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Abstract
We develop a robust queueing network analyzer algorithm to approximate the

steady-state performance of a single-class open queueing network of single-server

queues with Markovian routing. The algorithm allows nonrenewal external arrival

processes, general service-time distributions and customer feedback. The algorithm

is based on a decomposition approximation, where each flow is partially character-

ized by its rate and a continuous function that measures the stochastic variability

over time. This function is a scaled version of the variance-time curve, called the

index of dispersion for counts (IDC). The required IDC functions for the external

arrival processes can be calculated from the model primitives or estimated from data.

Approximations for the IDC functions of the internal flows are calculated by solving

a set of linear equations. The theoretical basis is provided by heavy-traffic limits for

the flows established in our previous papers. A robust queueing technique is used to

generate approximations of the mean steady-state performance at each queue from

the IDC of the total arrival flow and the service specification at that queue. The

algorithm’s effectiveness is supported by extensive simulation studies.
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1 INTRODUCTION

This paper contributes to analytical methods for designing and

optimizing service systems. Such systems appear in a broad

and diverse range of settings, including customer contact

centers, hospitals, airlines, online marketplaces, ride-sharing

platforms and cloud computing networks. The design and

operation of these systems is challenging, mainly because

there is uncertainty about customer arrival times and service

requirements.

Fortunately, helpful guidance can often be provided by

exploiting mathematical models using stochastic processes.

Prominent among these are stochastic queueing network mod-

els because service is often provided in a sequence of steps;

for example, see Boucherie and van Dijk (2011) and Chen and

Yao (2001). There is extensive literature on the applications

of queueing network models to service systems. For example,

see Sauer and Chandy (1981) for a review of applications

in computer networks, see Banerjee et al. (2015), Freund

et al. (2017) and Ozkan and Ward (2017) for examples in

ride-sharing economies and see Chan et al. (2016), Creemers

and Lambrecht (2011), Dai and Shi (2019), Kim et al. (2018)

and Zacharias and Armony (2016) for healthcare-related

applications.

Service operation policies often rely on quantitative

descriptions of the system performance, called performance
measures, such as the waiting time, the queue length, and

the workload in the system. Decision support for service

operations relies on an accurate characterization of these

performance measures.

A standard way to analyze the performance of complex

queueing models is to employ computer simulation (e.g., see

Sinreich & Marmor, 2005; Zeltyn et al., 2011). However,

as noted in Dieker et al. (2016), a significant disadvantage

of simulation-based optimization methods is the often pro-

hibitive computation time required to obtain optimal solutions

for service operation problems involving a multidimensional

stochastic network. Thus, analytical analysis of the models

can be beneficial. However, the class of queueing networks

that can be solved analytically requires strong assumptions
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that are rarely satisfied, whereas more realistic models are

prohibitively hard to analyze exactly. Hence, the analytical

performance approximation of queueing networks remains an

important tool.

This paper provides a new efficient algorithm to approxi-

mate the steady-state performance measures in a single-class

open queueing network (OQN) with Markovian routing,

unlimited waiting space, and the first-come-first-served

(FCFS) service discipline. We focus on non-Markov OQNs

where the external arrival processes need not be Poisson

or renewal and the service-time distributions need not be

exponential. Our algorithm is a decomposition approxima-

tion, which combines three methodologies in operations

research and stochastic models: (i) robust optimization as

in Bandi et al. (2015) and Whitt and You (2018b), (ii)

indices of dispersion and stationary point processes as in Cox

and Lewis (1966), Daley and Vere-Jones (2008b) and Sig-

man (1995) and (iii) heavy-traffic limits as in Dai et al. (1994),

Harrison and Nguyen (1990) and Whitt (2002). However, the

paper has been written to emphasize the efficient algorithm,

that is, obtained in the end by synthesizing these methodolo-

gies.

1.1 Approximation algorithms

In this section, we briefly review existing approximation algo-

rithms for non-Markov OQNs; additional literature review

appears in the appendix.

1.1.1 Decomposition approximations

Under the assumption of Poisson arrival processes and expo-

nential service-time distributions, our OQN is a Markov

model, called a Jackson network, which is easy to analyze,

primarily because the steady-state distribution of the queue

lengths has a product form; that is, the steady-state queue

lengths are independent geometric random variables, just as

if each queue were independent M∕M∕1 queues. The arrival

rate at each queue can be obtained by solving a system of

linear equations called the traffic rate equations. Motivated

by that product-form property of Markov OQNs, decomposi-

tion approximations for non-Markov OQNs have been widely

investigated. In this approach, the network is decomposed into

individual single-server queues, and the steady-state queue

length processes are assumed to be approximately indepen-

dent. For example, in Kuehn (1979) and Whitt (1983) each

queue is approximated by a GI∕GI∕1 model, where the arrival

and service processes are approximated by a renewal process

partially characterized by the mean and squared coefficient of
variation (scv, variance divided by the square of the mean) of

an interarrival or service time.

While the decomposition approximations do often perform

well, it was recognized that dependence in the arrival pro-

cesses of the internal flows can be a significant problem. The

approximation for superposition processes used in the QNA

algorithm (Whitt, 1983) attempts to address the dependence.

Nevertheless, significant problems remained, as was dramati-

cally illustrated by comparisons of QNA to model simulations

in Fendick et al. (1989), Sriram and Whitt (1986) and Suresh

and Whitt (1990), as discussed in Whitt (1995).

To address the dependence in arrival processes, decomposi-

tion methods based on Markov arrival processes (MAPs) have

been developed. The MAP was introduced by Neuts (1979),

see Ch. XI of Asmussen (2003). A MAP can model the depen-

dence among interarrival times (or service times) because

a MAP is not a renewal process. Horváth et al. (2010)

approximated each station by a MAP∕MAP∕1 model,

while Kim (2011a, 2011b) approximated each queue by

a MMPP(2)∕GI∕1 model, where the arrival process is a

Markov-modulated Poisson process with two states (a special

MAP).

1.1.2 Heavy-Traffic limit approximations

The early decomposition approximation in Whitt (1983) drew

heavily on the central limit theorem (CLT) and heavy-traffic

(HT) limit theorems. Approximations for a single queue fol-

low from Iglehart and Whitt (1970a, 1970b). With these tools,

approximations for general point processes and arrival pro-

cesses were developed in Whitt (1982, 1984). Heavy-traffic

approximation of queues with superposition arrival processes

in Whitt (1985) helped capture the impact of dependence in

such queues.

Another approach is to apply heavy-traffic limit theorems

for the entire network. Such HT limits were established for

feedforward OQNs in Iglehart and Whitt (1970a, 1970b)

and Harrison (1973, 1978), and then for general OQNs by

Reiman (1984). These works showed that the queue length

process converges to a multi-dimensional reflected Brownian

motion (RBM) as every service station approaches full satu-

ration simultaneously. These general heavy-traffic results for

OQNs lead to approximations using the limiting RBM pro-

cesses. The QNET algorithm in Harrison and Nguyen (1990)

provides such an approximation. Theoretical and numerical

analysis of the stationary distribution of the multidimensional

RBM was studied in Dai and Harrison (1992), Harrison and

Reiman (1981), Harrison and Williams (1987). As a cru-

cial step of the QNET algorithm, Dai and Harrison (1992)

proposed a numerical algorithm to calculate the steady-state

density of an RBM, but it is computationally challenging,

making the algorithm hard to apply to large OQNs.

For practical application to large-scale systems or small

systems with a wide range of traffic intensities, hybrid

methods that combine a decomposition approximation and

heavy-traffic theory were proposed in Reiman (1990) and

Dai et al. (1994). The Sequential Bottleneck Decomposi-

tion (SBD) approximation proposed in Dai et al. (1994) has

been shown to be remarkably effective, but it requires the

numerical solution of RBMs.
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The present paper also relies heavily on heavy-traffic limit

theorems, but here we exploit our recent heavy-traffic limits

for the flows in Whitt and You (2018a, 2020).

1.1.3 Robust queueing approximations

Recently, a novel robust queueing (RQ) approach to analyze

queueing performance in single-server queues was proposed

by Bandi et al. (2015). The critical idea in RQ is to replace

the underlying probability law with a suitable uncertainty

set and analyze the (deterministic) worst-case performance.

The authors relied on the discrete-time Lindley’s recursion to

characterize the customer waiting times as a supremum over

partial sums of the interarrival times and service times. Uncer-

tainty sets for the sequence of partial sums are proposed based

on the central limit theorem and two-moment partial traffic

descriptions of the arrival and service processes.

Although the general RQ idea is simple and good, there

remain challenges in identifying useful uncertainty sets and

making connection to the original queueing system. These

challenges were addressed in Whitt and You (2018b), which

forms the foundation of this paper. In Whitt and You (2018b)

we proposed a new nonparametric RQ formulation for

approximating the continuous-time workload process in a

single-server queue and proved that the approximation for the

steady-state mean is asymptotically correct in both light and

heavy traffic. We briefly review this new RQ formulation in

Section 2.2.

1.1.4 Nonparametric traffic descriptions

As a trade-off for mathematical tractability, all approximation

methods rely on incomplete traffic descriptions. Parametric

approaches rely on a small finite set of parameters as traffic

descriptions. The parameters typically are means and vari-

ances of random variables, The general stochastic system is

then mapped into one of a parametric family of highly struc-

tured models. Such approaches A key step is to understand

how these parameters for each arrival process evolve in the

network.

Another stream of research models the temporal depen-

dence in the stochastic processes by nonparametric traffic

descriptions. Jagerman et al. (2004) approximate a general

stationary arrival process by a peakedness matched renewal

stream (PMRS). The key ingredient is the peakedness func-

tion, which is determined by the arrival point process and

the first two moments of the service-time distribution; see Li

and Whitt (2014) for additional discussion. However, Jager-

man et al. (2004) relied on a two-parameter approximation

for the peakedness function of a stationary point process,

where the parameters are estimated by simulation. Similar

nonparametric traffic descriptions have been studied in Jager-

man et al. (2004), Li and Hwang (1992, 1993), but they only

focus on single-station single-server queues.

We adopt a nonparametric approach to describe the arrival

and service processes in an OQN. Let A be an arrival counting

process at a queue, that is, A(t) counts the total number of

arrivals in the interval [0, t]. We assume that A is a sta-

tionary point process as in Daley and Vere-Jones (2008b),

Sigman (1995). We partially characterize A by its rate and its

index of dispersion for counts (IDC), a function of nonnega-

tive real numbers IA ∶ R
+ → R

+ defined as in section 4.5 of

Cox and Lewis (1966) by

IA(t) ≡ Var(A(t))
E[A(t)]

, t ≥ 0. (1)

A reference case is the Poisson process, where IA(t) = 1 for

all t ≥ 0. As regularity conditions, we assume that E[A(t)]
and Var(A(t)) are finite for all t ≥ 0. For renewal processes, it

suffices to assume that the time between renewals has a finite

second moment.

Being a function of time t, the IDC captures the variabil-

ity in a point process over any timescales. The IDC encodes

much more information about the underlying process than tra-

ditional parametric descriptions. The RQ algorithm in Whitt

and You (2018b) established a bridge between the IDC traffic

description and the performance measures in a single-server

queue.

With the aid of the HT limits established in Whitt and

You (2018a, 2020), we now develop a network calculus to

characterize the IDCs of the customer flows in an OQN. Sim-

ilar nonparametric traffic descriptions have been studied in

Jagerman et al. (2004), Li and Hwang (1992, 1993), but they

focused on single queues. To the best of our knowledge, we

are the first to study the nonparametric traffic descriptions in

a network setting.

1.1.5 The overall robust queueing network analyzer

We exploit the powerful connection between the arrival IDC

and the normalized workload in a single-server queue. This

connection was first exposed by Fendick and Whitt (1989),

but they did not produce the systematic approximations we

obtained through robust queueing in Whitt and You (2018b).

We advance that approach further by showing that all these

approximations can be combined to produce a robust queue-
ing network analyzer (RQNA).

