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Preservation of Rates
of Convergence under Mappings

Ward Whitt *

For appropriate metrics characterizing various modes of stochastic convergence, it is shown that
rates of convergence are preserved by a large class of functions. For example, the extensions of a Lip-
schitz function on a separable metric space S to the space of all probability measures on S with the
Prohorov metric and to the space of all S-valued random variables with the usual metric associated with
convergence in probability inherit the Lipschitz property. Consequently, just as with the continuous
mapping theorem associated with ordinary convergence, new rate of convergence theorems can
sometimes be obtained from old ones by applying appropriate mappings.

1. Introduction and Summary

The purpose of this note is to show that rates of convergence in law and in
probability are preserved under a large class of mappings. Consequently, just as -
with the continuous mapping theorems associated with the various modes of
stochastic convergence, new rate of convergence theorems can often be obtained
from old ones by applying appropriate mappings. Quite naturally, a stronger
property than continuity is needed to preserve rates of convergence. It turns out
that the stronger property is for the function to be w.p.1 Lipschitz or Holder
continuous of order ¢, cf. (2.4). Thus, corresponding to the continuous mapping
theorems associated with various modes of stochastic convergence, we speak of
Lipschitz mapping theorems associated with rates of stochastic convergence.

By their very nature, rates of convergence must be stated in terms of metrics,
and some care must be given to the choice of metrics. In particular, we shall show
that the Lipschitz mapping theorem for convergence in law does not hold for the
Lévy and supremum metrics applied to c.d.f.’s whereas it does hold for the Prohorov
and dual-bounded Lipschitz metrics, cf. Section 2. If final statements in terms of
. the Lévy or supremum metrics are desired, then they can be obtained from the
Prohorov metric. This suggests that it would be desirable to express as many rate
of convergence results as possible in terms of the Prohorov metric. That this is
ooften possible and natural has been amply demonstrated by Dudley [4].

We refer the reader to Dudley [4] for relevant background. The various
metrics are defined and related in Section 2. Lipschitz mapping theorems for
some metrics and counterexamples for other metrics appear in Section 3.
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2. The Metrics

Let S be a SMS (separable metric space) with metric d and Borel o-field &
(generated by the open subsets of S). Let ¥ =77(S, d) be the set of all S-valued
random variables on a fixed underlying probability space. Let Z2=2(S, d) be
the space of all probability measures on (S, #). We shall use lower case Greek
letters for metrics on ¥~ and & in contrast with the lower case Roman letters to be
used for metrics on the underlying spaces, €.g.,d on S and « on ¥

- Let a=a(S, d) denote the usual metric on ¥7(S, d) corresponding to convergence
in probability, that is, for X, Yev] let

a(X, Y)=inf{e=0: P[d(X, Y)=¢]<¢}. 2.1)

We use the separability assumption to have (2.1) well defined, cf. [1], p.225.
Obviously a(Xy, )Sa(X,, Y,) if d(X,, ¥})=d(X,, Y,) w.p.1 in (S, d).

We now turn to the space of probability measures 2(S, d). Recall that R — P
for a sequence or net {B} in £(S, d) in the topology of weak convergence if B(f)—
P(f) as t > oo for all bounded continuous real-valued functions f on S, where
P(f)= [ fdP, cf. p.11 of [1] or p.40 of [7]. For Ae¥ on (8,d), let

N

A*={y:dxeA,d(x,y)<e}.

Then the Prohorov metric p=p(S,d), which induces the topology of weak con-
vergence on &, is defined by ’

y(P, Q)=inf {¢=0: P(F)<e+Q(F®), F closed},

cf. Section 2 of [3]. We also define p on ¥ by interpreting p (X, Y)as p [Z(X), £(Y)]
where #(X) is the probability law (measure) on (S, %) induced by X. Of course,
p is only a pseudometric on ¥~ It is significant that p(X, Y)Sa(X, Y), cf. Theorem 1
of [3]. For example, Theorems 4.1 and 4.2 of [1] are elementary consequences
of this fact. ,

The Lévy metric A on P(R) is the Prohorov metric restricted to closed sets of
the form (— 00, x], cf. [5], p. 33. If we use the metric 1, on R¥, where

(2:2)
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then a natural generalization of the Lévy metric 4 to 2(R¥ ) can be defined by
using the Prohorov metric p on 2(R¥,n) restricted to closed sets of the form
(—00,%x;]x -+ X (=00, x,]. Obviously, A<p, but 1 also induces the weak con-
vergence topology on #(R* 1), cf. p. 18 of [1]. Also note that y(P, Q)=v(Q, P) for
p but not for A.

