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We describe a new version of the Queueing Network Analyzer (QNA) software
package that was developed especially to analyze manufacturing lines. The goal was
to obtain a convenient tool for estimating capacity, work-in-process inventory and
production intervals, as needed to design or change a manufacturing line. QNA is an
analytic tool, based on mathematical formulas rather than simulation, and simple
approximations rather than involved numerical procedures, so that it can produce
results for relatively large and complex models quickly and inexpensively. In
particular, QNA employs the parametric-decomposition approximation method,
which has its roots in teletraffic theory. To meet needs in the manufacturing
environment, QNA has been modified to represent machine breakdown, batch
service, changing lot sizes and product testing with associated repair and partial
yields. QNA also has a new menu-driven screen-oriented interface using
manufacturing terminology.

1. INTRODUCTION

In 1983 a software package called the Queueing Network Analyzer (QNA) was developed at
AT&T Bell Laboratories to calculate approximate performance measures for systems that can be
modeled as general (non-Markov) open queueing networks [1], [2]. The model allows non-
exponential service-time distributions, non-Poisson external arrival processes and deterministic
routes through the network. The original purpose was to analyze packet communication
networks; e.g., QNA is a principal component of the performance analysis module in a packet
network design and analysis tool [3] and the QNA methodology has been used to analyze
statistical multiplexers for voice and data [4]. However, as part of AT&T’s increased effort to
improve manufacturing operations [5], we have also been addressing applications in
manufacturing. Our purpose here is to describe a new version of QNA developed especially for
analyzing manufacturing lines.

1.1 A History in Teletraffic Theory

The early research on queueing networks, including the seminal work by J. R. Jackson [6], [7],
was primarily motivated by manufacturing systems. This initial research eventually led to today’s
rich theory of product-form queueing networks, with recent progress stimulated by computer
performance issues. To a large extent, the approximation methodology in QNA emerged from
teletraffic theory. Overflow processes arising in telephone networks with alternate routing were
soon found to be substantially more variable or “peaked” than a Poisson stream. The peakedness
concept was developed to partially characterize overflow traffic, and the equivalent random
method was developed to describe the resulting blocking (lost calls) [8], [9]. The performance of
complicated telephone networks was analyzed approximately by what has come to be known as
the parametric-decomposition method: The flows were partially characterized by one [10] and
then two parameters [11], one to describe the rate and the other to describe the variability
(peakedness), and the different nodes (trunk groups) were treated as independent given the two
parameters partially characterizing - the arriving traffic. The final parameters used to
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represent the arriving traffic at each node were characterized by a system of equations, which
could be solved iteratively.

1.2 The Same General Approach With Different Variability Parameters

This same parametric-decomposition approximation method is the basis for QNA and earlier
efforts along the same lines [12], [13]. The previous teletraffic model and analysis do not apply
directly, however, because now attention is focused on delays experienced at queues with waiting
space instead of blocking at service facilities without waiting space. Of course, peakedness can be
used to analyze delay systems [14], but it has become more common to partially characterize
arrival processes in delay systems with the squared coefficient of variation (variance divided by
the square of the mean) of an interarrival time, denoted by c2. As a second parameter for delay
systems, ¢2 is not automatically better than the peakedness (for some comparisons, see Section III
of [15]); the primary advantage of c2 is that it is easier to understand and interpret. However,
the simplicity of ¢2 is somewhat misleading. We think of the approximating process being a
renewal process with ¢2 being the squared coefficient of variation of an interarrival time [16],
[17). When the actual arrival process is nearly renewal, it is usually appropriate to obtain the
approximation by just letting c2 be the squared coefficient -of variation of an interarrival time, or
an approximation of it. However, in many cases, the actual arrival process is not nearly renewal,
i.e., the variability of the process is largely due to the dependence (e.g., correlations) among
successive interarrival times instead of the variability in the individual interarrival-time
distribution [4]. Then an appropriate approximating variability parameter c2 should represent
this dependence in the process as well as the squared coefficient of variation of one interarrival
time. We can still think of the approximating process as a renewal process, but it is important to
realize that renewal-process approximations do not automatically mean ignoring the dependence
among successive interarrival times in the actual arrival process. Moreover, c2 for a fixed arrival
process might be chosen to depend on the traffic intensity of the queue to which it is offered,
because the way the dependence in the fixed arrival process affects the performance of the queue
depends on the traffic intensity in the queue.

1.3 dveﬁiew of the Algorithm

The parametric-decomposition approximation is implemented in QNA by treating each queue as
a standard GI/G/m queue with m servers, unlimited waiting space, the first-come first-served
discipline, and a renewal arrival process, partially characterized by the mean A\™! and squared
coefficient of variation ¢? of the general interarrival-time distribution and the mean r and squared
coefficient of variation ¢? of the service-time distribution. For example, a simple approximation
for the expected steady-state waiting time before beginning service is

2, .2

cztes

EWWQ, c2, 1, c2, m)=[ > ]EW(M/M/m,)\,-r), m

where EW(M/M/m, A, 7) is the exact value for the M/M/m queue; (70) of [2]. Refinements
of (1) and approximations for the entire waiting-time and queue-length distributions are
described in [2], [18] [19].

