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This note illustrates the need *.o refine diffusion approximations for queues. Diffusion approximations are developed in 
several different ways for the mean waiting time in a G i / G / I  queue, yieidin$ different results, all of which fail obvious 
consistency cheeks with bounds and exact values. 

Queues, approximations, diffusion models, limit theorems 

1. Introduction 

Diffusion approximations and associated 
heavy-traffic Emit theorems have now become 
basic tools of queuing theory; e.g., see Gelenbe 
and Mitrani [3, Chapter 4], Kleinrock [8, Chapter 
2]," Newell [12, Chapter 6] and references there. 
Under heavy-traffic condiuons, diffusion ap- 
proximations are identified and justified by the 
heavy-traffic limit theorems: the diffusion process 
is obtained as the limit. Variants of the limiting 
diffusion process also may be useful as approxima- 
tions in moderate traffic. However, in moderate 
traffic, it is often difficult to select an appropriate 
diffusion process. Whenever possible, it is im- 
portant to consider refining the diffusion ap- 
proximations, for example, by comparing the ap- 
proximations with available bounds and exact re- 
suits. 

The purpose of this note is to illustrate the need 
to refine diffusion approximations by considering 
diffusion approximations in one of the simplest 
settings: approximations for the expected waiting 
time in the standard G I / G / I  queue. In the 
G I / G / I  model there is a single server, unlimited 
waiting space, the first-come-first-served discipline 
and independent sequences of independent and 
identically distributed interarrival times and service 
times. Perhaps the most important insight pro- 
vided by the heavy-traffic limit theorems for the 
G I / G / I  queue is the fact that only the first two 

moments of the interarrival-time and service-time 
distributions are essential for determining the 
standard congestion measures in heavy traffic 
(when the traffic intensity is close to its critical 
value). However, one should not rely too heavily 
on the associated approximations because differ- 
ent approximations can be obtained by very simi- 
lar reasoning. 

In Section 2, we apply a standard heuristic 
argument to obtain diffusion approximations for 
three basic processes in the G I / G / !  queue: the 
sequence of successive waiting times, (W~, n ~ O}, 
the virtual waiting time process, {V(t), t ~ 0), and 
the queue length process, (Q(t), t>_.0). In each 
case, the diffusion process approximation for the 
queuing process yields an approximation for the 
mean of the equilibrium distribution. However, 
the three means are related exactly so that we have 
three different ways to obtain ak~ approximation 
for the expected waiting time. 

To specify the connecting relationships, we in- 
troduce our notation. Let ~ be the arrival rate,/t 
the service rate, p ffi k/p the traffic intensity, ca 2 the 
squared coefficient of variation of the inter- 
arrival-time distribution (variance divided by the 
square of the mean), and c, 2 the squared coefficient 
of variation of the service-time distribution. Let 
W, V and Q be random variables with the equi- 
librium distributions of Wn, V(t) and Q(t), respec- 
tively. 

To go from EQ to E W, we apply Little's for- 
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muia, which yields 

E W =  ( EO - f, ) / X ,  ( I ) 

since we are interpreting Q as the number in the 
system, including any in service, and W as the 
waiting time before begirining service. To go from 
EV to EW, we use one of Brumelle's [!] generali- 
zations of Little's formula, namely, 

e w . e_._V ( l + ~ ~,___)) (2) 
p 2t~ " 

We obtain diffusion approximations for EW di- 
rectly and from diffusion approximations for EQ 
and EF  via (I) and (2), 

In Section 3 we introduce two other diffusion 
approximations obtained by G©lenbe [3] and 
Kobayashi [9]. In Section 4 we check the con- 
sistency of these diffusion approximations for EW 
with previously established bounds and exact re- 
suits. We show that none of these diffusion ap- 
proximations pass all the consistency checks. We 
also indicate how a good approximation can be 
obtained. In the relatively simple setting of the 
G I / G / I  queue, general bounds and exact results 
for special cases can be used to improve the qual- 
it), of the approximations. In more complicated 
settings, it may also be possible to use general 
bounds and exact results for special cases. If not, 
the diffusion approximations can be refined using 
simulation. 