The sup-metric 6 =0(S, d) on Z(S, d) is defined by
o(P, Q)=sup{|P(4)—Q(4)|, AcS}. )
Obviously, in general ¢ induces a stronger topology than weak convergence

on Z. Other metrics can be obtained by restricting the class of sets over which we
take the supremum. Let u denote the restriction of ¢ on 2(R¥, r,) to sets of the form
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(—00,x;] % -+ X (— 00, x; ]. Obviously, A< u, but it is well known that y also induces
weak convergence on Z(R" at those P with continuous c.d.f’s. We introduce u
because many existing rate of convergence theorems are stated in terms of it.

Following Dudley [2,3,4], we also introduce the dual-bounded Lipschitz
metric B. Recall that a function f: (S, d;) = (S, d,) is Hélder continuous of order t

if || fll;< o0, where || fll,= £ fIl and
I £ gli= sup {d, [ f(x),g(»)]/d;(x, y)'} <. (2.4)

The function f is said to be Lipschitz if it is Holder continuous of order 1. Let
BL(S) denote the Banach space of all bounded real-valued Lipschitz functions f on

(S, d) with norm
WA lse=U 1+ 1 f e (2.5)

where || f 1, =sup {|f(x)|, xeS}, cf. [2]. Then the dual bounded Lipschitz metric
B=p(S, d) is defined on Z(S, d) by

B, Q)=sup{|P(f)—Q(f)|: fe BL(S), | fllp=1}. (2.6)

Dudley has shown that § is also a metric which induces the weak convergence
topology on £(S,d) ([2], Theorems 6 and 8), that <2 p ([3], Corollary 2), and
that § and p define the same uniformity ([3], Remark after Corollary 3).

In conclusion, the inequality relationships for the metrics above, all of which
can be regarded as pseudometrics on ¥, are summarized in the diagram below:

N
NN

p/2

3. Lipschitz Mapping Theorems and Generalizations

We say a family of functions & ={f: S; — S,} is uniformly Hélder continuous
of order t if ,
1%l =sup {l fll., feF} <0, ENEAY

where |] [l is defined in (2.4). (The domain and range of f could also depend on f)
We say that & is uniformly Lipschitz if | & |; <oco. We say that two families of

. functions #={f:S;—S,} and ¥={g: S; > S,} are bi-uniformly Hélder con-

tinuous of order t if

1%, Gli=sup{l £, gll.. feF and ge¥} <o, (3.2)

where I £, gll; is defined in (2.4). We say that the pair (%, %) is bi-uniformly Lipschitz

if | &, 4|l <oo. The special case of greatest interest to us arises when % ={f,}
and 9={f}. Then

I, 4= sup {d; Lfa(x), f(0)1/ds(x, )} B C X))
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can be used to obtain rates of convergence of f,(x,) — f(x) from rates of convergence
of x,, —» x. We shall only state results for | % ||,. Corresponding results also hold for
|%, 4|, by essentially the same arguments. Let x v y=max {x, y}.

Theorem 3.1. If | % |,=c, then
a[f(X), f(Y)]ScalX, Y) va(X,Y)
' Jor all fe %, where a is defined in (2.1).
Proof. Since | #|,=c, d,(x,y)<b implies d,[ f(x), f()]<cb" for all feZ.

Hence,
P{d,[f(X), f(Y)]zce'}=P{d(X, Y)2e}<¢

forall fe# and ez a(X, Y). |

If we are concerned with the rate of convergence in 7~ of a sequence {X,} to
a specified limit X, then the Holder continuity only needs to hold w.p.1. We say
that | ||,=c w.p.1 with respect to X if (3.1) holds with the supremum in (2.4)
being over all y and some set of x which has probability one with respect to X.

Corollary 3.1. If | Z|l,=c w.p.1 with respect to X, then
a[ f(X,), f(X]Sca(X,, X) v a(X,, X).
Similar corollaries exist for the other theorems in this section.