Our method is a decomposition approximation because the

algorithm decomposes the network into individual G∕GI∕1

models, where the arrival process and service process at each

queue is partially specified by its rate and IDC, defined in (1).

As in other decomposition methods, three network operations

become essential: first, the departure operation as customers

flow through a service station and an arrival process turns

into a departure process; second, the splitting operation as a

departure process split into multiple sub-processes and feed

into different subsequent queues; and third, the superposition
operation as departure flows from different queues combine

and feed into a queue.

In Section 3, we introduce a set of linear equations, which

we refer to as the IDC equations, to describe the combined

effect of these three network operations. These IDC equations
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are derived from the HT limits in Whitt and You (2018a,

2020). We discuss the remaining technical details in the

appendix. The IDC of the total arrival flows at each queue

is approximated by the solution to the IDC equations. The

RQ algorithm is then applied to generate approximations of

the mean steady-state performance measures at each G∕GI∕1

queue in the network. The RQNA algorithm has a remark-

ably concise analytical formulation, given in (13) and (34),

which makes it easy to implement. We discuss the computa-

tional complexity of our proposed algorithm in Remark 8. We

also conduct simulation experiments to evaluate the effective-

ness of the new RQNA and compare it to previous algorithms

in Dai et al. (1994), Harrison and Nguyen (1990), Horváth

et al. (2010), Whitt (1983). Our experiments indicate that

RQNA performs as well or better than previous algorithms.

1.2 Network structure and our contributions

In this section, we briefly describe the contribution of each

of our previous papers (Whitt & You, 2018a, 2018b, 2019a,

2019b, 2020) and indicate how the present paper goes beyond

them. To do so, it is helpful to classify OQN’s according to

structural complexity. We indicate the paper contributions in

this taxonomy.

1. A single G∕GI∕1 queue
This is an OQN with one node, where the service times

are independent and identically distributed (i.i.d.) and

independent of the arrival process, but the arrival pro-

cess can be general (assuming stationarity). The arrival

process may be a superposition of other external arrival

processes.

Robust queueing based on the IDC is developed for

this model in our first paper (Whitt & You, 2018b).

Indeed, since a decomposition approximation is used,

the robust optimization method was established in this

first paper. This paper should be the starting point for

reading. The main contributions are outlined in section

1.2 of Whitt and You (2018b). A highlight is Theorem

5 there showing that the new robust queueing approxi-

mation is asymptotically exact in both light and heavy

traffic. While this result provides important insight, we

emphasize that the robust queueing approximation in

Whitt and You (2018b) for a single G∕GI∕1 queue is

not obtained directly from the heavy-traffic limit; it is

not itself a heavy-traffic approximation.

While the general framework for our robust queueing

follows Bandi et al. (2015), there are significant differ-

ences even for one queue. Advantages over the initial

robust queueing algorithm in Bandi et al. (2015) are

discussed in Remark 1 in Whitt and You (2018b).

Further insight is provided to the performance of the

G∕GI∕1 queue when the arrival process is partially

characterized by the IDC in Whitt and You (2019a).

Theorem 2.1 in Whitt and You (2019a) shows that a

renewal process is fully characterized by the IDC of the

associated equilibrium (stationary) renewal process.

As a first consequence, for a renewal process, the IDC

can be computed from the Laplace transform of the

interarrival-time distribution by numerical transform

inversion. (That is one good way to get the required

model data.) As a second consequence, a GI∕GI∕1

model is fully characterized by the IDC of the inter-

arrival times and the IDC of the service times. That

implies that any error in approximations of perfor-

mance measures for a GI∕GI∕1 queue must be due to

the robust queueing approximation step, because there

is no model error in that case. In summary, the IDC

function encodes much more information about the

underlying distribution than traditional traffic descrip-

tions.

The paper (Whitt & You, 2019b) is mainly unre-

lated to the present paper because it focuses on a single

time-varying queue with a time-varying arrival-rate

function. Nevertheless, that paper contributes even for

one stationary G∕GI∕1 model because it shows how

to develop approximations for the percentiles of the

steady-state workload distribution instead of just the

mean.

2. A tree network
This class includes queues in series, which are already

very challenging OQNs. This class also allows split-

ting of departure processes, which necessarily is inde-

pendent splitting because of the Markovian routing

assumption. However, superposition of internal pro-

cesses is not allowed. Even the network with two

queues in series presents challenging new problems.

The new problem presented by this class of OQNs

is developing an effective approximation for the IDC

of a departure process from a G∕GI∕1 queue where

the arrival process is partially characterized by its

IDC. Significant progress was obtained by establish-

ing a new heavy-traffic limit theorem for the station-

ary departure process from a G∕GI∕1 queue in Whitt

and You (2018a). In addition, drawing on this limit

theorem, an algorithm to approximate the IDC of a

departure process was developed and tested in Whitt

and You (2018a). Again we emphasize that the robust

queueing approximation in Whitt and You (2018a)

for queues in series is not obtained directly from

the heavy-traffic limit; the algorithm is not itself a

heavy-traffic approximation.

We have indicated that there are significant dif-

ferences between the robust queueing approximations

for one queue in Bandi et al. (2015), Whitt and

You (2018b). The full IDC-based RQNA here is even

more different from the candidate full RQNA in Bandi

et al. (2015). The differences are highlighted in the

comparisons for the queues in series in Tables 1 and 2

in section 4 of the Appendix to Whitt and You (2019a).
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These comparisons are for the same model consid-

ered in Tables 1 and 2 of the Appendix to this paper.

The comparison in the case of a high-variability in

Table 2 of the two appendices is dramatic. The errors

in the total waiting time in this difficult network are

25% for QNA from Whitt (1983), 19% for QNET from

Harrison and Nguyen (1990), 10% for SBD from Dai

et al. (1994) and 2–11% for RQNA depending on the

tuning function used. In contrast, Table 2 in section 4

of the Appendix to Whitt and You (2019a) shows that

the corresponding errors for three candidate algorithms

from Bandi et al. (2015) are 126%, 180% and 549%.

3. Feedforward network
This class allows superpositions of other previous

arrival processes. The component arrival processes in

the superposition may be dependent. Nevertheless, the

feedforward property guarantees that each queue is a

G∕GI∕1 model, where the service times are i.i.d. and

independent of the arrival process, so that each queue

is of the form assumed for a single queue.

4. General OQN allowing feedback
This is the general case, allowing internal feedback and

thus allowing dependence among all interarrival times

and service times. Each successive class in this hier-

archy allows greater complexity. We had provided no

algorithms for these last two classes of OQNs before

the present paper.

The present paper develops and evaluates an algorithm

based on IDCs and robust queueing to compute approximate

performance measures for each queue in a general OQN,

focusing especially on the two more general classes above,

for which there was no previous algorithm. The algorithm

requires solving a system of linear equations so that the com-

plexity is algorithm complexity is similar to that for QNA in

Whitt (1983), see Remark 8 for details.

To establish a theoretical basis for the algorithm, we devel-

oped heavy-traffic limits for the stationary flows in a general

OQN in Whitt and You (2020). That paper contributes signif-

icantly to the algorithm developed in the present paper, but

just as with the previous classes of OQNs, the heavy-traffic

limit itself does not directly provide the algorithm.

In summary, the robust optimization component of the

new algorithm is contained in the first paper (Whitt &

You, 2018b), with the extension to percentiles added in Whitt

and You (2019b). The remaining papers develop approxima-

tions for the IDC of the arrival processes in the network.

The supporting heavy-traffic theory is contained in Whitt and

You (2018a, 2018b, 2020).

1.3 Organization

The rest of the paper is organized as follows. In Section 2

we define the indices of dispersion, discuss the connection

between the index of dispersion for work and the mean

steady-state workload, and briefly review the robust queue-

ing algorithm for a single G∕GI∕1 queue. We also discuss

how to obtain the IDC’s of the external arrival processes, as

required in the model data. In Section 3 we develop a frame-

work for approximating the IDC’s of the flows. In Section

3.5 we develop a relatively elementary version of the RQNA

algorithm for tree-structured networks. In Section 4 we dis-

cuss feedback elimination. In Section 5 we present the full

RQNA algorithm. In Section 6 we discuss numerical experi-

ments. In Section 7 we draw conclusions. In Section 7.2 we

indicate when the approximations are likely to be reliable or

not. We present additional material in the appendix, including

more experimental results.

2 THE INDICES OF DISPERSION AND
ROBUST QUEUEING

In this section, we provide brief reviews of the IDC

function in (1) and the robust queueing algorithm from

Whitt and You (2018b). In Section 2.1 we define another

continuous-time index of dispersion: the Index of Dispersion

for Work (IDW). We discuss a useful decomposition of the

IDW and its connection to the IDC and the mean steady-state

workload. In Section 2.1.2 we indicate how to calculate the

IDC from a model of the arrival process; in Section 2.1.3 we

indicate how to estimate the IDC from data. In Section 2.2 we

review the RQ algorithm from Whitt and You (2018b), which

links the IDW to approximations of the steady-state queueing

performance.

2.1 The indices of dispersion

Consider a general single-server queue with a general arrival

process A, that is, A(t) counts the total number of arrivals in

the time interval [0, t]. We assume that A is a stationary point

process; see Daley and Vere-Jones (2008a), Sigman (1995).

The IDC defined in (1) is the variance function scaled by

the mean function. Thus, it exposes the variability over time,

independent of the scale. Hence, the IDC can be viewed as a

continuous-time generalization of the squared coefficient of

variation (scv, variance divided by the square of the mean)

of a nonnegative random variable. The IDC captures the way

covariance in a point process changes over time, extending the

common practice of including lag-k covariances in modeling

the dependence in a point process.

The reference case is a Poisson arrival process, for which

Ia(t) = 1, t ≥ 0. However, for general arrival processes,

the IDC is more complicated. Even the IDC for a determin-

istic D arrival process is complicated because the IDC is for

the stationary version of the arrival process, which lets the

initial point be uniformly distributed over the constant inter-

arrival time. Much of this paper is devoted to analyzing and
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approximating the IDC for the arrival process at each station

of the OQN.

Remark 1 (Time scaling convention). In Whitt

and You (2018b) we defined the IDC and IDW

in terms of rate-1 processes, so that the actual

rate of the process had to be inserted as part of

the time argument. In contrast, as in Whitt and

You (2018a), here we let the underlying pro-

cesses A and Y have any given rate, so no further

scaling is needed. That changes the formulas for

the IDC of a superposition process, for example,

compare (36) of Whitt and You (2018b) to (27)

here. To illustrate the idea, consider A(t) with

rate-1 and A𝜆(t) ≡ A(𝜆t) with rate-𝜆. Let IA(t)
denote the IDC of A(t), then we have IA𝜆

(t) ≡
Var (A(𝜆t))∕E[A(𝜆t)] = IA(𝜆t).

Now, consider a general sequence of service times {Vi ∶ i ≥
1}, where Vi is the service requirement of the ith customer.

Let

Y(t) ≡
A(t)∑
i=1

Vi (2)

denote the cumulative (work) input process. Paralleling the

IDC, the Index of Dispersion for Work (IDW) describes the

variability associated with the cumulative input process Y in

(2). The IDW is defined as in (1) of Fendick and Whitt (1989)

by

Iw(t) ≡ Var(Y(t))
E[V1]E[Y(t)]

, t ≥ 0. (3)

The IDW captures the cumulative variability of the total ser-

vice requirement brought to the system as a function of time

t, which is a key component of the new RQ approximation in

Whitt and You (2018b) as we review in Section 2.2.

Since we are interested in the steady-state performance of

the OQN, we assume that the processes A and Y have sta-

tionary increments. Given that arrival process and service

times have constant rates, the mean functions E[A(t)] and

E[Y(t)] are linear in time. Hence, much of the remaining

behavior of the A and Y is determined by the variance-time

function or index of dispersion. We are interested in the

variance-time function because it captures the dependence

through the covariances; the processes (A,Y) have indepen-

dent increments for the M∕GI∕1 model, but otherwise not.

