Z. Wahrscheinlichkeitstheorie verw. Geb. 28, 23~ 36 (1973)
© by Springer-Verlag 1973

On the Quality of Poisson Approximations

Ward Whitt*

0. Summary

Poisson processes (possibly nonhomogeneous) are constructed in the function
spaces D,=D([0, 11% R)and D, x --- x D, in order to approximate superpositions
of umformly sparse point processes and partial sums of infinitesimal integer-
valued nonnegative random variables. Bounds for the Prohorov distance are
computed, where the Prohorov distance is defined on the space of all probability
measures on D,, with the Skorohod metric being used on D,. These bounds yield
functional central limit theorems (invariance principles) and rates of convergence
for functional central limit theorems involving convergence to the Poisson process.
In this regard, this paper is an extension of Section 6 of Dudley [4].

For related references and general background, the reader is referred to:
Billingsley [2] for convergence of probability measures; Cinlar [3] for super-
positions of point processes; Dudley [4] for rates of convergence; Bickel and
Wichura [1], Neuhaus [6], and Straf [7] for the space D,; and Whitt [8] for
methods to apply the rates of convergence results here to obtam rates of conver-
gence for related functionals and processes.

This paper is organized as follows. Partial sums of integer-valued random
variables are treated in Section 1; superpositions of point processes are treated
in Section 2; and the extension of the results in Section 2 to the superposition of
p-dimensional (1=<p=<co)} point processes is outlined in Section 3. An intuitive
understanding of the results can perhaps be achieved more quickly by examining
the special cases in Examples 1.1 and 2.1.

1. Partial Sums from an Array of Random Variables

For each nz1, let {X,(ji,..-.j;), 1=5j:<n, 1<i<q} be a g-dimensional array
of n? independent nonnegative inte ger-valued random variables. Let the associated

partial sums to S,(k,..., q)-— Z Z Xo(jys--sJg for 1=k;<n and 1<i<g,
Ja=1

with S,(k,,...,k)=0 if 0=k, <n and 1<I<q with k;=0 for at least one j. Let

Z(X) denote the probablhty law of X, i.e.,, the image measure induced by the

random variable X on its range. We thus write Z(X,)— Z(X) for weak conver-

gence of random elements X, to X, cf. [2]. Let P, denote the Poisson probability

- * Partially supported by Nationa! Science Foundation Grant GK 27866 and by a Yale University
Junior Faculty Fellowship in the Social Sciences.
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distribution with parameter A on R!. Let
an=min {P {Xn(jl! ves 5]q)=0}° I_S-.jléna AR léjq_g_n}s

b= Y - 3 PAX, iy, o ji)> 11,

and A=t Jemt (L.1)
k1 kq
= Z o Z P{Xn(jl’--'sjq)r_-l}‘
Frve G s

The classical Poisson approximation theorem in this setting is ([5], p. 132)
Theorem 1.1. If a,— 1, then necessary and sufficient conditions for
Z(S,(n,...,n))=»P, on R asn—w
are (i} b, — 0 and (ii) ¢, = A.
Rates of convergence for Theorem 1.1 have also been obtained by several
authors; a survey of these results appears in Section 6 of [3]. Let 22(S) denote the

set of all probability measures on the measurable space (S, ). The rates of con-
vergence reported in [3] involve the metrics o; on 2(R*), where

0,(P, Q)=sup {|P(E)—Q(E)l, Ecé;= ¥}, (1.2)

& =%, &={{n},n=0}, and & ={(— o0, n], n20}. (Note that for the distance 4
in (3.1) of [3], d=20,.

