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- ABSTRACT

We recently developed a new algonthm for calculaung the blocking pmbablhty of
each class in resource—shanng models with upper limit and guaranteed minimum
sharing policies as well as the standard complete-sharing policy. These' models may
have multiple resources and muitiple classes, with each class requiring multiple units
from each resource. These models may also have state-dependent arrival and service.
rates. Our new algorithm is based on calculating normalization constants appearing
in the product-form steady-state distributions by numerically inverting their
generating functions. In the present paper we provide the basis for extending the
algorithm to resource-sharing models with batch arrival processes. The batch sizes
are mutually independent random variables with distributions depending on the class.
We show that the steady-state distibution of the resource-sharing model has a
product form for both compiete-batch blocking and partial-batch blocking, and we
derive the generating functions of the normalization constants for paruai-batch
blocking. We primarily focus on the Bernoulli-Poisson-Pascal (BPP) special case in
which the batches have linear state-dependent arrival rates, which includes finite-
‘'source inputs and Poisson inputs for the batches as special cases. With batches, we
‘require exponential service times, but when there are state-dependent arrivals of
smgle customers (no batches), the service-time distributions can be general. By
considering state-dependent arrivals for the batches, muitiple resources and non-
complete-sharing policies, our treatinent extends recent results for resource-sharing .
models with batch arrivals by van Doom and. Panken, by Kaufman ard Rege and by -
Morrison. Even for the batch models previously considered, our aigorithm is faster
than recursive algorithms when the model is large. We also provide a new derivation
of the product-form steady-state distributions that heips explam why service-time
insensitivity does not hold when there are batches.
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1 INTRODUCTION

Motivated largely by telecommunications applications, there recently has been
considerable interest in multi-class multi-rate multi-resource generalizations of the
classical Erlang loss model, often referred to as loss networks or resource-sharing
models, e.g., see Kelly [12], Choudhury, Leung and Whitt [4,5] and references
therein. The basic resource-sharing models are continuous-time Markov chains with
very large state spaces, but because of their special structure they have product-form
steady-state distributions, just like product-form closed queueing networks. Van
Doorm and Panken [21] and Kaufman and Rege [11] recently showed that these
resource-sharing models still have tractable product-form steady-state distributions
when the arrival processes are extended from Poisson to batch-Poisson with general
batch-size distributions, provided that the service-time distributions are exponential
and that partial-batch blocking is used. (Van Doorn and Panken considered
geometric batch-size distributions, while Kaufman and Rege considered general
batch-size distributions.) As these authors point out, this result is of considerable
interest because service requests do often arrive in batches and because batch-
Poisson arrivals can be used to approximately represent arrival processes that are
more ‘‘peaked,’” ‘‘bursty’’ or variable than the ordinary Poisson process.

In this paper we provide a new derivation of this result, which helps to explain why it
is true and helps to develop various extensions. In particular, we show that the
resource-sharing model with batch-Poisson arrivals is equivalent to another model
with ordinary Poisson arrivals, which can be shown to have a product-form
disiribution by standard methods. The equivalent model consists of several series of
infinite-server (IS) queues in parallel, together with direct admission to downstream
queues under certain conditions. In this equivalent model, we represent batches of
customers in the original model by single *‘macro’ customers. A macro customer
enters the system when the batch enters and leaves only when the last member of the
batch leaves. During the lifetime of a macro customer, the total number of ordinary
(real) customers in it decreases. The macro customer is classified according to the
number of ordinary customers in the batch remaining in the system. The service rate
of a class-j macro customer with k ordinary customers remaining is & times the
service rate of an ordinary customer. The exponential service-time distributions are
critical for this representation, so that we clearly see why there is no service-time
insensitivity in this resource-sharing model with batches.

We also separately consider the MX/G/oo model (with batch-Poisson arrivals, i.i.d.
service times having a general distribution and no capacity constraints) and show that
the steady-state distribution depends on the service-time and batch-size distributions
beyond their means, thus directly showing that service-time insensitivity does not
hold. (Kaufman and Rege [11] give a different demonstration.) 'When the batch-size
distribution is geometric and the service-time and distribution is exponential, the
steady-state distribution is negative binomial. This negative binomial distribution
coincides with the steady-state distribution in the IS queue with positive linear state-
dependent arrival rate without batches considered by Delbrouck [7}. The connection
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between these two classes of resource-sharing models was noted by van Doom and
Panken [21] and Kaufman and Rege [11].

We consider both the partial-batch blocking considered in [11,21] and complete-
batch blocking. {(Our approach provides a basis for treating other forms of partial
batch blocking as well, but we do not consider any others.) We show that both
partial-batch blocking and complete-batch blocking lead to product-form steady-state
distributions. We use our new representation to show that the resource-sharing
model with partial-batch blocking and batch-Poisson arrivals has the same steady-
state distribution as a standard resource-sharing model with ordinary Poisson arrivals
(but different parameters). Thus, previous algorithms for resource-sharing models
with ordinary Poisson arrivals can be applied to solve the resource-sharing model
with partial-batch blocking and batch-Poisson arrivals,

We extend the results in [11,21] in three important directions. First, we allow
multiple resources. Thus our resource-sharing models are generalizations of the loss
networks in [12]. Second, we allow the batches to armrive in a state-dependent
manner as well as according to a Poisson process. In particular, the arrival rate of
class-j batches may depend on the number of class-j batches with customers still in
the system. (We are able to treat dependence for the batches, but not for the
customers themselves unless the batches are of size 1.) This includes finite-source
inputs and positive-linear state-dependent inputs for the batches, i.e., the binomial
and Pascal (negative binomial) cases in the binomial-Poisson-Pascal (BPP) trilogy
considered by Delbrouck [7] and Dziong and Roberts [8]. We let the batches
themselves be random, with a distribution that depends only on the class. These
features provide more flexibility in arrival process modeling. For example, the
binomial and Pascal cases represent arrival processes that are, respectively, less
bursty and more bursty than Poisson.

Third, as in [4,5], we consider the upper limit (UL) and guaranteed minimum (GM)
sharing policies as well as the standard complete sharing (CS) policy. The UL and
GM bounds are very useful for providing protection against overloads and for
providing different grades of service to different job classes. There are product-form
steady-state distributions in these cases as well.

In addition to showing that the steady-state distributions have product-forms, we
develop efficient numerical algorithms for computing the normalization constants
and the blocking probabilitiecs. Our approach here extends [4,5], where we
considered single customers (no batches). We first derive expressions for the
multidimensional geperating function of the normalization constants in a compact
form. (In the single-resource, complete-sharing, batch-Poisson case, the generating

function agrees with that of Morrison [16].) Next we invert the generating function.

using the algorithm developed in Choudhury, Leung and Whitt [3,4,5] which is
based on the Fourier-series method [1,2,6]. In Section 12 we show that the inversion
algorithm is faster than previous recursions as well as new ones derived by us. The
speed-difference is particularly impressive in the case of geometric batch-size
distributions. Furthermore, our algorithm is applicable to many models for which

ga
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recursive algorithms have not yet been developed.

