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REPRESENTATION AND APPROXIMATION
OF NONCOOPERATIVE SEQUENTIAL GAMES*

WARD WHITTT

Abstract. Noncooperative sequential games, including the noncooperative stochastic game of Rogers
{1969) and Sobel- (1971), are investigated in the monotone contraction operator framework of Denardo
(1967). Sufficient conditions are determined for the existence of equilibrium poiats in this setting. Techniques
for comparing and approximating dynamic programs previously developed by the author are then applied to
these sequential games, yielding conditions for the existence of g-equilibrium points,

1. Introduction and Summary. It is now widely recognized in economics and
several other fields that there is a need for mathematical models which can represent the
behavior of several competing decision makers interacting over time, possibly under
uncertainty. A natural model for this purpose is the sequential game, which combines
the dynamic properties of dynamic programming with the competitive properties of
game theory. The purpose of the present paper is to provide a general framework for
analyzing and approximating a large class of noncooperative sequential games. We
focus on noncooperative equilibrium points in the sense of Nash (1951), i.e., we look for
policies or strategies for all players with the property that no single player acting alone
can do better by changing. We consider the important questions of existence and
approximation. Approximation seems particularly worth studying because it opens the
way to computation and existence proofs for larger games.

The framework we suggest is the monotone contraction operator model intro-
duced by Denardo (1967). He showed that this model encompasses the two-person
zero-sum discounted stochastic game of Shapley (1953) plus many dynamic program-
ming models: In this papér, we consider N-person nonzero-sum noncooperative
sequential games in the same framework. The motivating special case is the
noncooperative discounted stochastic game studied by Rogers (1969), Sobel (1971),
Parthasarathy (1973), Himmelberg, Parthasarathy, Raghavan and Van Vleck (1976)
and Federgruen (1978). As with Denardo (1967), the generality and abstraction here is
useful to identify the essential structure. The contraction operator framework is also
very natural because it emphasizes the reduction of the initial dynamic sequential game
to a static one-period game. The final payoft to all players associated with a specification
of all strategies is the unique fixed point of the contraction opérator; the static game
involves the choice of the fixed point. However, the sequential game is not immediately
covered by the existing theory of static one-period noncooperative games because, as
will be developed, the payoff (fixed-point) is a function of the state. -

The contraction assumption means that the criterion for evaluating a payoff stream
is discounted present value. However, it is well known that in many instances the
average cost criterion can be reduced to a discounting criterion, cf. p. 149 of Ross
(1970). Moreover, as in Section 5 of Denardo (1967), we use the N-stage contraction
assumption, which covers a larger class of models, including ma‘ny finite-stage models,
cf. Whitt (1977).

A prlmary purpose of this paper is to apply to noncooperatlve sequentlal games
the approximation techniques developed for dynamic programs and two-person zero-
sum stochastic games in Wh_itt (1978). The ideais to replace the original state and action
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34 WARD WHITT .
spaces with smaller sets and define a new transition and reward structure to approxi-
mate the original. In this way, we show that the extension of an &;-equilibrium policy
vector in the smaller model is an £z-equilibrium policy vector in the original model,
where 5 is a function of £, and an appropriate measure of oscillation, cf. Theorem 4.2.
The approximation results are in turn used to provide conditions under which a
noncooperative sequential game has an r-equilibrium point for each £>0, cf.
Theorem 5.1.

 As special cases, we obtain new results for stochastic games. Of particular interest
is the application of the approximation procedure to provide conditions for the
existence of g-equilibrium points for all £ >0 in the noncooperative discounted
stochastic game when the state space is uncountable, cf. Theorem 6.4. The only other
results for uncountable state space seem to be in Himmelberg, Parthasarathy,
Raghavan and Van Vleck (1976). We also suggest what appears to be a promising
procedure for finding z-equilibrium points in many large noncooperative stochastic
games, namely combining the approximation procedure here with an algorithm for
finding approximate fixed-points of a continuous function mapping a subset of R" into
itself, cf. Remark (3} at the end of § 6.

A good indication of possible economic applications can be obtamed by looking at
the specific stochastic game in Kirman and Sobel (1974). As noted by Federgruen
(1978), earlier work by Sobel (1973) on discounted stochastic games with uncountable
state space, which is.applied in Kirman and Sobel (1974), is not valid. Qur results can be
applied to obtain conditions for the existence of s-equilibria in the game studled by
Kirman and Sobel (1974).

We now briefly indicate how this paper is organized. We beginin § 2 by definingdla
Denardo (1967), noncooperative monotone contraction operator games. Following
van Nunen (1976), Wessels (1977) and others, we allow for unbounded rewards. As in
§ 5 of Denardo (1967), we use the N-stage contraction assumption. In § 3 we apply the
Glicksberg (1952)-Fan (1952) generalization of the Kakutani fixed-point theorem to
obtain sufficient conditions for the existence of equilibrium points. In § 4 we show how
two sequential games can be compared, which provides the basis for approximations. In
§ 5 the approximation scheme is applied to provide conditions for the existence of
g-equilibrium points for each £ >0. Finally, the special case of a noncooperative '
stochastic game is investigated in § 6.

2. Noncooperative monotone confraction operator games. Our model of a
noncooperative. sequential game is a direct extension of Denardo (1967), with the
representation of a noncooperative discounted stochastic game being very similar to the
representation of Shapley’s (1953) two-person zero-sum stochastic game in Example 2
of § 8 in Denardo (1967). Let the state space S and the player space I be nonempty sets.
For each player i €I and each state s €, let the action space A;(s) be a nonempty set.
To allow for randomized strategies, A;{s) is often P(Bi(s)), i.e., the set of all probability
measures on an underlying action space B;{s}, but we do not stipul_ate this yet. Let the
space of all possible actions for all players in state s be the product space A(s)=
XieiAi(s). For each i € I, let the policy space for player i be A; = X,csA(s). Anelement §;
in A; is called a stationary policy for player i because it represents the policy that takes
action §; (s) .every time the system is in state 5. Let A= X ;A; represent the space of
pollmes for all players. Throughout this paper, we ‘consider only stationary. pohcnes but
the symmetry argument in § 7 of Denardo (1967) can be used to show that no one player.
acting alone ¢an do better by employing a more general history-remembering policy.