To connect the IDC to the IDW, consider the special case

where the service times Vi are i.i.d., independent of the arrival

process A(t). The conditional variance formula gives a useful

decomposition of the IDW

Iw(t) = Ia(t) + c2
s , t ≥ 0, (4)

where c2
s = Var(Vi)∕E[Vi]2 is the scv of the service-time

distribution.

2.1.1 The IDW and the mean steady-state workload

The IDC and IDW are important for analyzing the perfor-

mance of a queue because of their close connection to the

mean steady-state workload E[Z𝜌]. Here we make the per-

formance measure explicitly depend on the traffic intensity

𝜌 to expose the joint impact of dependence in the flows and

the traffic intensity. Under regularity conditions, the workload

Z(t) converges to the steady-state workload Z𝜌 as t increases

to infinity. In Fendick and Whitt (1989) it was shown that the

IDW Iw is intimately related to a scaled mean workload c2
Z(𝜌),

defined by

c2
Z(𝜌) ≡ E[Z𝜌]

E[Z𝜌;M∕D∕1]
, (5)

where E[Z𝜌;M∕D∕1] is the mean steady-state workload in a

M/D/1 model given by

E[Z𝜌;M∕D∕1] = E[V1]𝜌
2(1 − 𝜌)

. (6)

As (6) suggests, the mean steady-state workload converges to

0 as 𝜌 ↓ 0 and diverges to infinity as 𝜌 ↑ 1. The normalization

in (5) exposes the impact of variability separately from the

traffic intensity.

In great generality, as discussed in Fendick and

Whitt (1989), we have

c2
Z(0) = 1 + c2

s = Iw(0) and c2
Z(1) = c2

A + c2
s = Iw(∞), (7)

where c2
A is the asymptotic variability parameter, that is, the

normalization constant in the central limit theorem (CLT) for

the arrival process; see section 4 in Whitt and You (2018b)

and section 5 in the associated e-companion. For a renewal

process, c2
A coincides with the scv c2

a of an interarrival time.

The reference case is the classical M∕GI∕1 queue, for which

we have

c2
Z(𝜌) = 1 + c2

s = Iw(t) for all 𝜌, t, 0 < 𝜌 < 1, t ≥ 0.

The limits in (7) imply that, when c2
A is not nearly 1, c2

Z(𝜌)
varies significantly as a function of 𝜌. Hence, the impact of

the variability in the arrival process upon the queue perfor-

mance clearly depends on the traffic intensity. This important

insight from Fendick and Whitt (1989) is the starting point

for our analysis. In well-behaved models, c2
Z(𝜌) as a function

of 𝜌 and Iw(t) as a function of t tend to change smoothly and

monotonically between those extremes, but OQNs can pro-

duce more complex behavior when both the traffic intensities

at the queues and the levels of variability in the arrival and

service processes at different queues vary; for example, see

the examples for queues in series in section 5.2, EC.8.2 and

EC8.3 of Whitt and You (2018b).

2.1.2 Calculating the IDC from models

For renewal processes, the variance Var(A(t)) and thus the

IDC Ia(t) can either be calculated directly or can be char-

acterized via their Laplace transforms and thus calculated

by inverting those transforms or approximated by perform-

ing asymptotic analysis. Because we are interested in the

steady-state behavior of the OQN, we are primarily inter-

ested in the equilibrium renewal process, as in section 3.5 of

Ross (1996).
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In turns out that the variance of the equilibrium arrival

renewal process V(t) ≡ Var(A(t)) can be expressed in terms

of the renewal function m(t) ≡ E[A0(t)], where A0 is the cor-

responding ordinary renewal process. For a function f , let f̂
denote the Laplace transform of f , defined by

f̂ (s) ≡ (f )(s) ≡ ∫
∞

0

e−stf (t)dt.

The following formula is taken from section 2 of Whitt and

You (2018a).

V̂(s) = 𝜆

s2
+ 2𝜆

s
m̂(s)− 2𝜆2

s3
= 𝜆

s2
+ 2𝜆

s
ĝ(s)

s(1 − ĝ(s))
− 2𝜆2

s3
, (8)

where g is the density function of the interarrival-time

distribution. The variance function can then be obtained

numerically, which is discussed in section 13 of Abate and

Whitt (1992). The hyperexponential (H2) and Erlang (E2)

special cases are described in section III.G of Fendick and

Whitt (1989).

It is also possible to carry out similar analyses for

much more complicated arrival processes; for example,

Neuts (1989) applies matrix-analytic methods to give explicit

representations of the variance Var(A(t)) for the versatile

Markovian point process or Neuts process; see section 5.4,

especially Theorem 5.4.1. Explicit formulae for the Markov

modulated Poisson process (MMPP) is given in pp. 287–289.

2.1.3 Estimating the IDC from data

Now we present an algorithm to numerically estimate the vari-

ance V(t) = Var(A(t)) from a given realized sample path of

the stationary point process A(t). The main idea is based on

section 5.4 (iii) of Cox and Lewis (1966).

Our goal is to estimate V(t) for 0 < t < t0 using a realization

of A(t) for 0 < t < T . The simplest way is to apply the crude

Monte Carlo method to estimate V(t) for a fixed t and repeat

over a finite grid of t’s. This method divides the sample path

of A(t) into nonoverlapping intervals of length t and counts the

number of arrivals in each interval. The sample variance of

the counts then estimates the variance. This method is simple

to implement but can be slow to converge.

To accelerate the crude Monte Carlo method, we apply

three techniques: (i) we use overlapping intervals instead of

nonoverlapping ones, which introduces bias but reduces sam-

ple variance; (ii) we calculate V(t) only over a finite grid

equally spaced in the logarithm scale instead of the linear

scale; and (iii) we re-use the tallied number of events for

shorter intervals to calculate the total number of events for

longer intervals, which avoids repetitive counting. We discuss

the three techniques in turn:

Remark 2 (Justifying the logarithmic scale). To

justify the logarithm scale in (ii), we remark that

the IDC of most stationary processes converges

exponentially fast to a constant as the time t
increases. In particular, this holds for Markov

arrival processes, which includes hyperexpo-

nential renewal process, Erlang renewal pro-

cess, and Markov modulated Poisson Pro-

cess as special cases; for example, see Ch.

XI of Asmussen (2003), Neuts (1979) or

Neuts (1989).

To use overlapping intervals, consider first k = T∕t
nonoverlapping intervals, each with length t. Now, we further

divide each interval of length t in to r intervals of the same

length 𝜏 = t∕r. Hence, we have rk number of nonoverlapping

intervals of length 𝜏. Let ni be the number of events fall in the

ith interval, consider

Ui ≡ A(Ii) ≡ A[i𝜏, (i + r)𝜏) = ni + ni+1 + · · · + ni+r−1,

i = 0, 1, … , rk − r + 1.

We estimate V(t) with the sample variance Vl of {Ui}l
i=1

,

where l = rk − r + 1. This estimator is in general biased but

can achieve lower variance compared with the one obtained

with crude Monte Carlo method. In section 3 of the appendix

we show that this estimator of V(t) is asymptotically con-

sistent under mild conditions that V(t) is differentiable with

derivative V̇(t) having finite positive limits as t → ∞.

For the third technique, we now present an algorithm to

simultaneously estimate V(2i𝜏) for some 𝜏 > 0 and i =
0, 1, … , l. Let {Ii} be the collection of nonoverlapping inter-

vals of length 𝜏 that covers [0,T]. Let ni = A(Ii) be the number

of events on interval Ii. Then we have the following table from

Cox and Lewis (1966).

Time horizon t

Sample 𝝉 2𝝉 22
𝝉 · · ·

1 n1 n1 + n2 n1 + n2 + n3 + n4 · · ·
2 n2 n2 + n3 n3 + n4 + n5 + n6 · · ·
3 n3 n3 + n4 n5 + n6 + n7 + n8 · · ·
⋮ ⋮ ⋮ ⋮ ⋮

We find the estimation of V(2i𝜏) by calculating the sample

variance of the corresponding column.

Now that we have an efficient algorithm to estimate V(2i𝜏)
for fixed 𝜏, we have obtained the estimations of a grid equally

spaced in logarithm scale. To obtain estimations for finer

grids we shift the crude grid by picking several 𝜏 ≤ 𝜏j ≤ 2𝜏

equally spaced in log scale and, for each j, simultaneously

estimate V(2i𝜏j) for all i.

2.2 Robust queueing for single-server queues

In this section, we review the RQ algorithm for single-server

queues and discuss approximations for other performance

measures obtained as a result. The RQ algorithm serves as a

bridge between the IDC of the arrival process and the approxi-

mations of the performance measures. In particular, as in (13),

the RQ algorithm generates approximation of the steady-state
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workload for any queue using the IDC of the total arrival

process at that queue.

Consider the G∕GI∕1 queue, where the arrival process is

a stationary and ergodic point process and the service times

are i.i.d., independent of the arrival process. We assume that

the arrival process A is partially characterized by the arrival

rate 𝜆 and the IDC Ia defined in (1). For a stationary point

process, we always have E[A(t)] = 𝜆t; see section 2.7 of

Sigman (1995). We further assume that the service time dis-

tribution has finite mean 1∕𝜇 (and thus rate 𝜇) and scv c2
s .

We also assume that 𝜌 ≡ 𝜆∕𝜇 < 1 for model stability. Let Z
be the steady-state workload in the G∕GI∕1 model. The RQ

algorithm provides approximation for E[Z] with (𝜆, Ia, 𝜇, c2
s )

as input data.

To obtain the RQ algorithm, we start with a reverse-time

construction of the workload process as in section 3 of Whitt

and You (2018b). Define the net-input process N(t) as

N(t) ≡ Y(t) − t, t ≥ 0. (9)

Then the workload at time t, starting empty at time 0, is

obtained from the reflection map Ψ applied to N, that is,

Z(t) = Ψ(N)(t) ≡ N(t) − inf
0≤s≤t

{N(s)}, t ≥ 0. (10)

With a slight abuse of notation, let Z(t) be the workload at

time 0 of a system that started empty at time −t. Then Z(t)
can be represented as

Z(t) ≡ sup
0≤s≤t

{N(s)}, t ≥ 0, (11)

where N is defined in terms of Y as before, but Y is interpreted

as the total work in service time to enter over the interval

[−s, 0]. That is achieved by letting Vk be the kth service time

indexed going backwards from time 0 and A(s) counting the

number of arrivals in the interval [−s, 0].
The workload process Z(t) defined in (11) is nondecreasing

in t and hence necessarily converges to a limit Z. For the stable

stationary G∕GI∕1 model, Z corresponds to the steady-state

workload and satisfies P(Z < ∞) = 1; see section 6.3 of

Sigman (1995).

In the ordinary stochastic queueing model, N(s) is a

stochastic process and hence Z(t) is a random variable. How-

ever, in Robust Queueing practice, N(s) is viewed as a deter-

ministic instance drawn from a predetermined uncertainty set

 of input functions, while the workload Z∗ for a Robust

Queue is regarded as the worst case workload over the uncer-

tainty set, that is

Z∗ ≡ sup
Ñ∈

sup
x≥0

{Ñ(x)}.

Following the setting from Whitt and You (2018b), we adopt

the following uncertainty set motivated from central limit

theorem (CLT)

 ≡ {
Ñ ∶ R

+ → R ∶ Ñ(s) ≤ E[N(s)]

+ b
√

Var(N(s)), s ≥ 0
}
, (12)

where N(t) is the net input process associated with the

stochastic queue, so

E[N(t)] = E[Y(t) − t] = 𝜌t − t,
Var(N(t)) = Var(Y(t)) = Iw(t)E[V1]E[Y(t)]

= (Ia(t) + c2
s )𝜌t∕𝜇.

