note that there is possible room for improvement
even if the A/M/s/r model provides an excellent fit,
because we could obtain still more information. For
example, immediately upon arrival, triage might be
performed to determine the nature of a customer’s
service requirements; see p. 311 of Hall (1991). Triage
has traditionally been used to assign priority to cus-
tomers needing especially prompt service, as in emer-
gency medicine, but it can also be used to improve
prediction. In the most favorable circumstance, we
might be able to learn the full service requirements of
each customer upon arrival {(which could still be
consistent with the overall exponential distribution). If
we do not use this information, then (2.1} is still
correct. However, if we do use this information, then
we can compute the waiting time exactly (with no
varijance) at every time. We have observed that when
there are s + k customers in the system, the waiting
time has an Erlang distribution with mean and vari-
ance in (2.1). If we actually learn the service times,
then we know the value of the Erlang-distributed
waiting time at each instant.

It is naturally of interest to quantify the value of
information. One way to do this is to compare the
variance with and without the information. To do so,
we consider the case in which there is a well-defined
steady-state waiting time W.. Without any informa-
tion, we have the variance Var(W.). When we receive
information, we want to consider not one instance, but
its long-run impact in steady state. Thus let I, repre-
sent the steady-state form of the information. The
influence of this information can be quantified
by comparing the expected conditional variance
E[Var(W_11,)] to the unconditional variance Var(W.).
Assuming that I, and W,, are jointly distributed,

Var(W.11.) = E[((W,, — E(W.. I L) L.]. (2.3)
Since
Var(W.) = E[Var(W_ 1 L)] + Var(E(W..11.)), (2.4)
we have
874

Var(W.,) = E{Var(W. | [)]; (2.5)

the variance can only decrease with conditioning.

Examrie 22. Consider the M/M/1 queue with
arrival rate A and traffic intensity p = A/u < 1. The
steady-state waiting time W, has the distribution

P(W,>1t)=pe ® M >0, (2.6)
so that
p(2 —p)
Var(W.,) = —4—. 2.7
ar(W..) P«z(l _ p)2 (2.7)

In contrast, assuming that I, is the number of custom-
ers in the system, so that P(I,, = k) = (1 — p)p", k=0,

‘ - k p
—_ _— k—:———.
E[Var(W.,1L.)] Eg(l p)p TR Gy (2.8)
and
E[Var(W, |1, -
[Var(W.1L)] 1-p 29)

Var(W,)  2-p°
From (2.9), we see that the variance ratio is decreasing
in p, starting at ; at p = 0 and is asymptotically (1 — p)
as p — 1. Hence conditioning provides a big variance
reduction in heavy traffic. Also note that in those rare
instances in which the number k of customers in the
system is large, and delays will tend to be large, the
prediction is reliable and differs dramatically from the
steady-state mean. Thus the value of delay prediction
actually may be much greater than predicted by (2.9).
(Formula (2.9) describes the average benefit per customer
for all customers. We would see a greater benefit if we
considered the average benefit per customer experi-
encing a large delay.)

Another important consideration is reneging {(cus-
tomer abandonment after waiting). Some customers in
line may actually renege before receiving service,
making the waiting time less than it otherwise would
be. Fortunately, it is also possible to predict waiting
times when there is significant reneging, provided that
the service times are iid. and exponentially distrib-
uted. First, suppose that each waiting customer in
position j of the queue tends to renege at a constant
rate §;. If 8] = «, then this is tantamount to each
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customer being willing to wait a random time that is
exponentially distributed with mean a™'. We can use a
pure death process (birth-and-death process with no
births) to represent the evolution of the system when
an arrival finds s + k customers in the system; e.g., see
Whitt (1999). When a customer finds s + k customers
in the system, the delay can again be represented as
the sum of k + 1 independent exponential random
variables, but now they are not identically distributed.
The total reneging rate when there are k customers in
queue is

(2.10)

The mean and standard deviation of the waiting time
for a new arrival (assuming that the arrival does not
himself renege) become

x 1 1/2
D(W)=[§OW} , (2.11)

for 8, in (2.10),j = 1, and §, = 0.

The sum of k + 1 independent exponential random
variables with. different means has a rather compli-
cated cdf, being a k-fold convolution of the component
exponential cdf’s, but the cdf of the sum is remarkably
(perhaps surprisingly) easy to calculate by numerical
transform inversion, as shown in §12 of Abate and
Whitt (1982). The Laplace transform of the waiting
time in state s + k is

w

@(z) EEe-ZWEJ e~ dP(W < 1)

0

k
Su T+ 6
H(S/.L+6 +Z)

2.12)

so that the complementary cdf P(W > t) can be
computed by numerically inverting its Laplace trans-
form
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1—%(z)
—. )

Wez) = f e #P(W > t)dt =
0

The numerical inversion algorithm can compute sev-
eral cdf values P(W = #) in less than a second, so that
it can be used on a real-time basis to predict the cdf.

Examrie 2.3. A typical simplification of the reneg-
ing model is to assume that 8§ = ja, j = 1. If
furthermore we assume that « = p,, then the M/M/s
model with reneging behaves like the M /M /% model,
and (for s > 1)

~ ulog(s + k) — log(s = 1}];

see 6.3.1 of Abramowitz and Stegun (1972). From (2.1)
and (2.14), we see that it can be important to account
for reneging when it is present to a significant degree.

(2.14)

3. Identifiable Customer Classes
We now start to consider improved predictions that
can be made with additional information beyond the
number of customers in the system. In this section we
suppose that there are two classes of customers. Let
customers of class 1 have exponential service times
with mean w;’, and let customers of class 2 have
exponential service times with mean u, . For example,
local telephone calls might be classified into data (e.g.,
Internet) calls and voice calls, with data calls tending
to have longer holding times. Such a classification can
be based on the called number. For another example,
calls to airline reservation centers might be classified
according to whether they are from travel agents or
private individuals. Such a classification can be based
on either calling or called numbers. For yet another
example, Internet usage might be classified into ses-
sions retrieving email and web browsing, with the
classification based on customer usage determined
from real-time traffic data.