. Hence, we show that there exist equilibrium points or e-equilibrium. pomts consisting of
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stationary policies within the class of all history-remembering policies. Of course, we do
not exclude existence of other equilibrium points and ¢-equilibrinm points consisting of
nonstationary policies. While A and A; contain only stationary policies, more general
policies such as history-remembering policies can be included in this scheme by
enlarging the state space. For example, the stage should usually be included as part of
the state description iin representations of finite-stage sequential games via monotone
contraction operator, models, cf. Whitt (1977).

Let the space V of poteatial return functions be a subset of R $*! In order to allow
for unbounded rewards, let o : § - (0, ) and 8 : § » R be two functions. (The common
choice of & and 8 is a(s) =1 and B(s) =0 for all s € §, which yields bounded rewards.)
For any vy, v2€ R, let

‘ llo\ll = sup {loils, D)]:se 8, iel}
(1) and
d(vy, v2) = "0! (01— Uz)",

where we regard a(s) as a function of both s and i which is independent of i. Let the
space of potential return functions be

2) V ={ve R*!d(», B)<oo}.

It is easy to see that (V, d) is a complete metric space.

The basic ingredient in the model specification is the local income function
h(s, i, a, v), which assigns a real number to each quadruple (s, ;,a, v} with s€ §, i,
ac A(s) and v € V. The number A (s, /, a, v) represents the return to player / beginning
in state s when player j uses action g; for all f € I and all future returns are described by
the function v in. V. Foreach § € A, let (Hyv){s, i) = h(s, i, 5(s), v). We make the following
basic boundedness (B), monotonicity (M) and N-stage contraction (NC) assumptions

“about the collection of operators {H;, § € A:

(B) There exist constants K, and K, such that ||« (Hsv — 8)| £ K + Kalla (v~ 8)| ‘
foralldeAand ve V.
, (M) If o, =v,in V,ie.,if vi(s, ) = vy(s, i)forallseSandic then Hsv, = Hva
- forall 5eA.
(NC) ' There ex1sts a positive integer N and nonnegatlve constants m and c,
0= ¢ <1, such that

d(Hsv,, Ha,vz)é md(vy, v2)
and
d (H5vy, Hyva)=cd(vy, 02)

for all § € A and vy, v2€ V, where H ~ is the N-fold iterate of H.
Obviously (B) lmplles that the range of H; is contained in V. Property (NC) is the
N-stage contraction assumptlon cf. § 5 of Denardo (1967). The ordmary contraction
assumption occurs when N = 1. The contraction modulus ¢ often arises ‘as a discount

_factor Properties (M) and (NC) imply that each operator H; has a unique fixed point v;’

in V' which we call the return function associated with policy vector 8. Note that the
monotone contraction operator model reduces a sequential gaime to a one-stage. game;

. the set of strateg:es*ava:lable to player i is-A; and the return to player / from. a’

specification of strategies by all players, i.e., 4, is the fixed point vs( -, i). This differs
from the usual static. noncooperatwe game, however, because thc return to each player
is not a real number, but a function of the state. : '
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A slight modification of Theorem 4 in Denardo (1967) yields
(3) dlvs, v)=(1+m+---+m™ Y1-c)" d(Hs, v)

for all §A and v V. The N-stage contraction" assumpt:on covers many N-stage
sequential games with ¢ =0, cf. Whitt (1977).

It should be noted that it is often possible to transform an N-stage contraction into
a 1-stage contraction by modifying the bounding function «. A transformation for
Markov programs, which also applies to the stochastic games in § 6 here, was con-
structed in § 8 of van Nunen (1976). However, it appears that such a transformation is
not always possible for the more general monotone contraction operator models here.
Moreover, even when such a transformation is possible, the new distance d is different
from the old one and may be difficult to compute. Hence, we keep the N-stage
contraction assumption.

For any § e Aand y; € A,;, let [67% 7] represent the policy vector 8’ in A with 8] = §;

for j#i and §; = i Let fs represent the optimal return function given that the other
players are using ' for each i, defined by

fs(s, Dy =sup {vs-1.4, (5 ) vi€ A}
Let F; be the associated maximal return operator, defined by

(Fso)(s, 1) =sup {(H s 5,0)(s, {) 1 vi € A}

foreachseS§, icel, deAandve V.

Note that property (B) ihsures that the range of F; is in V for each § € A, A slight
modification of Theorem 4 in Denardo (1967) shows that f; is the unique fixed point of
F;. It is natural to define a disequilibrium function n: AXSXI->R as ns(s, i)=
fs(s, i) — vs(s, i). Call a policy 8 an e-equilibrium point (e-EP) if n5(s, i) < e/a(s) for all i
and s, i.e., if d{fs, v5) =e. Call a policy & an equilibrium point (EP) if it is an £-EP for
e=0.

3. Existence of equilibria. The existence of equilibrium points in noncooperative
sequential games can be established by applying classical fixed point theorems, follow-
ing the original line of reasoning used by Nash (1951) to treat static games. This
approach has been applied to stochastic games by Rogers (1969), Sobel (1971),
Parthasarathy (1973), Himmelberg et al. (1976) and Federgruen (1978). In this paper,
we indicate how to apply the Kakutani fixed-point theorem for point-to-set functions
as generalized by Glicksberg (1952} and Fan (1952) to the monotone contraction
operator games. An alternate approach would be to apply the Brouwer fixed point
theorem as generalized by Schauder and Tychonofl, cf. Theorem 1 of Sobel (1971).

Let 2Y represent the set of all nonempty closed subsets of a Hausdorff topological
space Y. Let X be a HausdorfI topological space. A set-valued function @ : X -2%is
called upper-semicontinuous (u.s.c.) if y € ®{(x) for each x € X, net {x,ieJ}in X and
net {y;, je J}in Y such that x; > x, y; > y and y; € ®(x;) for each j. (Since X and Y need
not be first countable, we use nets instead of sequences, cf. Chapter X of Dugqu]l
(1966).)