Our object is fo investigate the convergence as n— oo of entire arrays
{S,(ky, ..., k), 1=k;=n} to a Poisson random field, i.e., to a Poisson probability
measure on the function space D,=D([0, 1]%, R). What we shall do is establish
rates of convergence for the functional generalization of Theorem 1.1, that is, the
Poisson analogue of Donsker’s invariance principle for a lattice of random
variables, cf. [1] and references there. For g=1 and {X,(k,)} i.i.d. Bernoulli for
each n, such a functional limit theorem is outlined in Problem 3 on p. 143 of [2].
A rate of convergence result in the same setting appears in Section 6 of [4]. For
g> 1, see Theorem 6.2 of [7].

As usual, our first step is to represent the array {S,(k,, ..., %))} as a random
element of D,. For this purpose, let

SnESn(th"'th):Sn([n td, ..., [n tq])s (1.3)

for 0,1, 1<i<q. Next, for n given, we construct a Poisson approximation
to S, in D,. First, let {Y,(jy, ..., J ), 1£/;=n, 1 i< q} be an array of independent
real-valued Poisson random variables with parameters

2aits oorJy =P {Xolits oo j) = 1}/P (X, Gits - ) =0} (14)

Remark 1.1. X X,(j;,...,j;) has a Poisson distribution with parameter
An(j1»+--+Jy) then the approximating Poisson variable Y,(j, ..., ;) is also Poisson
with the same parameter. Consequently, if the original array is Poisson, then the
approximation is just a replication. [J

Just as for S,, let U,(k,...,k)= Z Z Y.(jys---ndy) for 1=k;<n and
12i<q, with Uy(ky, ..., k) =0 if 0<k; <1 and 1 <i=q with k,=0 for at least one).
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Let U, also represent an element of D, defined by
[IJIEUn(tI:"':tq)zar({ntl]s"-a[ntq])n (1‘5)

for 05,51, 1<iZq. Let V, be the associated Poisson process obtained from

U, by letting the ¥,(jy, ..., j,) points of the jump at (j, n~ 1, ..., j, n~") be independent

and uniformly distributed over the g-dimensional open interval
(U= n g™ ) x (=D n~tjgn ).

This makes ¥, a Poisson process in D, which is stationary in each of the »? open
intervals. (We call U, the dlscretlzatlon of the possibly nonhomogeneous Poisson
Process V,.) Obviously the entire process is stationary whenever all the random
variables X, (ji,...,j,) in the original array have a common distribution. Note
that our Poisson process ¥, has no jumps at a boundary of any interval.

Let A, and B, be the events

- ---_ﬁl{X.,(ih---,fq)él}
and | o

= D O i S1}.

On A, and B, the arrays {X,} and {Y,} consist entirely of 0-1 variables. It is easy
to see that we have constructed S, and U, so that

Lemma L.1. For any measurable set E in D,
P(S,cE|4,)=P(U,eE|B,).
To obtain results without conditioning, we apply the elementary
Lemma 1.2. Let B be an event in a probability space (S, &, P) with P(B)>0. Then
sup{|P(A)—P(A|B)|, Ae #}=P{B}.
Theorem 1.2. If o, is the distance on P(D,) defined in (1.2), then

o1 (LS, Z(U))S P(4;)+P(B)
<b,+c,(1—a)2 1 a;?

where a,, b,, and ¢, are as in (1.1).
Proof. First, b,=P(A). Next

PBIS S+ 3. PL% 00>

(1 e—-ln(.u —A 01, . ’jq) e—ln(jl- --u.fq])
1

1 7

B

nM= ‘i[\.’h

[,1 (jy».--2j))%/2,  from the Taylor expansion,

."f\
M::

w

=
1l
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n n

éz_i Z Z (P{Xn(jl:“->jq)=1}/P{Xn(jb"'1jq)=0})2

si=1 Jq=1

<2122 Y Y (PXoGos o) =1}

Ji=1 jq=1
<27'ag?(l-a)c,. O

Corollary 1.1. Let 2,= Z Z Aulits-+-»J,) and &, be the metric on 2(RY
in (1.2). Then =1 Jjq=1

a-l("'g[Sn(na LR | n):l: Pj.n)éP(Afl) +P(B‘r:1)
b, +c,(1—a)2 a2,

Proof. The proof of Theorem 1.2 applies. Alternatively, we can apply Theorem
34 of {8].