In the single-resource, complete-sharing, batch-Poisson case, Momison [16] has
developed a uniform asymptotic approximation (UAA) that is fast and often
remarkably accurate. Indeed, we used the algorithm developed here to provide exact
numerical results to compare with UAA in [16]. However, as shown in [5], it is
possible to construct large examples where the recursive algorithms breakdown and
yet UAA is not sufficiently accurate. (Admittedly, these examples are somewhat
pathological.)

Here is how the rest of this paper is organized. In Section 2 we start by considering a
general series network with state-dependent arrival and service rates, and direct
admission to downstream queues under certain conditions, and show that it has a
product-form steady-state distribution. In Section3 we extend the model in
Section 2 to allow several of the series networks in parallel, with admission directly
to downstream queues depending on the state of the entire network. By the argument
in Section 2, this model also has a product-form steady-state distribution. (The
product-form result extends to feedforward networks, but not more generally.} We
consider these series-network models because the loss model can be shown to be
equivalent to a special class of them, but these series-network models are of
independent interest. They may also have other applications, e.g., to production line
models.

In Section 4 we consider an alternative model, closer to the resource-sharing model,
consisting of a single service facility but many classes of customers, with customers
changing class and returning after completing service. Now, under certain
conditions, upon arrival of one class, a customer of a different class may be admitted
instead. For the case of a parallel-series network with infinite-server queues, the new
model is equivalent to the parallel-series network in Section 3.

In Section 5 we consider the resource-sharing model of primary interest and apply
the previous results to derive its product-form steady-state distribution. In Section 6
we derive the generating functions of the normalization constants with partial-batch
blocking in the three BPP cases. In Section 7 we derive the generating functions of
the normalization constants in the special case of geometric batch-size distributions.
These generating functions have an especially compact form, which is important for
producing a fast inversion algorithm. In Section § we show how to use the
normalization constants to calculate blocking probabilities. We show that the
blocking probabilities can be calculated by performing only two inversions. In
Section 9 we give the generating functions for the upper limit (UL) and guaranteed
minimum {GM) sharing policies.

In Section 10 we consider the MX/G/es queue and show that insensitivity does not
hold, thus providing further insight into model behavior. In Section 11, following
[5], which in turn follows Reiser and Kobayashi's [17] treatment of closed queueing
networks, we show how the generating functions can be used to generate recursive
algorithms for the normalization constants. In Section 12 we discuss the
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computational complexity of our algorithm and compare it to recursive algorithms.
In Section 13 we discuss the scaling needed to control errors in the inversion
algorithm. Finally, in Section 14 we give a few illustrative numerical examples.

: 2 A SERIES NETWORK WITH DOWNSTREAM ADMISSION

In this section we consider a continuous-time Markov chain representing m state-
dependent queues in series with a state-dependent external arrival process. As usual
in produci-form gqueueing networks, the service rate at a queue depends on the
number of customers at that quene, while the arrival rate depends on the number of
customers in the entire network. The arrivals all come to the first queve and join it if
possible. However, in certain states the arrival is not admitted to the first queue, and
is instead immediately placed in the j© quene for some j, or is rejected altogether.
After the customer assignment, the system operates as a standard series queueing
network. Our purpose is to show that, under appropriate conditions on the admission
rule, this modified series network has a product-form steady-state distribution, which
is a trupcation and renormalization of the familiar steady-state distribution of the
standard open network in which all amrivals are assigned to the first queue. Our
downstream admission can be regarded as a form of state-dependent routing, simitar
to previous forms considered by Jackson [10], Towsley [19], Krzesinski [13] and
van Dijk [20], but it seems not to have bBC? considered before.

Letn = (ny,...,n,) be the system state, where n; is the number of customers in
the j® quene. Lete ; be the m-dimensional unit vector, with a 1 in the 7® place and
0’s elsewhere. The state space S is a subset of Z,, the vector of nonnegative integer
m-tuples. Let S be partitioned into m + 1subsets B;, 1 < i < m + 1. In B; arrivals
are admitted to queve j, 1 £ j £ m, and in B, arrivals are blocked and lost. If
ne Bj,thenn + ¢; € S. Weassumethatn —e; € Byifne Sandrn; > 0. We
assume that n + e; € S whenever n + ¢; € § for i < j. (Customers who are
admitted always bave someplace to go.) We assume that if ne B;, then
n+e; &S for i <j (Customers could not have been admitted to previous
queues.) We assume that n — e; € § whenever m€ S and n; > 0, and that the
origin is contained in B,. We focus on the irreducible continuous-time Markov
chain containing the origin. For simplicity, we assume that the state space S is finite.

Let s(n) = n;+...+n,; let A(k) be the arrival rate when s(m) = k, and let p; (k)

be the service rate at queue i when n; = k.

Theorem 2.1. This series queue network with downstream admission as specified

above has the proper product-form steady-state distribution '
n(n) = f(n)/g(S), ne S, 2.1)

where
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m

-1 "
f(n) = H AN TT T am() 2.2)

j=0 i=1 I=1

andg(S) = ¥, f(m).

ne s

Proof. We show that partial balance is satisfied, i.e., for each state, the flow in due
to arrivais at each queue equals the flow out due to departures from that quene. It is
well known that such partial balance implies that % satisfies the global balance
equations. Consider a state n e § with n; > 0 for j > 1. First, suppose that
D+ e;_;—¢; is in §. This implies that n—e; € B;; if n—e;€B;, then
n—e;+e;_; ¢ §by assumption, which is a contradiction. Thus, if n+e;_; —e;€ S,
then the only flow into state n at queue j is due to a departure from queue j—1. Then
the flow in due to an amival at queue j (from queve j—1) is
n(n + e;_;—€;)l;_1{n;_; + 1), while the flow out due to a departure from queue
j is n(n) ].lj (nj). These are clearly equal under (2.1). Second, suppose that
n+e;_;—e; ¢ S. Then necessarily n—e; ¢ B; for { < j—1. Since ne€ §,
n-e;es by assumpﬁon. Hence, n—e; € B;. In this case the flow into state n at
queune j is due entirely to an external arrival admitted directly to queue j. Then the
flow is due to an arrival at quene j is n(n—e;) A(s(m)—1), while the flow out due to
a departure from queue j is again T(n);(n;). These flows are also equal by (2.1).
A similar argument holds for j = 1. By assumption, if n€ § and n; > 0, then
n—e; € B 1- ]

Note that when the batches arrive in an ordinary Poisson process so that A(j) = A
for all j in (2.2), the steady-state distribution in (2.2) factors into m terms; i.e., the
steady-state distribution in (2.2) is the same as for m independent queues where each
quene has its own Poisson amrival process. This representation is the basis for
concluding that the resource-sharing model with batch-Poisson arrivals has the same
steady-state distribution as another resource-sharing model with ordinary Poisson
arrivals; see Section 3.