The RQ approximation based on this partial model character-

ization is

E[Z𝜌] ≈ Z∗
𝜌 ≡ sup

Ñ𝜌∈𝜌

sup
x≥0

{Ñ(x)}

= sup
x≥0

{−(1 − 𝜌)x + b
√

𝜌x(Ia(x) + c2
s )∕𝜇}, (13)

which follows Theorem 2 of Whitt and You (2018b) and (4).

Notice that the approximation in (13) is directly a supremum

of a real-valued function, and so can be computed quite easily

for any given 4-tuple (𝜆, Ia, 𝜇, c2
s ).

Theorem 5 in Whitt and You (2018b) states that the RQ

algorithm gives asymptotically exact values of the mean

steady-state workload in both light-traffic and heavy-traffic

limits. Through extensive simulation experiments, it has been

found that the mean steady-state workload E[Z] can be well

approximated by the IDW-based RQ algorithm.

Remark 3 (Continuous-time stationarity). We

emphasize that, in the RQ formulation, it is

essential to use the continuous-time stationary

version of the IDC in (1) and the IDW in (3),

instead of their discrete-time Palm stationary

versions; see Sigman (1995) for a comprehen-

sive discussion. The continuous-time stationary

IDC we use here yields asymptotically correct

light-traffic limit, whereas the Palm stationary

IDC does not; see section 5.2 of Whitt and

You (2018b).

Remark 4 (Queue length and waiting time).

Approximations for other steady-state perfor-

mance measures can be obtained by applying

exact relations for the G∕GI∕1 queue that follow

from Little’s law L = 𝜆W and its generaliza-

tion H = 𝜆G; for example, see Whitt (1991) and

Chapter X of Asmussen (2003) for the GI∕GI∕1

special case. Let W,Q and X be the steady-state

waiting time, queue length and the number in

system (including the one in service, if any). By

Little’s law,

E[Q] = 𝜆E[W] = 𝜌E[W] and

E[X] = E[Q] + 𝜌 = 𝜌(E[W] + 1).

By Brumelle (1971) or H = 𝜆G, (6.20) of

Whitt (1991),

E[Z] = 𝜌E[W] + 𝜌
E[V2]

2𝜇
= 𝜌E[W] + 𝜌

(c2
s + 1)
2𝜇

.
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Hence, given an approximation Z∗ for E[Z], we

can use the approximations.

E[W] ≈ max{0,Z∗∕𝜌 − (c2
s + 1)∕2𝜇} and

E[Q] ≈ 𝜆E[W].

Remark 5 (Network performance measures). So

far we only have discussed the performance

measures for a single station. The total net-

work performance measures, on the other hand,

can also be derived. For example, the expected

value of the total sojourn time T tot
i , that is, the

time needed to flow through the queueing net-

work for a customer that enters the system from

station i, is easily estimated from the obtained

mean waiting time at each station. Assuming

Markov routing with routing matrix P, a stan-

dard argument from discrete time Markov chain

theory gives the mean total number of visits 𝜉i,j
to station j by a customer entering the system at

station i as

𝜉i,j = ((I − P)−1)i,j,

where (I − P)−1 is the fundamental matrix of

an absorbing Markov chain. Hence, the mean

steady-state total sojourn time E[T tot
i ] is approx-

imated by

E[T tot
i ] ≈

K∑
j=1

𝜉i,j(E[Wj] + 1∕𝜇j). (14)

In real world applications, customers often

experience non-Markovian routing, where

routes are customer-dependent. For ways to

represent those scenarios and convert them

(approximately) to the current framework, see

sections 2.3 and 6 of Whitt (1983).

3 APPROXIMATING THE IDCS OF THE
NETWORK FLOWS

In the i.i.d. service time setting, the IDW reduces to the arrival

IDC plus the service scv as in (4). To generalize the RQ

algorithm in section 2.2 into a RQNA algorithm for networks,

the main challenge is developing a successful approximation

for the IDC of the total arrival flow at each queue.

In this section, we develop a framework for approximating

the IDCs of the network flows in the OQN, including the total

arrival flows. We start in Section 3.1 by reviewing the OQN

model and the required model data for the RQNA algorithm.

We review the standard traffic rate equations in Section 3.2

and develop the new IDC equations in Section 3.3.

3.1 The OQN model

3.1.1 The model primitives

We consider a network of K queues. Each queue has a single

server, unlimited waiting space and provides service in order

of arrival.

For each queue i, 1 ≤ i ≤ K, we have an external

arrival process A0,i ≡ {A0,i(t) ∶ t ≥ 0}. Each external

arrival process A0,i is assumed to be a simple (no batches)

stationary and ergodic point process with finite rate 𝜆0,i and

finite second-moment process E[A2
0,i(t)]. We assume that all

these external arrival processes, the service and the routing

processes, are mutually independent.

For each individual queue, we assume that the service times

are i.i.d. Let Vl
i denote the service requirement of the lth cus-

tomer at queue i, which we assume to be distributed according

to cdf Gi with finite mean 1∕𝜇i and scv c2
s,i. Let the associated

service renewal counting process be Si ≡ {Si(t) ∶ t ≥ 0},

where

Si(t) = max

{
n ≤ 0 ∶

n∑
l=1

Vl
i ≤ t

}
, t ≥ 0. (15)

We assume that departures are routed from node to node and

out of the network by Markovian routing, independent of the

arrival and service processes. We assume that each arrival

eventually leaves w.p. 1. Let pi,j denote the probability that a

departure from node i is routed to node j. Let P ≡ {pi,j ∶ 1 ≤
i, j ≤ K} be the (substochastic) routing matrix. Furthermore,

let pi,0 ≡ 1 −
∑

j pi,j denote the probability that a customer

departs the system after completing service at from node i.

3.1.2 The IDC’s of the flows

In order to apply the RQ algorithm, our primary focus here

is to analyze and approximate the IDC’s of the customer

flows in an OQN. The flows can be separated into two

groups, the external flows and the internal flows. The external

flows are the flows associated with the model primitives in

Section 3.1.1. For external arrival process A0,i, we let Ia,0,i ≡
{Ia,0,i(t) ∶ 0 ≤ t ≤ ∞} denote the its IDC, as defined in (1).

For service flows, let Is,i ≡ {Is,i(t); 0 ≤ t ≤ ∞} be the IDC of

the stationary renewal process associated with (15). For the

case of renewal process, we necessarily have Is,i(∞) = c2
s,i. We

assume that the IDC’s Ia,0,i and Is,i are continuous functions

with finite limits at 0 and +∞.

The IDC’s of the external flows form an important part of

the model input of our RQNA algorithm. In particular, we

assume that we are given (𝜆0,i, Ia,0,i, 𝜇i, Is,i) for each queue i
and the routing matrix P.

In practice, the IDC of the external flows can be specified

in one of the following ways. First, for renewal processes, it

suffices to specify the interrenewal-time cdf; then the associ-

ated IDC can be computed from the cdf as indicated in Section

2.1.2. Second, if we are only given the first two moments,

then we can fit a convenient cdf to these parameters as indi-

cated in section 3 of Whitt (1982), and use the corresponding
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IDC. Third, if we are given only the sample data of the pro-

cess, then we apply the numerical algorithm in section 2.1.3

to estimate the rate and IDC of the process.

To implement our IDC approximations, we develop approx-

imations for the IDC’s of the internal flows. We use the

following notation: Let Ai denote the total arrival process at

queue i and let Ia,i be the associated IDC; let Di denote the

departure process at queue i and let Id,i be the associated IDC;

Furthermore, let Ai,j denote the departing customer flow from

queue i that are routed to queue j and let Ia,i,j be the associated

IDC.

3.2 The traffic rate equations and traffic intensities

Let 𝜆 ≡ (𝜆1, … , 𝜆K) be the effective (total) arrival rate vec-

tor. We use the same traffic rate equations as in a Jackson net-

work to determine 𝜆. Then 𝜆i,j ≡ 𝜆ipi,j is the rate of the inter-

nal arrival flow Ai,j. Recall that 𝜆0 ≡ (𝜆0,1, … , 𝜆0,K) is the

external arrival rate vector, then the traffic-rate equations are

𝜆i = 𝜆0,i +
K∑

j=1

𝜆j,i = 𝜆0,i +
K∑

i=1

𝜆jpj,i, 1 ≤ i ≤ K, (16)

or in matrix form

(I − P′)𝜆 = 𝜆0,

where I denotes the K×K identity matrix and the superscript ′

denotes the transpose. We assume that I − P′ is invertible;

that is, we assume that all customers eventually leave the

system. The condition for the invertibility of I − P′ to hold

is well known, for example, in Theorem 3.2.1 of Kemeny

and Snell (1976). Hence, the vector of internal arrival rates

is given by

𝜆 = (I − P′)−1𝜆0. (17)

Then the traffic intensity at queue i is defined as usual by 𝜌i ≡
𝜆i∕𝜇i. We assume that 𝜌i < 1 for all i so that the OQN is stable.

3.3 The traffic variability equations

In this section, we develop a set of IDC equations to solve

for the approximations of the IDC’s of the internal flows. The

IDC of the total arrival process at each queue is then con-

verted into approximations of the performance measures as in

Section 2.2.

As in other decomposition methods, three network oper-

ations are essential: the departure operation (flow through

a queue), the splitting operation (divide a flow into several

sub-flows), and the superposition operation (combining mul-

tiple flows). We develop IDC equations that reveal (approxi-

mately) how the IDC’s evolve under each network operation.

3.3.1 The departure operation

The IDC of the stationary departure process has been studied

in section 6.2 of Whitt and You (2018a). We briefly review

the departure IDC equation, see section 5.1 of the appendix

for more details.

We approximate the IDC Id,i by a convex combination of

the arrival IDC Ia,i and the service IDC Is,i. In particular,

Id,i(t) ≈ wi(t)Ia,i(t) + (1 − wi(t))Is,i(𝜌it), t ≥ 0. (18)

The weight function wi is defined as

wi(t) ≡ w∗((1 − 𝜌i)2𝜆it∕𝜌ic2
x,i), t ≥ 0, (19)

where c2
x,i ≡ c2

a,i + c2
s,i and c2

a,i = Ia,i(∞) and the canonical
weight function w∗ is

w∗(t) = 1

2t

(
(t2 + 2t − 1)(1 − 2Φc(

√
t))

+ 2𝜑(
√

t)
√

t(1 + t) − t2
)

(20)

Note that there is a change of notation between (18) here and

(74) in Whitt and You (2018a). In particular, we have Is,i(𝜌it)
here instead of Is,i(t). In Whitt and You (2018a), we worked

with a single-server queue and assumed that Is,i(t) is the IDC

associated with the rate-𝜆i service process. However, when

considering an OQN here, it is natural to work with service

IDC associated with the service rate 𝜇i. These two approaches

are equivalent, as we observed in Remark 1. Given that the

given stationary service process has a rate 𝜇i, we convert it to

rate 𝜆i by considering Is,i(𝜌it).

Remark 6 (Parallel to QNA in Whitt (1983)).
The convex combination in the approxima-

tion (18) is reminiscent of the convex com-

bination for variability parameters in (38) of

Whitt (1983), that is,

cd,i ≈ (1 − 𝜌2
i )c

2
a,i + 𝜌2

i c2
s,i, (21)

which corresponds to a stationary-interval

approximation, as discussed in Whitt (1982,

1983, 1984).

Similar behavior can be seen in approxima-

tion (18). In particular, the canonical weight

function w∗ in (20) is a monotonically increas-

ing function with w∗(0) = 0 and w∗(∞) = 1. By

the definition of wi(t), we see that for each t, (18)

places less weight on Ia,i(t) and more weight

on Is,i(t) as 𝜌i increases. This makes sense intu-

itively because the queue should be busy most

of the time as 𝜌i increases toward 1. Thus, depar-

ture times tend to be minor variations of service

times. In contrast, if 𝜌i is very small, the queue

acts only as a minor perturbation of the arrival

process.

However, (19) reveals a more subtle inter-

action between 𝜌i and the variability of the

departure process over different time scales.