In this section, let each successive customer be class
1 with probability p, independent of all other events.
Thus the service times of successive customers are
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i.i.d. with hyperexponential (H,, mixture of two expo-
nentials) distributions. The overall model is thus
A/H,/s/r instead of A/M/s/r. As at the end of §2,
we let customers in queue renege; the total reneging
rate with k customers in queue is §,.

In this setting we suppose that the customer class
identity is learned when the customer starts service,
but not before. Thus, when there is a queue, we know
the class identity of the s customers in service. Each
customer in queue is class 1 with probability p,
independent of other events. In this setting, just as in
§2, we can calculate the mean, standard deviation and
Laplace transform of the waiting time for a new
arrival (or any customer already in queue), but the
recursive calculation here is substantially more com-
plicated. Before developing the recursive algorithm,
we consider a revealing example.

ExampLE 3.1. To understand the advantages of the
customer-class information and to obtain a simple
approximation for the recursions that may sometimes
be appropriate, it is useful to consider the limiting case
in which class 2 has service times of length 0. We
obtain simplicity because we can conclude that all
customers in service at an arbitrary time are necessar-
ily of class 1. For additional simplicity, suppose that
there is no reneging. If there are k + s customers in the
system ahead of a customer of interest, that customer
must wait for one plus a binomially distributed ran-
dom number of exponential random variables each
with mean 1/su.,. Hence the mean is

1+k
EW = J, (3.1)
S
the Laplace transform is
SH k
w23
w(z) e Z T % ;
. S ospy )/
(1 — pYrei
X pi(1 p)(z+wj, 62
and the standard deviation is
1+ 2kp — kp?) /2
spwy = 2H AP kP (33)

SHq
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If SD(W)/E(W) = (1 + 2kp = kp)"*/(1 + kp) is
small, which occurs if kp is large, then reliable predic-
tion is possible. From formulas (3.1)-(3.3), we can also
see that there can be great value in learning the class
identities of the customers in queue too. Then we
would know the actual value of the binomial random
variable. For instance, if the actual number of class-1
customers in queue is j = kp, then the mean is
unchanged, but the standard deviation is reduced to
(1 + kp)"*/sp,. And when j is not near kp, the
conditional means are not close.

To develop the recursive algorithm for the general
case (with u;" > 0), let W(k, j) denote the waiting time
of an arrival that finds s + k customers in the system
with j class-1 customers in service (assuming that this
selected customer does not renege). We now are faced
with a two-dimensional generalization of the pure-
death process considered in §2. We calculate the mean
recursively, considering what happens at each succes-
sive departure (ignoring future arrivals). Since we
have assumed that (are conditioning upon the fact
that) the customer of interest does not renege, we let
the reneging rate be 8, when the customer of interest
is number k + 1 in queue. The time until the first
departure has an exponential distribution with mean
(ju. + (s — )i, + 8,)7". Let T(k, j) denote the
remaining waiting time, not counting this time until
the first departure. At the time of the departure, the
number in queue ahead of the new arrival decreases
from k to k — 1. With probability ju,/(ju, + (s
= j)u, + 8,) the departing customer is due to a class-1
customer completing service. With probability &,/
(juy + (s = )u, + 8,), the departure is a customer in
queue reneging. With probability p, a customer enter-
ing service is class 1. Thus, we obtain the following
recursion for the mean. For k = 0,

E[W(k, )] =

+ E[T(k, )], (3.4)

jurt (s = jlpa + 8

where, for k = 1,

pls = DuEIWG — 1,7+ 1]
ELT(k, ])] B jurt (s = Puy + &

(1 -pjmE[WE-1,j-1)]
+ - ;
jur+ (5 = g + 8
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pipms + (1 —p)(s — jlpa + &
jurt (s = s+ &

X E[W(k -1, )]

(3.5)
and

E[T(0, )] = 0. (3.6)

A related recurrence can be developed for the
variance. Noting that the waiting time is the sum of
the exponential variable with mean (ju, + (s = f)p,
+ 8,)7" and the independent variable T(k, j), we see
that

1
g + (s = g + 87
+Var(T(k, f)),

Var[W(k, j)] =

3.7)
where
Var(T(k, j)) = E[T(k, j)*] — (E[T(k, )])* (3.8)
with E[T(k, j)] in (3.5),
p(s — uE[WE = 1,7+ 1)%]
Jur+ (s — ua +
N (1= p)jmEWE -1, -1)%
jug (s — Ppa+ 8
(Pjﬂ«l + (@=p)s —Pur+ 3k)
jrat (s = g+ &
X E[W(k -1, )%,

E[T(k, /)*]=

(3.9)
EW(k -1, /)%
= Var(W(k — 1, j)) + (E[W(k - 1, )])?

1
TR

+ (E[W(k - 1, DD)*

L + Var(T(k -1, )

(3.10)

and E[T(0, )*] = 0.
Let @(z; k, j) be the Laplace transform of W(k, j),

ie.,
(z; k, j) = B¢, (3.11)

Paralleling the recursions for the mean and vatiance,
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we obtain a recursion for the Laplace transform,
namely,

jurt (8= Py + 8 )

jat (5= ug+ 8+ 2z

_ (p(s —PDualz; k—1,7+1)
jue (8 = flpa + 3

w(z; k, j) = (

1-phjmd(z; k-1,j-1)
Jra+ (8 = g + 8

(Pj.“vl + A =p)s =+ 5k>
+ . ;
jig + (s = fluy + 8

Xz k-1, ;)) (3.12)

and

jrat+ (58 = e
jmt (s —Puy+z’

w(z; 0, j} = (3.13)
We thus can calculate values of the complementary
cdf P(W(k, j) > t) by numerically inverting its Laplace
transform

ek, f) = J T e WK, ) > Dt
0

C1-a(zk, )

: (3.14)

By calculating E[W(k, )], SD(W(k, j)) and
P(W(k, j) > t) for various j, we can determine the
impact of the state information. We can describe the
extreme cases directly when there is no queue: Note that
W(O, s)(W(0, 0)) has an exponential distribution with
mean (sp,) " ((si,)"). When s > k and 6, is small,
W(k, s)(W(k, 0)) is approximately distributed as the
sum of k + 1 iid. exponential variables each with
mean (su,) "((si,) ). Hence, we see that the infor-
mation can greatly improve predictions when ;" and
u, " differ significantly.