3 PARALLEL SERIES NETWORKS WITH DOWNSTREAM ADMISSION

We now consider an extension of the model in Section 2 having r classes of
customers and m; different series networks in parallel for class j, 1 < j < r. There
r

are thus ] m; separate series networks. We allow m; to be infinite, which presents
i=1
ro problem. There is a state-dependent arrival process for each class. The arrival

rate to series network & for class jis A;(n) pjr when the number of class j customers

in the network is n, where Ep ik = = 1. As before, there are state-dependent service

rates. The service rate at queue i of network & of class j is 1L (n) when there are n
customers at that queve. Let g;; be the number of queues in series network k for
class j. For the loss network to be considered in Section 5, gj; = kforall j and £.
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Letn=(nj:l £j<r1<k<m;, 1 <ixsgy)bethe new network state and let
e;; be an associated unit vector. The interesting feature now is that the assignment
of arrivals to queues depends on the entire system state m.

For each of the series networks, we partition the state space as in Section 2. For
series network k for class j, we have gj; + 1 subsets. In Bj; arrivals to this network
are admitted to queve i, 1 < i < gp. InBj, , .1, armivals to network k of class j are
rejected altogether. Thus, if ne By, then n + e;; € §S. We assume that
n—ej) € By, whenever n€ § and ny, > 0. We assume that n + e;y€ §
whenever n + e, € S for i < . (Again, customers in the network always have
somewhere to go.) We assume that if ne By, thenm + e;,; ¢ Sfori <l As
before, we assume that n—e; € S whenevern € S and ny; > 0. We also assume
that the origin is contained in § and that § is finite.

As a straightforward extension of Theorem 2.1, we get the following product-form
I my

result. Letnj = Y npandn; = 3} n.
i=1 k=1

Theorem 3.1. This parallel-series network with downstream admission as specified
above has proper product-form steady-state distribution

n(n) = f(n)/g(S), ne s, (3.1
where
r n,—1 m; ' Ry
fm) = T] [Holj(a)] kHP}Z’ ITQ/TT () (3.2)
j=1 a= =1 i=1 =1

and g(5) = ¥ f(m).
neE S

We remark that Theorem 3.1 extends to feedforward networks; i.e., we can have
arrivals directly to downstream queues as well as splitting and joining. Then we
must include the probability that the customer starting at queue { would ever reach
queue j. If P is the routing probability from queue i, then any arrival at i not
admitted directly there tries queue j with probability P;. At each queue the customer
is admitted if the state n allows an additional customer, where the admission rules are
essentially as before.

Example 3.1. To see that the product-form result does not hold with downstream
admission when feedback is allowed, it suffices to consider two queues in series
where departures from queue 2 return to queue 1 with probability p and leave the
network with probability 1—p, 0 < p < 1. Let the external ammival rate be A when
there is less than or equal to 1 customer in the network, and 0 otherwise. Thus the
state space is § = {(0,0), (0,1), {(1,0),(0,2), (1,1}, (2.0) }. Let the service rate
in quene i be ku; when there are k customers in queue i. So far, this is a Jackson
network with a product-form steady-state distribution. Now stipulate that an
exogeneous arrival is admitted to queue 1 only in state (0,0). Let the exogeneous
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arrival be admitted to queue 2 in state (0,1) and rejected in state (1,0). It is not
difficult to verify that the steady-state distribution has a product form if and only if
p = 0. If p = 0, then the states (1,1) and (2,0) cannot be reached, but if p > 0, then
they can. In particular, a product-form steady-state distribution can be written as
n(i,j) = Kx;y; for xo = yo = 1. By considering the flow in and out of (0,0), we
see that y; = A/ilo(1—p). Then, by considering the flow in and out of (1,0), we see
that x; (L1 —A) = A{1-p), which produces a contradiction forp; < b IfA < 4,
then we still obtain a contradiction by considering the flow in and out of the
remaining states. The two remaining variables x, and y, cannot be chosen to satisfy
the remaining four equations.

4 AN ALTERNATIVE SINGLE-FACILITY MODEL

For the case in which the networks in Sections 2 and 3 consist of all infinite-server
(IS) queues, we can represent the network equivalently as a single IS queue with
many classes. Then class (j,k,i) corresponds to the previous class-f size-k queue-i.
The service rate for each class (j,k,f) customer is then [;;. Upon completing
service, a class-(j,k,i) customer returns to the queue again as a class-(j,k,i+1)
customer, 1 £ i < k-1, while a class (j,k,k) customer leaves the system. The
previous admission to a downstream queue corresponds now to an admission of a
class { j,k,[) customer upon the arrival of a (f,&,1) customer for / > 1 under certain
circumstances. Thus, the previous steady-state distribution applies to this multi-class
single-facility model as well.

We can make other versions of this multi-class single-facility model that have
product-form as well. For example, we can allow the different classes to have
different service requirements at the service facility if we use the processor-sharing
discipline. Then again we have product form. However, the IS case is of special
interest, because it provides a connection to the resource-sharing models, which we
consider next.

5 MULTIPLE RESOURCES WITH BATCH ARRIVALS

In this section we consider the resource-sharing model of primary interest. There
are p resources with capacities K;, 1 £ i £ p, shared by r classes of customers.
Class j arrives according to a state-dependent batch arrival process. The class-j
batches have arrival rate A;(n) when there are customers from n class-j batches still
in the system being served. We assume that the batch sizes are mutvally
independent, with the batch-size distribution depending on the class j. The upper
limit of the batch size for class j is m;, which we allow to be infinite. The probability
that a class-j batch contains k customers is p ;.

Each class-j customer requires a;; units of resource i, 1 < i < p, where @; = 0 is
allowed, but a; should be positive for at least one i. We assume that the capacities
K; and the resource requirements @ are integers, but that is not necessary for our
product-form results. (We use the integer structure to construct generating functions
in Section 6.) We consider two blocking policies: partial-batch blocking and
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complete-batch blocking, With partial-batch blocking, as many customers as
possible from the batch are admitted. (Each customer must have all of its required
resource units though.) With complete-batch blocking, if all customers cannot be
admitted, then the entire batch is blocked. (Our approach also allows us to treat other
forms of blocking, but we do not.) Each customer is treated independently once
admitted. Each class-j customer holds all its resource units for an exponential
holding time with mean uj'l. In order to have a product-form steady-state
distribution (when there are batches), it is important that this holding-time
distribution be exponential, as we explain next. For any class whose batches are all
of size 1, the service-time distribution can be general. Thus, our model includes as a
special case the non-batch loss model with state-dependent arrival rates in Dziong
and Roberts [8].

We represent these models (with the two forms of blocking) equivalently as
networks of parallel serfes queues with single (non-batch) arrivals. We treat a class-f
batch arrival of size k as a single ‘‘macro’ customer who first goes to an infinite-
server (IS) queue where he has exponential service time having mean (kp;)~ 1. We
cali a macro customer a size-k customer if upon arrival the batch is of size k. By a
basic property of the exponential distribution, the time required for the first of the
customers to depart has an exponential distribution with mean (kp j)‘l. (The
exponential property is used critically here.) Thus, the macro customer corresponds
to k customers for this exponential time with mean (kp j)"l. Then the macro
customer moves to the next IS queue where it corresponds to the remaining £~1
customers. Due to the memoryless property of the exponential distribution, the
macro customer then has an exponential service-time distribution time with mean
((k=1)p; y~!. The macro customer continues this way through & IS queues in series
and then departs from the system. (Note that the quantity g;; in Section 3 equals & in
this case.) A class-j size-k macro customer at queue i corresponds to k + 1 — {
customers from this original class-j batch of size  still remaining in the system.