2. The basle three dlffuslon approximations 

The standard way to obtain diffusion ap- 
proximations, in both heavy traffic limit theorems 
and heuristic arguments, if to first consider the 
unrestricted queuing process (away from the bar- 
r i~  at zero), e.g., see Heyman [S, Section 4], Igle- 
hart and Whitt [6] and Kingman [7, Chapter 4]. 
Let X(t) represent one such queuing process. To 
identify the diffusion process, let 

a - l i r a  £X(t) , . . .  (3) 

o z -  lint v a t  x ( , )  
,-+® t ' (4) 

assuming that the limits exist. The approximating 
diffusion process for X(t) is a Brownian motion 
with drift a (which is negative if the queue is 
stable) and diffusion coefficient 0 2 . These two 

parameters completely specify the unrestricted dif- 
fusion process. To obtain the approximating diffu- 
sion process for the queuing process itself, we 
simply add a reflecting barrier at zero. (It is-some- 
times suggested that a different kind of boundary 
at zero should be used; see Ge]enbe and Mitrani 
[3, Chapter 4], Harrison and Lemoine [4] and 
references there.) The equilibrium distribution of 
the resulting diffusion process with negative drift 
and reflecting barrier at zero is exponential with 
mean a2/2Jal. Hence, the diffusion approximation 
fox the mean of the equilibrium queuing process is 
o2/21ai. 

To consider the different queuing processes, let 
(u,,) and (on) be the sequences of interarrival times 
and service times, and let A(t) and S(t) be the 
renewal counting processes associated with (an) 
and (on). 

For the waiting times IV,, the unrestricted pro- 
cess is the random walk with steps v,, - u,,. Hence, 
the direct diffusion approximation for E W, which 
also has been shown to be an upper bound, is 

Var( v. - u . )  : p-tc2a + pep. 
E W =  2IE(o, _ u,,) I 2/t(l - p )  ' (5) 

see [7, p. 139]. 
For the queue length process Q(t), the unre- 

stricted process is A ( t  ) - $(t ). Since 

A(t) ratA(t) 
lim ~ --- A and lira _ k3 Var(u,,), 

t"~ oO t"* ¢~ t 

(6) 

and 

o 2 = ?3 Var( v, ) +/~ ~ Var( o, ); ( 8 ) 

see [5]. Hence, the diffusion approximation for EQ 
is 

+ 

e Q -  2(l - o)" (9) 

By (1), the associated approximation for E W is 

' 2 ( l - p )  E W = c~ + p- c~ - 
2p(l - p )  " (10) 

For the virtual waiting time process V(t), the 
unrestricted process is 

A(t) 
x ( , ) -  (ll) 
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for which 

a = p - I  (12) 

and 

o 2 --- X Vat(v.) + X 3 Var(u,)(Ev,)  2 

=p(~, + ~;)/~. (13) 

Hence, 

E V  = p( c2a + c2 ) (14) 
2 1 , ( l - p )  

and, by (2), the associated approximation for F.W 
is 

Ew- ( ~ -  l) + P(~'~ + l) (Is) 
2~,(I - p )  ' 

3. Two other diffusion approximations 

Before discussing the three diffusion approxi- 
mations for E W  in Section 2, we introduce two 
other diffusion approximations. These were ob- 
tained for EQ, and so apply to E W  via (1). First, 
Kobayashi [9] suggested the following diffusion 
approximation: 

E W =  P (16) 
~(I -~ ) '  

where 

ffi exp(-  2(1 - p ) / (  pc2u 4- c 2 )); (17) 

see [8, p. 75] and [3, Section 4.2.2]. 
Next, based on an instantaneous return bound- 

ary, Gelenbe and Mitrani [3, p. 123] propose 

E W  p(c2+ l ) + ( c s  z - l ) .  (18) 
2~,(1 = p )  ' 

also see the references in [3] for earlier work by 
Gelenbe. 

4. Consistency checks 

A trivial consistency check is nonnegativity: 
E W  should be nonnegative for all parameter val- 
ues. Note, however, that three of the five diffusion 
approximations fail this test. For sufficiently small 
ca2 and c~2, the approximations (10), (15), and (18) 
are negative. 

It is also natural to require that the approxima- 
tion agrees with the known M / G / I  value: 

2 
p ( l + ~ s )  (19) E W -  2~,(1 - p)" 

However, only (15) satisfies this property. Note 
that none of the approximations have passed both 
these first two tests. 