Remark 1.2. Corollary 1.1 gives a rate of convergence for Theorem 1.1. Note
that

1=

cnéﬁ'n-‘: Z B P{Xn(jla ...,jq)=1}/P{X,,(i1,...,jq)=0}_S_c,L/a,,,
f1=1 jq 1

so that A, — A. Corollary 1.1 can be stated in terms of A instead of A, using the fact
that ¢,(P,, , P})=|A,~Al, cf. Example 3.5 of [3]. In the same way, rates of con-
vergence are available for Corollary 1.1 and Theorem 1.2 when the limit is a
Poisson process {or its discretization) other than the one constructed by the
approximation above. Let U, and V, be such alternate processes constructed
from an array of Poisson variables {Y,(j,,...,j,)} with parameters 2,(j, ..., J,)-
Then . "
oy [g(Un)n g(U;)]é Z Tt Z M'n(jl: v :jq)—j‘;l(jla :jq)l’

. =1 jg=1
cf. Example 3.6 of [3].
Example 1.1. 1f the variables X, (j;, ..., j,) only take values 0 and 1 with

P{X, (s endp =1} =05,

then a,=(1—n"9, b,=0, and ¢,=1, cf. (1.1). The bound in Theorem 1.2 and
Corollary 1.1 thus becomes 2~* g% n~2 which is less than 2n~?for n=2 and g= 1.
The approximating Poisson measure P,_in Corollary 1.1 has parameter (1 —n=%~",
Hence, by Remark 1.2, the rate of convergence to P, with A=1 in Theorem 1.1 is
of order n~% In particular,

Jy ([Su(n: sy n')]s 1)1)§4n—q
for n=2 and g=1. For further results concerning this special case, see Corol-
laries 1.3 and 1.4 plus Remarks 1.3, 1.4, and 1.5 at the end of this section. O

It now remains to show how close U, is to ¥,. For this purpose, we use the
metric d on D, defined on p. 1289 of [6] or p. 1662 of [1]. Let & be the group
of all transformations ¢: [0,1]*—[0,1]? of the form ¢(t)=d(t,...,t)=
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[f, (1), --., P, ()], where each @;: [0, 1]— [0, 1] is continuous, strictly increasing
and fixes zero and one. Define d for any x, ye D, by

d(x, y)=inf {max(|[x—y(@)ll, g ($)): P}, (1.7)
where |[lx||=sup{ix(®)[: te[0,1]%}, g(¢)=sup{lop(@—1l: te[0,1]%}, and |t|]=
max {|5;], | Si<q}.

Lemma 1.3. For g=1, d(U,, V,)<n™' on B,n {Y,(n)=0}, where B, is defined
in (1.6).

Proof. Following Theorem 6.1 of [4], we construct a time transformation ¢,
so that | V,— U,(¢,)] =0 and g(¢,)<n"!, as required for (1.7). Whenever V, has
a jump at ¢ in (n7*(j—1), n=1j), just let ¢, be constructed so that ¢,{f)=n"1].
Complete the definition of ¢, by linear interpolation. [

After some modification (some modification is necessary!), the argument
outlined above for g=1 extends to g=2. Let C, be the event that ¥,(ji, ...,j)=0
whenever at least one j;=n. Let D, be the subset of B, in (1.6) in which Y,(j, ..., J,)
=0 for all (jy, ..., j,) with (j;, ..., j))*(k;, ..., k,) and at least one j;=k; whenever
Y,(ky,....k;)=1 For g=2, D, can be described by saying that given a jump in
any square, there is no other jump in the same row or column. Having selected
D, appropriately, the same argument used for g=1 yields

Lemma 1.4. For g>1,

dU,,V)sn ' on C,nD,.