We have a series network for all  and £ such that py > 0. The maximum value of &
we need consider for class j is m;, the upper limit of the batch size for class j, which
can be infinite. Class-j macro customers corresponding to arriving batches of size k
arrive at rate A;(n)p;; when there are x class-j macro customers in the system. Thus
we have state-dependent arrivals, with the arrival rate depending on the number of
class-j batches in the system, rather than the number of class-j customers.

It now remains to specify the system behavior with the two forms of blocking. With
complete-batch blocking, an arrival of a class-j macro customer of size & is blocked if
this customer cannot have all its requirements satisfied. Letn = (njp:1 € j<r,
1 £ k £ m; 1 £ 1< k)be the state vector, where n;y is the number of class-j macro
customers arriving as size k now at quene [ in the series of & queues. Then a new
class-j size-k macro customer arrival is blocked in state n if
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£

2, njuag(k+1-1) > K, for at least one i , 1 <i < p .(5.1)
j=1 k=1 I=1
Otherwise, the macro customer is admitted to quene 1 of series network ( j,k); i.e., n
becomes n + ey .

On the other hand, with partial-batch biocking, the class-j size-k macro customer
goes immediately toqueue m, 1 £ m < k, if

r m, k
ag(k—m+2) + 3, ¥ ¥ npay(k+1-1) > K; for at least one i ,(5.2)
j=1 k=1 i=1
while
r m k
ay(k—m+1) + ¥ ¥ Y muajk+1-1) <K; foralli, (5.3)
=1 k=1 i=1

1 £ i < p. This macro customer is blocked altogether if

r m; k
ag; + 3 3 Y mpag(k+l-1) > K; forat leastone i, 1 <i<p.(54)
©j=1 k=1 I=1

The models with both forms of blocking can easily be seen to be special cases of the
parallel-series network in Section 3. The service rate for each macro customer at IS
queue ! for class-j and size k is (k—I+1) ;.

Let Q; be the number of class-j ordinary customers in the system. From above,
m i
Q; = % Znulk-1+1), (5.5)
k=1 I=1
where #;y is the number of class-j macro customers originally of size-k currently at

queue [ in the series of & IS queues. The state space for partial-batch blocking is
quite simple, namely,

SESP={n:i:

3

4

k

k
Z nﬂdau(k+1—1) < K,‘ f 1<t Sp} - (5.6)
1 1=1

However, the state space for complete-batch blocking is more complicated. For
example, suppose that there is only one class and one resource. Let the resource
have capacity 6 and let all batches be of size 5. Let each customer require only one
unit of the resource. Then the state space is a set of five-tuples. In particular S
contains the null vector, all unit vectors and all vectors with sum two having a 1 in
the fifth place. However, the vector {0,0,0,2,0) is not in the state space, even
though the sum of the units required is only 4, because the second class-j macro
customer would necessarily have been rejected upon arrival.

To define the state space for complete-batch blocking, we introduce a partial order
on the vectors n. We say thatn < n” if
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mn

m
>np £ Yony forall j.km. .7)
I=1 i=1

If n < n’, then n can be obtained starting from n” by departures only. Hence, For

. complete-batch blocking, we can represent the state space as

S=Sc={n:n<n + e for some j, k with py. > 0 and for n’ with
r m ok
ka; + ¥, %, njgay(k+1-1) £ K, , 1<isp} . (5.8)
=1 k=1 I=1
Once we have determined the state spaces, the steady-state distribution can be
obtained directly from Theorem 3.1.

Theorem 5.1. The steady-state distribution of the vector n, where n;y; is the number
of class-j batches originally of size k with k—i+1 customers remaining to be served,
has the product-form in Theorem 3.1, where p; (@) = py (independent of a) and
Wi (D) = uj(k—i+1)} ie,

k

r -1 m,
fm) = JT [H(A'j(a)/uj)] T1pit TT (V/(k—i+1)™nzt)y  (5.9)
k=1

ij=1 a=0 i=1

and the state space § is as in (5.6) for partial-batch blocking and in (5.8) for
complete-batch blocking.

Henceforth we restrict attention to partial-batch blocking. For partial-batch blocking,
we can obtain a more compact representation by reducing the number of subscripts
from three to two. All that matters is the class j and the number of remaining
customers in each batch. Hence, now let n;; be the number of class-j batches with !
customers remaining to be served, i.e., let

my
Rjp = 3 Mikk-i+] - (5.10)
k=1
iy
and let n be the associated state vector. Let pj; = 3, py. With this notation, we
k=l

can use basic properties of the multinomial distribution to obtain the marginal
steady-state distribution from (5.9).

Theovem 5.2. For partial-batch biocking, the steady-state distribution of the vector
n, where n; is the number of class-j batches with [ customers remaining to be
served, has the product-form steady-state distribution

n(n) = g(S)"'f(m) , ne S, (5.11)

where
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r om-l As my c Ry
fmy =T I 1) [ﬂ] /ny! (5.12)
j=1 a=0 My o1 [ I
with g(S) = 3 f(n)and
ned
SES,,={n:2r; jza,-jn,-,sx,.,lsisp}. (5.13)
j=1 I=1

In the case of Poisson arrivals for the batches, A;(a} is independent of g, so that we
can rewrite (5.12) as

f(m) = 1‘[[7"'} Il [”f‘] /n,r- ﬁ[ﬁp—{‘} /n,-,! (5.14)

M; z=1 j=I =1

Aside from the normalization, f(n) in (5.14) can be represented as a truncated
product of independent Poisson distributions. Thus, the steady-state probability

. mj

distribution of the vector (@,..., Q,) where Q; = ¥ n;, is the number of class-f
=1

customers can be written as a truncated and renrormatized product of independent

batch Poisson distributions. The mean of the class-j Poisson random varnable is

my
(A;/145) X (pi/1) and the batch-size probability mass function is
=1
my
v (k) = @AY X/, 12k<m;, (5.15)
1=1

6 GENERATING FUNCTIONS WITH PARTIAL-BATCH BLOCKING

‘We now focus on partial-batch blocking and construct the generating functions of the
normalization constants g(S,) = g(K) for K = (K;,..., X,) using the compact
representation in (5.10) (5.13). At this point we are using the complete-sharing
policy. By definition,

G(z) = Z Z g(K)z ’ 6.1)
=0 K,=0
for a vector of complex variables z = (z1,...,2,). Asin [4,5], we obtain a more

compact expression by changing the order of summation. For this purpose, let

— roomy
K!— = Z Ela"jﬂﬂ . (6-2)

j=1 i=1
Then
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ny=0 n,__r-O K1=El. KP=EP j=1 a=0 I= n-”’!
1 = = o m [pg 1™ 1 2
= D S | | Aj(a) T1I lli :—Hzfa"“"
H(l__z) n,=0 a, =0 j=1 a=0 =1 ) JI1 g=1
i=1
ny
1 F e w Byl y pﬁ . 1 2 ian,
= E_ Z H?&.J(a) H lp' _’_1_..1_! ]_-_[Zl 4l
H(I‘“Zi) i=1 ny=0 n.,=0 a=0 I=] i e i=]
i=1
(6.3)

From the final expression in (6.3), we see that the transform factors into 7 terms, one
for each class. However, in general, the factors will have common z; variables.
‘When the state-dependent arrival rates have special structure, we can carry out the
summation in (6.3).