Finally, approximations should not fall outside 
of known bounds given by the first two moments 
of the interarrheal times and service times. For 
example, Kingman showed that his approximation 
for E W  in (5) is an upper bound; see [7] or [8]. 
However, Daley [2] obtained a better upper bound, 
namely, 

(2, - p ) ~  + p~ (20) ~ w ~  2~ , (1-p)  ' 

so (5) is too large. Marchal [10] proposed a natural 
refinement: multiplying (5) by a constant less than 
one so that the M / G / I  forw,Ja (19) is exact. This 
leads to a sixth diffusion approximation: 

EW-_ p(I +~) ~" (21) 
2 2 2it( l _ p ) "  1 + p c  s 

Each of the six approximations has regions 
where it works well. For example, all the bounds 
and approximations are asymptotically correct in 
heavy traffic: They all satisfy 

lim 2it(! - p)EW-c2a + el. (22) 
p--*i 

However, all bttt (15) exceed the upper bound in 
some cases. (See. Table 1.) We know that ap- 
proximation (15) is always less than the upper 
bound because it coincides with Marshall's [1 I] 
upper bound for G I / G / !  queues having DFR 
interarrival,.time distributions (with decreasing 
failure rate, for which ca 2 >1 I). Moreover, this 
bound is tight, i.e., there is an interarrivai-time 
distribution yielding this bound; see Whirr [13]. At 
the same time, (19) is a tight lower bound. Also, 
for interarrivai-time distributions having increas- 
ing failure rate (for which c 2 g. !), (15) is a lower 
bound and (19) is an upper bound; see [13]. 

A promising class of approximations called 
MFR approximations (monotone failure rate) was 
proposed in [13]. A simple one, which coincides 
with what has been proposed by others, is 
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Table I 
Bounds and approximations for the mean waiting time, £W, in 
a G I / G / I  queue: Three cases 

Upper bounds Parameter values 

c,~ - o.s ~,~ - 2.0 ~: = 0.8 
~,~., 4.0 ~ ,~-  4.0 c ~ = 4 . 0  
p-o.7 ~,-o.7 ~=o.3 

Kinsman, ($) 5.86 9.42 236 
Daley, (20) 5.75 9.00 i.82 
MFR, (15) or (19) 5.83 7.500 .  !.07 

Approximations 

via EQ, (i0) 9,36 H 11,86 H 9.09 H 
via KV, (i$) $.00, 7,$0, * 0.93* 
gobayuhi, (16) 6.76 H 8.51 H 2.56 H 
Gel enbe, (18) 635 H 8.50 H 3.02 H 
Marchal, (21) 4.85 L 7,80 H 0.91 L 
MFR, (23) 5.25 7.00 1.02 

lower bound 

MFR, (15) or (19) $.000 5.83 0.93. 

(i) in each ease, the service rate is F = !. 
(2) 'H' indicates hi8h and 'L' indicates low in comparison with 

bounds, including the MFR (monotone failure rate) bounds. 
(3) Kinsman's upper bound ($) is also one of the diffusion 

approximations, 
(4) When ¢~ ) I, (15) is the upper MFR bound and (19) is the 

lower MFR bound: when ¢~ ( I ,  these MFR bounds are 
reversed, 

(3) • indicates the lower MFR bound and • .  indicates the 
upper MFR bound, 

E w .  ÷ 2 F ( I - p )  ; (23) 

see [13], Approximat ion  (23) was proposed as a 
ref inement  of  a diffusion approximat ion  by Yu 
[14]; see Section 4.2.5 o f  [3]. Note that (23) coin- 
cides wi th the approximat ion for  El, '  in (14). For 
the M / G / I  queue, £ W - E V  and (14), (15), and 
the M / G / !  value (19) coincide. 

The values of the various bounds and ap- 
proximations are displayed for a few cases in 
Table I. These cases are chosen to illustrate bad 
behavior with reasonable values of the parameters 
p, ¢~, and  c~, In Table  !, the Marchal  approxima-  
t ion (21) falls outside the M F R  bounds,  It can also 
exceed Da i ry ' s  bound  (20) in extreme cases. For  
very large c~, the multiplicative correction factor 
in (21) is approximate ly  I; then (21) puts  the same 

2 The  ap- weight on cs as (20) but  more on ca. 
proximat ion  (15) is not inconsistent in the cases of 
Table  !, but  since it coincides with one  of  the 
M F R  bounds,  it should be possible to improve the 
approximat ion,  e.g., by  using (23). 

& Summary 

Diffusion approximations can be very helpful 
in queuing, especially when direct analysis is dif- 
ficult. However, as we have illustrated, it is im- 
portant to consider consistency checks. The diffu. 
sion approximations have a degree of freedom that 
permits refinement. 
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