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THE RENEWAL-PROCESS STATIONARY-EXCESS OPERATOR

WARD WHITT.* AT&T Bell Laboratories

Abstract

This paper describes the operator mapping a renewal-interval distribution
into its associated stationary-excess distribution. This operator is monotone for
some kinds of stochastic order, but not for the usual stochastic order determined
by the expected value of all non-decreasing functions. Conditions for a
renewal-interval distribution to be larger or smaller than its associated
stationary-excess distribution for several kinds of stochastic order are deter-
mined in terms of familiar notions of ageing. Convergence results are also
obtained for successive iterates of the operator, which supplement Harkness
and Shantaram (1969), (1972) and van Beek and Braat (1973).

RENEWAL THEORY; STATIONARY POINT PROCESS; PALM THEORY: STOCHASTIC
MONOTONICITY; STOCHASTIC ORDER; MONOTONE LIKELIHOOD RATIO: FAILURE
RATE; ITERATED OVERSHOOT DISTRIBUTIONS

1. Introduction

For any c.d.f. (cumulative distribution function) F on [0, *) with kth moment
i, the associated stationary-excess c.d.f. F, is defined by

1.1) F.(1)= ;' [ [1-F(s)lds, =0,

and the moments of F, and F are related by
(1.2) pc (Fe) = pacr(F)/ pa(F)(k + 1)

see p. 64 of Cox (1972). If F is the c.d.f of an interval between points in a renewal
process, then F, is the c.d.f. of the interval to the next point from an arbitrary
time in equilibrium. More generally, for stationary point processes, F and F. are
related by the basic one-to-one correspondence associated with the Palm theory;
see §7 of Daley and Vere-Jones (1972), Jagers (1973) and Port and Stone (1977).
The interval to the first point in a stationary counting process has c.d.f. F, if and
only if an interval in the associated stationary interval sequence has c.d.f. F. Asa
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consequence of this Palm correspondence, the stationary-excess distribution
often arises in applications.

In this paper we view the stationary-excess distribution as the image of an
operator defined on the space of c.d.f.’s and we describe basic properties of this
operator. We first consider c.d.f.’s with p.m.f.’s (probability mass functions)
p ={p., n = 1} defined on the positive integers. However, for p.m.f.’s there are
actually two different associated stationary-excess distributions. There is the
continuous-time version defined by (1.1) and the discrete version to be defined
below, in which the associated stationary counting process has support on the
integers.

Associated with each p.m.f. p is a tail sequence t(p), defined by

(1.3) t(p). = pa =k§=‘, p, n=1,

a failure rate sequence r(p), defined by
(1.4 r(Ph=r.=palps, n=1,

a moment sequence u(p), defined by

(1.5) wP)h = = ‘; k"px, nzl,

and a (discrete) stationary-excess p.m.f. S(p)=p*, defined by
(16) S@h=pt=t@W/n@h=p ) b n21

Let p%, r% and u% be the tail probabilities, failure rates and moments,
respectively, of p* = S(p). Obviously S(p)in (1.6) is different from (1.1) because
F, in (1.1) is absolutely continuous with respect to Lebesgue measure on [0, »),
whereas S(p) in (1.6) is a probability mass function, i.e., the associated c.d.f. is
absolutely continuous with respect to the integer counting measure. In this paper
we are primarily concerned with the operator S. The word ‘operator’ is
appropriate since p.m.f.’s are mapped into p.m.f.’s. The absolute continuity is
important because we use properties of the p.m.f. beyond its c.d.f., e.g., failure
rates. With minor modifications, the results also hold for the continuous-time
operator in (1.1) applied to absolutely continuous c.d.f.’s F with a density f; see
Section 5. For more on discrete life distributions, see Langberg et al. (1980) and
Whitt (1983a).