First, for the special case in which A;(k) = A; for all £ and j (Poisson arrivals for all
classes of batches), we get

Z‘.L la, /I'I(l -z). (6.4)

G(2)= exp i [

For the case of a single resource (p = 1), (6.4) agrees with (2.10) of Morrison [16].

Moreover, from (6.4) we can deduce that the resource-sharing model with batch-

Poisson arrivals has the same steady-state distribution as another resource sharing

model with single (non-batch) arrivals. In particular, (6.4} coincides with the
r

generating function in (2.12) in [4] with p resources and ¥ m; classes with ordinary

i=1
Poisson arrivals; then class (f,{) has arrival rate A;pf;, service rate I|; and requires
la; 1esource units from resource {. This corresponds to the parallel-series network
representation in Section 3 with each queue having its own arrival process and all
departures leaving the system. The above is also clear from (5.14). In fact, (6.4) can
be derived directly from (5.14) by treating (5.14) as a non-batch model and using
(2.12) of [4].

For the special case in which A;(k) = (N;—k)A; for all k and j (finite-source input
for all classes of batches), we again can carry out the summation, and get

r AT A " b ¢ K
f(m) = E [f}’] [u—j] it T1 [ﬂl L (6.5)

and
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2 N,
co- )i 5% el e

i j=1 i=1

We can rewrite (6.5) and (6.6) so that {6.5) is a product of multinomial probabilities
if we divide by an appropriate constant. Then

=1l V. |14 6
n) = : o 7
E njl,...,ﬂ"m} ‘I=]1:qjl ( )
and
m m NJ
r i ) P / P
G = |1 [1 - Yan+ g Yz’ I10-z), (6.8)
j=t I=1 I=1 i=1 i=1
m
where q}'[ = xﬂ/(l + E xjk) with Xﬂ' = ?b;pf[/lllj. To get (6.7) and (6.8) from
k=1

r my

(6.5) and (6.6), we multiply by [T TT(1—g;)™.

j=1 1=1
Turning to the Pascal part of the BPP trilogy, we now consider positive linear state-
dependent arxivals. Now let A;(k) = o; + B;k for positive parameters o; and B;.
This leads to the negative multinomial or multivariate negative binomial distribution.
(With infinite state space, we would need to assume that ; < |; in order to have a
proper steady-state distribution, but we can allow B; > pi; because we have a finite
state space. This will reduce the radius of convergence of the generating function of
the normalization constant.} In particular, (6.3) becomes

N | rp+n;-—~1
G(z) = [E I-Zi'] "2_0 Z 1—.[ [rj—l, nj],J...,n,.,m,] X

R =0 j=
&r [m, % F ny
B I=1 i=1

B’p" 11z ”"’] : 6.9)

J' i=1

= f[](l-—z,v)" ﬁ[ ;

j=1
forrj = OCJ/B_,.

We remark that (6.6) can be regarded as a special case of (6.9) in which we allow [3;
to be negative. Then «; = N;Af, B; = —A/ andr; = ;/B; = —N;. However, the
mode] with negative B; does not make sense (leads to negative arrival rates) unless
A;(k) = o; + B;kequals O for some k, which occurs in the finite-source case.

We also can consider a mixed case in which for the batches some classes have
finite-source inputs, others have Poisson inputs, and the remaining have positive
linear state-dependent inputs. Instead of (6.4), (6.6) or (6.9), the generating function
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then has factors from each of these forms.

Finally, we note that when m; is large (e.g., infinite), we can truncate the finite sums
in (6.4), (6.6) and (6.9), because without loss of generality we can regard p§; = 0 for
I strictly greater than the maximum number of class-f customers that the system can

- support.

7 GEOMETRIC BATCH-SIZE DISTRIBUTIONS

Formulas (6.4), (6.6) and (6.9) are in the natural form when we directly specify pj; as
a finite probability mass function. However, simplifications can occur if we consider
parametric batch-size distributions. When we treat parametric batch-size
distributions, we often will want to allow infinite support; i.e., we allow m; = co.

From (6.4), (6.6) and (6.9), we see that interest centers on the generating function
oo c !
Piiz

Qi(z) =%, 7

i=1

(7.1)

Hence, the key is to express Q;(z) in closed form. We now show that this is easy to
do when the pmf pj; has a geometric tail.

Theorem 7.1. Suppose thatpy, = AY; ', fork 2 m. Then

AUl—y) 'y, Izm
P = W (7.2)
A=y 'yl +pfy, 1<1<m-1
m—1
fOTp}; = Epjk, 1<I<m-1, and
k=1
A - (sz)I "‘“p};zl A m-1 7!
) = + oy Zh
—Aln (1-v;2) m-l P_;:ZI A m~1 I
= Ty + m_yz . (13
¥ (1=v5) lé i ¥, (1-; g}l('ﬁ" 1) (7.3)

Of course, Formula (7.3) is of no help when the cutoff point m in (7.2) is greater than
we can achieve with direct truncation of pj; for large L. In the special case of a pure
geometric distribution, m = 1and A = (1—1;) so that (7.3) becomes

0Q;(z) = —In(1-v;2)7; - (7.4)
More generally, we can express Q;(z) in terms of the generating function of p, i.e.,
Pi(z) = ¥ pazt. (7.5)

k=1

The following result was also derived in Section 2 of Morrison [16].

Theorem 7.2. The generating function Q;(z) in (7.1) can be represented as
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0;(2) = JOZ[(I—Pj(u))/(l—u)]du. ’ (7.6)

Proof. The integrand (1-P;(z))/(1—-z) is well known to be the generating
function of pf ;. 1; see p. 265 of Feller [9]. Then

3 w  pb k+1
[ 3 pfnitde =3, Pian?

=0;(z). m
0 oo k=0 k+1 !

We can easily deduce (7.4) from Theorem 7.2 too. We now apply (7.4) with (6.4),
(6.6) and (6.9) to vield closed-form formulas in the three BPP cases when the batch-
size distributions are geometric. This yields the generating function for the muld-
resource version of the model considered in [11,21] in the Poisson case.

Corollary 1. For the muliti-class resource-sharing model with Poisson arrivals of
batches for each class, ifpy = (1 -'yj)'ﬂ,-"l, k z 1, for all j, then (6.4) becomes

p r P
G(z) = [I(1-z)"' TT(1—v; [Ty M a7
i=1 j=1 i=1

As noted by van Doomn and Panken [21] and Kaufman and Rege [11], (7.7) has the
same form as the Pascal case with single arrivals (m; = 1) in (6.9), with different
parameters.