THEOREM 3.1 (Kakutani, thksberg and Fan). If X is a convex compactsubset of a
Hausdorff locally convex topalog:cal vector space (LCTVS) and ®: X —>2 is convex-
valued and u.s.c., then x € ®(x) for some x € X.

‘For our application, we want X = A-and @ = ¢, where e (8) =X,-E . {8); an;i;_-_- -

(4) e (B ={yvi€Ai fo(s, )= vgs-i43(s, i)+ e/a(s) for allsj.
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The rest of this section is devot :d to providing ~onditions on the monotone contraction
operator game in order for (A, ') to satisfy the conditions of Theorem 3.1. The obvious
modification (to account for th. metric 4 in (2)} of Corollary 1 together with Theorem 4
of Denardo (1967) shows th:it 4.(8); is nonempty for each & > 0. Throughout this
paper, let A= X;.;A; and A; = X, sA4:(s) be given the product topology, cf. p 98 of
Dugandji (1966).
THEOREM 3.2. There exis's an EFP if
(i) Ai(s} is a convex con pact subset of a LCTVS for eachiclandseS,
(1)) A(s, i, a, v) is a concave function of a; for each s, I, a, v, and
(iii) vs(s, i) and f5(s, i} ar’ continuous functions of 8 foreachseSand il
Proof. Since the properties of convexity, Hausdorff, compactness, TVS and LCTVS
are preserved under arbitrary p.roducts, cf. pp. 138 and 224 of Dugundji (1966) and pp.
19 and 52 of Schaefer (1966), :he product spaces A; and A are convex compact subsets
of a LCTVS. Condition (ii) imy:lies that ¢, is convex-valued. Conditions (i} and (ii) plus
Corollary 2 of Denardo (1967 show that . (8); is nonempty for £ =0 as well as £ > 0.
To see that ¢, is u.s.c., suppost {8, j € J} and {5}, j € J} are nets in A with §; > 5, 8] > &'
and &} € ¢.(§;) for each j e J. Lt §; and 8}; be the ith coordinate in A; of §;-and 6' inA.
Apply the triangle inequality t obtain

lots-1sn(s, iY—fo(s, D)i=lo—1a(s, 1) -vis750(5, i)

+lots7s1(5, 1Y = Fs,(s, D+ f5, (s, 1) = f5 (5, )]

for each s and . The first anc third term converge to zero by condition (iii) and the
second term is less than or equal to ¢ for each j because 8}; € .(5;) for each j. Hence,
&' € ¢.(8), so o, is u.s.c. and the conditions of Theorem 3.1 are satisfied with' g =0.

Lemma 3.1 If

(i) Ai(s) is a compact mtric space foreachiel and SES, "

(ii} S is countable, and s

(iii) wvs(s, i} is a continuous function-of § for each seSandiel, then fa(s, 1) isa
continuous function of & for earh s and i.

Proof. Suppose {8, jeJ}isa net in A with 8;»8. Let s and i be gwen For any
£1, £2>>0 there is a vy, € A; and a j such that

fo(s, )= st s, Dt ey
= f'[.s;’.:w](sa' i)+&,+ep for I:=’10
=/5,(s, i)+el.-l.-' €2 for j = j,.
Moreover, there is a net {y;, f =J} in A;-such that
fa,(8, V= 015741 (5, i)-i-f-:;. -.for-a.ll A
so that |

lim sup f5,(s, z) <hm sup v[.s-- w,](s 1) +£1
;eJ’ :

el

Choose a countable totally ofdered.subsct J "-of the dirccted set.;f_-.so ihat,,the

lim sup is attained on the left. Then, using the fact that A; is compact metric space, by .

virtue of conditions (i) and (ii;. choose a convergent subsequénce. {y;:} of {y; feJ} -
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with limit v, Hence

lim sup f5,(s, i) =lim sup vs5; 5, (s, )+ &1
ii=r k—=00

= D~ ‘Ye](‘g’ l)+ £1
=fs(s, i) +e1.

LemmMA 3.2. If Hyv : A> Vis a continuous function of 8 for each v € W, where
subset of V containing vs for all 8 € A, then vs : A— Vs a continuous function of 8,
vs(s, i): A= R Is a continuous function of 8 foreachseSandiel

Proof. By (3), '

dvs, vs)=(1+m+ - - - +m™ Y 1-c)! d(Hjvs, vs),

where d(Hs s, vs) = d(Hsvs, Hsvs) > 0 as 8, 8.

The continuity condition in Lemma 3.2 is more likely to hold if W is a subs:
with convenient properties. For example, if Hzv is continuous (concave, monoto
each & and each continuous (concave, monotone) v in V, then Hs maps the
subset of all continuous (concave, monotone) functions in.V into itself, so th.
point v, is continuous (concave, monotone). However, even if W has con
properties, the continuity condition in Lemma 3.2 is quite strong because it rc
(5) d(Hs,v, Hsv) =sup |a(s)(h(s, i, 8.(s), v)—h{s, i, 8(s), v)}[ > 0

£

et
whenever 8, = 6. Since A has the product topology, the metric convergence ir
difficult to achieve unless S and I are finite. More useful conditions are conta:

LemMa 3.3. Suppose {8; jeJ} is a net in A converging to 8. If

(i) h(s, i, 8;(s), v;)> h(s, i, 8(s), v) whenevervi(s, i} > v(s, i) forallseS,ic [

‘peV;and

(1) sup,-e_rd(Hﬁ,.vo, v5,) > 0 as k > 00 for some vo€ V; then vs,(s, ) > vs(s, ©).
Proof. By (1), (Hsv0)(s, i) > (Hsvo)(s, i) for all 5, /.
By (i) again and mathematical induction,

(H5p0)(s, i) =[Hy,(H 57 00)(s, §) > [Hs(H 5 00)](s, i) = (H kvo)(s, i)

as j - oo for each k=1. As a consequence of this and (ii}, vs,(s, i) > vs(s, ).