REmaRrks. Several variations and:-extensions can be
treated by essentially the same reasoning. First, there
could be more than two- classes. Second, customer
class identity could be determined upon arrival
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instead of upon starting service. A similar recursion
holds for this case, letting the state indicate the cus-
tomer class of each successive customer in queue
(paying attention to the order in queue) as well as the
customers in service. Finally, the two classes consid-
ered could be determined by the servers instead of the
customers; i.e., the customers could be homogeneous
but there could be two classes of sexrvers, one working
at rate p, and the other at rate u,. Then the number of
class-1 customers in service would not change after
each successive service completion, and the analysis
closely parallels §2.

4. Bounds When Classifying

Individual Customers

We now suppose that additional classification is pos-
sible, so that there are more than two customer classes.
Unlike §3, we assume that customers are classified
upon arrival. We still assume that all remaining ser-
vice times are mutually independent with exponential
distributions, but now the means may all be different.
We assume that the vector of s + k individual service
rates ((y, My, ..., Moy 18 known, with the s custom-
ers in service listed first followed in order by the
customers in queue. We also suppose that each cus-
tomer in queue has his own reneging rate. We assume
that the vector of reneging rates (a,, ..., o) is known
.as well.

In this section, we provide stochastic upper and
lower bounds on the waiting-time distribution, i.e., for
the waiting-time cdf, which yield upper and lower
bounds on the mean. When the two bounds are close,
we are assured that we have a good approximation for
the mean.

To develop the bounds, note that each successive
departure is either a service completion by a customer
in service or an abandonment (reneging) by a cus-
tomer in queue. Given that we keep track of previous
departure triggering events, the interdeparture-time
distribution is exponential with a known rate (the sum
of the relevant rates at that time). An upper (lower)
bound is obtained by assuming that the remaining
service and reneging rates are as small (large) as
possible. Thus the bounding waiting-time cdf’s are the
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distributions of sums of k + 1 independent exponen-
tial random variables, but with different means.

Let {tt,1, ..., M,,} denote the bounding set of s
service rates for the nth interdeparture time, with
{Migrvovs fygd = {ly, oo, ). Then the (n + 1)st
upper (lower) bound set {1, ..., #,.1,} contains
the s smallest (largest) elements from the set {u,, ...,
Mern)r 1 =n =k Let {a,,, ..., 0, denote the
bounding set of k + 1 — n reneging rates for the nth
interdeparture time, with {a;,, ..., a} = {ay, ...,
a,}. Then the nth upper (lower) bound set {«,,,, ...,
O, 41} contains the k + 1 — n smallest (largest)
elements from the set {a,, ..., @,}. Then the bound-
ing waiting times W, have means

-1

k+1 | k+1-n $
EWy= 2 | 2 ot 2 p 4.1)
1

n=1

i=1 i=

Since the means of each exponential variable are
bounded, we have stochastic bounds on the entire
waiting-time cdf, i.e.,

PW.>t)=zP(W>t) = P(W;>1t) forallt, (4.2)

where W; and W, are the upper and lower bounds.
It may also be desirable to have an approximation in
between the bounds. A simple one for the mean is the
average of the two bounds. We obtain an associated
intermediate approximation for the entire waiting-
time distribution by again using the sum of k + 1
independent exponentials, but with the means being
the average of the upper and lower bound means.
Alternatively, we could use the average of the rates.

ExamprLE 4.1. To illustrate, let s = 100, k = 20, and
suppose that there is no reneging. Suppose that at the
prediction time there are 100 customers in service,
where 30 have rate u, = 0.04, 40 have rate u, = 0.06,
and 30 have rate p, = 0.08. Let the 20 customers in
queue all have rate u, = 0.06. The successive depar-
ture rates for the upper bound are then 6.00, 5.98, . . .,
5.60, while the successive departure rates for the lower
bound are 6.00, 6.02, ..., 6.40. The upper and lower
bounding mean waiting times are 3.62 and 3.39. Their
average, 3.51, differs from the bounds by only about
3%. The successive rates for the intermediate approx-
imation with average rates are 6.00, ..., 6.00, so that
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this intermediate approximating mean is 3.50. The
standard deviations for the lower bound, intermediate
approximation and upper bound are 0.74, 0.76, and
0.79. Hence, the error in the bounds for the mean is
relatively small compared to the overall uncertainty.
The lower bound, intermediate approximation and
upper bound for the 90th percentile of the waiting-
time cdf are 4.34, 447, and 4.63. In this setting, the
customer might be told that his estimated waiting
time is 3.5, but there is some uncertainty; there is only
a 10% chance it will exceed 4.5. Note that customer
means (and standard deviations) of the individual
service times are 25, 16.7, or 12.5, so that the prediction
is relatively reliable in relation to the service-time
mean and standard deviation.

ExampPLE 4.2. We now add reneging to the previ-
ous example. Suppose that 10 of the 20 customers in
queue have reneging rates 0.01, while 10 others have
reneging rates 0.02. The 21 successive lower total
reneging rates for the upper bound are 0.30, 0.28,
0.26,...,0.12,0.10, 0.09, ..., 0.01, 0.00, while the 21
successive higher total reneging rates for the lower
bound are 0.30, 0.29,..., 0.21, 0.20, 0.18,..., 0.02,
0.00. The 21 successive lower total interdeparture-time
rates for the uppe:r bound are 6.30, 6.26, 6.22, ...,5.94,
5.90, 5.87,..., 560, while the 21 successive higher
total interdeparture-time rates for the lower bound are
6.30, 6.31, 6.32, ..., 640, 640, ..., 6.40. Finally, the
upper and lower bounds for the means are 3.55 and
3.14. The average 3.35 differs from the bounds only by
about 6%. The average with the reneging rates consid-
ered here is about 5% less than the average in Example
4.1. The standard deviations for these two bounds are
0.775 and 0.719.

5. The Departure-Renewal-Process

Approximation
We now start to develop waiting-time. predictions
without making exponential-distribution assumptions
for the service times. We do not consider reneging
here. Note that the formulas in §§2—-4 all yield approx-
imations for general service-time distributions if we
just act as if the service-time distributions were expo-
nential with the given means. Such approximations
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are clearly reasonable if the service-time distributions
are not very different from exponential, and may be
useful more generally.