We give definitions and conditions under which (i) p = S(p), (i) p' =p°
implies S(p') = S(p?), and (iii) {S"(p), n = 0} converges. Here the superscript i
in p* indexes the p.m.f. and the superscript n in S"(p) refers to the nth iterate of
the operator S.
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We discuss successive iterates of S primarily to gain insight into the effect of
applying the operator S once. However, to see how iterates of the stationary-
excess operator might arise, consider a sequence of i.i.d. stationary point
processes with stationary-excess distribation p*. Let a new process be formed by
observing one stationary point process until a point occurs in it, then observing a
second stationary point process until a point occurs in it, and so forth. This new
process is a renewal process having p* as its renewal-interval c.d.f. One could
then repeat this procedure. Successive iterates might arise in nested testing or
maintenance schemes. Previous work on successive iterates of the continuous
stationary-excess operator is contained in Harkness and Shantaram (1969),
Shantaram and Harkness (1972), and van Beek and Braat (1972).

A concrete application to queues of the stochastic comparison results here for
discrete stationary-excess operators is contained in Whitt (1983a). There it is
shown for a large class of queueing systems in which customers arrive in batches
that the delay distribution of the last customer in a batch to enter service is a
function of the batch-size distribution whereas the delay distribution of an
arbitrary customer is the same function of the associated batch-size stationary-
excess distribution. Results here help relate the delays experienced by messages
and packets in complicated communication systems in which messages are
divided into packets for transmission.

Another application to queues is contained in Whitt (1983b), where stochastic
comparison results are obtained for the M/G/s queue in light traffic. In light
traffic, the conditional delay given that a customer must wait can be expressed
simply in terms of the service-time stationary-excess distribution (using (1.1)).
Hence, stochastic orderings between two service-time distributions will imply
corresponding stochastic orderings for the conditional delays when the operator
(1.1) is monotone. The results here for the discrete stationary-excess operator S
in (1.6) yield corresponding results for discrete queues with geometric interarri-
val times.

Considerable insight about the operator S can be obtained by looking at the
failure rates. From (1.4) and (1.6) we obtain

(1.7) ri=> npk, n=l,
=n
where
(1.8) pi=piipi=p/ % 5.
Jj=n

Notice that {pJ, k = n} is a p.m.f. for each n, so that r¥ is a weighted average of
r. for k = n. Thus we see that S tends to be a smoothing operator which makes
S(p) more like the tail of p. Moreover, the weights p% are decreasing in k for
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each n and strictly positive for all k such that p, > 0. We apply (1.7) in Example
3.1 and Theorem 4.3.

Considerable insight about the continuous-time stationary-excess operator in
(1.1) can be obtained from the moment relationship in (1.2). For example, on the
space of normalized moment-ratio sequences {ux+1/ui (k + 1),k = 0} with o =1,
the operator in (1.1) acts as a simple shift. As a consequence, the first moment
of the nth iterate of the continuous-time stationary-excess operator is just
Mn+1/ pn (n + 1). Unfortunately, there is not such a simple story with the discrete
stationary-excess operator in (1.6). Using the identity

(1.9) 2 s =f ke*~'[1 - F(t)]dt =2| (P (n* —(n — 1)),

we see that

(1.10) p=w 3 (), nz

eg., uo=1 and p¥=(u2+wm)2u. To obtain useful relationships in the
discrete case, it is helpful to work with binomial moments, but we do not pursue
this here.

The rest of this paper is organized as follows. In Section 2 we define several
stochastic order relations and compare them. In Section 3 we use these stochastic
order relations to make stochastic comparisons involving the operator S. For
example, we show that S is monotone for some definitions of stochastic order,
but not for the usual definition characterized by the expectation of all non-
decreasing functions. In Section 4 we briefly discuss convergence properties of
successive iterates of S. In Sections 2-4 we restrict attention to the discrete case.
We conclude in Section 5 by discussing analogues for the continuous-time case
based on (1.1).

While we believe that we have provided several interesting new results, some
results here are not new; these are presented to provide a comprehensive unified
account.