The standard way to make A convex and X(s, i, a, v) concave in a; is to int:
the mixed extension, i.e., let A;(s) = P(B;(s)), the set of all probability measures
underlying action space B;:(s), and let the local income function applied to prob
measures be defined via expectation:

(6) his,i,a,v)= Jh(s, i, b, v) dualb),

where ., is the product probability measure on the product o-field of X B;:(s

. one-dimensional marginal probability distributions a; and the integral is an

integral if A(s, i, b, v) is not measurable in b, cf. Example 3 in § 8 of Denardo (

Itis well known that if B;(s) is a topological space and 2 (B(s)) is endowed w
topology of weak convergence, then P(B;(s)) tends to inherit the topological proy
of Bi(s). For completely regular spaces, the weak convergence topology is nat

characterized by the continuity of | f 4P in P for each bounded continuous real-va-

The basic inheritance properties here can be found in § I1.6 of Parthasarathy (

o Varadarajan (1958) and footnote 10 in Fan (1952). Call a measure u regular [Rac
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w{A) =sup {u(C): C c A} for all measurable subsets A, where the supremum is over
all closed [compact] subsets. Obvicusly regular and Radon are equivalent in compact
Hausdorff spaces. The LCTVS that appears below is the space of finite signed measures.

LEMMA 3.4. Let Ai(s) =P (Bi(s)) with the topology of weak convergence.

(a) If B:(s) is a separable [ compact] meiric space, then A;(s) is a separable [compact]
metrizable convex subset of a LCTVS,

(b) If Bi(s) is a compact Hausdorff space, then the subset of regular probability
measures in P(Bi{s)) is a compact convex subset of a LCTVS,

There is still a major stumbling block—the integral in {6). There is no problem if
the set I is countable and the set B;{s) has a countable base (i.e., is second countable,
which is true if B;(s) is a separable metric space); then the product o-field on X B;(s)
will coincide with the Borel o-field with respect to the product topology. However, if
either I is uncountable or if B;(s) does not have a countable base, then there can be
complications. Henceforth, we make the assumptions to avoid the complications. We
can combine this observation with Theorem 3.2 and Lemmas 3.1-3.4 to obtain the
following result for the mixed extension.

THEOREM 3.3. If

(1) S and I are countable,
(i) A;(s)=P(Bi(s)) with the topology of weak convergence, where B(s) is a
compact metric space,

(i) h(s, i, ba, v) = h(s, i, b, v) whenever b,; » b; and v, (s, i) > v(s, i) foreachsc §
andiel,

@iv) A(s, i, a, v)=[h(s, i, b, v) dub), where u, is the product measure on X;<B:{s)
with marginal measures a; € A;(s),

{v) sup,d(H ,’s"nvg, vs,) >0 as k >0 for some vo in V and any convergent sequence
{8.} in A, . .
then there exists an EP, i.e., there exists §* € A such that 5* & r(8%).

Proof. By conditions (i) and (i} and Lemma 3.4(a), A is a convex compact
metrizable subset of a LCTVS. By (i) and (if), the Borel ¢-field on X;.B:(s) with the
product topology coincides with the product o-field. By (iii), the integral in (iv) is well
defined. By (iii) and the almost-surely convergent representation of weak convergence,
cf. Dudley (1968}, h(s, i, 8.(s), v.)—= k(s, i, 8(s), v) whenever §,(s) » 8(s)and v, (s, {) >
v(s, §) for each (s, #). This and (v} plus Lemma 3.3 imply that vs(s, {) is continuous in §
foreach (s, i). Lemma 3.1 implies that f5(s, #) is continuous in & for each (s, {). By (iv), ¢
is ‘convex-valued. Hence, all conditions of Theorem 3.2 are satisfied.

Remark. The difficult condition in Theorem 3.3 is (iii). Since the convergence
b, - b and v, - v is pointwise in s and /, in order to satisfy (iii} it will often be convenient
to have I and/or S finite.

4. Comparing sequential games, Following Whitt (1978), let (S, L, {A:(s), s €S,
iell, h, a, B, ¢) and (S, I, {A;(s),s 8, iel}, b, &, B, &) be two sequential games as
defined in § 2. In order to compare these games, we require that several comparison
functions be defined. These comparison functions arise naturally in deliberate approx-
imations, which can be constructed by selecting partitions of subsets of the sets §, I and
Ai(s)foreachieI and s € §, with one point selected in each partition subset, cf. Section
4 of Whitt (1978). In that setting the mappings below correspond to projections and
extensions, which is the motivation for the notation. The comparison functions are:

(i) a mapping p of Sonto S, . : '
.+ (i} a one-to-one mapping p of I onto I;
(iiiy a mapping p of A;(s) onto A,»(p(s)) foreachiclFandseS;
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(iv) a mapping e of § into S such that p{e[$]) = § for each § € S;
(v) a mapping e.; of A,,(.)(p(s)) into Ai{s) such that p(e,.[a])—a for each
a eAp(.)(p(s)) iclandses.

(vi) e: V>R with e(5)(s, )= 5(p(s), p(i); for each Se S and i e I;

(vii) p: V> V with p(v)(s, :) v(e(s’) e(z)) foreach §eSand fel;

(viii) e: I—>I with p[e(:)]——z for all ; EI
(ix) e: A > A; with €(8,)(s) = e5,:(8plp(s)]) for each se§ and i€ ], and
x) p: A; —>A,,(., with p(8;)(5) = p(8:[e(5)]) for each § feSandiel

Let ¢ and p also map:product spaces onto product spaces in the obvious way, e.g.,

e:A->A with e(8); = e(spm) and p:Xic1A; (S)‘*Xp(.)EIAp(:)(P(S)) with p({a; (S)})pm—-

plai(s)) for a;(s)e A(s) for each i e I and s € S. Note that e{8)e A for each S A.
Assume that e(d) e V for each & € V. Note that this is automatic if a(s) =< a(p(s))
and B{s)— B (p{s)} =0 for all s €S, but might fail in general.