Steady-state performance measures at each queue such as (1) are calculated in the middle of the
algorithm. First, the parameters (\, ¢2, 7, c2) for each queue must be extracted from the model
input; afterwards, the production intervals (time from start to finish) for different products must
be described. The flow through the network is specified in the model input of QNA primarily by
deterministic routes, as described in Section 2.3 of [2). We allow multiple classes (corresponding
to different products). Associated with each class is a sequence of nodes (queues) called the basic
route. For example, a possible basic route is the node sequence (3,1,7,1,2); the first node visit
by this class is to node 3, the second node visit is to node 1, and so forth. This example illustrates
that the node numbers can appear on the route in any order, that nodes can be visited more than
once on the same route, and that some nodes need not be visited at all by that route. Associated
with each route is a partial characterization of the external arrival process at the first node visit
via an external arrival rate and an external arrival variability parameter. Also the service-time
parameters 7 and ¢? are specified for each node visit on each route. This allows different classes
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to have different service-time distributions at the same node, and the same class to have different
service-time distributions at different visits to the same node. The final arrival and service
parameters (A, ¢2, 7, ¢2) at each node are obtained by appropriately aggregating the input data
above and solving two systems of linear equations that represent the three basic network
operations of superposition (merging), splitting and flow through a queue (departure); see
Sections 2.3 and 4 of [2]. The aggregation step yields the single-class model described in
Section 2.1 of [2]. For the arrival rates, the system of linear equations is just the familiar traffic
rate equations. For the quality of the approximations, it is significant that the resulting traffic
intensity of each queue is exact for this model. For the variability parameters, the corresponding
traffic variability equations are clearly an approximation but the approximation usually is
reasonable. Difficulties with the variability parameters that can arise with aggregation are
illustrated in [20].

To describe the production intervals for each class, we return to the basic routes. To describe the
mean, we add the actual expected service times from the model input for that route plus the
approximate expected waiting times at each node visited. To describe the approximate variance,
we act as if.the sojourn times (service time plus waiting time) at successive node visits are
independent (an approximation), and add the actual variances of the service times (2c2) as
specified in the model input plus the variances of the waiting times at each node visit on the basic
route. (Additional details appear toward the end of Section 2.)

2. NEW FEATURES FOR MANUFACTURING

We now describe features added to QNA since [2] in order to address needs in the manufacturing
environment. Specific motivating applications are manufacturing lines for integrated circuits [21]
and printed wiring boards. Models of wafer fabrication in integrated circuit manufacturing often
have only a few products (1-10) and a modest number of workstations (5-50), but relatively long
routes (30-300 node visits), because workstations are revisited to superimpose different layers on
the wafers [21]. On the other hand, for printed wiring boards new flexible lines are being
designed that have many different products (100-1000), each with their own sequence of
operations (route) and processing characteristics (service-time distributions). QNA models of
both kinds of lines are easy to build and analyze. Indeed, the primary task is obtaining
meaningful model input data.

2.1 Partial Yields and Testing

With new technologies, the amount of defective product scrapped in the production process needs
to be considered. Such partial yields are represented in QNA by incorporating probabilistic
routing in the framework of deterministic routes. The partial yields are specified in the model
input of QNA by having a probability of continuing on to the next node visit associated with each
node visit on each route.

The basic routes are useful to represent most of the flow, but additional flexibility is needed to
represent other possibilities such as test and repair. For example, after completing testing, 5% of
some product might be junked and 10% might require rework. Moreover, some of the rework
might be sent on place, while the rest might be sent some place else. To achieve the desired
flexibility, QNA allows additional probabilistic transitions, that are specified with reference to
the basic routes. The additional transitions are specified by eight parameters
(ky, ji; k2, J23 P, ¥, 7, ¢2), which means that a transition from node visit j; on route k; to node
visit j, on route k, occurs with probability p; given that the transition occurs, it is accompanied
by a creation-or-combination factor ; at the destination (node visit j, on route k,) the service
time distribution has mean 7 and variability parameter c2. The products experiencing this special
transition thus do not necessarily have the same service-time distributions as the other class-k,
customers at node visit j,. Thereafter, however, this customer becomes a class-k, customer and
follows that designated route (until, if ever, it experiences another special hop transition). As
before [2], this additional flow and service specification, together with the basic route data, is
converted into the single-class model with Markovian routing in Section 2.1 of {2] by aggregation;
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tne remaining analysis to calculate approximate performance measures at the queues is the same.
2.2 Changing Lot Sizes

To represent changing lot sizes (e.g., from chips to wafers containing many identical chips, to
cassettes of wafers, to magazines of cassettes), QNA has a creation-or-combination factor
associated with each node visit on each route. For example, a single departure might trigger a
batch of seven arrivals at the next node visit (creation) or every seven consecutive departures
might result in a single arrival at the next node visit (combination). The resulting change in
arrival rate is obvious; the affect on variability is approximated as in Section 4.6 of (2], which is
satisfactory to represent lot size changes that are not too great. Combination also means that we
need to account for units waiting for the batch to form (discussed further below).