2. Several stochastic order relations

In this section we indicate and investigate several different ways to compare
p-m.f.’s. We indicate when one order relation is stronger than another by writing
=,— =, ; this means that p'=,p® whenever p'=,p’. One sequence of real
numbers a' ={an.,n =1} is said to be less than or equal to another a’ in the
usual sense, and we write a' = a”, if a,=<a’ for all n =1. We shall also use
another order for sequences of non-negative numbers involving ratios. For this
definition, we need to be careful about the support of such a sequence, defined as
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2.1) s(a)={n:a. >0}
Let A=B forsetsif x=y forall x €A and y € B.

Definition 2.1. A sequence of non-negative numbers a' is less than or equal
to another a’ in the ratio sense, and we write a'=,a’, if

s(a®)—s(a)zs(a") and s(a’)=s(a')—s(ad),

and

1 2 1 2
AnGm=Amn

whenever m < n.

We consider six kinds of stochastic order for p.m.f.’s: monotone likelihood
ratio order (<,), failure rate order (=), ordinary stochastic order (=,.), increasing
convex order (=), moment ratio order (=..), and moment order (=,).
Monotone likelihood ratio order =, has been defined above; we are now just
restricting attention to p.m.f.’s. The other definitions can all be expressed in
terms of the operators ¢t and u defined in (1.3) and (1.5) and the order relations
= and =,

Definition 2.2. Two p.m.f.’s p' and p® are ordered:
(i) p'=p’if tp)=1(p?);

(i) p'=.p’if t(p)=1(p?);

(iii) p'=cp’ if t(t(p)=1(t(p?));

(iv) p'Smp®if u(@)= pn(p?);

V) p'=ap’if u(p)=p@p?).

Moment ratio order (iv) seems to be new, but the others are not. Moment ratio
order is interesting because of the way the definition parallels failure rate order
=:. Also the moment ratios are interesting for the continuous-time operator in
(1.1) because the first moment of the nth iterate is p,.i/u. (n + 1). From (1.2), it
is immediate that the continuous-time operator is monotone in =,.; see
Theorem 5.1. We now show that =, order for p.m.f.’s is related to the other
orderings in a useful way.

The following implications hold among these orderings:

=
= ~

A
1A

—

T

I\

2.2

m -

f

Ss o=

We show that =(— =, =7 =, and =.. 7 =.. below; the other implications
are known. Monotone likelihood ratio (failure rate) order is equivalent to
uniform conditional stochastic order conditioning on all intervals (semi-infinite
intervals of the form [¢,«)); see Keilson and Sumita (1983) and Whitt (1980),
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(1982). Since pn.i/p. =1—ra, failure rate order p'=(p> holds if and only if
r(p') = r(p?); see Pinedo and Ross (1980), p. 1251. Stochastic (increasing convex)
order holds if and only if =%_, a.,p.=Z%_; a.p for all non-decreasing (non-
decreasing and convex) sequences {a.}; see Stoyan (1977), (1983).

To establish =,— =,,,, we need two lemmas.

Lemma 2.1. If a'=,a’ and b'=, b? for non-negative sequences, then

(5 a2)( 3 atbi)=( 3 0 ) (3 ah)

Proof. Note that

(5 awi)( 2 albl) - (3, aibr) (3 abi)

= Z‘(anbnamb +a bf,.a:.b:.—a,,b,,ambz—a bmanb)

2 (anam—anam)(bnbm :lbfn)go

mn=1
m<n

because agm=anai and b%hn. = bob% for m <n by the assumed =, order.
Lemma 2.2. The function
fl)=("" = (x =) = (x = 1))
is increasing in x for x =1 and k =1.

Proof. Differentiate f(x) to obtain

f'(x)=[k(yk— yuriyu-) + yi)lyi
for y» = x* —(x —1). Then notice that
Yi— VYoo =x'(x = 1) >0.
Theorem 2.1. =—=...