We expect interest to be focused on approximating the action spaces A;(s), because'
- these spaces—ausually being sets of probability measures—are often large. Thus the

mapp: §-> § might often be one-to-one as is the map p: I - I, but we do not require it.
The ‘““distance™ between these models can be expressed in terms of the measure of
oscillation

K ($) = sup d(Hse(5), e(H,50))

S5l

—-su;sn|a:(S)[h(S i, 8(s), e(8)) —h(p(s), p(i), p[86s)], D)]I.
1T
ierl

)]

Obviously p: I -» I should usually be one-to-one, as already assumed, in order for K (6)' ,
to have any chance of being small, but the following results hold even if p: I I were

not required to be one—to-one
THeEOREM 4.1. For any €A,

d(e(@s), vagyS(1+m+ - - +m" ) (1—c) " K(D5).

Proof. Just as in Theorem 3.2 of Whitt (1978), substitute e(8) for 8 and 75 for &iin.

(7) to obtain

d(He(me(Us) e(0) = K (d3). _ -

Finally, apply formula (3) recailing that we have assumed that ¢($)e V for each v eV, '.

TuEOREM 4.2, If 8 is an ¢-EP, then 28 is an (I+m+---+m
(1—¢) (e +2K (55))-EP.: o
Proof. As in the proof of Theorem 3.1 of Whiit (1978},

(N H (s ) e(35))(s, D) = a(s)h(s, i [e(8)7", %:1(s), e()) _
=<a(S)h(P(S) p(i), ple(®)™, %1(s)), Us)+K(Ua)
':<'a(S)h(p(S) p(i), p([e(8)", %:)(s)), f.s)+K(vs)
=d(s)fs(p(s), pli)) + K (55)
a '<a(s)e(ua)(s t)+(K(v5)+e)

for each sE S ¥: € A and zEI As a. consequence of properties (M) and (NC),

o (5[ Hfkey-to €G], 1 -

<a(s)e(u6)(s D+ +mt -+ m YK () +e),




each

g, w4
pli: = . 1 m*
pis)
:alise:
s the

ire it.
re of

K (5)

were S

- Bi(s) is a subset with compact closure in a metric space B}

. if m(s’, s')":ez and m(b;, b)) = e forall i;

- then, for any € >0, there exists an e-EP 6% with §7 (s) being a probabzlzty meéasure on a.
. finite subset of Bi(s) for each 5 and i. :

o - according to'the scheme in § 4, each of.which satisfies the condmons ofTheorem 3 3
‘Letl,=r for each n =1.Let{sx} be acountable dense subset of S, wh:ch exlsts by virtu
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and, by induction,
a () Hieer e @8)(s, 1)
=a(s) e@)s, D+ +c+-- -+ Nl +m+- - +mVN WK (G5 +€)
for all k= 1. Since d(HY*v, v5)~ 0 as k » o0,
a($)0reidyiva(s, D) =als) e(@5)s, D+(1—¢) "(l+m+-- - +m WK (D) +e)
for all y; € A;, so that : _
a(8) ey, DS als)e@)(s H+(1—c) (1 +m+- - +mV WK (B +e).
Apply Thebrem 4.1 to obtain . |
a(s) feiy(8 D) Za(s)vesy(s, D+ (A=) 1+ m+- - - +m" V2K (55) +¢)
or

d(fedr Ve E(1—=c) (A +m+ - +m"~ 1)(2K(vs)+6)

5. Existence of £-equilibria. We now combine Theorems 3.3 and 4 2to obtam
su!ﬁment conditions for the existence of -EP’s in sequential games with uncountable
state spaces and noncompact action spaces. The #-EPs obtained are also mixtures of
only finitely many actions for each player in each state. Throughout this section, let» m
represent several different metrics and let the set / be countable. For any subset € in: d
metric space (B, m), let

C'={beB:m(b b’)<e for some b'e C}. | N
THEOREM 5.1. If :
(i) S is a separable metric space;

(i1} B(s)=0 and a(s) is bounded over any finite sphere {5} inS§;- RN
(iii) foreach (i, 5), A;(5) = P(Bi(s)) with the ropology of weak convergence, where

(iv) foreachi, the set-valued function mapping s into Bt (s} is uniformly continuous:
for each 1> 0 there is an £3>> 0 such that Bi(s,) < Bi(s2)"* whenever m(sy, s2) = e2;

(v) for each (i,s), his,i,a,v)=[h(s, i,b. ) du.(b), where p, is the product
measure on the product o-field on X< Bi(s) with marginal measures a; eA (s) and,f
integral is an upper integral if h(s, i, b, v) is not measurable in b} L

{vi) forany e,>0, there is an £,> 0 such that

sup [a (s k(s L0, v)—h(s". i b, )] <&
veVv ’ ) . B
iel ) EREE O

(vii) h(s, i, b, v,,)—> h(s, i, b, v) whenever b,; = b; and u,.(s, 1)—>v(s z) for aIl 5, i
(viii) sup,.d (H s.Vo, Us,) >0 forsome vy in Vand any convergentsequence {8n }m A;l

Proof. We construct a sequence of approximate models

S, I, {Au(s)se8, ie I LR o, B,,, c), n = 1}
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of condition (i). For each n =1, form a countable partition of subsets of § by setting
Sa={seS:mis,s;)=n""}

and
. 1 k-1
S ={seS:ms,su)=n 52 U S} kz2.
i=1 C

Foreachn=1,let $. be obtained by selecting one point s, from each nonempty subset
in the partition {S,:}. (Henceforth, omit all empty partition subsets.) Select the point 5,
‘so that a(.éf,,k) Za(s)/2 for all s € S, This can be done by condition (ii).

For each n=1, k=1 and s € S., form finite partitions {B,.;(s), 17 =K.} of
nonempty measurable subsets of B;(s) of common cardinality K., such that m(b,, b)) =

w(n)if by € B.a(s1) and by € Bru(sz), where s1, 526 Sq and v(n) -0 as n -»>00. These

properties can be satisfied because of conditions (jii) and (iv).

Foreachiel,n=1, k=1 and s € S, let B,;(s) be a finite subset of Bi(s) obtained
by selectmg one point from each partition subset Buii(s), 1=7= K. Let Anls)=
P (B, (s)yforeachiel, se S, andn=1.