3.3.2 The splitting operation

To treat splitting, we write the split process Ai,j as a random

sum. Let 𝜃l
i,j = 1 if the lth departure from queue i is directed
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to queue j, and let 𝜃l
i,j = 0 if otherwise. Then observe that

Ai,j(t) =
Di(t)∑
l=1

𝜃l
i,j, t ≥ 0.

We apply the conditional-variance formula to write the vari-

ance Va,i,j(t) ≡ Var(Ai,j(t)) as

Va,i,j(t) = E[Var (Ai,j(t)|Di(t))] + Var(E[Ai,j(t)|Di(t)]). (22)

With the Markovian routing we have assumed, the routing

decisions at each queue at each time are i.i.d. and indepen-

dent of the history of the network. As a consequence, for

feed-forward queueing networks, we can deduce that the col-

lection of all routing decisions made at queue i up to time t
is independent of Di(t). For the case in which independence

holds, we can apply (22) to express Va,i,j(t) in terms of the

variance of the departure process, Vd,i(t) ≡ Var(Di(t)); in

particular,

Va,i,j(t) = p2
i,jVd,i(t) + pi,j(1 − pi,j)𝜆it, (23)

or, equivalently, since E[Di(t)] = 𝜆it and E[Ai,j(t)] = pi,j𝜆it =
pi,jE[Di(t)],

Ia,i,j(t) = pi,jId,i(t) + (1 − pi,j). (24)

Formula (24) is an initial approximation, which parallels the

approximation used for splitting in (40) of Whitt (1983), that

is, c2
a,i,j = pi,jc2

d,i + (1 − pi,j).
However, the independence assumption will not hold in the

presence of customer feedback, in which case there is a com-

plicated dependence. We develop a more general formula to

improve the approximation in general OQNs.

For that purpose, we apply the functional central limit

theorem (FCLT) for split processes in section 9.5 of

Whitt (2002) and the heavy-traffic limit theorems in Whitt

and You (2020). We give the detailed derivation in section

5.2 of the appendix. Based on that heavy-traffic analysis, we

propose the splitting IDC equation as

Ia,i,j(t) = pi,jId,i(t) + (1 − pi,j) + 𝛼i,j(t). (25)

To account for the dependence, we include a correction term

𝛼i,j, defined as

𝛼i,j,𝜌i (t) ≈ 2𝜉i,jpi,j(1 − pi,j)w𝜌i (t)
= 2𝜉i,jpi,j(1 − pi,j)w∗((1 − 𝜌i)−2𝜆it∕(h(𝜌i)c2

x,i)), t ≥ 0,

(26)

where w𝜌i (t) is the weight function for the departure IDC in

(19), c2
x,i, c2

a,i and c2
s,i are also as in (19), while 𝜉i,j is the (i, j)th

entry of the matrix (I − P′)−1 and h(⋅) is a tuning function, see

Section 6 of the appendix.

3.3.3 The superposition operation

In this section, we investigate the impact of the superposition

operation on the IDC’s. To start, consider the case in which

the individual streams are mutually independent. In this case,

we have

Va,i(t) ≡ Var(Ai(t)) = Var

( K∑
j=0

Aj,i(t)

)
=

K∑
j=0

Var(Aj,i(t)),

so that

Ia,i(t) =
K∑

j=0

(𝜆j,i∕𝜆i)Ia,j,i(t), (27)

where Ia,j,i(t) ≡ Var(Aj,i(t))∕E[Aj,i(t)]. Recall that (27) dif-

fers from (36) of Whitt and You (2018b) because we are not

assuming rate-1 processes in our definitions of the IDC; see

Remark 1.

While (27) is exact when the streams are independent, it is

not exact in general cases. We may have a stream that splits

and then recombines later, which introduces dependence even

for feed-forward networks.

For dependent streams, the variance of the superposition

total arrival process at queue i can be written as

Va,i(t) ≡ Var

( K∑
j=0

Aj,i(t)

)
=

K∑
j=0

Var(Aj,i(t)) + 𝛽i(t)E[Ai(t)]

where A0,i denotes the external arrival process at station i,

𝛽i(t) ≡ ∑
j≠k

𝛽j,i;k,i(t), and 𝛽j,i;k,i(t) ≡ cov(Aj,i(t),Ak,i(t))
E[Ai(t)]

.

(28)

In terms of the IDC’s, we have

Iai(t) =
K∑

j=0

(𝜆j,i∕𝜆i)Iaj,i(t) + 𝛽i(t). (29)

In general, an exact characterization of the correction term

𝛽i(t) is not available. Thus, we again apply heavy-traffic lim-

its in Whitt and You (2020) to generate an approximation.

Detailed derivation appears in section 5.3 of the appendix.

Assume without loss of generality that 𝜌j ≥ 𝜌i. From the

heavy-traffic analysis, we obtain the approximation

𝛽j,i;k,i(t) = 𝛽k,i;j,i(t) ≈ (𝜁j,i;k,i∕𝜆i)w∗((1 − 𝜌j)2pj,i𝜆jt∕𝜌jc2
x,j,i),

(30)

where w∗ is the weight function in (20), c2
x,j,i = pj,ic2

a,j + (1 −
pj,i) + pj,ic2

s,j and c2
a,j is solved from the variability equations

for the asymptotic variability parameters in (35). The constant

𝜁j,i;k,i is defined as

𝜁j,i;k,i = 𝜈′j

(
diag(c2

a,0,i𝜆i) +
K∑

l=1

Σl

)
𝜈k+𝜈′kΣjei+𝜈′jΣkei, (31)

where 𝜈l ≡ pl,ie′l(I − P′)−1 for l = j, k, ei is the ith unit vec-

tor, diag(c2
a,0,i𝜆i) is the diagonal matrix with c2

a,0,i𝜆i as the

ith diagonal entry, Σl is the covaraince matrix of the split-

ting decision process at station l defined as Σl ≡ (𝜎l
i,j) with

𝜎l
i,i = pl,i(1 − pl,i)𝜆l and 𝜎l

i,j = −pl,ipl,j𝜆l for i ≠ j.

3.4 The IDC equation system

We now assemble the building blocks into a system of linear

equations (for each t) that describes the IDC’s in the OQN.

Combining (18), (25) and (29), we obtain the IDC equations.

These are equations that should be satisfied by the unknown
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IDCs. For 1 ≤ i ≤ K, the equations are

Ia,i(t) =
K∑

j=1

(𝜆j,i∕𝜆i)Ia,j,i(t) + (𝜆0,i∕𝜆i)Ia,0,i(t) + 𝛽i(t),

Ia,i,j(t) = pi,jId,i(t) + (1 − pi,j) + 𝛼i,j(t),
Id,i(t) = wi(t)Ia,i(t) + (1 − wi(t))Is,i(𝜌it). (32)

The parameters pi,j, 𝜆i,j and 𝜆i are determined by the model

primitives in section 3.1.1 and the traffic rate equations in

section 3.2. The IDC’s of the external flows Ia0,i(t) and Isi(t)
are assumed to be calculated via exact or numerical inversion

of Laplace Transforms or estimated from data. The weight

functions wi(t) is defined in (19), which involves a limiting

variability parameter c2
x,i ≡ Ia,i(∞) + c2

s,i.

To solve for the limiting variability parameters Ia,i(∞), we

let t → ∞ in (32) and denote c2
a,i ≡ Ia,i(∞), c2

a,i,j ≡ Ia,i,j(∞)
and c2

d,i ≡ Id,i(∞). Furthermore, we define

c2
𝛼i,j

≡ 𝛼i,j(∞) = 2𝜉i,jpi,j(1 − pi,j),

c2
𝛽i
≡ 𝛽i(∞) = 2

𝜆i

∑
j<k

𝜁j,i;k,i,

where we used w∗(∞) = 1 in (26) and (30). Hence, we have

the limiting variability equations:

c2
a,i =

K∑
j=1

(𝜆j,i∕𝜆i)c2
a,j,i + (𝜆0,i∕𝜆i)c2

a,0,i + c2
𝛽i
,

c2
a,i,j = pi,jc2

d,i + (1 − pi,j) + c2
𝛼i,j
,

c2
d,i = c2

a,i, 1 ≤ i ≤ K, (33)

where we used the fact that wi(t) → 1 as t → ∞.

For a concise matrix notation, let

I(t) ≡ (Ia,1(t), … , Ia,K(t), Ia,1,1(t), … , Ia,K,K(t),
Id,1(t), … , Id,K(t)),

b(t) ≡ (ba,1(t), … , ba,K(t), ba,1,1(t), … ,

ba,K,K(t), bd,1(t), … , bd,K(t)),

M(t) ≡ (Mm,n(t)) ∈ R
(2K+K2)2 ,

m, n ∈ {a1, … , aK , a1,1, … , aK,K , d1, … , dK},
c2 ≡ (c2

a,1, … , c2
a,K , c

2
a,1,1

, … , c2
a,K,K , c

2
d,i, … , c2

d,K),

where

ba,i(t) ≡ 𝜆0,i

𝜆i
Ia,0,i(t) + 𝛽i(t), ba,i,j ≡ (1 − pi,j) + 𝛼i,j(t),

bd,i(t) ≡ (1 − wi(t))Is,i(t); Mai,aj,i(t) =
𝜆j,i

𝜆i
,

Mai,j,di(t) = pi,j,Mdi,ai(t) = wi(t), and

Mm,n(t) = 0 otherwise.

Then the IDC equations can be expressed concisely as

(E − M(t))I(t) = b(t), (34)

while the limiting variability equations can be expressed as

(E − M(∞))c2 = b(∞), (35)

where E ∈ R
(2K+K2)2 is the identity matrix.

The following theorem states that these equations have

unique solutions.

Theorem 1 Assume that I − P′ is invertible.
Then E − M(t) is invertible for each fixed t ∈
R

+∪{∞}. Hence, for any given t and b, the IDC
equations in (34) have the unique solution

I(t) = (E − M(t))−1b(t)

and the limiting variability equations in (35)

have the unique solution

c2 = (E − M(∞))−1b(∞).

Proof Let 𝛿i,j be the Kronecker delta function.

Then substituting the equations for Ia,j,i(t) and

Id,i(t) into the equation for Ia,i(t), we obtain an

equation set for Ia,i(t) with coefficient matrix

(𝛿i,j − (𝜆j,i∕𝜆i)pj,iwj(t)) ∈ R
K2

. Note that

(𝜆j,i∕𝜆i)wj(t) ≤ 1 for t ∈ R
+ ∪ {∞}, the invert-

ibility of I − P′ implies that the equations for

Ia,i(t) have an unique solution. Substituting in

the solution for Ia,i(t), we obtain solutions for

Ia,i,j(t) and Id,i(t). ▪

Remark 7 (The Kim (2011a, 2011b)

MMPP(2) decomposition). In Kim (2011a,

2011b) a decomposition approximation of

queueing networks based on MMPP(2)/GI/1

queues was investigated. MMPP(2) stands for

Markov modulated Poisson process with two

underlying states. The four rate parameters in

the MMPP(2) are determined from the approx-

imations of the mean, the IDC, and the third

moment process of the arrival process at a

preselected time t0 and the limiting variability

parameter of the arrival process. The IDC and

third moment processes are approximated by

the network equations with correction terms

motivated from the Markovian routing settings.

At first glance, the IDC equations proposed

here are pretty similar to the network equations

used in Kim (2011a), see (20), (22), and (31)

there. However, our method is different in three

aspects. First, our approach does not fit the flows

to particular processes (MMPP in Kim, 2011a),

instead we partially characterize the flows by

the IDC and apply the RQ algorithm reviewed

in Section 2.2. Second, the entire IDC func-

tion is utilized in the RQ algorithm, whereas

Kim (2011a) used IDC evaluated at a prese-

lected time t0 to fit the parameters of the MMPP.