Proof. Using the identity (1.9), we see that p'=..p’ is equivalent to the
conclusion of Lemma 2.1 for a,=n*—(n—-1) ai=n*"-(n—-1)*" and
b.=p.. Assume that p'=p?, so that b' =, b*. By Lemma 2.2, a' =, a’, so that
the condition of Lemma 2.1 is satisfied.

Example 2.1. To see that p'_s,p2 does not imply p'=..p’ let pi=pi=
plo=pw=1-pi=1/3. Then p'=,p’, but wi/ui=102/12> u3/u}=105/13.

Example 2.2. To see that p' =, p® does not imply p _.cp2 let p,.., =1-pi=
1/2 and p,,-1 =1 for some n,=4. It is easy to check that p'=,.p? but

o

S pi=2>3p= 3

k=ny—2 k=ny—2
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3. Stochastic comparisons

In this section we investigate stochastic comparisons involving the stationary-
excess operator S using the stochastic order relations defined in Section 2. We
first investigate when p = S(p) and then we investigate when S is a monotone
operator.

Recall that a p.m.f. p is DFR (IFR), i.e., has decreasing (increasing) failure rate,
if r. is non-increasing (non-decreasing); p is IMRL (DMRL), i.e., has increasing
(decreasing) mean residual life, if -, px /p. is non-decreasing (non-increasing);
DFR (IFR) implies IMRL (DMRL), but not conversely; p is IMRL (DMRL) if and only if
S(p) is DFR (IFR); see Barlow and Proschan (1975) and Brown (1980). A p.m.f. p
is NBUE (NWUE), i.e., new better (worse) than used in expectation if

We now give conditions for p to be less than or equal to S(p)= p*; obviously
analogous results hold for =.

;(;)z PelPay, N Z2.

'Bl

Theorem 3.1. The following characterize when p = S(p):

(i) p=.S(p) if and only if p is DFR;

(i) p=(S(p) if and only if p is IMRL (or S(p) is DFR);

(iii) p=.S(p) if and only if p is NWUE (or r} =r,, n =2);

(iv) p =i S(p)if and only if p new is worse than S(p) used in expectation, i.e.,

it
2 p=2 pipt. n=zl;
k=1

(v) If S(p) is NWUE and u, = u7¥, then p = S(p).

Proof. (i) through (iv) follow easily from the definition of S(p). For (v), since
S(p) is NWUE,
j Tzt 2 Dk

Remark 3.1. Theorem 3.1 (iii) is well known and has often been used in
queueing; see Whitt (1983a) and references there.

Example 3.1. We show that it is possible for p to be NWUE while S(p) is not.
Let r.=x for n=1 and n =3; let r.=0. Then, by (1.7), ri =x, n =3, and
0<ri<xforn=1,2 Since ri=r for n =1, p is NWUE by Theorem 3.1 (iii).
Let r%* be the failure rate of S*(p). By (1.7), r¥* = x for n =3. Thus, ri* > r*,
so S(p) is not NWUE by Theorem 3.1 (iii).

Corollary 3.1. S maps the subsets of (i) DFR, (ii) IMRL, (iii) IFR, and (iv) DMRL
p.m.f.’s into themselves.
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Proof. (i) Consider the subset for which p is DFR. By Theorem 3.1 (i),
p=:S(p). Since =,— =, p=,S(p). By Theorem 3.1 (ii), S(p) is DFR. (ii) For
p'€{p:S(p) is DFR}, S(p’) is DFR, so that S(p')=, S*(p’) by Theorem 3.1 (i).
Since =,— =, S(p')=:S*(p’) too, so that $*(p’) is DFR, and S(p')E{p : S(p) is
DFR}. (iii), (iv) The reasoning in the other cases is the same.

Corollary 3.2. The sequence {S"(p), n = 0} is increasing (decreasing) in =, if
p is DFR (IFR) and in =; if S(p) is DFR (IFR).

Corollary 3.3. S(p)=p if and only if r. = x for some constant x and all
k=1 (i.e., p is geometric).