As indicated in the introduction, a natural candidate
approximation for the mean waiting time of an arrival
finding s + k customers in an A/GI/s/r system with
ii.d. service times having a general distribution with
mean p is

k+1
Su

EW=

; (5.1)

just as in (2.1). We regard (5.1} as the standard
approximation when the number in system is known
and used in the prediction. It is no doubt frequently
used in practice. We will want to develop better
approximations than (5.1) exploiting additional infor-
mation when the service-time distribution is not ex-
ponential.

ExampLE 5.1. To show how approximation (5.1)
can perform suppose that the service times are
deterministic, all equal to p™". Moreover, first sup-
pose that k + 1 = 5. The remaining service times of
the s customers in service are necessarily less than
wt. If these s customers all entered service together,
then the actual waiting time would be W = (k
+ 1)r, where 7 is the common remaining service
time, 0 < r'< p~'. Thus W can vary from 0 to (K
+ 1)/, with both extremes differing substantially
from (5.1). On the other hand, when the s remaining
service times are j/su, 1 = j = s, formula (5.1) is
exact. A more realistic case is the s service times
being ii.d. with the stationary-excess cdf G, in (6.2),
which in this case is uniform on [0, ».7']. Then W is
distributed as the (k + 1)st smallest among the s
uniform random variables, which has mean (k
+ 1)/(s + 1}pm, which is very close to (5.1) when s
is not too'small. Similar observations can be made
for k = s. f k = ns, then W = nu™
+ ¥, Where 7., is the minimum of the initial
remaining service times. The error in (5.1) is then
17 — (sm)7'1. In summary, with deterministic
service times, the mean wait depends on the way
previous customers entered service, which in turn
depends upon the arrival process. The error and the
uncertainty are removed if we know the remaining
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service times, which in this case would occur if we
know the elapsed service times.

ExampLE 5.2, Example 3.1 also provides a basis for
evaluating approximation (5.1). There the mean ser-
vice time is 0™ = pp;'. Approximation (5.1) yields
EW =~ (1 + k)p/sp™", whereas the exact formula in
(31) is EW = (1 + kp)/su™". If kp > 1, the
approximation is close, but not otherwise.

Now we want to extend approximation (5.1) to an
approximation for the full waiting-time cdf and, espe-
cially, the standard deviation. To do so, we think of
the case in which all servers are busy for an extended
period of time. During this period, the departure
process can be identified with the superposition of s
i.i.d. renewal processes, where the interrenewal times
are the service times. In that situation, the number
D(t) of departures in the interval [0, ] has mean sut
+ 0(1) as t — ® and has variance suc’t + o(1) as t —
®, where ¢’ is the squared coefficient of variation
(SCV, variance divided by the square of the mean) of
a generic service time S; e.g., see p. 372 of Feller (1971).
This asymptotic behavior is matched by a single re-
newal process with interrenewal-time 5/s. Hence, we
propose approximating the waiting time by the sum of
k + 1 iid. random variables distributed as S/s. This
coincides with the waiting time in a single-server
queue with service times S/s if we think of the
customer in service just starting service at time 0. (For
a single-server queue, we could improve upon (5.1) by
using the mean conditional remaining service time for
the customer in service.) This gives approximation
(5.1) for the mean. The associated approximating
Laplace transform of W (assuming k + s customers
are ahead of the current customer) is

Ee_zwz (E[e —zS/s])k+1' (5.2)

Similarly, we approximate the standard deviation by

S5D(S)
SD(W) = Jk+1——.

(5.3)
Note that (5.1)~(5.3) are all correct for an exponential
service-time distribution. The waiting time should be
asymptotically normally distributed with mean in
(5.1) and standard deviation in (5.3) as k — ©, by
virtue of the central limit theorem. Hence, we propose
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the normal distribution with mean in (5.1) and stan-
dard deviation in (5.3) as our approximating waiting-
time cdf based only on the number of customers ahead
of the customer of interest. We anticipate that this
approximation will perform better for smaller s and
larger k. As noted in 82, if k is large, then the standard
deviation tends to be small compared to the mean, so
that the mean in (5.1) becomes a very accurate predic-
tion.

If the service-time distribution is approximately
exponential, then (5.1)~(5.3) should be good approxi-
mations, but in general, if k is not large, then they can
be crude approximations. To illustrate, in Example 3.1
the approximate variance by (5.3) is (k + 1)(2p
— p%)/(sp,)?, whereas the exact formula is (1 + 2kp
— kp?)/ (sma)™

Formulas (5.1) and (5.3) are important for judging
whether or not additional information should be ben-
eficial. Assuming that the mean in (5.1) is relatively
accurate, if the estimated standard deviation SD(W) is
small compared to the mean, ie., if SD(S)/E(S)
V(k+1) is small, then there should be relatively little
need to condition on extra information. We can see the
advantage of the two-class algorithm in §3 by noting
that the approximation for SD(W) is relatively large
for H, service-time distributions with component ex-
ponentials having very different means.

6. Exploiting Remaining Service-
Time CDFs

The delay predictions in §§2-4 depend strongly upon
the exponential assumptions. For other service-time
cdf’s, the remaining-service-time cdf depends on the
elapsed service time. Thus, for non-exponential
service-time cdf’s, we can more accurately predict the
delay of a new arrival if we exploit the elapsed service
times (ages) of the customers in service. This step
becomes even more effective if we can also classify
customers into different types, where different types
have very different service-time distributions. (Exam-
ples were mentioned at the beginning of §3.) This
classification may be done before or after service has
begun.

Henceforth, assume that the classification has been
done before service begins, so that customer i before
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starting service has service-time cdf G, (We label the
customers starting with those in service.) The actual
service-time cdf G; should be easily estimated directly
from the observed service times, assuming that there
is no reneging after service has begun and that service
times in progress are not altered by system state. In
practice, this last possibility should be checked. It can
be checked by estimating service-time distributions
conditional on the number in system when service
starts. With significant reneging, the estimation proce-
dures should account for censoring.