Each function f: §; — S, has extensions f* ¥'(S;) »¥(S,) and f: 9’(8;\)—»9(82),
where f(X)=f(X) and f(P)=Pf~!. Theorem 3.1 1mp11es that # ={f} inherits
the Lipschitz property from % ={f } that is,

Corollary 3.2. If | % ||, =c, then | % ||, =1 v ¢ for the extension % of F to (¥, a).
Lemma 3.1. If | # ||,=c and 6=[¢/c]", then
fHAysf-149
for any AeS and feF.

Proof. If xef ~1(A)®, then d(x, y) < [e/c]1/" for some yef ~1(A4). Since | F|,=c,
d[ f(x), f(3)] <e for this x and y. But this means that xef ~1(49. ||

Theorem 3.2. If | % |,=c, then

p(PfH0f N=cp(BOFVvp(BQ)
for all feF, where p is defined in (2.2).
Proof. For each fe%Z,
o(Pf~1,Qf ~Y)=inf{e=0: Pf~1(F)<s+0f - (F?), F closed)

=inf{e20: P(f~!(F))Se+Q(f 1 (F9), F closed}
<inf{e=0: P(f~Y(F))<e+Q(f(FY), F closed}
<inf{e=0: P(H)<e¢+Q(H%), H closed}
<cp(BQYVvpEQ),

where 6 and the first inequality come from Lemma 3.1. ||
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Corollary 33. If |F|,=c, then |F|,=1vc for the extension % ={f} of
F={f}1t0(Zp)

For the dual-bounded Lipschitz metric §, we only have results for Lipschitz
mappings.

Lemma 3.2. If |F ||, =c, then

lgefllp=(1vec)liglne-
Proof. From (2.5), we have

IgeSNa=lgofli+lgof =gl I fll: + gl
=clghi +lgle=Avolglpe |

Theorem 33. If | % ||, =c, then

B, Qf)=(1ve)B(BQ)
Jor all feZF, where B is defined in (2.6).
Proof. From (2.5), for any fe%,

BPf~1,0f )=sup{IPf~'(g)~Qf (&)l geBL(S,), IglsL=1}
=sup {|P(gof)—Q(g°f)l: geBL(S,), llgllpL=1}
<sup{|{P(g<f)—Q(gf)|: gofeBL(S,), lgofllp=1vc}
<sup{|P(h)—Q(h)}: he BL(S,), |hllpL=1vc}
=(1vc)B(RQ),
with Lemma 3.2 being applied to obtain the first inequality. ||
In the way of positive results, we conclude with the following trivial result for ¢

in (2.3).

Theorem 3.4. For any %, ‘
o(Pf~1,0f)=a(RQ)
for all fe&F.

Unfortunately, the results just obtained for a, p, §, and ¢ do not apply to the
Lévy metric A and the supremum c.d.f. metric u. Dudley’s example on p. 1572 of
[4] for showing that the uniformity of Lévy’s metric is strictly weaker than the
uniformity of the dual-bounded Lipschitz metric provides

Counterexample 3.1. Let B, 0,2 (R) be defined by

R2)=0.2j+1)=1/n, 1=j=n. B4
Let f: R— R be defined by
flx)= sin (mx/2), —O<x<00. (3.5)

Obviously [Ifll;=1, but A(B,Q)=u(E,Q,)=1/n, while B, f~'({0})=1 and
Q.1 —1,1})=1, 0 that (B, f~1,Q, f )ZAB [, Q. ")=1/2 for all n.
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As a consequence, we see that the metrics «, p, f, and ¢ are much better than 4
and u for the purpose of generating additional rate of convergence results. Since
A<p, final statements in terms of A can always be obtained immediately from
statements in terms of p.

Many rates of convergence for convergence in law are actually stated for real-

valued random variables in terms of the c.f.d. metric u. This is the case with
Theorems 1 and 5 of Rosenkrantz [7] for example. Since p is not dominated by
A, p, or o, no general corollary to results for 4, p, or @ can be obtained for u without
additional conditions, but additional conditions are provided by the easily verified

Theorem 3.5. Let F be the c.d.f. corresponding to an arbitrary Pe?(R¥). If
[Flly=c, then
B Q) =(1+c)AEQ).

Obviously ||F|j; =c whenever F has a bounded density. Note that the two
conditions in Theorem 5 of Rosenkrantz [7] are just the conditions appearing
in Corollary 3.3 and Theorem 3.5 here. In other words, the conditions in this
section have been used before, but we indicate what each condition yields in a
more general setting. ‘
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