Proof. p =S(p)if and only if p =, S(p) and p =, S(p) or, by Theorem 3.1, if
and only if p is both DFR and IFR.

We now give conditions for § to be monotone, ie., for S(p')= S(p’)
whenever p' = p®, usually using the same ordering in both cases. First note that
Example 2.1 shows that p' =, p® does not imply that w(S(p")): = n(S(p?)), let
alone S(p')=.S(p?). As a consequence, monotonicity cannot hold when the
ordering is =y, =ic or =, in both places. In contrast with the continuous-time
case (Theorem 5.1), monotonicity also need not hold with =... in both places in
the discrete case.

However, the following elementary property implies positive results for =,
and =,.

Theorem 3.2. p,=p. if and only if S(p") =, S(p?).
Proof. For any p, p¥./p% = Pas1/Pa.
Corollary 3.4. S is monotone in =, and =,.

Paralleling Theorem 3.2, we also have the following elementary but important
comparison property involving different orderings on the domain and range of S.

Theorem 3.3. Suppose that w;=pui Then p's=.p® if and only if
S(p")=.S(p?).

Proof. This is immediate from the definitions.

We have seen that in general S is not monotone in the orderings =;c and =.
The following example also rules out various weaker results.

Example 3.2. Here we show that there is no nice subset of p.m.f.’s p' such
that p' =, p® implies that S(p')=<i. S(p°®). Assume that p; >0 for j = k;, k, and
ks, where k, < k, < ks. Let pi,«1 = pi,+ Pi,+1, Px, =0 and p; = p; for all other j,
so that p'=, p®>. However, u(p')i < u(p®): so that t(S(p")); > t(S(p?)); for all
=
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4. Convergence of successive iterates

Let p" be ap.m.f. foreach n. Wesay p" = pif pi—p, k= 1,and 25, p = 1.
We say p" —pif p"—p and pui=3;_ kpi— p, = Zi_ 1 kpe <. Let II denote
the set of p.m.f.’s with all moments finite. Let I1, be the subset of decreasing
p.m.f.’s.

Theorem 4.1. S is homeomorphism from (H,—m>) to (I, —).

Proof. It is easy to see that S is one-to-one and onto: S '(p*), =
(p%h—pta)/pt. Continuity of S and S™' is easy too.

Theorem 4.2. If $"(p)—p' as n —x, then p’ is geometric.

Proof. By Theorem 4.1, if S"(p)—p’ then S$""'(p)— S(p")=p'. Apply
Corollary 3.3.

Necessary and sufficient conditions in terms of moments for the convergence
of $"(p) unnormalized have been given by Harkness and Shantaram (1969) in
the continuous case based on (1.2). We give an interesting sufficient condition for
the discrete case in terms of failure rates.

Theorem 4.3. Ifr(p) =rn—x >0as k —>x, then S"(p)— p’ as n — x with
r(p ) = x,forall k 0. If . -0 as k — =, then S"(p) diverges to © as n — .

Proof. Suppose r.— x. Then, for any & >0, there is a k, such that
|n—x|<e for k = ko. Let r" be the failure rate sequence of S"(p). n = 1. By
(1.7), |ri—x| < e for all k = k, and n = 1. Now consider ko—m, m =1,2.---.
By (1.7), there exists an increasing sequence {n.} such that |[ri .—x|<
e(1+27™) for all n = n,.. We use the fact that pj are strictly positive for all k
such that p, >0. Hence, |ri—x|<2¢ for all n = n,, and all k. Since ¢ was
arbitrary, ri— x as n — « for each k.