Proof. It suffices to construct an appropriate time transformation ¢,=
(1> -5 Png), cf (1.7). On C,n D, each ¢,; can be constructed on {0, 1] just as
in the proof of Lemma 1.3. The bound would be g*n~! instead of n~! if we used
the Euclidean norm instead of the supremum norm on R* cf. (1.7). O

Following [4], our main result will be stated in terms of Prohorov’s metric.
For any measurable subset A of a separable metric space (S, m), let A*={yeS:
dxe A, m{x, y)<e}. Then Prohorov’s metric p= p(m), which induces the topology
of weak convergence on 2(3S), is defined by

p(P,Q)=inf{e¢=0: P(F)<&+ Q(F®), Fclosed}. (1.8)

It is significant that p [.Z (X), L(Y)]=a(X, Y) where a=a(m) is the usual metric
associated with convergence in probability of S-valued random elements, i.e.,

a(X, Y)=inf{e=0: P[m(X, Y)=e]=¢}, 1.9

cf. [4] and references there.
As an immediate consequence of Lemmas-1.3 and 1.4, we obtain

Theorem 1.3. Let A, B,, C,, and D, be as in Lemmas 1.l and 1.4. Let a,, b,,
and c, be as in (1.1).

() If g=1, then
a(U,, V)<max {n~!, P(BS U {Y,(n)=0})}

<max{n,¢,(1—a)2 ' a; 24+(1—a,)}.
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(i) If g> 1, then
(U, V) Smax {n~', P(C;)+ P (D5)}

smax{n", b, +qn*"'(1-a)(c,+1)}.

Proof. Lemmas 1.3 and 1.4 apply directly. It is easy to see that P{Y,(n)>0}
Z£l—a, for g=1, P(C)<qn®'(l—a) for g>1, and

P(D)<gn®'(l—a)c,+b,. O
Corollary 1.2. In the setting of Theorem 1.2,
(1) if g=1, then
p[L(S,), L(VYI< P(47)+ P(B)+max {n~"', P(B;)+ P(C})}
Shtc{l—a)2 ta;*+max{n~', ¢,(1 —a,)2 ' a; * +(1—a,)};
(ii) if g>1, then
pLZL(S,), L (V)] S P(A;)+P(By)+max {n~", P(C))+ P(D})}
<b,+c,(l—a)2 a2 +max{n~t,b,+qn? (1 —a,)(c,+1)}.

Proof. Just apply the triangle inequality with Theorems 1.2 and 1.3. The
metric p is appropriate because p<a and p<o,. []

Corollary 1.3. In the setting of Example 1.1 with n=2,

3n~t, g=1
=<
and
5n71 g=1
L(5), LV ’
PLE(S.), 2 )]_{2qn‘l+2n“‘, g>1.

We can also express bounds involving a homogeneous Poisson process V with
intensity A=1 instead of ¥, in Corollary 1.3.

Lemma 1.5.If V; and V, are homogeneous Poisson processes in D, with intensities
Ay and A,, then
pLZ (), L(V2)1=1A — 4,
Proof. By the triangle inequality,
plL(V), L(VIZp[L V), LUN+p (LU, L(UN]+p[L(U7), £(V2)],
<oV, U +o LU, L(UN1+a(UL Vo),
where U} and U? are discretizations of ¥, and V, depending on #, that is,

Ur:i(tls cen tq)=V::([nt1]/n= v [ntq]/n)

for 01,1, 1<i<gq. In other words, U is constructed from V, in the reverse of
the way V, was constructed from U, in (1.5). Following Remark 1.2, we see that
nd
o [ZU), LUHI< Y n~1—A,n™9|

j=1

=4 —4,]
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for all n=1. On the other hand, (U}, V) — 0 as n — 0 by Theorem 1.3. Since n is
arbitrary, the proof is complete. [

Corollary 1.4. In the setting of Example 1.1 withn=2,

6n7?, g=1

<
pLesyewasln o 4

Jor any n=22 and q=1, where V is a homogeneous Poisson process in D, with unit
intensity.