Suppose that the service provider keeps track of the
starting time for each service in process, so that at the
time of a new arrival, the elapsed service times (ages)
of the service times of all customers in service are
known. Let x; be the elapsed service time of customer
i in service. Let G,(t| x,) be the cdf of the conditional
remaining service time, conditional on an elapsed
service time x,. Clearly,

Gt + x;) — Gy(x)
1 - Gi(x) ’

Gitlx) =

t=0,1<i<s. (6.1)

If additional prediction is done after service has
started (using service time), then G(t! x;) could be
estimated directly instead of by (6.1). It is important to
recognize that new information might well be gained
once service has started. First, the customer’s service
time might depend significantly upon the service
agent assigned to the task. There might be different
service-time distributions for different combinations
of customer type and service-agent type. Moreover,
additional classification may be possible once service
has begun. An initial step in providing service may
involve customer classification. Service agents could
even be generating updated predictions of remaining
service times for the customers they are serving while
service is in progress.

The importance of conditioning upon the ages
clearly increases as the service-time distribution dif-
fers more from an exponential distribution. The dif-
ference is clearly dramatic when the original service
time is deterministic or, more generally, has low
variability. The difference is also-dramatic when the
service-time distribution is a long-tail distribution
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such as the Pareto distribution. Indeed, suppose that
Y(a, b) has the Pareto cdf G(#) = 1 — (1 + bt)™", ¢
= 0. Let Y,(a, b) have the conditional cdf G(t x).
Then, by Theorem 8 of Duffield and Whitt (1997),
Y (a, b) is distributed the same as (1 + bx)Y(s, b).
Hence, the mean residual life is approximately pro-
portional to the age. In this setting the age can greatly
help in predicting the residual life.

It might happen that we have nonexponential
service-time cdf’s, but we cannot observe the elapsed
service times of the customers in service, If the service
times are iid. with cdf G having mean m, then we
may elect to approximate the $ remaining-service-
times at any time by i.i.d. random variables with the
stationary-excess c¢df G,, defined by

Gt) =m’ f G(u)du,

0

t=0, (6.2)

where G°(#) = 1 = G(t), which has mean m,
= m,/2m,. If G is exponential, then m, = 2m} and
m,, = m,, but more generally m, need not equal m,.
This approximation is exact for the M/GI/» model,
e.g., see Duffield and Whitt (1997), and tends to be
correct if the servers have all been busy for a long
time, e.g., see Coffman Jr. et al. (1996).

We also want to account for customer-dependent
reneging. Let H,(f) be the probability that customer ¢
(in queue) will abandon if he has not received service
by time ¢. The problem now is to convert the estimated
remaining-service-time cdf’'s—G (| x,) for customers
in service and G(t) for customers in queue—and the
reneging cdf's H,(f) into an estimated waiting-time
distribution (before beginning service) for a new ar-
rival (or any other customer in queue). First, note that
if we have this information for each customer ahead of
the customer of interest, then the waiting time does
not depend on the arrival process or any blocking and
balking that might occur, just as in §§2 and 3. Second,
note that the prediction is relatively easy when there is
no reneging in the case s = 1; then the waiting time is
just the sum of the remaining independent service
times, ‘and’ for k ot too small we can use a normal
approximation based on the sums of the means
and variances. Given the Laplace transforms of the
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component distributions, we can express the Laplace
transform of the waiting time as the product of the
remaining-service-time Laplace transforms, just as in
(2.12), and then calculate the waiting-time cdf by
numerical transform inversion. Here we are primarily
concerned with s > 1 and are thinking of large s, e.g.,
s = 100, as in a telephone call center.

Our problem then is to predict the waiting time of
customer k + 1 in queue, under the assumption that
the customer of interest does not renege. To develop
our prediction, we use the fact that the waiting time
can be expressed exactly in terms of the departure
process, i.e., the number D(t) of departures in the
interval [0, t], t = 0, where 0 is the initial time when
the prediction is to be made and we include reneging
in the departures. In particular, the actual waiting time
of a customer with s + k customers ahead of him is

W=min{t=0:D(t) =k + 1}. (6.3)

We approximate the mean EW by approximating D(t)
in (6.3) by its mean ED(¢) for all t = 0; i.e., we estimate
the mean waiting time by

EW=min{t>0:ED(t) =k+1}.  (64)

Intuitively, we can justify approximation (6.4) for
large waiting times by the observation that if ¢ is
suitably large, then D(f) should be relatively close to
its mean ED(t), by an appropriate law of large num-
bers. In turn, if k is suitably large, then ¢ in (6.4) should
be suitably large. Formally, such large-f limits for the
departure process can be related to large-t limits for
the arrival process; e.g., see §2 of Whitt (1984) and §5
of Berger and Whitt (1992).

It now remains to develop an approximation for the
mean ED(t). For this purpose, let D (t) be the number
of the original s customers in service that will have
departed f time units later. Then, given the s ages
Xy, - .-, X, its expected value is (exactly)

EDJ(t) = D G{tlx), t=0.

i=1

(6.5)

We then let ¢, denote the estimated time when the jth
customer in queue (originally) can enter service. We
define t; recursively by
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ty=min{t = 0 : ED,(t) = 1} (6.6)
and, forj = 2,
s+j—1
t,smin[tzo tEDJ(H) + 2 [Hit)
I=s+1
+ (1 - Ht))G(t - tl)]} . (67)

The summands inside (6.7) represent the probability
that customer ! reneges before time £, H (t,), plus the
probability that the customer does not renege by time
t, but then does complete service by time ¢, assuming
these events to be independent. Given that the cus-
tomer of interest sees s + k customers ahead of him,
our approximation for the mean wait is

EW =~ t.,. (6.8)

Since the functions of time in (6.6) and (6.7) are
monotone, we can use bisection search to quickly find
the values ¢,.

We now give alternative approximations for EW
based on (6.4) and bounds for D(t). We obtain a lower
bound for D(t) and thus ED(t) by assuming that the
customers in queue never renege or start service. We
obtain an upper bound by assuming that they start
service immediately at time 0 and are simultaneously
subject to reneging. Thus,

ED,(t) = ED(t) < EDJ(t) + >, [Gi(t) + H{(t)] (6.9)

i=s+1

for ED (t) in (6.5). Using these bounds in (6.4) yields
more elementary approximations for EW that bound
approximation (6.8) above and below. They tend to be
reasonable rough approximations when k is substan-
tially smaller than s.