We now define the five basic comparison functions, Let p,: I - I, 'be defined by

| pa{i}=i. Let p,: S8, be defined by p.(s) = su if 5, Sox € Sux and s € S, This

obviously: vields m(s, p.(s))=n"" for all s and n. Let p,:Ads)> A, p(pa(s)) be
defined by

Pala(s){bY) =a; (S)(Bnku(s))

_ where b€ B, p)(Pa(s)) and b € Buipini(Pn(s)), which requires that seS.. This

obvnously means that p,(a:(s)) is the probability measure in A, )P (5)) assigning
mass to each point in B, ,_(p.(s)) equal to the mass the probability. measure a;(s)

. assigns to the corresponding partition subset Bp;{s).in Bi(s).

Let the mappmg e.: S, > S be defined in the obvious way: e,,(s,,) $.. Let the
mappmgs €nsi’ Anpi(Pn{8)) = Ai(s) be defined by setting .

Ensi{An pi(Pr (S)))({b}) G pti(Pn (s)){B'D

for beB,,(s) b€ Bou(s) and b’EB,,k,,n(.),(p,,(s)) This implies that e,,(:S,w,,(,))(s) is a
probablhty measure on a finite set for each ¢, 5, n and 6,,, < A,,,
Let the approximate local income functnons be deﬁned as

PGy ey Gy O} = RSy by iy €n(5))

for all n, s,, S, incl, dn, € A,,.,_ (§)and 6, € V,, just asin (4.1) of Whltt (1978). Then,
by condmon (vi), the measure of oscillation K, {5,) in (7} is

. { K.(6,)= =sup lae(s)(R(s, i; 8(s), eu(vn)) h(p.(s), i, pa[8(s)), en(vn))]l
e Ger )
SeA

. =sup Iae(s’)[h(s iL,b',v)~ h(s",z b, v)]-

1

where . the second supremum ’ ‘is over all ve V, all 5", s"¢$ with !m(s s”)<n , .
b'eB(as") and b; € B;(s") with m(b}, b')=v{n)>0 as n->co and. all icl Hence, - . -

com:iltlon (vi) implies that sups .z, K(5s, }->0 as n - .

“The construction above plus conditions (vii) and (viii) imply that the conditions
in Theerem 3.2 are satisfied in each approximate model, so there exists an EP in each |
approxlmate model. Theorem 4.2 then implies that, for each £>0, there is an no such -
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that the extension of each EP in the nth approximate model is an ¢-EP in the original
model for all n = ng. '

Remarks. (1) Note that conditions (vii) and (viil) are only applied to establish the
existence of an EP in each approximate model. If the existence is already known, these
conditions can be omitted. The conditions could also be stated for each approximate
model. For example, if I is finite, then (vi) can be replaced with k(s,i, b, v,)—>
h(s, i, b, v) whenever v, (s, i)>v(s, i). . .

(2) If S is a subset with compact closure in a metric space, then S, can be finite for
eachn. C

6. Stochastic games. We now consider the special case of a noncooperative
stochastic game. As before, let the set I of players be finite or countably infinite. Let the
sets § and B;(s) be separable metric spaces endowed with their Borel o-fields. Let .A;(s)
be the space P(B;(s)) with the topology of weak convergence. A stochastic game is
obtairnted by letting the local income function be

(®) h(s, 1.0, v)=r(s, )+ [ o(x, Daldxls, b),
S

where r(s, i, b) is a measurabie real-valued function of s €8, fel and be X, :Bi(s),
q(Cls,b) is a subprobability measure on § for each se S and be X;.;B:(s) and a
measurable function of (s, b) for each measurable subset C, and the integral in (8) is an
abstract Lebesgue integral if v is measurable and an upper integral otherwise. (We
assume the integral is well defined, i.e., the integral of |v] is finite.)

Also let

rs(s7 i) = r(ss i; 6(3)) =J'r(S, i: h) d.“’ﬁ(s)(b):
and

45(Cls)=q(Cls, 5(:)) = [ a(Cls, b) duan(b),

where us(s) is the probability measure on the product space X;..B:(s) with marginal
measures &;(s) for each i.
Let the associated return operator H; be defined by

(Hsv)(s, iY=h(s, i, 8(s), v)
= J. k(& ib, U) d.u'ﬂ(s)(h)

=rsls, )4 L o(x, )qs(dx]s).

Let the space (V, d) of potential return functions be as-in (1) and (2). Let (gsw)(s) =
{ w(x)gs(dxls) for any function w for which the integral is defined. Following van
Nunén (1976}, with the obvious modification to include N-stage contractions, we make
the following assumptions:

© Ce D et -(-0B) =M,
(10) L le@B-cli=An,

o) [ 1/t lastaxls)| = m,

leegsce ™| = sup
R -

legsa"l=c<1
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forall e A, where 45 is the N- step transition kernel associated with s defined as usual
by

q5(Cls)= L g8 " {(ClsNgs(ds']s).

Conditions under which (11) hold with N =1 are discussed by van Hee and Wessels
(1977). If a(s)=1 for all s, then (11) holds with N =1 if g5(S]s)=c, which arises
naturally if a discount factor ¢ has been incorporated into the probability transition
function. As a straightforward extension of Lemma 3.2.2 of van Nunen (1976), we have

THEOREM 6.1. Under (9) (11), the return operators Hs, 3 € A, satrsfy properrzes (B),
(M) and (NC). Moreover, HY maps Vy into itself, where

(12) Vo={veV: ||ac(u -Bl=t+m+---+m™HQ1 ——q)"r(ﬁzf.1 +M2)}
Probj‘._ (B) Note that

lloe (s — Bl =lla(rs +qsv -8l
=lla(rs —(1~c)B) +algs(v —8)) +algsf — Bl
=llatrs — (1~ ) +lags(w ~ )+l (gsB - cB)I
=My +lagsa ™Y - a0 - B+ M3 |
=EM+ M+ mle(v - B
(M) This is straightforward.
{NC) For any vy,v2eV,
d(Hsv1, Hpv2) = llegs (01~ v2)f
=llegsa™ | - la (o1 — v = md(vy, va)
and ' | .
d(va;, H?rvz) = "aql.sq(l?x - ,)
=llags'a ™ - la(vr~va)ll = cd(vs, v2).
: (Vo) First nofe that
Ilaqswu<llaqaa - fawl
=llags(qs 'a - flaw]

=lagea |- lags™'a™

| I ol el

ForanyveV, . _ ' _ .