Remark 1.3. Following Dudley {{4], p. 330), we see that the bounds in Corol-
laries 1.3 and 1.4 can not be improved to order o(n~?!). Dudley’s negative result
applies to D, as well as D. The event that ¥, (or V) has at least one jump at a point
t=ty,..., t, such that |[t,—j/n|=(27'—8)/n for 0<d<2~! has a positive proba-
bility bounded away from 0 for all n. Hence, p[Z(U,), L(V,)]=K n~! for some
constant K.

Remark 1.4. Note that for g>>1 the larger contribution to the error in Corol-
lary 1.4 comes from the difference between the Poisson process and its discretiza-
tion. In summary,

©) pLL(S.), L(U)]=0(n"9),
(i) p[Z(U), £(U)}=0(n"7, and

(i) p[LU), L(V)]=p[Z(U), Z(V)]=0(n"").

Remark 1.5. The metric 4 in (1.7) induces the Skorohod topology on D, but is
not complete. The Billingsley metric d, induces the same topology and is complete.
It is defined for any x, ye D, by

do (x, y)=inf {max (| x—y(#)ll, h(¢)): pe &}, (1.10)
cf. (1.7), where

h(¢)=sup{

log ibi_(;g_z_-___'_?_-(fl‘

s, te [0, ll,léiéq}, (1.11)

cf. p. 113 of [2] and p. 1289 of [ 6]. Since changing from d to d, complicates matters,
we shall use d throughout this paper. Here we only indicate briefly what the
problem is and how it can be dealt with.

Within the subsets B, {Y,=0} for g=1and C,n D, for g>1,|¢,(s)— p{)i=n~*
for all s,te[0, 1], cf. Lemmas 1.3 and 1.4, but it is possible for |[s—t| to be arbi-
trarily close to 0, thus allowing h(¢) in (1.11) to be unbounded.

The size of h(¢) can be controlled by working with bands of approximately n*
intervals of length n~!. (For simplicity, assume n* is an integer.) We permit no
jump in a band next to any boundary. We permit no more than one jump in any
interior band. We do not permit jumps in contignous bands. Then

h(¢)g{log %7%)@’=I10g(1—n"*)lén‘*- (L.12)
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Thus on the smaller set above, dy(U,, V,)< n~*. The probability of the complement
of this set is of the order n*(1—a,)(c,2 ' a; 2+ 1) for g=1 and

b,+gn® tnt(l—a)c,+1), g>1,
which in the setting of Example 1.1 is of order n~*. Hence, in this setting we get
p[ZL(5,), LV )]1<0(n~?)

where p is the metric in (1.8) on (D, d). This leads us to conclude that the change
from d to d; has a significant impact. In general it appears that bounds such as the
ones computed in this paper will be sensitive to the choice of metrics on R¥, D,,
and (D).

2. Superposition of Point Processes

Closely related to the problem of the previous section is the Poisson approxima-
tion for a superposition of uniformly sparse point processes, cf. [3]. Let N, ..., N,
be independent point processes in D,, i.e., independent random elements in D,
which are nonnegative, nondecreasing, integer-valued, and 0 at (z,, ..., ¢)) if £;=0
for some j. We interpret N, (t,, ..., t,) as the number of points in [0,£,]x -+ x [0,¢,]
for the k-th process. Let N=N;+---+N, be the superposition process in D,.
Our object is to obtain a Poisson approximation for N with an estimate of the
quality.

The general procedure is quite simple. We approximate [0, 1]? with a discrete
lattice to obtain a discretization of N. This gives us an array of random variables
which is almost, but not quite, independent. We then construct an approximating
array of independent Poisson variables. The method of construction at this stage
is not quite the same as in the last section due to the lack of independence. Finally,
we construct a Poisson process in D, from the array of independent Poisson
random variables exactly as before. We are thus able to invoke Lemmas 1.3 and
1.4 for this part.