Third, we rely on a more detailed heavy-traffic

limit to propose asymptotically exact correction

terms, see section 5.3 of the appendix.
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3.5 RQNA for tree-structured queueing networks

With the IDC equations developed in section 3.4, we imme-

diately obtain an elementary algorithm for tree-structured

OQNs. A tree-structured queueing network is an OQN whose

topology forms a directed tree. Recall that a directed tree is a

connected directed graph whose underlying undirected graph

is a tree. The tree-structured network is a special case of a

feed-forward network in which the superposed flows at each

node have no common origin.

This special structure greatly simplifies the IDC-based

RQNA algorithm. First, there is no customer feedback, which

significantly simplifies the IDC equations and the dependence

in the queueing network. Second, for any internal flow Ai,j
that is nonzero, we must have 𝛼i,j = 0 for the correction

term in (25), see discussions in section 5.3 of the appendix.

Finally, the tree structure implies that 𝛽i = 0 for the correc-

tion term for superposition because all superposed processes

are independent.

We summarize the procedure in Algorithm 1. To elabo-

rate, with these simplifications of the correction terms, the

equations in (32), yield, for 1 ≤ i, j ≤ K,

Iai(t) =
K∑

j=1

𝜆j,i

𝜆i
Iaj,i(t) + (𝜆0,i∕𝜆i)Ia0,i(t),

Iai,j (t) = pi,jIdi(t) + (1 − pi,j),

Idi(t) = wi(t)Iai(t) + (1 − wi(t))Isi(t).

The IDC equations in this setting inherit a special struc-

ture that allows a recursive algorithm. Note that the stations

Algorithm 1: The RQNA algorithm for approximat-

ing the IDC’s at each time t in a tree-structured

queueing network.

Require: The queueing network has tree structure.

Output : Solution to the IDC equations (34).

1 for i = 1 to n do
2 𝜆i ← 𝜆0,i +

∑
j<i 𝜆jpj,i;

3 𝜌i ← 𝜆i∕𝜇i;

4 c2
a,i ←

∑
j<i

𝜆j,i

𝜆i
c2

a,j,i +
𝜆0,i

𝜆i
c2

a,0,i;

5 c2
x,i ← c2

a,i + c2
s,i;

6 wi(t) ← w∗((1 − 𝜌i)2𝜆it∕(𝜌ic2
x,i));

7 Iai(t) ←
∑

j<i
𝜆j,i

𝜆i(
pj,i

(
wj(t)Ia,j(t) + (1 − wj(t))Is,j(t)

)
+ (1 − pj,i)

)
+ 𝜆0,i

𝜆i
Ia,0,i(t);

8 Idi(t) ← wi(t)Ia,i(t) + (1 − wi(t))Is,i(t);
9 for j < i do

10 Ia,i,j(t) ← pi,jId,i(t) + (1 − pi,j);
11 end
12 end
13 return I(t).

in the tree-structured network can be partitioned into disjoint

layers {1, … ,l} such that for station i ∈ k, it takes only

the input flows from j ∈ ∪k−1
j=1

j for 1 ≤ k ≤ l. To sim-

plify the notation, we sort the node in the order of their layers

and assign arbitrary order to nodes within the same layer. If

i ∈ k, then ∪k−1
j=1

j ⊂ {1, 2, … , i− 1}, so that 𝜆j,i = 0 for all

j ≥ i. Hence, by substituting in the equations for Idi and Iai,j

into that of Iai , we have

Iai(t) =
K∑

j=1

𝜆j,i

𝜆i
(pj,i(wj(t)Iaj(t) + (1 − wj(t))Isj(t)) + (1 − pj,i))

+
𝜆0,i

𝜆i
Ia0,i(t),

=
∑
j<i

𝜆j,i

𝜆i
(pj,i(wj(t)Iaj(t) + (1 − wj(t))Isj(t)) + (1 − pj,i))

+
𝜆0,i

𝜆i
Ia0,i(t). (36)

Note that (36) exhibits a lower-triangular shape so that we can

explicitly write down the solution in the order of the stations.

4 FEEDBACK ELIMINATION

In this section, we discuss the case in which customers can

return (feedback) to a queue after receiving service there. Cus-

tomer feedback introduces dependence between the arrival

and service times, even when the service times themselves are

mutually independent. As a result, the decomposition Iw(t) =
Ia(t) + c2

s in (4) is no longer valid. Indeed, assuming that it is,

as we have done so far, can introduce serious errors, as shown

in our simulation examples. We address this problem by intro-

ducing a feedback elimination procedure. We start with the

so-called immediate feedback in Section 4.1 and generalize it

into near-immediate feedback in Section 4.2.

4.1 Immediate feedback elimination

In section III of Whitt (1983) it is observed that it is often

helpful to preprocess the model data by eliminating imme-

diate feedback for queues with feedback. We now show how

that can be done for the RQNA algorithm.

We consider a single queue with i.i.d. feedback. In this

case, all feedback is immediate feedback, meaning that the

customer feeds back to the same queue immediately after

completing service, without first going through another ser-

vice station. For a GI∕GI∕1 model allowing feedback, all

feedback is necessarily immediate because there is only one

queue.

Typically, the immediate feedback returns the customer to

the end of the queue. However, in the immediate feedback

elimination procedure, the approximation step is to put the

customer back at the head of the line so that the customer

receives a geometrically random number of service times all

at once. Clearly, this does not alter the queue length process
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or the workload process because the approximation step is

work-conserving.

The modified system is a single-server queue with a new

service-time distribution and without feedback. Let Np denote

a geometric random variable with success probability 1 − p
and support N

+, the positive natural numbers, then the new

service time can be expressed as

Sp =
Np∑
i=1

Si, (37)

where Si’s are i.i.d. copies of the original service times. This

modification in service times results in a change in the service

scv. By the conditional variance formula, the scv of the total

service time is c̃2
s = p+(1−p)c2

s . The new service IDC in the

modified system is the IDC of the stationary renewal process

associated with the new service times. To obtain the new ser-

vice IDC, we need only find the Laplace Transform of the new

service distribution, then apply the algorithm in Section 2.1.2.

We provide the details in section 4 of the appendix.

For the mean waiting time, we need to adjust for per-visit

waiting time by multiplying the waiting time in the modified

system by (1 − p). Note that (1 − p)−1 is the mean number of

visits by a customer in the original system.

In section 4.1 of Whitt and You (2020) it is shown that

the modified system after the immediate feedback elimina-

tion procedure shares the same HT limits of the queue length

process, the external departure process, the workload process,

and the waiting time process. Hence, the immediate feedback

elimination procedure as an approximation is asymptotically

exact in the heavy-traffic limit.

4.2 Near-immediate feedback

Now, we consider general OQNs, where the feedback does

not necessarily happen immediately, meaning that a departing

customer may visit other queues before returning to the feed-

back queue. To treat general OQNs, we extend the immedi-

ate feedback concept to the near-immediate feedback, which

depends on the traffic intensities of the queues on the path the

customer took before feedback happens. The near-immediate

feedback is defined as any feedback that does not go through

any queue with higher traffic intensity.

By default, the RQNA algorithm eliminates all near-

immediate feedback. To help understand near-immediate

feedback, consider a modified OQN with one bottleneck

queue, denoted by h. A bottleneck queue is a queue with the

highest traffic intensity in the network. At the same time, all

nonbottleneck queues have service times set to 0 so that they

serve as instantaneous switches. In the reduced network, we

define an external arrival Â0 to the bottleneck queue to be any

external arrival that arrives at the bottleneck queue for the

first time. Hence, an external arrival may have visited one or

multiple nonbottleneck queues before its first visit to the bot-

tleneck queue. In particular, the external arrival process can

be expressed as the superposition of (i) the original external

arrival process A0,h at station h; and (ii) the Markov splitting

of the external arrival process A0,i at station i with probability

p̂i,h, for i ≠ h, where p̂i,h denote the probability of a customer

that enters the original system at station i ends up visiting

the bottleneck station h. For the explicit formula of p̂i,h, see

Remark 3.2 of Whitt and You (2020).

In section 4.2 of Whitt and You (2020), we showed that

this reduced network is asymptotically equivalent in the HT

limit to the single-server queue with i.i.d. feedback that we

considered in Section 4.1. In particular, the arrival process

of the equivalent single-station system is Â0 as described

above, the service times remain unchanged, and the feed-

back probability is p̂, which is precisely the probability of

near-immediate feedback in the original system; see (3.9) of

Whitt and You (2020) for the expression of p̂. Hence we

showed that eliminating all feedback at the bottleneck queue

as described above prior to analysis is asymptotically cor-

rect in HT for OQNs with a single bottleneck queue in terms

of the queue length process, the external departure process,

the workload process, and the waiting time process. More-

over, the different variants of the algorithm (eliminating all

near-immediate feedback or only the near-immediate feed-

back at the bottleneck queues) are asymptotically exact in the

HT limit for an OQN with a single-bottleneck queue because

only the bottleneck queues have a nondegenerate HT limit.

In contrast, if there are multiple bottleneck queues, the HT

limit requires multidimensional RBM, which is not used in

our RQNA.

5 THE FULL RQNA ALGORITHM

As basic input parameters, the RQNA algorithm requires the

model data specified in section 3.1:

1. Network topology specified by the routing

matrix P.

2. External arrival processes specified by (i) the

interarrival distribution, if renewal; or (ii) rate

𝜆 and IDC; or (iii) a realized sample path of the

stationary external arrival process.

3. Service renewal process specified by (i) the ser-

vice distribution; or (ii) the rate and IDC; or (iii)

a realized sample path of the stationary service

renewal process.

Combining the traffic-rate equation, the limiting variability

equation, the IDC equation and the feedback elimination pro-

cedure, we have obtained a general framework for the RQNA

algorithm, which we summarize in Algorithm 2. We remark

that the RQNA algorithm becomes much simpler in the case

without customer feedbacks, as discussed in section 3.5.

Remark 8 (Computation complexity). We

remark that the full RQNA algorithm is light

in computational complexity. Most of the
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Algorithm 2: A general framework of the RQNA

algorithm for the approximation of the system perfor-

mance measures.

Require: Specification of the correction terms 𝛼i,j(t)
in § 3.3.2 and 𝛽i(t) in §3.3.3, a set of stations

to perform feedback elimination as specified

in § 4 and the flows to eliminate for each of

the selected station.

Output : Approximation of the system performance

measures.

1 Solve the traffic rate equations by 𝜆 = (I − P′)−1𝜆0 as

in § 3.2 and let 𝜌i = 𝜆i∕𝜇i;

2 Solve the limiting variability equations by

c2 = (E − M(∞))−1b(∞) as in § 3.4;

3 Solve the IDC equations by I(t) = (E − M(t))−1b(t) for

the total arrival IDCs, where we use c from Step 2 in

(19);

4 Select a set of stations to perform feedback elimination,

as in § 4. For each selected station, identify the flows

to eliminate, then identify the corresponding

feedback probability, the modified service IDC as in

§ 4.1 as well as the reduced network. Repeat Step 1 to

Step 3 on the reduced network to obtain the modified

IDW (as the sum of the modified total arrival IDC

and the modified service scv) at the selected station.

5 Apply the RQ algorithm in (13) to obtain the

approximations for the mean steady-state workload at

each station.

6 Apply the formulas in Remark 4 and 5 to obtain

approximations for the expected values of the

steady-state queue length, the waiting time at each

queue, and the total sojourn time for the system.

calculation comes from Step 3 of the RQNA

algorithm. For each t, the algorithm needs to

solve for one linear system with K equations,

where K is the number of stations. By default,

the algorithm solves these equations on a grid

with points logarithmically apart; see Remark 2.

For station i, the RQ algorithm requires the

value of arrival IDC in the interval [0,Ti] for

Ti = O((1 − 𝜌i)−2). Hence, RQNA solves for at

most O(−2 log(1− 𝜌max)) linear systems, where

𝜌max = maxi 𝜌i. For each station that we apply

feedback elimination, we need to run RQNA

(without feedback elimination) on the reduced

network. As a result, RQNA with feedback

elimination solves at most O(−2K log(1− 𝜌max))
linear systems, each with at most K equations.