Example 4.1. It is not necessary to have r. = r(p)« converge as k — in
order to have S"(p) converge as n —«, and if n converges in some more
general sense such as Cesdro the limits may not match. Consider the case of
rksi=a and ru..=b, k=0, 0=a, b<1. Then pu+si=a(l—x)". pu..=
b(1—a)(1—x)", Pasi =(1— %), pausa=(1—a)(1—x) k=0, where (1—x)=
(1-—a)(1—»b). This implies that ph.=x(1—-x)/2—a), ph.=
1-a)x(1-x)/2—a), pri=(1—x)" and ph.=Q—-a—x)(1—x)"/Q2-a).
This in turn implies that

C=b)(1—-a)_[1+(A-r)]d-r) k=0
2-a 1+d-r) =

« _(2-a)d-b) _[1+d-r)j(d—=r) >
1—rie= (Z—b) = 1+(1_r2) s k=0.

1_',;‘(“___

and
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Note that (1—r3%)(1—r5+)=(1—r)(1—-r)=1-x. Moreover, if a <b, then
n<ri<ri<r,andif a>b,thenr,>rf>r3>r. So S"(p) converges to p’ as
n — = and the constant failure rate r(p’) of the limit must satisfy (1 —r(p') )’ =
1—x or

re=1-V(1-a)l->»).

Note that r(p)« — (a + b)/2 as k — = with Cesaro convergence, but r(p'). #
(a + b)/2 unless a = b.

Example 4.2. On the other hand, it is possible to have the sequence {S" (p)}
be uniformly tight, i.e., for any £ > 0 there exists an m such that 2. S"(p) < ¢
for all n, so that every subsequence contains a convergent subsequence, while
the sequence {S" (p)} itself fails to converge. It suffices to let the failure rate r(p )«
assume only two values a and b, 0<a <b <1, with r(p) = a for nym1 <k =
n, and r(p) = b otherwise, where the successive intervals nx — nx_; > ny_, for
each k. By Corollary 3.4, p® =,S"(p)=p* for each n, where p* and p® are the
geometric p.m.f.’s with failure rates a and b. Hence, {S"(p)} is tight, but by (1.7)
for any k the failure rate r(S"(p))« continues to oscillate in the interval (a, b),
being arbitrarily close to both a and b infinitely often.

We close this section with an example of S operating on mixtures.

Examples 4.3. Let p' be geometric with mean ui, 1S i=m,and 1S ui=s
-+- = u7. Then the mixture 2%, App’ with A; >0 and =_; A; =1 is hypergeomet-
ric, denoted by H.,.. It is easy to see that

' @)= 5 [Ny [ E nuiy | p7

as n — . Hence, S maps the class H,, into itself. Since hypergeometrics are DFR,
S"(p) increases in =, to p™ by Theorem 3.1 (i).

5. The continuous-time stationary-excess operator

With minor modifications, all the results in Sections 2-3 hold for the
continuous-time stationary-excess operator in (1.1), say S, applied to c.d.f’s F
with a density f. Formulas (1.3)-(1.8) have obvious analogues, but (1.9) should be
replaced by

5.1 J: x*f(x)dx =k f: x*7'[1 - F(x)]dx.

Everything in Section 2 extends, but we must modify the proof of Theorem 2.1 as
follows.
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Proof of continuous-time analogue of Theorem 2.1. Using identity (5.1), we
have f'=..f* if and only if

[ xgl(x)dx/J: xg’(x)dx éf g'(x)dx/J: g*(x)dx

where g'(x)=x"""[1-F'(x)], or
L ) dy L y[ng‘(x)gz(y)+ yg'(x)g*(y)ldx = Lxdy L y [xg'(y)g’(x) + yg'(x)g (y)ldx.

However,
yg'(y)g’(x) + xg'(x)g*(y) = xg'(y)g (x) + yg'(x)g’(y)

for each x and y with x <y if f' = f° because then g*(x)/g'(x) is non-decreasing
in x. (We apply the analogue of Lemma 2.1.)

Section 3 also extends to S with minor changes. First, the NWUE characteriza-
tion in Theorem 3.1 (iii) should be changed to r*(t)=r(0) for ¢t > 0. For the
continuous-time operator, we can also apply (1.2) to get a new monotonicity
result.

Theorem 5.1. If f' <. f% then S(f')=.. S(f).
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