We have a degree of freedom in our discretization. We can partition the time
domain [0, 117 into as many parts as we wish, but there is the obvious tradeoff:
as the partition gets finer the discrete approximation of the continuous improves
but the size of the associated array increases. We shall partition each interval
[0, 1] into the m subintervals [0,m=],(m~*,2m™"],...,([m—1Im~%, 1]. Thus
[0, 1]%is partitioned into m? g-dimensional intervals each of Lebesgue measure m™9.

Our discrete approximation for N in D, is thus N™, where

Nm(tlaﬁtq)':N([mtl]/rn,7[mtq]/m) (21)

for 0<,<1 and 1<i<gq. Let B; denote a generic g-dimensional interval of the
type described above. Our associated array of random variables then consists of
Xn(/)=N(B)), 1 £ j<m? where we regard N as a set function here.

Let F = F, denote the union of those B; touching the upper boundary of [0, 177
Let
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For g=1, let -
= (N {N(B)<1}. (2.3}

j=1
For g>1, let G;=G,,; denote the union of those B, other than B; with at least

one side in common with B;. (Here “side” means projection onto one of the
coordinate axes of [0, 1]2) Let C= C™ be the event

C=C"=)({N(G)=0, N(B)=1} U {N(B)=0}). (2.4)

J
Just as in Lemmas 1.3 and 1.4, we have

Lemma 2.1. Let d be the metric on D, defined in (1.7).

(i) Forg=1,
d(N,N"y<m=! on AnB,

and (ii) for g> 1,
d(N,N"Y<m~! on AnC,
where A, B, and C are as in (2.2)(2.4).

To estimate the probabilities, let

an=_sup {Z P[N.(B)= 1]}
1ZjEme (g
and _ (2.5}
b= Y P{N.[0, 119> 1},
k=1
cf. (3.9)-(3.12) of [3].
Lemma 2.2. Let a,, and b be as in (2.5). For g=1,
P{d(N, N >m '} <b+qm@Va +qgmPe1 g2,

Proof. For g=1,(AnBf=A°UB°‘<E,UE, UE,, where

E,= U N0, 119> 13,

= U U a@)=1,
and s

=UU L_) (N(B)=L N(B)=1}.

Hence, P(A°U B)<b+gmi~')q,+ma? with g=1.
Forg>1,(AnC¥=A°v C°cE, VE, UE,, where

n

Ey ng UHCU1 Lp){M(Bp) 1, N(Bj)=1}
k¥l B,=G

and P(E)Sqm*i~'ak. [
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Corollary 2.1. If b<K,m™! and a,,< K, m~%, where a,, and b are as in (2.5), then
o(N, N <K;m™!

Jor any g2 1, where a is the metric defined in(1.9)and Ky =max {1, K, +g(K, + K3)}.

We now come to the second stage of our approximation. Recall that we have
the array of real-valued random variables {X(j}} associated with our discrete
approximation N™ in D,, where

X0)= 3, X,)= ¥, N(B)=N(B). 05)

If these random variables were independent, we could apply the results of the last
section and be done, but of course this is not the case. Let {Y,(j); 1= j=m% 1< k<n}
be independent Poisson random variables with the parameter of Y,(j) being

4 U)=P{N(Bj}=1, N([0, 119)=1}. 2.7)

Then {Y(j)} in the Poisson array corresponding to {X(j)} has parameter A(j)=
A()+ -+ 4,(j) Then, by virtue of (3.7) or (6.29) of [3], we have

Lemma 2.3. Let o, be the metric in (1.2) on P(R™). Then
7, [g({Xk(j); 1§j§mq})= 3({1@0), 1_S._j§m‘1})]
S P{NA[0, 119> 1} + P{N([0, 1]9)=1}>.