The general framework here allows different choices of (i)

the correction terms 𝛼i,j in Section 3.3.2 and 𝛽i in Section

3.3.3 and (ii) the feedback elimination procedure. The default

correction terms are given in (26) and (30). For the feedback

elimination procedure, we apply near-immediate feedback

elimination to all stations. In section 6 of the appendix we

discuss an additional tuning function to fine-tune the perfor-

mance of our RQNA algorithm.

6 NUMERICAL STUDIES

In this section, we discuss examples of networks with sig-

nificant near-immediate feedback from Dai et al. (1994).

We show that the near-immediate feedback in these exam-

ples makes a big difference in the performance descriptions.

Hence our predictions with and without feedback elimi-

nation are very different. We find that our RQNA with

near-immediate feedback elimination performs as well or bet-

ter than the other algorithms. Additional numerical examples

appear in our previous papers and section 7 of the appendix.

6.1 A three-station example

In this section, we look at the suite of three-station exam-

ples section 3.1 of Dai et al. (1994) depicted in Figure 1. This

example is designed to have three tightly coupled stations so

that the dependence among the queues and the flows is fairly

complicated.

In this example, we have three stations in tandem but also

allow customer feedback from station 2 to station 1 and from

station 3 to station 2, with probability p2,1 = p2,3 = p3,2 = 0.5.

The only external arrival process is a Poisson process which

arrives at station 1 with rate 𝜆0,1 = 0.225, hence by (16) the

effective arrival rate is 𝜆1 = 0.675, 𝜆2 = 0.9 and 𝜆3 = 0.45.

For the service distributions, we consider the same sets of

parameters as in Dai et al. (1994), summarized in Tables 1

and 2. Note that Case 2 is relatively more challenging because

there are two bottleneck stations; in contrast, all the other

cases have only one.

We now compare the RQNA approximations and four

previous algorithms as in § 7.3 of the appendix, with the

simulated mean sojourn times at each station and the total

sojourn time of the network. The sojourn time for each sta-

tion is defined as the waiting time plus the service time at

FIGURE 1 A three-station example
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TABLE 1 Traffic intensity of the four cases in
the three-station example

Case 𝝆1 𝝆2 𝝆3

1 0.675 0.900 0.450

2 0.900 0.675 0.900

3 0.900 0.675 0.450

4 0.900 0.675 0.675

TABLE 2 Variability of the service
distributions of the four cases in the
three-station example

Case c2
s,1 c2

s,2 c2
s,3

A 0.00 0.00 0.00

B 2.25 0.00 0.25

C 0.25 0.25 2.25

D 0.00 2.25 2.25

E 8.00 8.00 0.25

that station, whereas the total sojourn time of the network

is defined as in (14). In the following tables, we report the

simulation estimation of the mean steady-state sojourn times

and the half-widths of 95% confidence intervals in the paren-

theses. We consider two cases of the RQNA algorithm: (i)

the plain RQNA algorithm without feedback elimination, as

in Algorithm 2 and (ii) the RQNA algorithm with feedback

elimination, as discussed in Section 4.

For RQNA with feedback elimination, we apply feedback

elimination to each station with at least one feedback flow

that only passes through stations with equal or lower traffic

intensities. We eliminate all such flows in the feedback elim-

ination procedure. Take Case 1 for example, we do not apply

feedback elimination for Station 1 because all feedback cus-

tomers go through Station 2, which has higher traffic inten-

sity; we will, however, eliminate the flow from 2 to 1 as well

as the flow from 3 to 2 for Station 2, since both Station 1 and

3 have lower traffic intensities. As another example, for both

Station 2 and 3 in case 4, we eliminate the flow from 3 to 2.

However, we do not eliminate the flow from 2 to 1, since Sta-

tion 2 and 3 share the same traffic intensity while Station 1

has higher traffic intensity.

Tables 3 and 4 expand Tables II and III in Dai et al. (1994)

by adding values for (i) the mean total sojourn time and (ii) the

RQ and RQNA approximations, with and without feedback

elimination. For each table, we indicate by an asterisk in the

last column the stations where elimination is applied.

We observed that the plain RQNA algorithm works well for

stations with moderate to low traffic intensities but not satis-

factory for congested stations. On the other hand, the accuracy

of the RQNA algorithm with feedback elimination is on par

with, if not better than the best previous algorithm.

6.2 A 10-station example

We conclude with the 10-station OQN example with feedback

considered in section 3.5 of Dai et al. (1994). It is depicted

here in Figure 2.

The only exogenous arrival process is Poisson with

rate 1. For each station, if there are two routing desti-

nations, the departing customer follows Markovian rout-

ing with equal probability, each being 0.5. The vec-

tor of mean service times is (0.45,0.30,0.90,0.30,0.38571,

0.20,0.1333,0.20,0.15,0.20), so that the traffic intensity

TABLE 3 A comparison of six approximation methods to simulation for the total sojourn time in the three-station example in Figure 1
with parameters specified in Tables 1 and 2

Case Simulation QNA QNET SBD RQ RQNA RQNA (elim)

A 1 40.39 (3.75%) 20.5 (−49%) Diverging 43.0 (6.4%) 73.9 (83%) 83.5 (107%) 44.8 (11.0%)
2 59.58 (3.29%) 36.0 (−40%) 56.7 (−4.9%) 58.2 (−2.4%) 78.0 (31%) 94.3 (58%) 69.3 (16.4%)

3 40.72 (4.78%) 24.0 (−41%) 38.7 (−5.0%) 40.2 (−1.3%) 57.2 (41%) 74.7 (83%) 43.3 (6.3%)

4 42.12 (3.36%) 26.2 (−38%) 41.8 (−0.7%) 42.7 (1.3%) 59.3 (41%) 75.1 (78%) 41.2 (−2.2%)

B 1 52.40 (2.64%) 42.0 (−20%) 52.6 (0.4%) 50.2 (−4.2%) 72.4 (38%) 93.7 (79%) 53.1 (1.4%)

2 91.52 (3.77%) 94.1 (2.8%) 83.7 (−8.5%) 95.3 (4.1%) 109 (20%) 169 (85%) 94.5 (3.2%)

3 61.68 (3.44%) 72.2 (17%) 61.9 (0.4%) 60.9 (−1.3%) 79.4 (29%) 133 (115%) 60.5 (−1.9%)

4 63.34 (2.83%) 75.8 (20%) 64.1 (1.3%) 64.7 (2.1%) 83.0 (31%) 135 (113%) 62.4 (−1.4%)

C 1 44.24 (1.96%) 31.3 (−29%) 37.0 (−16%) 47.1 (6.4%) 75.7 (71%) 91.4 (106%) 42.1 (−4.8%)

2 92.42 (4.23%) 87.4 (−5.4%) 91.2 (−1.4%) 91.6 (−0.83%) 106 (15%) 156 (68%) 96.0 (3.8%)

3 44.26 (4.69%) 33.2 (−25%) 44.0 (−0.7%) 45.0 (1.7%) 61.3 (38%) 84.2 (90%) 44.0 (−0.6%)

4 50.20 (1.04%) 41.4 (−18%) 51.1 (1.7%) 52.2 (4.0%) 67.4 (34%) 91.2 (82%) 45.9 (−8.6%)

E 1 134.4 (4.77%) 265 (97%) 155 (15%) 116 (−14%) 158 (17%) 305 (127%) 120 (−11%)

2 213.1 (3.47%) 308 (45%) 228 (7.1%) 206 (−3.3%) 234 (10%) 367 (72%) 173 (−19%)

3 138.7 (3.97%) 244 (76%) 161 (16%) 135 (−2.5%) 163 (17%) 300 (116%) 136 (−2.0%)

4 155.1 (4.37%) 252 (63%) 168 (8.2%) 147 (−5.0%) 178 (15%) 312 (101%) 148 (−4.8%)

Average absolute relative error 36.63% 5.82% 3.80% 33.19% 92.50% 6.15%

Note: In calculating the average absolute relative error, the diverging entry for QNET is ignored.
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TABLE 4 A comparison of six approximation methods to simulation for the sojourn time at each station of the three-station example in Figure 1
for case D in Tables 1 and 2

Case Station Simulation QNA QNET SBD RQ RQNA RQNA (elim)

D1 1 2.476 (0.61%) 2.24 (−9.4%) 2.48 (0.3%) 2.47 (−0.1%) 2.47 (−0.28%) 2.68 (7.8%) 2.68 (7.8%)

2 10.85 (3.21%) 14.9 (37%) 11.6 (6.5%) 11.4 (5.2%) 19.8 (83%) 28.4 (162%) 11.1∗ (2.7%)

3 2.544 (0.63%) 2.53 (−0.8%) 2.54 (−0.0%) 2.59 (1.6%) 2.57 (1.2%) 2.53 (−0.7%) 2.53 (−0.7%)

Total 55.81 (2.58%) 71.4 (28%) 58.8 (5.3%) 58.2 (4.3%) 91.8 (64%) 127 (127%) 57.6 (3.3%)

D2 1 11.35 (3.29%) 8.01 (−29%) 10.8 (−4.5%) 11.1 (−1.9%) 13.7 (20%) 16.6 (46%) 11.3∗ (0.1%)

2 2.643 (1.25%) 2.96 (12%) 2.75 (4.0%) 2.82 (6.7%) 2.85 (7.8%) 3.06 (16%) 3.06 (16%)

3 26.87 (2.04%) 32.9 (22%) 26.8 (−0.4%) 24.9 (−7.5%) 27.5 (2.2%) 36.4 (35%) 31.1∗ (16%)

Total 98.36 (1.82%) 102 (3.4%) 97.2 (−1.2%) 94.4 (−4.0%) 104 (6.0%) 132 (34%) 105 (7.1%)

D3 1 11.39 (3.04%) 7.95 (−30%) 11.0 (−3.5%) 11.3 (−0.5%) 15.8 (39%) 16.5 (45%) 11.3∗ (−0.5%)

2 2.290 (1.27%) 2.90 (27%) 2.53 (10%) 2.26 (−1.4%) 2.57 (12%) 3.04 (33%) 2.10∗ (−8.2%)

3 2.220 (0.59%) 2.40 (7.9%) 2.38 (7.0%) 2.59 (16%) 2.39 (7.6%) 2.43 (9.6%) 2.43 (9.6%)

Total 47.72 (2.51%) 40.2 (−16%) 47.8 (0.2%) 48.2 (1.0%) 62.6 (31%) 66.6 (39%) 47.5 (0.51%)

D4 1 11.30 (6.39%) 7.97 (−29%) 10.9 (−3.2%) 11.3 (0.3%) 14.2 (26%) 16.43 (45%) 11.3∗ (0.3%)

2 2.414 (1.12%) 2.93 (21%) 2.64 (9.5%) 2.60 (7.7%) 2.65 (10%) 3.05 (26%) 2.10∗ (−13%)

3 5.886 (1.05%) 6.83 (16%) 6.31 (7.3%) 6.17 (4.8%) 6.47 (10%) 6.85 (16%) 5.95∗ (1.1%)

Total 55.24 (4.37%) 49.3 (−11%) 56.0 (1.4%) 56.7 (2.7%) 69.3 (25%) 75.5 (37%) 54.3 (−1.7%)

Average absolute relative error 20.24% 4.72% 4.52% 21.61% 42.60% 5.51%

FIGURE 2 A 10-station with customer feedback example

vector is (0.6,0.4,0.6,0.9,0.9,0.6, 0.4,0.6,0.6,0.4). The scv’s

at these stations are (0.5,2,2,0.25,0.25,2,1,2,0.5,0.5), where

we assume a Erlang distribution if c2
s < 1, an exponential

distribution if c2
s = 1 and a hyperexponential distribution if

c2
s > 1.