ExamriLE 6.1. Since we have convenient exact for-
mulas for the A/M/s/r model without reneging in §2
with i1.d. exponential service times having mean p”",
we clearly do not need an approximation for that case,
but it is useful to consider it in order to evaluate the
performance of the approximation. Then all remaining
service times are exponential with mean p™. By
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induction, it follows from (6.7) that t; = —ju log(1
— 571, so that

k+1)
sztk+1=—(

k+1 1_‘_1
s 25/’

which in general is an overestimate of the true mean in
(2.1), but is very accurate when s is not too small.
Using the lower bound ED (t) in (6.9) with H,(t) = 0,
we obtain the upper-bound for (6.8)

(k : 1))

log(1 —s™")

(6.10)

1
EW=—-—lo (1—
W &

k+1( k+1)
s 1+ .
LS 2s

(6.11)

Using the upper bound in (6.9), we obtain the lower
bound for (6.8)

1 ( (k+1))
EW=——logl1-
i

s+k

k+1 <1+ k+1 )
Tuls+k) 2(s + k)

Ck+1) (-1 KK+
i ( 'z(s+k)"(s+k)2>' (6.12)

Whenk <s, (6.10), (6.11), and (6.12) are very close. For
instance, if s = 400, k = 80 and p! = 5 minutes as in
Example 2.1, then the exact conditional mean wait EW
is 60.9 seconds, while the three approximations in
(6.12), (6.10), and (6.11) are 55.5, 60.8, and 67.8 seconds,
respectively. ‘

We now estimate the full distribution of W. What
we have just done is equivalent to estimating the mean
ED(t) by

s+k

ED(t) = 2 Gilt1xy) + E F;‘(f)z

i=1 j=s5+1

(6.13)

where £, is in (6.7) and

with G,(f) = 0 and F;(¢) = 0 for t < 0. Motivated by
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(6.13), we suggest approximating the distribution of
D(t) by the distribution of the sum of s + k indepen-
dent random variables with cdf’s G,(f1 x,), 1 =i =,
and Fi(t),s + 1 = j = s + k. Thus, we estimate the
variance of D(f) by

Var D(t) = >, G,(t | x)(1 — Gi(t1x))

i=1

s+k

+ 2 F(BH(1 - F(1)).

j=s+1

(6.15)

We anticipate that (6.15) will underestimate the true
variance of D(t) because the customers in queue are
treated as if they enter service at the fixed times ¢, We
apply the central limit theorem for independent non-
identically distributed random variables, p. 262 of
Feller (1971), to justify regarding D(t) as approxi-
mately normally distributed with mean in (6.13) and
variance in (6.15). Supporting theoretical results ap-
pear in Duffield and Whitt (1997).

Given the normal approximation for D(#), (6.13)
and (6.15), we can estimate the full waiting-time
distribution (approximately). Let N(0, 1) denote a
standard (mean 0, variance 1) normal random variable
and let ® be its cdf. By (6.3),

PW>t)=P(D{t) <k+1)

_ (D(t) — ED(#)

k+1-ED()
SD(D(t)) >

SD(D(#))
~®([k+1 - ED(1)]/SD(D(t))).  (6.16)

To estimate the (1 — a)th percentile of the cdf of W,
ie, to find w, such that P(W > w, ) ~ a, let x, be
such that ®(x,) = a; i.e, x, = ® '(a). Then let

w,=min{t = 0: ED(t) + xSD(D(#)) = k + 1}. (6.17)

Combining (6.16). and (6.17), we see that w, is the
approximate (1 — a)-percentile of the distribution of
W, ie.,

PW=w,)~a. (6.18)

From (6.16) or (6.18), we can obtain the estimated
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complementary cdf P(W > w) and then compute any
desired summary characteristic. We also suggest us-
ing the estimated median, either directly or as an
estimate of the mean, which leads to (6.4) with ED(#)
estimated in (6.13), which is equivalent to (6.8). A
conservative point estimate of the waiting time might
be the estimated 90th percentile.

Remark. Note that the approximations in (6.9)
extend to the variance Var(D(t)) in (6.15), yielding
alternative approximations for the full cdf of W. The
first approximation for Var(D(#)) is the first term in
(6.15), while the second approximation has t; = 0 for
all j in the second term of (6.15).

ExampLE 6.2. Suppose that we consider the limit-
ing two-class case in Example 3.1 in which class 2 has
0 service times. Suppose also that we learn the identity
of all customers upon arrival, including the ones in
queue. Then we can ignore class 2 customers in queue,
so that we are faced with the A/M/s/r problem in
Example 6.1. Suppose that there is no reneging. As in
Example 6.1, when we apply (6.7), we get ¢
= —ju;'log(l — s7'). Then, by (6.13) and (6.15), when
there are s + k class-1 customers in the system, the
mean and variance of D(t) are approximately

. et 1)
ED(#)=s(1l—e ™) +k—e ! -1 (6.19)
and
Var D) ~ ¢ i s +
ar D(f) =~ e s 1
) a*@® - 1)
4 2‘”!(5 + 7—:1—> , (6.20)
where u;' is the mean class-1 service time and 4

= s/(s — 1). Suppose that the number of class-1
customers in the system is initially s + k with s = 100,
k = 80 and u, = 1. At time ¢ = 0.9, from (6.19) and
(6.20) we get the approximations ED(0.9) ~ 89.2 and
SD{D(0.9)) ~ 6.45. However, when all servers are
busy, D(#) actually has a Poisson distribution with
mean and variance su,t = 100(1)(0.9) = 90. Thus the
approximation for the mean is very accurate, but the
approximate standard deviation underestimates the
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true value V90 ~ 9.5. By (6.16), we obtain the approx-
imation

P(W > 0.9) ~ ®((81 — 89.2)/6.45)

= ®(-1.27) =~ 0.10. (6.21)

By the normal approximation using the exact mean
and variance in (2.1),

P(W>0.9)~®(~1.0) = 0.16.  (6.22)

We regard (6.21) as a reasonable rough approximation
for (6.22). The approximations look better if we focus
on percentiles. The actual 50th and 90th percentiles are
0.81 and 0.92, while the approximations are 0.81 and
0.89. In the next section we will see that the approxi-
mation in this section tends to be substantially more
accurate when the remaining service times have less
variability than the exponential distribution consid-
ered here.