Proof. As we remarked above, this is (3.7} or (6.29) of [3], recalling that the
metrics o, here and d in [3] are related by 26, =d. O

Remark 2.1. Our choice of parameters 4,{j) in (2.7) does not make the Poisson
approximation of a Poisson process a replication, ¢f. Remark 1.1. To achieve
this, we could use parameters

A=A G P{NA[0, 119=0}.

We have not used A (j) because the statement corresponding to Lemma2.3
becomes more complicated.

In order to express related results, let
c=Y P{N(0, 119=1}> (28)
k=1

Corollary 2.2. If o, is again the metric in (1.2) on Z(R™), then

o [LUXGN) L{Y(N)]Zb+c,
where b and ¢ are defined in (2.5) and (2.8).
Proof. The arrays {X,(j)} are independent for different k. Hence

o [L(X, (D + X, (D), L% N+ Y, (] S0, [L(X, ), £ (X, ()]
+0, [Z(X,, (), £ (T, (W]
cf. (3.4) of [3], and the desired conclusion holds. [ ' '

01
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Now let U, and U, be the random elements of D, induced by the partial sums
on j of {%(j)} and {¥(j)} as in (1.5).
Corollary 2.3. If o, is the metric in (1.2) on P(D)), then

0-1 [g(Nrn), g(Um)]éb'{-C,

where b and ¢ are defined in (2.5) and (2.8).

We are now at the final stage of our approximation. Let V,,, and ¥,, be the
Poisson processes in D, corresponding to U, and U, just as in Section 1. Just as
in Lemma 2.1, we have :

Lemma 24. If A, B, and C be as in (2.2)2.4) with V,, in place of N, then
(i) for =1,

and (ii) for g>1,

d(U,, V,)<m™' on AnB,

d(U,, V)<m™ on AnC.
Lemma 2.5. Let a,,, b, and ¢ be as in (2.5) and (2.8). For g=1,
PV, Uy>m1}<2" c+qgmiV g, +gm?a-D g2

Proof. Following the proof of Lemma 2.2 with V,,, instead of N,, we have

PE)S Y (1—e =2 e
k=1

where lk:z L(N=P{NA([0, 119 =1};

PE)= 3 3 h(j)e v
BJEFk_l
< ) 2A0)
J k=1
B;cF
gqm@"

where 4,(j)<P{N,(B)=1}<a,;

m

PEIST ¥ TG0

k+1
sma;
P(E4)§Z Z >, 2 A@A)
L
1

3 Z Wahrscheinlichkeitstheorie verw, Geb., Bd. 28

BRI



|
1
i
i
N
i
]
P
i
i
|

14 W_Whitt

Theorem 2.1. Let a,,, b, and ¢ be as in (2.5) and (2.8). Let p be the Prohorov metric
in (1.8) on 2(D,). Then

pLLN), LV )]<(b+c)+max{m™', b+qm“Va,+qmPi~Dal}

+max{m=1,2 ctqgmaVa,+qm?D a2}

Proof. It is only necessary to apply the triangle inequality with Lemma 2.2,
Corollary 2.3, and Lemma 2.5. In doing so, Lemmas 2.2 and 2.5 translate im-
mediately into a statement involving the metric « in (1.9). Furthermore, p <« and
pso. O

Example 2.1. Suppose that N, ..., N, are independent and identically distrib-
uted stationary point processes in D, with

@ P{N([0, 119=1}=¢;n"",
(i) P{N([0,1]9)> 1} =c,n"%,
(i) P{N,(B)=1}=czn~4*H,

where B, =[0,n™'] x --- x [0, n~"]. These probabilities are chosen to be directly
proportional to the Lebesgue measure of the set being counted and inversely
proportional to the number of point processes being added, with multiple points
being less likely.