' a(H'fv-—.B)=a[rs+q.sfs +qirs+ - q?-ifs +CI§’U‘-B]
=alrs— (1= C)ﬁ]"’aq.s[fs (1= C)B]

oo +agd e~ (1-c)B)+ agh M)

: '+a['qaﬁ Cﬂ]+aqs[qsﬁ CB]

e +aqs [QsB CB]
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so that
la(HYo—BN=(1+m+- - -+ m" )M+ My +lagsa "] - Jate —B)]
=(1+m+ - - +m" HM+M)+clla(v -8,
which implies that
la(Hv —gl=(1+m+--- +m™ W1—c) ' (M + M)
if ‘
la(o—=Bl=+m+ - +mV (1 —c) (M + M),

We now determine sufficient conditions for the existence of an EP by applying
Theorem 3.3. _

THEOREM 6.2. The stochastic game defined above has an EP if

(i) Sis countabie; '
(ii) B;{s) is a compact metric space for each i and s;

(iii) (s, i, b) and q({s'}|s, b) are continuous functions of b in X,E ;B (s) foreachs,s
and i; and

- (iv) for any £ >0 and convergent sequence {b,}, there exists a finite subset C of §
such that

sg c(I{:‘ (sO+a7'(sNg{sYs. b}y <e for all n.

Remarks. (1) Condition (iv) follows from condition (iii) if 8(s)=0 and a(s)=1
because the convergence g({s'}|s, b,) = g{{s'}]s, b) implies uniform tightnass cf. p. 47 of
Parthasarathy (1967).

(2) Conditions (jii) and (iv) are both satisfied-automatically-if 7 1s_ﬁmte and B,(s)is
countable and discrete for each i and s. :

(3) Theorem 6.2 reduces to Theorem 1 of Federgruen (1976) when N =1,
B(s)=0, als)=1 and I is finite—which in turn reduces to Theorem 1 of Sobel
(1971)—when, in addition, § and B;(s) for each-/ and s are finité.

Proof. We show that the five conditions of Theorem 3.3 are satisfied. By direct
assumption, conditions (i), (ii) and (iv) hold here. By condition (i_ii) and (iv) here

(s, i, b, va) =r(s, i, b )+ X va(s", Dg({s'Hs, b)
s'els

>r(s, i, b))+ Z o(s’, Dq{{s'l]s, ) = h(s, i b, v),
which is condition (jii) of Theorem 3.3. Finally, condition (v) holds because, for any
SeA,
d(ET Yo, v5) = d(H 5 00, HE 05
=c*d(ve, vs)
=t (awo-B)+llaws =B .
=2c “Atmt-am™ ‘)(1 c) "M+ Mz)

-We now consrder compansons bctween the stochastlc game model (S, I, {B (s)

+eLseSkh a, B, c) and a*‘smaller” stochastic game model. (S I {B;(s) (X Ise S} h

&, B, &) which are both assumed to satlsfy (8)—(11) Assume- that: the comparison

Rttt
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functions in § 4 have been defined. Let .§_‘, E‘,-(s) for each iel and se§, and I be
countable sets. Assume that :

S.=p 'E)={seS:p(s)=45}, s.e§

and

B.u(s)=p ' (B)N B(s)
={beBi(s):p(i)=i,p(s) =5 p(b)=8},  beBis),

are measurable subsets for each n, /. and s.
As in § 4, assume that e(0) e V for each e V. In this setting, the comparison
results in § 4 can be expressed in terms of the measures of oscillation

K, = sur; lae () (s, &, b) = Fp(s), p(i), p(B))]}

iel
be XB(s)
iel

K@= sup {als) T (5GD|aSils, b)-ds.Hots), p o)
be)::?.-(s} o

and K, = K,(5*), where

(14) 5*(s.)=sup {B(s.)+d@ ‘()1 +m+--- +mV N1~ M+ M)}, nzl.

se8,

THEOREM 6.3. For any 8 €A, K () = K. +K,(0:) =K, +K,.
. Proof. By (7) and the triangle inequality,

K (35) =sup la () h(s, i, 5(s), e(55)) — K (p(s), p(i),p[8(s)], 5]
fel
S

=sup la(s)ir(s, i, 8(s)—Flp(s), p(i), pls(s)D|

sES
SeA
iel

+sup a(s) g (Bs(sa)Dlg(Sals, 8(s))— G({suHp(s), p[8 ()]

S€A
=K, +K, (i) =K, +K,

where the last step follows because |55(s. )| = 5*(s.) fng all n by (12).
- Remarks. When a(s)=d&(p[s]) =1 and 8(s)=g(p[s]) =0 for all 5, Theorem 6.3
reduces to Theorem 6.1(a) of Whitt (1978). For further refinements, see § 6 of Whitt

(1978). '
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We now present sufficient conditions for the stochastic game to have an £-EP for
each £ > 0. For simplicity, we assume I is finite and a{s)=1 and 8(s}=0 for all s.

THEOREM 6.4. The stochastic game has an e-EP for each >0 if

(i) Iis finite;
(ii) B:(s) is a subset with compact closure in a separable metric space for each i and
5; _

(iii) the point-to-set function mapping s into Bi(s) is uniformly continuous for each i:

foreach e, 0, there exists an e3> 0 such that Bi(s1) € Bi(s2)" if m(sy, 52) < E3;

(iv) a(s)=1 and B(s)=0 forall s;

(v) ris, i,b) and q(Cls, b) are uniformly continuous in s and b, uniformly in C.