7. Known Remaining Service Times
Without Reneging

Suppose that the remaining service times of all cus-
tomers in the system are known at each instant, and
that there is no reneging, so that there is no uncer-
tainty about the remaining service times when the
prediction is to be made. This case includes many
subcases. First, the original service times may have
been deterministic, and may or may not have had a
commeon value, In either case, the remaining service
times of the customers in service will typically not
have a common value, and we need to exploit the
elapsed service times to know the remaining service
times. Second, the original service times may have
been random, e.g., as in §§2-4, but the predictor may
learn these service requirements after the customers
arrive.

It is significant that the approximation (6.8) in §6 is
exact when the remaining service times are known and
thus is no reneging. Then the cdf's G,(tlx,) and
G,(t) are all step functions, ie., G(tlx;) = 0 for ¢
< S;and G(tlx) = 1fort = S, where S, is the
remaining service time. Hence D(t) = ED(t), so that
the waiting time W in (6.3) is deterministic and
coincides with the approximation for EW in (6.8).
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Indeed, with deterministic remaining service times,
the approximation in §6 can be seen to coincide with a
familiar recursion for the waiting time or departure
time.

The desired recursion is a variant of the classical
recursion for the successive waiting times in a general
infinite-capacity s-server FCES queue; e.g., p. 81 of
Baccelli and Bremaud (1994). In our setting we have
no interarrival times to consider. Let V,, = (V,,, ...,
V.. be an s-dimensional workload vector for each 7.
Let S, be the nth remaining service time, let e be the
s-dimensional unit vectore =.(1,0, ...,0), and let R
be the operator on vectors which rearranges them in
increasing order. Then let V, = (0, ..., 0),

Varr = R(V,+ S,e), n=1, (7.1)
and the desired waiting time is
Ws+k = Vs+k,l- (7'2)

This is an important theoretical reference point for
the approximation procedure proposed in §6. Since
the approximation is exact for known deterministic
service times, it is evident that the approximation in §6
should perform well when the remaining service
times have low variability.

ExampLE 7.1. We now want to show that it can be
very important to focus on the ages and remaining-
service-time cdf’s. To dramatically make this poirit, we
consider a very idealized model, in particular, an
A/D /100 model with constant service times of length
100 and batch arrivals of size 120 every 400 time units.
Thus, the first 100 customers in each batch go into
service immediately, while the remaining 20 custom-
ers wait exactly 100, after which the servers are idle for
an interval of length 200, and the process repeats. In
contrast, if we ignore the remaining service times and
apply the approximation in §5, we would estimate the
waiting time to be k for customer number 100 + k'in
the batch (assuming he counts the arrivals ahead of
him in the same batch). Since the method of §6
coincides with the deterministic recursion, it yields the
exact waiting times for this example, avoiding this big
error. Similar behavior will hold for more general
low-variability service times and bursty arrival pro-
cesses.
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We may even elect to use the deterministic recur-
sion as an approximation. When the remaining service
times have low variability, we can act as if each
remaining service time is in fact deterministic with a
value equal to its mean. Then it suffices to apply the
recursion in (7.1)—~(7.2), and we do not need to deter-
mine the cdf’s of the remaining service times.

ExampLE 7.2, However, the deterministic recursion
using mean remaining service times can be a poor
approximation when the remaining service times have
substantial variability. To illustrate the problem, con-
sider the A/M/s/r model with iid. exponential
service times having mean p~'. If we use the deter-
ministic recursion with the means, then all service
times are treated as deterministic with mean u™’
(clearly not a good approximation). The deterministic
recursion thus predicts that the first s departures occur
together at time p™". If k < s, then the deterministic
recursion leads us to approximate the mean wait by
EW ~ u™', when the actual value in (2.1) is (k
+ 1)/su. If k < s, then there is a big error in the
prediction.

A more refined approximation when the remaining
service times have greater variability is to perform
simulations in real time to estimate the waiting time
cdf. To do so, it suffices to' generate independent
random variates with the remaining-service-time cdf’s
and apply the deterministic recursion in (7.1)~(7.2).
Since the simulation reduces to generating random
variates and applying the recursion (7.1) and (7.2), the
simulation can be performed very quickly for real-
time estimates. Multiple independent replications pro-
vide an estimate of the waiting-time cdf. From a
practical point of view, even a modest number of
replications (e.g., 20 or fewer) may provide a satisfac-
tory estimate of the variability of the waiting time as
well as the mean. As discussed in §§2 and 6, given that
we exploit system state information, we anticipate that
the waiting time should be approximately normally
distributed. Thus, - with: 'simulation, we should be
approximately in the setting of estimating the mean
and variance of a normal distribution from an i.i.d.
sample. In that setting, the sample variance has a
chi-square distribution with # — 1 degrees of free-
dom. For n not too small, the chi-squared distribution
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is approximately normal. Moreover, the sample
variance has mean o¢° and standard deviation
a*(V2/(n — 1)). For n = 20, the standard deviation
is 0.32 ™ so that we are likely to know ¢’ to within a
factor of 2 from a sample of size 20.

8. Special Methods for Customers
Near the Front of the Queue

In some applications we may be especially interested
in the waiting times of the first few customers in
queue. Let W, be the waiting time of the kth customer
in line. Then the complementary cdf of the waiting
time of the first customer in queue is exactly

8

P(W;>t) = H (1—-Gitlxy))

i=1

8.1)

which is easily calculated via

log P(W, > £) = X log(1 — G(t1x)). (8:2)

i=1

We can approximate W, by an exponential distribu-
tion

PW, >t ~e ™, t=0, (8.3)
where e, is obtained from (8.1) via
log P(W, >t

o = M (8'4)

t

for some appropriate f,. To be specific, we might
choose t, to be a rough estimate of EW,, ie.,, EW,
~ 1/2Z;, (1/m,) where m, is the mean of G| x,).
Approximation (8.3) and the approximation for EW,
are exact when the cdf’s G,(¢1 x,) are all exponential;
then (8.4) is independent of t,. For large s, approxi-
mation (8.3) is supported by extreme-value limits in
the i.i.d. case; see Leadbetter et al. (1983) and Resnick
(1987). As a supporting regularity condition, we as-
sume that G(t) and thus G,(t!x;) has a positive
density on the entire half line.