Let N=N, +---+N, and m=n. Then the quantities in (2.2) and (2.5) become:
a,=cyn"% b=c¢,n7!, and c=c?n~'. Theorem 2.l yields p[L(N), L )=
g K n~! in this setting. The approximating Poisson process in this case is stationary
with intensity ¢, (independent of n). Consequently, if an array of point processes
is defined with the component processes of the n-th row satisfying the assumptions
above, then Theorem 2.1 determines a bound of K n~! for the rate of convergence
to the stationary Poisson process with intensity c,. We also note that if the metric
d,, were used instead of d on D, then we would have a bound of K n™%, cf. Re-
mark 1.5.

3. Superposition of p-Dimensional Point Processes

The results of the last section extend easily to the superposition of p-dimensional
point processes, cf. (4.1} of [3]. Since the argument is similar, we only give the
highlights.

Let D,, be the p-dimensional product space D, x --- x D,. Let the metric on
D,, be defined for any x=(x,, ..., x;) and y=(y,, ..., y,) by

d(x: y)= lné‘liagpdi (xl'D y;) H] (3‘1)

where d; is the metric on D, in (1.7). Let ¥, ..., N, be independent point processes
in D, so that N;=(Ny, ..., N;;) with N;; being a point process in D, of the type
studied in the last section. It is important that the components of N, are not
assumed to be independent. Let N=N,+---+ N, be the p-dimensional super-
position process. We approximate N by a p-dimensional Poisson process V, =
(Vars > Vmp) In D,, where the component processes of V,, are independent.

As before, m indicates the size of the discrete partition we choose to use.
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Remark 3.1. We could also have p=co. Then, instead of (3.1), a metric d can
be defined for any x=(x,, ...) and y=(y,,...) in D by

d059)= 3274, YU+ 4, 3. (32)

It is easy to check that the other arguments still apply.

The general procedure is as before. Let N"=(N",..., N;") be the discrete
approximation for Y =(M, ..., N,) as in (2.1). Then Lemma 2.1 carries over with
d in (3.1) or (3.2) and

4= () 4= () D=0}

B=(\B=() () BB} (33)
i=1 i=1 j=1

c=(1C=() N(NG)=0, N(B)=1} 0 (NB)=0)

instead of (2.2)-(2.4). To obtain the analog of Lemma 2.2, let

ay= sup {z iP[Mk(B,-)=1]}

12i=m? (k=1 i=1

and (3.4)
b= ZP{ imi([o,uqm},
k=1 i=1

cf. (4.2)-(4.4) of [3] and (2.5) here. The bound in Lemma 2.2 then applies for
P{d(N, N")>m~'} with a, and b as in (3.4) and 4 as in (3.1) or (3.2).

For the second stage of our approximation, we use the npm?-dimensional
array {X;;(J), 1ZiZp, 1 £jsm% 1 <k=<n} defined by

Xk U)=Nik(Bj)s (3-5)

cf. (2.6). Let {Y,.(j); 1=<i<p, 15j<m? 1Zk=<n} be the associated npm?-di-
mensional array of independent Poisson random variables with the parameter
of ¥, (j) being

A,-k(f)=P{Mk(B,-)=1, 3 N[O, 1]4)=1}, - G9)

' p
cf. (2.7). Then Lemma 2.3 carries over with ) N, ([0, 119 instead of N ([0, 1]9
i=1

in the two terms on the right. Corollaries 2.2 and 2.3 also apply if we redefine ¢

in (2.8) to be "
e= . P{ N ([0, 1]ﬂ)=1}
k=1 1

Finally, arguments differing very little from those of Lemma 2.5 and Theorem 2.1
yield identical statements here. Recall that the constants a,,, b, and ¢, the metric 4,
and the processes have been altered, however.

3*

14 2
. (3.7)
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Corollary 3.1. If a,<K,m™ % b<K,m™, and cSK;m™! for the constants
in (3.4) and (3.7), then
p[g(N)s g(Vm)]éKzl- m_l,

where p is the Prohorov metric in (1.9) on 2(D,,).
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