Proof. Construct a sequence of approximating models as in the proof of Theorem
5.1. Note that conditions (i)—(v) of Theorem 5.1 have been assumed again here and
condition (vi) of Theorem 5.1 holds because of conditions (iv} and (v) here. For this
purpose, it suffices to consider only those v with jo(s, )| =(1+ - - - +m" )1 —c) ' M,.
Alternatively, it is easy to see that K, (05 )~ O by applying Theorem 6.3. Theorem 6.2
implies that each approximate game has an EP. :

Remarks. (1) The transifion kernel q satisfies condition (5) in Theorem 6.4 if

(C|s b)= _[cf (xis,
S and f(x|s, b) is umformly continuous in s and b, umform!y in x.

(2) To see that it is not sufficient in Theorem 6.4 to have g{( - .15, b) be uniformly
continuous in the space of probability measures on § with the topology of weak
convergence, let § be the unit circle, ie., §=[0, 1) with the metric m(s,, 52) =
min {s;— 51, 1 — s, + 51} for s;=s5,. Let T:$§-> 8 be defined by T{s)=s+A{mod 1)
where A is a fixed irrational number. Let g({T.}|s, b)=c and q(§ —{T.}s, b)=0 for all
s,b. Then g(-|s,b) is a uniformly continuous function of (s, b) into the space of
probability measures on § with the weak convergence topology. However, since the
transformation T is ergodic, it is impossible to have K, <c¢ for K in (6.9) and any
countable partition of S.

(3) If, in addition to the assumptxons of Theorem 6.4, S is a subset of a compact
metric space, then there is a natural algorithm to find an £-EP. Since each approximate
model then can have S as well as I and B;(s) finite, the EP’s in each approximate model
can be found by applying Brouwer’s fixed point theorem, as shown in Theorem 1 of
Sobel (1971). Hence, it suffices to apply one of the algorithms for finding an -approxi-
mate fixed point of a continuous function mapping a subset of R" into itself, cf.
Karmardian (1976).

{4} We have yet to determine interesting sufficient conditions for the existence of
an EP (rathqr than an £-EP) when § is uncountable. For example, suppose $ =[0, 1],
I'={1,2}, B:{s)=1{1, 2} and A,(s) =P(B:(s)) for each { and s. For simplicity consider
either (I)DN=1lor (2) N=2and ¢ =0.

Acknowledgment, Part of this research was conducted in the School of Organiza-
tion and Management at Yale University. I am grateful to Eric Denardo, Martin Shubik
and Matthew Sobel for stimulating my interest in this area. Eric Denardo made a very
significant contribution to this whole effort by suggesting improvements in my earlier
paper Whitt (1978). The first drafts of Whitt (1978) were cast in the setting of
Markov programs and the previous version of Theorem 3.1 there combined several
tight bounds in a suboptimal way. Eric Denardo showed that the analysis could be
carried out in the more general frainework of monotone contraction operators and, as -

- acknowledged in Whitt (1978), provided the. current form of Theorem 3.1 there. 1

am also grateful to R. Emerson Thomas and the referee for helpful comments on this
paper.



S |

B

48 WARD WHITT

REFERENCES

E. V. DENARDO (1967); Contraction mappings in the rheory underlying dynamic programming, SIAM Rev;,
9, pp. 165-177.

R. M. DUDLEY (1968), Distances of probability measures and randam variables, Ann. Math. Statist., 39, pp.
1563-1572.

I. DUGUNDIJI (1966), Topelogy, Allyn and Bacon, Boston.

K.FAN (1952), Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad.
Sci. US.A., 38, pp. 121-126.

A. FEDERGRUEN (1978), On N-person stochastic games with denumerable state space, Advances Appl.
Probability, 10, pp. 452-471.

L. GLICKSBERG (1952), A further generalization of the Kakutani fixed point theorem with apphcanan to Nash
equilibrium points, Proc. Amer. Math. Soc., 3, pp. 170174,

C. }. HHMMELBERG, T. PARTHASARATHY, T. E. 8. RAGHAVAN AND F. 8. VAN VLECK (1976), Existence
of p-equilibrium and optimal stationary strategies in stochastic sames, Proc. Amer. Math. Soc., 60, pp.
245-251.

S. KARMADIAN (1976), Fixed points: Algorithms and Applications, Academic Press, New York.

A. P. KIRMAN AND M. J. SoBEL (1974}, Dynamic oligolopy with inventories, Econometrica, 42, pp.
279-287.

J. F. NasH (1951), Noncooperative games, Ann. of Math., 54, pp. 286-295,

K. R. PARTHASARATHY (1967), Probability Measures on Metric Spaces, Academic Press, New York.

T. PARTHASARATHY {1973), Discounted, positive and non-cooperative stochastic games. Internat J. Game
Theory, 2, pp. 25-37.

P. D. ROGERS (1969), Non-zero sum stockastic games, Ph.D, dissertation, Umversntyof California, Berkeley.

S. M. Ross (1970), Applied Probability Models with Optimization Applications, Holden-Day, San Francisco.

H. H. SCHAEFER (1966) Topological Vector Spaces, Macmillan, London.

L. S. SHAPLEY {1953), Stechastic games, Proc. Nat. Acad. Sci. US.A., 39, pp. 1095-1100.

M. J. SoBEL (1971), Noncooperative stochastic games, Ann. Math. Statist., 42, pp. 1930-1935.

(1973), Continuous stochastic games, J. Appl. Probability, 10, pp. 597-604.

K. M. VAN HEE AND J. WESSELS (1978), Markov decision processes and strongly excessive functions,
. Stochastic Processes Appl., 8, pp. 59-76.

J. A. E. E. vaN NUNEN (1976), Contracting Markov decision processes, Ph.D. dissertatlon Eindhoven
University of Technology (Mathematical Cenfer Tract Number 71, Amsterdam.)

V. VARADARAJAN (1958), Weak convergence of measures on separable metric spaces, Sankhyi Ser. A Pp.
15-22,

J. WESSELS (1977), Markov programming by successive approximations with respect to wetghted supremum

_ norms, ). Math. Anal. Appl., 58, pp. 326-335. ’

W. WHITT (1978), Approximation of dynamic programs I, Math. Operations Res., 3, pp. 231-243.

(1977), Respresentation and approximation of ﬁmre-srage dynamic programs, School of Orgamzatlon
and Management, Yale University. .