Now we consider how to extend the approximation
to other customers in queue when s is large compared
to k. We propose acting as if the initial departure
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process is a Poisson process with rate o, for o in (8.4),
so that W, has approximately a gamma distribution
with mean and variance

k k
EW,=— and Var Wk=?.
1

43]

(8.5)

Theoretical support for approximating the departure
process by a Poisson process appears in Whitt (1984).

What we have just done in this section is equivalent
to approximating the model by the A/M/s/r model
of §2 by defining an appropriate service rate u, e.g.,
via (8.4). Alternatively, we could define uwby p = s
2., (1/m;), where m;, is the mean remaining service
time of customer i. Having determined p, we can also
account for reneging just as in §2. If reneging is
significant, then this method may be superior to the
methods in §§6 and 7, which do not account for
reneging.

9. Simulation Experiments

We validated the approximation methods by indi-
cating scenarios for which they are exact. Since the
approximations in §84, 5, and 8 are exact for the
A/M/s/r model, but not for deterministic remain-
ing service times, while the approximations in §§6
and 7 are exact for deterministic service times, but
not for the A/M/s/r model, it is evident that there
is not one universally best method. We thus propose
using computer simulation to evaluate the alterna-
tive methods in any desired application context.
However, the prediction schemes are somewhat
difficult to evaluate because the predictions depend
on information conditions that vary. In this section
we describe two ways to validate the predictions
using simulation experiments.

It is relatively straightforward to evaluate point
estimates, i.e., predictions of the conditional mean.
We can simulate the queue and generate a predicted
waiting time W, for the nth arrival for eachn, 1 = n
= N, using whatever information is to be used upon
arrival. We can then subsequently observe the ac-
tual waiting time W, of each of these customers and
compare them. For example, we can look at the
standard error (square root of the mean squared
error)
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SDE =

n=1

N 1/2
NT*Y (W, - Wn)2:| : 0.1

We can conclude that one scheme is better than
another if it has smaller SDE. A further frame of
reference is the steady-state mean EW... If the system
is simulated in steady state (e.g., by deleting an initial
segment of the run), then the sde of EW,, is just the
sample standard deviation, which converges to the
steady-state standard deviation SD(W,) as N — .
We can estimate the mean EW.. and standard devia-
tion SD(W,,) by the sample mean and standard devi-
ation, i.e.,

N

Wy=N"1> W, and

n=1

SN =

N 1/2
N7 Y W, - WN)Z:’ : (9.2)

n=1

We want the sample mean N™' I W, of the
estimates to be close to W, and the sde in (9.1) to be
substantially smaller than s.

It is not clear, however, that (9.1) will always be the
desired measure of error or loss. For example, we may be
primarily concerned about prediction only when W, is
large. Moreover, we may be more concerned about
relative error than absolute error when W, is large.

A second validation approach starts from some
specified initial system state with some number of
customers in the system and the remaining-service-
time cdf of each of these customers. Such initial system
states can be generated by simulation. Given any
initial system state, we estimate the conditional
waiting-time cdf or summary statistics by any of the
proposed prediction methods and compare the pre-
dictions to the actual values. We obtain an estimate of
the actual waiting-time cdf or any desired summary
statistic by generating random remaining service
times according to their conditional cdf's and then
applying the deterministic recursion in §6. If F(f)
= P(W < t) is the true cdf value, the estimated value
obtained as the average from # independent replica-
tions has mean F(t) and variance F(t){1 — F(t))/n.
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10. Conclusions

We have shown that it is often possible to reliably
predict the waiting-time of a new arrival or a customer
already in a multiserver FCFS queue, given the num-
ber of customers ahead of the designated customer
and other state information. If we know all the re-
maining-service-time cdf’s, then the waiting-time cdf
does not depend on the arrival process or balking and
blocking that might occur at arrival epochs. We gave
algorithms to compute the exact waiting-time cdf’s for
the cases of 1id. exponential service times with
state-dependent reneging (§2), two classes of custom-
ers with two different exponential service-time distri-
butions (§3) and fully known remaining service times
(§7). We developed algorithms for approximately es-
timating the waiting-time cdf given remaining-
service-time cdf’s by exploiting approximations for
the departure process D(t) (§§6 and 8) and simula-
tions based on the deterministic recursion (§7). The
approximations were supported by indicating settings
in which they are exact. The approximation in §6 is
exact for deterministic remaining service times, while
the approximations in §§4, 5, and 8 are exact for 1.i.d.
exponential service times. We also investigated how
the approximations perform in certain cases; e.g., we
applied the method in §6 to the A/M/s/r model in
§2. We conclude that there is not one universally best
approximation. The approximation in §6 is our lead-
ing candidate, but it requires more information than
the others (the service-time cdf's and ages). We
showed how to evaluate the approximations in spe-
cific situations by performing computer simulations
(89). However, further study is needed to better un-
derstand the performance of the approximations.

We focused on the waiting time, i.e., the time to start
service, but interest might instead be focused on the
response time, i.e., the time to complete service. As-
suming that the service time of each customer in
queue is independent of his waiting time to begin
service, the distribution of the time to complete service
is naturally estimated by the convolution of the two
estimated component distributions, which is a
straightforward extension. In particular, the mean and
variance of the conditional response time are just the
sums of the means and variances. However, if there is
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a large number of servers and considerable uncer-
tainty about service times, then the variance of a
customer’s service time may be much larger than the
variance of the customer’s waiting time. (For example,
in the setting of (2.1), the standard deviation of a
waiting time is Vk + 1/s times w”!, the standard
deviation of a service time.) Thus, uncertainty about a
customet’s service time may make it substantially
more difficult to reliably predict response times than
waiting times.’

! The author thanks Robert L. Hails, Jr., and the referees for helping
him improve the paper.
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