2.3 Batch Service

Batch service is incorporated into QNA by changing the lot size before and after service.
Products are combined before service to form a batch and products are created after service to
return to their original form. First; this means that we .must keep track of units that are in the
system waiting for batches to form; this leads to a three-part classification of delay: batching
time, waiting time and service time. Second, it means that the basic performance measures at
each node are for batches instead of individual units. When the batch size b is large, the
batching time can be the dominant part of the total delay, so it is important to include it. The
batching time is the sum of k interarrival times, with k=0, 1, 2, ..., b~1, each with probability
1/b. The number of customers waiting for the batch to form has mean (b—1) /2, second moment
(6—1) (2b—1) /6, variance (b+1)(5—1)/12 and squared coefficient of variation (b+1)/3(b—1). If
the unit interarrival times have mean A~! and squared coefficient of variation 2, then the
batching time has mean A™'(6—1)/2 and squared coefficient of variation {6¢2 + (5+1)1/3(6~—1),
by using the familiar formula for the variance of a random sum.

However, this analysis implicitly assumes that customers arrive as individual units. When
customers arrive in batches, we calculate an approximate average input batch size I and an
effective service batch size E=max{l,5/I}. When E <1, we approximate the number of
customers batching by zero. This is exact when the service batch sizes of all queues feeding that
queue are integral multiples of b, but not otherwise. When E > 1, we act as if the service batch
size is E instead of b. Since the customers arrive in batches of size I, the number of customers
waiting for a batch to form has a mean I(E—1) /2= (b—I) /2, second moment I?(E~1) RQE—1) /6
and squared coefficient of variation (E+1)/3(E—1). If the unit interarrival times have mean A~
and squared coefficient of variation c2, then the resulting batching time has mean I (E—1)/2\ and
squared coefficient of variation {6c2I ' +E+11/3(E—1).

2.4 Service Interruptions

To represent service interruptions due to machine breakdowns, planned maintenance, etc., we
include server availability parameters at each node. We initially model the availability of each
server by an alternating renewal process; i.e., there is a succession of intervals Uy, D, Us,, D5,...
during which the server is alternately up (available to provide service) and down (unavailable to
provide service). We assume that all these up and down times are mutually independent, for all
nodes and all servers at each node, as well as within one sequence for one server. We also
assume that all the up times for all servers at a node have a common distribution, partially
characterized by its mean. Similarly, we assume that all down times for all the servers at a node
have a common distribution, partially characterized by its mean and squared coefficient of
variation. (We do not specify a variability parameter for the up time because it is not used in the
algorithm.) Although the server availability parameters must be the same for all servers at the
same node, they can vary from node to node.

We analyze this model approximately by acting as if the down times are triggered by service
times. We assume that each product upon starting service causes a down time with probability p,
and so has expanded service time equal to the original service time plus an independent down
time, and has an ordinary service time with probability 1—p. (When there is batch service, the
down time is added to the service time of the batch.) We assume that successive down times are
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generated independently (by independent trials, independent of the other processes). Note that
this new model might actually be more realistic, e.g., when the down times are caused by
products jamming machines. The modified model is much more tractable because it is again a
standard GI/G/m queue, which can be analyzed using the same approximations. We first choose
the down time probability p in order to produce the proper traffic intensity and, second, capture
the principal effect of the increased variability caused by calculating a revised service-time
variability parameter. The adjusted service-time variability parameter also affects the
approximation for the departure process and thus other queues in a queueing network model.
Since the k™ moment of a mixture is the mixture of the & moments, we can express the first
two moments of the modified service-time distribution with parameters 7 and ¢; as

T=pG+d)+ (U—p)r=7+pd (0))
and

7@ +1) =plcis® + cjd? + ¢+d)*1 + (-p)lei* +77]
- &)
= 2+ 1)7* + plcid® +2dr+d?],

where d is the mean and c3 is the squared coefficient of variation of a down time. We choose p
so that the new traffic intensity p=»A7/m is appropriately related to the original traffic intensity
p=MAr/m; i.e., if u is the mean up time, then we should have g = p + d/(d+u), from which we
obtain 7=mp/\ and p =m/\(d +u). To get c,, we apply (3), replacing p by min {p, 1}.