Corollary 2. For the multi-class resource-sharing model with finite-source input for
batches, ifpj, = (1~Y;,)¥f~, k 2 1, for all j, then (6.6) becomes

’

P a1 ?LJ- P . N
Gz) = J](1-z)~ 11— In(1-v; TTz"N™ . {1.8)
i=1 j=1 Wiy

74 i=]

Corollary 3. For the multi-class resource-sharing model with Pascal input for
batches, if py = (1-Y;)Y ™\, k 2 1, for allj, then (6.9) becomes
B

G = T (-2 TII1 + - in(i-y, [0 . (19
J i=1

,
i=1 J=1 7
For the inversions algorithms, Corollaries 1-3 are significant because they produce
algorithms just as fast as for the non-batch case. In contrast, for a general batch

f
distribution, computing G (z) would require ¥ m; terms to compute.
=1

8 BLOCKING PROBABILITIES

It is important to distinguish between call blocking and time blocking. Call blocking
refers to the blocking experienced by arrivals (which depends on the state at arrival
epochs), while time congestion refers to the blocking that would take place at an
arbitrary time if there were an arrival at that time (as in the virtual waiting time).
With Poisson arrivals, the two probability distributions agree, but not more
generally; see [15]. Since the steady-state distribution 7 refers to an arbitrary time,
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blocking probabilities computed directly from it are time blocking, but we show how
to treat both time blocking and call blocking,.

For interpretation of the results with batches, it is also useful to identify and calculate

. two separate components of the blocking probabilities: First, there is the conditional

 blocking probability for a class-j customer given that this customer is the &%
customer in his batch and, second, there is the probability that an arbitrary customer
is the k® customer in his batch. (This customer is blocked if and only if k—1 or
fewer from his batch can be admitted assuming partial-batch blocking.) By the
familiar length-biasing argument, the probability that an arbitrary class-j customer is
the k™ customer in his batch is

my
Vi = Pie/ 3, Pk - (8.1
k=1

The possible values of k are the positive integers up to the maximum possible batch

size, m;. The probability distribution in (8.1) is proper if the pmf pj; has a finite

mean. We assume that this is the case.

Given that a class-j customer is k% in his batch, the conditional probability that this

customer would not be admitted at an arbitrary time (time blocking) is easily seen to

be

g(K-ka j)
g(K)

where a; = (ay;,...,ap;) is the requirements vector for class i, just as in (2.11) of

(4].

Hence, the overall unconditional blocking probability for a class j amival at an
arbitrary time (time blocking) is

By=1- (8.2)

"y my g(K-—-ka;)
Bl= YvBYy=1- Vv, ——= 8.3
I kgl jk2ik k§l ik g(K) ( )

As noted above, if the class-j batches arrive in a Poisson process, then (8.2) and (8.3)
also yield the call blocking, but not more generally. However, the call blocking
always can be obtained by calculating the time blocking in a modified model, as we
indicated in Section4 of [5]. In particular, let By be the conditional blocking
probability for class j given that the class-j customer is k™ in his batch, and let B ; be
the unconditional blocking probability (call blocking). Yet A = (a;) be the
requirements matrix. In general,

X Aj(ny)m(n) T A fm)
B. = 1— n:An < K—ka, =1- n:An < K—ka, (8.4)
j 2 lj (nj)n(n) 2 A.J (nj)f(n)
nAns K mAr <K

and, paralleling (8.3),
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m

B; = k): VikBji - (8.5)
=1
However, we can rewrite A;(n;) f(n) as A; (O)j_"(n) and thus (8.4) as
vt ) F(K—ka)) '
Bjk =1- — = 1" — ) (8'6)
> fm) &(K}
n:An= K

where f(n) is the analog of f(n) with A;(m} replaced by x,- (m) = A;(m+1), and
2(K) is the analog of g(K) with f(n) replaced by f(n). We summarize this result as
follows.

Theorem 8.1. The class-j blocking probabilities B in (8.4) and B; in (8.5) coincide
with the time-blocking quantities B} in (8.2) and B} in (8.3) for the modified model
in which the class-j batch arrival-rate funct:on is changed from A;(n) to
l (n) = A;(n+1).

For the special case in which A;(n) = «; + B;n,
Ai(n) = Ai(n+1) = a; + B;(n+1) = (o; + B;) + Bjm, (8.7)

so that the modified model is a model of the same general form. For the BPP model
(without batches), this approach to computing call congestion was pointed out by
Dziong and Roberts [8], p.273. Note that A; coincides with A; when there are
Poisson arrivals and A; reduces to the arrival rate with one less class-j source when
class j has a finite source input, agreeing with well known properties.

From (8.2)(8.6), we see that Bj; and Bj; can be computed by calculating just two
normalization constant values, while Bj- and B; can be calculated from m;+1
normalization constant values. As indicated in Section 5.2 of [4], when K is large
and m; is small, the computation of g(K—ka;) by numerical inversion for many k
and j can be made much more efficient by shared computation. However, if m; ; 1s
large (e.g., infinite), then this approach would not be possible since K—ka; will vary
greatly.

However, it is also possible to calculate the overall blockmg probabilities B} by

performing only two inversions. To see this, let V;(z) = Z v sz and
k=1

h;(K) = ivjkg(K-kaj) , (8.8)
k=1

where g(K) = 0if K; < 0 for any i, and note that
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H@= 3. 3 LK.

K,=0 K, =0
my o oo
= Zvikz‘?ﬂli._-zﬁaﬂ Z ... z g(K_kaj)le_kdu.uzf,—ka”
k=1 Ki=ka,, K,=ha,
r a ’
= V;(I1z")G() . (8.9)
i=1
Hence,
B; =1 - h;(K)/g(K) , (8.10)

where &;(K) is the coefficient of zf' ...zf,{" of the generating function in (8.9).
For an arbitrary batch-size distribution with finite support, the computational

7

complexity in computing vj(nz?” ) is O(m;), which is the same as that for
i=1

computing G(z) as is clear from (6.4), (6.6) and (6.9). So the computational

complexity in evaluating %;(K) and g(X) are of the same order. With geometric

P
batch-size distributions, we get a simple closed form for V;(J]z:") as shown

i=1
below. If py = (1-;)¥f ' fork 2 Lthenvy = (1-y)y "L k2 1, and

p.
i (1-1) TT2*
Vi([1z) = ————. @.11)
i=] I—YjHZ?”
i=1

To understand performance, we believe it is useful to calculate both v;; and By, as
well as VyBy, 1 £k <1, and the overall class-j blocking probability B;.
However, if we are only interested in the overall blocking probability B;, then it is
possible to get it more directly, as noted above. As noted by Kaufman and Rege [11]
and Morrison [16], in the case of Poisson arrivals of class-j batches, we can apply
Little’s law to obtain

E(Q;) = MY;(1-B; )0 , (8.12)

where (; is the steady-state number of class-j customers and ¥; is the mean clags-f
batch size. Indeed, this argument shows that calculating the blocking probability B;
is equivalent to calculating the mean EQ; whenever the overall arrival rate is known.

9 PARTIAL-BATCH BLOCKING WITH OTHER SHARING POLICIES

The approach we have taken makes it possible to immediately obtain the steady-state
distribution for the upper limit (UL} and guaranteed minimum (GM) sharing policies
with each of the three BPP form of batch arrivals. (See [4,5] for background on UL
and GM). To illustrate, we give the generating functions for Poisson armrivals of
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batches. The other two BPP cases can be treated similarly.