In particular, note that stations 4 and 5 are bottleneck

queues, having equal traffic intensity, far greater than the

traffic intensities at the other queues. Moreover, these two

stations are quite closely coupled. Thus, at first glance, we

expect that SBD with two-dimensional RBM should perform

very well, which proves to be correct. Moreover, this example

should be challenging for RQNA because it is based on

heavy-traffic limits for OQNs with only a single bottleneck,

involving only one-dimensional RBM.

In Table 5, we report the simulation estimates and approxi-

mations for the steady-state mean sojourn time (waiting time

plus service time) at each station, as well as the total sojourn

time of the system, calculated as in (14). For the approxi-

mations, we compare QNA from Whitt (1983), QNET from

Harrison and Nguyen (1990), SBD from Dai et al. (1994), RQ

from Whitt and You (2018b) (with estimated IDC), as well as

the RQNA algorithms here. The simulation, QNA, QNET and

SBD columns are taken from Table XIV of Dai et al. (1994).

Again, we consider two versions of RQNA algorithm, the

first one does not eliminate feedback, while the second one

(marked by “elim”) applies the feedback elimination proce-

dure. As before, in eliminating customer feedback, for each

station, we identify the near-immediate feedback flows as the

flows that come back to the station after completing service

without passing through any station with higher traffic inten-

sity. We then eliminate all near-immediate feedback flows,

apply a plain RQNA algorithm on the reduced network and

use the new RQNA approximation as the approximation for

that station.

We make the following observations from this numerical

example:

1. Particular attention should be given to the

two bottleneck stations: 4 and 5. Note that

QNA and QNET produce 15 − 25% error,

which is satisfactory, but SBD does far better

with only 1 − 4% error.

2. The RQNA algorithm without feedback

elimination can perform very poorly with

high traffic intensity and high feedback prob-

ability, presumably due to the breakdown of

the IDW decomposition in (4).

3. With feedback elimination, the RQNA

algorithm performs significantly better and

is competitive with previous algorithms in

this complex setting, producing 15 − 18%
error at stations 4 and 5. The performance

of RQNA at the tightly coupled bottleneck

queues evidently suffers because the current

RQNA depends heavily on one-dimensional

RBM.
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TABLE 5 A comparison of six approximation methods to simulation for the mean steady-state sojourn times at each station of the
open queueing network in Figure 2

Station Simulation QNA QNET SBD RQ RQNA RQNA (elim)

1 0.99 (0.86%) 0.97 (−2.8%) 1.00 (0.2%) 1.00 (0.4%) 0.97 (−2.0%) 1.09 (9.2%) 1.00∗ (0.4%)

2 0.55 (0.69%) 0.58 (6.0%) 0.56 (2.6%) 0.55 (0.2%) 0.55 (−0.1%) 0.56 (1.3%) 0.56 (1.4%)

3 2.82 (1.93%) 2.93 (4.2%) 2.90 (3.2%) 2.76 (−2.0%) 2.96 (5.0%) 3.40 (21%) 2.75∗ (−2.5%)

4 1.79 (3.71%) 1.34 (−25%) 1.41 (−21%) 1.76 (−1.6%) 2.34 (31%) 3.51 (97%) 2.11∗ (18%)

5 2.92 (4.77%) 2.49 (−15%) 2.44 (−17%) 2.81 (−3.6%) 3.77 (29%) 9.07 (211%) 3.35∗ (15%)

6 0.58 (0.78%) 0.64 (10%) 0.62 (7.4%) 0.59 (2.2%) 0.60 (3.8%) 0.70 (20%) 0.49∗ (−16%)

7 0.24 (0.28%) 0.24 (−1.7%) 0.26 (7.1%) 0.27 (11%) 0.23 (−3.0%) 0.24 (−1.3%) 0.24 (−1.3%)

8 0.58 (0.67%) 0.64 (9.6%) 0.61 (4.6%) 0.60 (1.7%) 0.61 (3.9%) 0.70 (20%) 0.59∗ (0.6%)

9 0.34 (0.63%) 0.32 (−6.1%) 0.35 (2.0%) 0.43 (26%) 0.33 (−4.2%) 0.73 (111%) 0.42∗ (21%)

10 0.29 (0.19%) 0.30 (2.4%) 0.29 (1.4%) 0.28 (−1.7%) 0.28 (−1.5%) 0.26 (−8.7%) 0.26 (−8.7%)

Total 22.0 (2.45%) 20.3 (−7.9%) 20.4 (−7.3%) 22.4 (1.7%) 26.1 (18%) 44.5 (102%) 24.2∗ (9.9%)

7 CONCLUSIONS

7.1 Summary

In this paper, we developed a new decomposition approxi-

mation for the principal steady-state performance measures

of each queue in a single-class open queueing network

of single-server queues with unlimited waiting space and

the first-come-first-served service discipline. We focus on

non-Markov OQNs where the external arrival processes need

not be Poisson or renewal, and the service-time distribu-

tions need not be exponential. Our algorithm combines three

methodologies in operations research and stochastic mod-

els: (i) robust optimization as in Bandi et al. (2015), Whitt

and You (2018b), (ii) indices of dispersion and stationary

point processes as in Cox and Lewis (1966), Daley and

Vere-Jones (2008b), Sigman (1995) and (iii) heavy-traffic

limits as in Dai et al. (1994), Harrison and Nguyen (1990),

Whitt (2002). The algorithm builds on our previous papers

(Whitt & You, 2018a, 2018b, 2019a, 2019b, 2020) as indi-

cated in Section 1.2.

Given the model data, the computational effort is the same

as for QNA in Whitt (1983). Efficient ways to obtain the

model data, primarily the indices of dispersion of the exter-

nal arrival processes, are indicated in Section 2.1. Just as for

QNA in Whitt (1983), an effective way to apply the algorithm

in applications is together with simulation. The analytical

algorithm can be used to rapidly explore and optimize over

spaces of candidate models, while simulation can be used to

confirm algorithm predictions.

In addition to computing steady-state performance mea-

sures of interest, a primary goal in this work has been to

understand better the dependence in the flows of an OQN

and the impact of that dependence upon the performance of

the queues. Heavy-traffic limits have traditionally aimed at

exposing the performance impact by skipping this step. We

have used indices of dispersion to characterize the depen-

dence approximately. The starting point is to link the indices

of dispersion to the performance of a single queue. That ini-

tial step was provided with robust queueing in Whitt and

You (2018b). Theorem 5 of Whitt and You (2018b) shows

that the robust queueing based on the IDC is asymptotically

correct for a single G∕GI∕1 queue in both light and heavy

traffic.

Nevertheless, it was not evident that the approximation of

one queue in Whitt and You (2018b) could be extended to

yield an analog of QNA in Whitt (1983) for a general OQN.

With the aid of heavy-traffic limits for the flows in Whitt and

You (2018a, 2020). The present paper synthesizes those theo-

retical results and develop an efficient algorithm for a general

OQN.

After reviewing the indices of dispersion and the robust

queueing approximation for a single queue in Section 2, we

developed the important variability linear equations for the

IDCs of the internal arrival processes in Section 3. We then

introduced the extra step of feedback elimination in Section

4. We put all this together into a full algorithm in Section

5, developing a simplified version for networks with a tree

structure in Section 3.5.

We then evaluated the performance of the new RQNA-IDC

by making comparisons with simulations for various exam-

ples in Sections 6 and 7 of the appendix. These experiments

confirm that RQNA-IDC is remarkably effective.

7.2 When should the IDC-Based RQNA be effective?

It is significant that the IDC provides a useful diagnostic

tool to judge when candidate performance approximations for

OQNs are likely to be effective or not. This is well illus-

trated by the figures in Whitt and You (2018a), Whitt and

You (2018b). They show plots of the IDC in (1) as a function

of time and the normalized mean workload in (5) as a function

of the traffic intensity.

The most straightforward case is a Poisson process when

the IDC is 1. If an entire IDC is nearly 1, then the arrival

process should behave much like a Poisson process. More

generally, when the IDC is nearly constant, there should be
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relatively little ambiguity about the appropriate level of vari-

ability in the arrival process; for example, see the light traffic

and heavy-traffic limits in (7). For the GI∕GI∕1 model with a

renewal arrival process, the IDC and IDW approach limits as

time evolves, usually with exponential decay. Thus, standard

approximations are usually effective.

In an OQN, this good behavior is likely to prevail if the level

of variability in all the service times, as measured by their

scv’s, and in all the external arrival processes, as character-

ized by the IDC’s, are roughly equal. Experience has shown

that challenging examples typically arise when that property

is seriously violated. This is reflected by the convex combina-

tion appearing in the approximation for the departure process

in Equation (18). More generally, problems with the approx-

imations are likely to arise as the complexity of the OQN

increases when the level of variability is not nearly constant,

as indicated in Section 1.2.

The network structure also plays a role. The challenges for

RQNA grow as the complexity increases through the five

cases reviewed in Section 1.2. The foundations for RQNA are

on much more solid ground when there is no feedback. So

far, RQNA works well for tree-structured networks. Indeed,

the nonparametric RQNA can be shown to perform signifi-

cantly better than the parametric algorithms QNA, QNET and

SBD for these networks. That is well illustrated by consider-

ing a single GI∕GI∕1 queue. As shown in Table 1 of Chen

and Whitt (2020), the range of possible values of the mean

steady-state waiting time given the first two moments is quite

wide. For this model, RQNA can do much better because

complete information about a renewal arrival process is in the

IDC, as discussed in Section 1.1.4. For a concrete example,

see section 6 of Whitt and You (2019a).

For a general OQN with feedback, all the methods have

advantages. In that context, the traffic intensities of the

queues also play a role. The RBM-based heavy-traffic QNET

algorithm in Harrison and Nguyen (1990) is likely to be espe-

cially effective if the traffic intensities are nearly equal and

relatively high, because it is supported by the heavy-traffic

limit theorem. A drawback is that the computational effort

required can be considerable.

The SBD decomposition in Dai et al. (1994) is likely to

be especially effective if the traffic intensities can be sepa-

rated into groups, with some high, others medium, and others

low. RQNA can be expected to perform well if there is no

immediate or near-immediate feedback.

The experiments in Section 6 compared RQNA to SBD and

other methods for examples in Dai et al. (1994), which are

challenging because of near-immediate feedback. For these

examples, our results showed that RQNA performed at about

the same level as SBD. RQNA performs quite well if there

is a single bottleneck node because it exploits the HT limit

under that condition, as established in Whitt and You (2020).

That condition is violated for the three-station examples in

Section 6.

It is important to note that our numerical examples have

deliberately been chosen from the most challenging cases

exposed in previous work. The first class of notorious exam-

ples is based on the heavy-traffic bottleneck phenomenon

from Suresh and Whitt (1990), which is studied in Dai

et al. (1994), Whitt and You (2018a) and in section 7.3 of

the appendix to this paper. The different levels of variability

appear at different queues depending on the traffic intensity

of the queue. The second class of examples are the networks

with near-immediate feedback from Dai et al. (1994), which

is studied here in Tables 3 and 4.

The 10-station example in Table 5 here from Dai

et al. (1994) has quite a bit of feedback but is not too difficult.

Note that all methods produce reasonable accuracy for this

example, provided feedback elimination is incorporated in the

IDC-based RQNA here. For many realistic OQNs arising in

practice, such as the large manufacturing examples in Segal

and Whitt (1989), most methods work quite well, including

QNA in Whitt (1983). Nevertheless, as illustrated by Fendick

et al. (1989) and Segal and Whitt (1989), applications often

introduce new challenges for the algorithms.

7.3 Directions for future research

There are many excellent directions for future research,

including (i) developing refined approximations for the

flows that exploit multi-dimensional RBM instead of just

one-dimensional RBM, (ii) extending RQNA-IDC to other

OQN models, for example, with multiple servers and other

service disciplines, and (iii) extending our initial robust

queueing for a time-varying queue in Whitt and You (2019b)

to time-varying networks of queues. In fact, we think that

our work should be regarded as only one step in the serious

study of dependence in stochastic point (arrival) processes,

queueing networks, and related stochastic models.
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