2.5 Deterministic and Random Routing

After the aggregation step, the model becomes a single-class network. To better represent the
routing, which is largely deterministic, we have modified the way the variability of the flow from
one node to another is approximated. If c%; is the variability parameter of the overall departure
process from node /, g;; is the proportion of the departures from node i routed to node j, and we
use Markovian routing, then the approximate variability parameter c,?j for the flow going from
node i to node jis -

ch=qijch + 1~ gy @

see (36) of [2]. If the overall departure process were actually renewal and the routing were
Markovian, then (4) would be exact. However, in many manufacturing applications the routing
is primarily deterministic for each product. As observed by Bitran and Tirupati [22], (4) can be
a poor approximation in manufacturing -models with multiple classes, low variability and
deterministic routing. If g;; is small, then (4) makes c7 nearly 1, when it should be much less.
Based on [22]-[24], to treat deterministic routing, QNA uses

C,gj = gij C%i + (1 —q,-j) qij cﬁi + (1 —-q,-j)z cg,- y (5)

where c2; is the overall arrival variability parameter at node / and ¢% is an average of the
external arrival-process variability parameters. In particular, we let c% = 3 ny; & /'S ny;, where
. 2 . . koo k

the sums are over all basic routes, ¢, is the external-arrival-process variability parameter for
individual units on route k and ny; is the expected number of visits to node i by route k, counting
feedback and losses on that route (but not transitions from one route to another). For examples
with purely deterministic routing, (5) performs better than (4), but in succeeding to represent
deterministic routing, (5) necessarily fails to represent the random routing captured by (4). We
thus introduce a further modification, and use a convex combination of (4) and (5)

ch=qych + U—gq;)Byqycii + 1 — 6;(1—U—g;)ck), ©

where 8;; is the proportion of all flow from i to j that is due to deterministic routing (as opposed
to random routing). In particular, as a reasonable approximation, we define §;; as the proportion
of all flow from i to j that is determined by the basic routes as opposed to the additional
transitions. Formula (6) leads to a change in the traffic variability equations in Section 4.2 of

{21
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2.6 Summary Performance Measures

As in [2], the last step is to calculate the approximate mean and variance of the production
interval for each class. The three components — total batching time, total waiting time and total
service time — are also described. We actually describe these production intervals in three
different ways, because there are different interpretations. First, production intervals are
calculated for the basic routes. With this scheme, each product is assumed to make every node
visit on the basic route exactly once; i.e., we ignore losses early on the route (partial yields), we
ignore feedback on the route (rework), and we ignore extra transitions to and from other routes.
The second calculation also applies to individual routes, but does count losses and feedback. (It
does not count any additional transitions that go from one route to another, though.) Since we
rarely want to count short times spent by defective products that are discarded early on the route,
this second scheme often produces less useful production interval statistics, but the associated
average WIP (work-in-process inventory) calculated by Little’s Law is usually what we want. In
the third calculation we count feedback but not losses. Since feedback is counted while losses are
not, this scheme thus leads to longer production intervals; it is useful to describe the production
intervals of good product (including rework). Finally, based on the second production interval
calculation above, QNA prints out for each route the total yield and the proportion yield. The
total yield is the departure rate in units from the final node visit on the basic route. The
proportion yield is the total yield divided by the arrival rate. This proportion yield can exceed 1.0
if lot sizes change.

3. COMPARISONS WITH LARGE MANUFACTURING SIMULATION MODELS

In this section we describe comparisons made between QNA and two simulation models of
manufacturing lines. These lines produce a single product, so that there is only one route in each
case. However, one model has 67 workstations (nodes) and 135 operations (node visits) on the
one route, while the other has 30 workstations and 108 operations. Moreover, there are several
partial-yield and rework specifications (hops). In fact, all the features described except changing
lot sizes are present in these models. Batch service occurs at some workstations and various
server availability scenarios are considered. A summary of the results appears in Table 1.

Table 1. Comparisons Between QINA and Simulation

WIP (Lots) Interval (Time Units)
Number of Mean Yield Mean Standard Deviation
Modet | Workstations | Products { Operations | Hops | QNA | SIM | QNA/SIM | QNA | SIM | QNA SIM
1 67 1 135 9 261.6 | 2555 1.0045 342 | 324 | 481 497
2 30 1 108 15 41.8 40.5 1.000 12.7 124 28 -

Since the QNA utilization and yield calculations are exact, they provided good preliminary
checks that the two models are really the same. Of course, perfect agreement is not possible
because the simulation is subject to statistical fluctuations. Of particular interest are the QNA
estimates of average work-in-process inventory (WIP) and the average production interval. These
results shown in Table 1 are very encouraging, suggesting that the QNA approximations are
sufficiently accurate for QNA to be profitably employed to provide quick estimates of capacity,
WIP and production intervals.
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