For the UL policy, we introduce upper limits M; for class j. The state space for UL
generalizes (5.13) the way (2.14) of [4] generahzes (2.10) of [4], namely,

Sy (K,M)={mn: ¥, }:Ia,]nﬂ £K;,15i<p; Elnﬂ 1£7<r}.09.1)
i=11=1

Yet the generating function depend on y=(y{,...,¥,) as well as

zZ = (Zy,...,2p), asin {4,5]. For UL, the generating function is

Gy =Y .. 3 3 .. 3 aKm oy
E=0 K,=0 M,=0 M,=0

p]l

=expL l-u—yJZ H ”/H(l—z)n(l -y;). 92)
= 7

Similarly, we can obtain a closed-form expression for the GM policy. As in [4] we
assume that the requirement matrix A has a special form. In particulara;; = b; or 0
forall i and j. Let8; = 1ifa; > 0 and &; = O otherwise. Paralleling (2. 18) of
[41, the state space for GM is

r my
Som(K,M) = {m: Y, ¥ max{lan;, 0;M;} <K;, 1£isp}. (9.3)
- j=1 I=1

Then the generating function is

P 1 r
G(Z:Y) = ]_-I {_1—_ HG;(LY) » (9°4)
i=1 —Zi ] j=1
where
i QPR B s, A & Pi W T2
;T —y.ex
G;@y) = e zz p L=, p{u, §1 ! fH
l—y_,-
|
L Aiyi TP P s
zi'exp |—— ¥ =[] z""
.'1:[1 P[ Bj =1 ! :1:11
+ ¥; > . 9.5)

1-y; H 2




21 - Chapter 16

As in [5], we can also treat the combined UL and GM sharing policy.

10 THE INFINITE-SERVER QUEUE WITH BATCH POISSON ARRIVALS

A special case of the model we have considered is the model with o capacity limits,
v ie, K; = co for all {. Then Theorem 5.2 holds with the state spaces Sp = 5. being
the set of nonnegative vectors n = (ny) with I < m;, 1 < j<r. In the case of
Poisson arrivals for the batches, the entire model reduces to r independent M*/M/e0
queues, one for each class, where MZ% denotes a batch Poisson arrival process.

In order to understand the need for exponential service times in the general
resource-sharing model with batch arrivals, it is thus natural to consider the M* /G/o0
model, which has i.i.d. service times with a general service-time distribution. The
question is whether insensitivity holds: Does the steady-state distribution of the
number of busy servers depend on the service-time distribution only through its
mean? Even if this is not always true, could this be true for some special batch-size
distributions?

Let O be the steady-state number of busy servers in the M*/G/e model. Then, from
Shanbhag [18] or p. 677 of Liu, Kashyap and Templeton [14],

Ez2 = exp{-xfo“u-P(1—(1—z)H°(x))]dx} , (10.1)

where A is the Poisson rate, P(z) = 3, p «2* is the batch-size generating function,
k=1

H(x) is the service-time cdf and H°(x) = 1-H(x). Moreover, the mean and

variance are

EQ = z,p'(1)j0°°HC(y)dy, Var Q = EQ + lP"(l)joch(y)zdy. (10.2)

Since P’(1) is the mean batch size and ImH“ (y)dy is the mean service time, the
steady-state mean EQ depends on the batch-size distribution and the service-time cdf
H only through their means. However, from (10.2) we sec that the variance Var Q
does not. Provided that P*' (1) # 0, Var O depends on H beyond its mean. Since
P"”(1) = 0 if and only if p; = 1, Var O depends on H beyond its mean for all
nondegenerate batch-gize distributions. (We recover the well known insensitivity in
the M/G/e model when there are no batches.) Similarly, no matter what service-
time distribution is used, Var O depends on the batch-size distribution beyond its
mean.

We close this section by noting that with a geometric batch-size distribution, ie.,
pr = (1-p)p* k2 1,
P(z) = (1-p)z/(1-pz) (10.3)

and

22 = exp(-1 [ [(1-DH 0/(1-p) + p(L-DH () dx) . (104)
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In the case of exponential service times, (10.4) simplifies because

e ¥ -1 d
—f = L A+ Be™),
A+ Be™W LB dx ¢ )

Then |
Ez9 = [(1-p)/(1-p2) V¥ (10.5)

which is the generating function of the negative binomial distribution, consistent
with the geometric batch case in (7.7).

11 RECURSIVE ALGORITHMS FROM THE GENERATING FUNCTIONS

For actually calculating the normalization constants, we propose the numerical
inversion algorithm in [3-5]. However, sometimes recursive algorithms are also
attractive. In Section 11 of [5] we showed that the generating functions can be used
to derive recursions for the normalization constants. This method for obtaining
recursions was first proposed by Reiser and Kobayashi [17] for closed queueing
networks, but it has not been widely used since. As noted in [17], the stariing point
for the recursions is the fact that the coefficients of a generating function that is a
product of two generating functions is the convolution of the coefficients from the
two component generating functions. This remains ttue with vectors using
multidimensional convolution; see Lemma 11.1 of [5].

It is straightforward to apply convolution to our generating functions because they

are expressed directly as products of generating functions, although in general the

computational complexity is quite high because the number of factors involving z is
P

r+ 1. (Notethat T (1 —z;)~! can be regarded as a single factor.)

i=1

7
As indicated in Section 11 of [5], once we remove the factor [] (1~z;)"!, the
i=1
coefficients of the remaining generating function are often easy to determine.
We now complement [5] by treating the other two BPP cases in (6.6) and (6.9) and
the Poisson case with geometric batches in (7.7). The following theorem applies to
each of the r factors.

Theorem 11.1. If

G(z) = (1 + p 3 by TT2%)° (L1

I=1 i=1

for constants ¢,p ard b; and nonnegative integers | and a;, as in (6.6) and {6.9),
then '

m m,
2(K) = p S big(K—la) + cpa;Ki' Sb,lg(K—1a), 1 <i<p, (11.2)
I=1 =1
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fora = (aj,....ap).

Proof. Let GV (z) be the partial derivative of G(z) with respect to z;. Differentiate
the generating function with respect to z; and get

e o5 T A1) o LAy
G z) =r(1 + pX b, T12 ) Vp X byla; [T 2"z .
i=1 =1 : =1 i=1
so that
@ g § Fr a1
GUX1l+p X b, [Jz') = epG(z) L byla; J Iz 'z - (11.3)
I=1 i=1 I=1 i=1
On the other hand, note that
GPz) = T .. T KKzt .zt (11.4)
K =0 X,=0
Match the coefficients of zf'...zf"l...zf’ in the two representations of G¥(z),

(11.3)and (11.4). m

12 COMPUTATIONAL COMPLEXITY AND COMPARISON WITH
PREVIOUS ALGORITHMS

For simplicity, we assume that m; = m forall /. Comparing the generating function
expressions with those in the non-batch case in [5], we observe that computation of
each generating function value requires m times as many operations as in the non-
batch case. Hence, the overall computational complexity is m times as much as in
the non-batch case. However, in the special case of geometric batch-size
distributions, the factor m is not there, so that the computational complexity is the
same as in the non-batch case.

Let C g and Cyg represent the computational complexity with the complete-sharing
policy and the combined upper-limit and guaranteed-minimum policy, respectively.
Then, following Section 9 of [5], we get the following expressions: With general
batch-size distribution and either Poisson or BPP arrivals,

Ces = O(FmK?) (12.1)
and )
Cye = O(FmMEK?) , (12.2)

where M is the upper limit parameter, assumed for simplicity to be the same for all
classes. With judicious truncation in the inversion formula, ¥ < Kand K = O(WIE)
for large K. With special structure allowing dimension reduction, 7 < p. With
multiplicity (i.e., many classes having the same parameter), 7 < r.

With geometric batch-size distribution and either Poisson or BPP arrivals,
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Ces = (O(FK?) (12.3)
and
Cye = O(TMKT) . (12.4)

The previous recursive algorithms in [11,16,21] are for the special case of p = 1,
Poisson arrivals, and complete sharing policy. The computational complexities are
as follows: With a general batch-size distribution,

Ces = O(rmK) (12.5)
and, with a geometric batch-size distribution,
Ces = O(rK?) . (12.6)

Comparing (12.5) and (12.1) with p = 1, we see that inversion is faster for large K
since in that case Kk = O(\]E). Comparing (12.6) and (12.3) with p = 1 we see that
inversion is much faster for large K.

Finally, we can also compare the inversion against the new recursive algorithm
obtained by combining Theorem 1.1 with Section 11 of [5]. For complete sharing
and BPP arrivals, the computational complexity for a general batch-size distribution
is

Ces = O(rmE?) . (12.7)

Comparing (12.7) with (12.1}, we again see that the inversion is much faster than the
recursion.

13 SCALING FOR THE INVERSION ALGORITHM

The inversion algorithm is as in [3,4,5]. As mentioned there, an important ingredient
is scaling. We now discuss scaling in the special case of p = 1. In [4,5] we explain
how to extend the scaling from p = 1 to generat p.

The generating functions in (6.4), (6.6) and (6.9) have the following special
structure:

G(z) = (1-2)7! f[G,-(z)_ , (13.1)
=1

where G;(z) differs from case to case. We invert a scaled generating function
G(z) = 0o G(0z) (13.2)

where oty and ¢ are chosen to control the inversion emor and avoid numerical
underflow or overflow. Based on the scaling considered in many cases in [4,5]. We
developed a heuristic scaling in Section 7.3 of [5]. We use this scaling here as well.
We let ¢ be the largest number in the interval (0,1] such that
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r 2G;(2)
——, -4 <K, 13.3
E;] .0 . (13.3)
where G} (z) = gz—Gj(z). Also
op! = ﬁGj(a). (13.4)
j=1

To illustrate, we show what the scaling becomes for the special case of Poisson
arrivals and geometric batch sizes. From (7.7), we see that

Gi(z) = (1—y;z) MW (13.5)
so that
Gi(z) = /) (1—y;z) Hem-t (13.6)
Hence, (13.3) becomes
r oh:/IL:
3 Il—ap" <K. (13.7)
j=1 170
From (13.4) we get,
oo = [T (1-y;e®™® (13.8)
j=1

14 NUMERICAL EXAMPLES

We consider only a single resource. We could have considered multiple resources as
in [4,5], but not too many unless we can exploit dimension reduction. Dimension
reduction applies with batch arrivals just as before.

Qur first example has two classes. Each class-1 arrival requires 1 resource unit,
while each class-2 arrival requires 12 resource units. Both classes have Poisson
arrivals of batches with geometric batch-size distributions. The batch-size
parameters are ¥; = 0.2 and ¥, = 0.5; see (7.4). The remaining parameters and
some computational results are displayed in Table 1. The offered load is
p; = Aj/lL;. (Wesetu; = 1 without loss of generality.) The generating function is
given by (7.7) withp = landr = 2.
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capacity K, offered 1st member blocking | arbitrary member blocking
number of loads {class 1 only)
Tesource units P1 P2 class 1 class 2 inversion | asymptotic
60 10 2| 02515320 | .25556360 | 03137566 [ 02582764
600 100 20 | .00733499 | .08839576 | .00917112 | .00919358
6000 1000 200 | .00259070 | .03103518 | .00323814 | .00323897
60,000 10,006 2000 | .00103268 | 01236362 | .00129072 —
600,000 100,000 | 20,000 | .00056141 | .00672104 | .00070169 —

Table 1. Numerical results for the first example with two classes, each having
Poisson arrival of batches and geometric batch-size distributions.

Computational results are shown for the first member of a batch for both classes,
which coincides with time blocking since the batch arrival processes are Poisson.
Computational results are also shown for the blocking probability of an arbitrary
class-1 arrival as well, and this is compared to the uniform asymptotic approximation
(UAA) developed by Morrison [16].

We consider five different resource capacities, ranging from fairly small (K = 60) to
large (K = 600,000), with the offered load increasing proportionality. The total
load is 60.5 when X = 60. For the first two rows (cases), comparison was made
with the recursive algorithms of [11] and [21] and the results match io all displayed .
digits. For the other rows, the recursions are too slow, and thus were not done. Our
algorithm with truncation works in seconds even for the last row.

For the arbitrary class-1 armival, comparisons with UAA confirmed the accuracy of
the inversion algorithm in third row. The UAA is also very fast, but it had a
numerical overflow problem in the last two rows (which could be addressed with
more careful implementation). As usual [4,5,6], we also confirm our numerical
accuracy by running the algorithm with two different values of the inversion
parameter I. Here weused! = land [ = 2.

Our second example is a modification of the first example in which the two batch
arrival processes are made Pascal arrival processes with parameters o; = p;/2 and
B; = 1/2in A;(k) = &; + kB;, where p; are the parameters of Example 1. By a
direct fit, this corresponds to a peakedness of z = 2, see Section3 of [5]. (In
general, it may be desirable to make further adjustments to match peaked arrival

processes.)

There are no previous algorithms covering this example. We verify our accuracy in
this case only by doing the inversion twice, once with ! = 1 and once with [ = 2.
(We could also have used the new recursion derived in Section 11, but we did not.)
The model parameters and the computational results are displayed in Table 2. As
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with the first example, the inversion algorithm runs in seconds for all cases. The
blecking probabilities in Table 2 are higher than they are for the corresponding cases
in Table 1, reflecting the fact that the variability (as measured by the peakedness) has
increased.

capacity K, offered loads 1st member blocking | arbitrary member blocking

number of
resource units P: P class 1 class 2 class 1 class 2
60 10 2 | .01882023 | 29498320 | 02359333 | .50702647
600 100 20 | 01199065 | .14662554 | .01495709 | 26248041
6000 1000 200 | 01022163 | 11733009 | .01274590 | .21077849
60,000 10,000 | 2000 | .00996266 | .11335132 | .01242253 | .20369979
600,000 100,000 | 20,000 | .00993494 | 11292966 | .01238792 | .20294905

Table 2. Numerical results for the second example with two classes, each having

a Pascal arrival processes with parameters o; = p;/2 and f; = 1/2 and
a geometric batch-size distribution.
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