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Experience has shown that efficiency usually increases when sep-
arate traffic systems are combined into a single system. For example,
tf Group A contains 10 trunks and Group B 8 trunks, there should be
fewer blocked calls if A and B are combined into a single group of 18
trunks. It is intuitively clear that the separate systems are less efficient
because a call can be blocked in one when trunks are idle in the
other. Teletraffic engineers and queuing theorists widely accept such
efficiency principles and often assume that their mathematical proofs
are either trivial or already in the literature. This is not the case for
two fundamental problems that concern combining blocking systems
(as in the example above) and combining delay systems. For the
simplest models, each problem reduces to the proof of an inequality
tnvolving the corresponding classical Erlang function. Here the two

‘inequalities are proved in two different ways by exploiting general

stochastic comparison concepts: first, by monotone likelihood-ratio
methods and, second, by sample-path or “coupling” methods. These
methods not only yield the desired inequalities and stronger compar-
isons for the simplest models, but also apply to general arrival
processes and general service-time distributions., However, it is as-
sumed that the service-time distributions are the same in the systems
being combined. This common-distribution condition is crucial since
it may be disadvantageous to combine systems with different service-
time distributions. For instance, the adverse effect of infrequent long
calls in one system on frequent short calls in the other system can
outweigh the benefits of making the two groups of servers mutually
accessible.

I. INTRODUCTION AND SUMMARY

From extensive experience in teletraffic engineering, it is well known
that congestion can often be reduced by sharing resources. The block-.
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ing probability in a loss system and the average waiting time in a delay
system are usually much less when separate facilities serving separate
streams of traffic are combined to serve all the streams together.
Alternatively, for a given level of congestion, fewer facilities are usually
required to serve the streams together. Sometimes such results are
trivial: Whenever the combined system may be managed as if it were
in fact separate systems, the optimal performance of the combined
system is at least as good as that of the separate systems. However,
such management is not allowed in the models treated here. In any
case, the efficiency of shared resources is certainly a fundamental
principle of teletraffic engineering.

The purpose of this paper is to establish versions of this efficiency
principle mathematically. Our first two results verify conjectures by
Arthurs and Stuck.! To state our first result, let L (s, A ) denote the
stationary loss or overflow rate in an M/M/s loss system (no waiting
room) with s servers, arrival rate A, and individual service rate p. (See
Kleinrock® for background on the queuing models.) It is well known
that L(s, A, u) = AB(s, a), where a¢ = A/u and B(s, a) is the familiar
Erlang blocking formula: '

'. B(s, a) = (a"/s!)/kzo (a*/kY); (1
i -

see Jagerman® and references there. The first efficiency principle we
establish says that L (s, A, p) is a subadditive function of (s, A) for each
fixed p:

Theorem 1: For all positive integers s, and s; and all positive real
numbers Ay, A2 and g,

! L(si + s, M + Ay, p) < L(sy, Ay, ) + Lis, A, o). )
This yields immediately that

G(i Siy i a,-) = iG(Si, ;)
=] i=1 i=1

for each integer n, where G(s, a) = aB/(s, a), which is the version of
Theorem 1 actually conjectured by Arthurs and Stuck.'

" Of course, Theorem 1 should not surprise teletraffic engineers, since
it can be inferred from common tables and graphs, but it has apparently
not been proved before. It appears that all previous mathematical
results can be described as “one-parameter” results. The relation (2)
has been deduced for special cases in which quantities such as the

- blocking probability or the load per server are held constant. For
example, it is known that if one combines separate groups of j and %
trunks, each operating at a blocking probability 0.01, then the new
blocking probability will be less than 0.01 (or, alternatively, the com-
bined system can handle an increased total load and retain the same
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0.01 blocking probability); see p. 68 of Cooper.* Such results are often
presented without rigorous mathematical support.

From Paul Burke we learned about another special case that has
been known for a long time. It is not difficult to show that B(ts, ta) is
strictly decreasing in £ (see the appendix), from which (2) easily follows
in the case Ai/s; = Ay/s;. Herbert Shulman has also shown that
Theorem 1 follows easily from the monotonicity of B (¢s, fa) in £ and
the convexity of B(s, a) in s for s = 1, but such convexity has not yet
been established (see the appendix). For further discussion of other
related work, see Section 5.1 of Kleinrock.”

To state our second result, let D(s, A, ) denote the mean steady-
state delay in an M/M/s queue with infinite waiting room, FCFs (first-
come, first-served) queue discipline, s servers, arrival rate A, and
individual service rate y. It is well known that D(s, A, ) = C(s, A/p)/
(s — A), where C(s, a) is the Erlang delay function:

a’/(s =1l (s — a)

C(s, a) = 3

2 (a"/k') +a/(s— 1D (s— a)

The followmg result establishes subadditivity of D (s, A, 1) as a function
of (s, A) for each fixed p. Note that \

[Ar/a + A2 1D (s, A, ) + Ao/ Ay + A2) 1D (s, Az, )
is the overall average delay experienced in the separate systems
because A;/(A; + A2) is the long-run proportion of customers to enter
the first system.

Theorem 2: For all positive integers s, and s; and all posztwe real
numbers Ay, Az, and p,

D(s) + 82, A1 + Az, 1)
= [A/A + A)ID(sy, Ay, ) + Ao/ N1 + A2)ID(s2, A, ). (4)

This yields immediately that

H(E si, ), ai) = Y H(s;, a)
{1 =l i=1

for each integer n, where H(s, a) = aC(s, a)/(s — a), which is the
version of Theorem 2 actually conjectured by Arthurs and Stuck.!

In order to prove Theorems 1 and 2, we found it convenient to prove
stronger results. It is helpful to see how the loss rate L(s, A, 1) and the
mean delay D(s, A, p) are related to the steady-state number of
customers in the system, say Q. In the M/M/s loss system

because A is the arrival rate and pE@ is the service-completion rate;
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the loss rate is that fraction of the arrivals that are not served. In the
. M/M/s delay system

AMD(s, A, p) +p) = EQ 6

by virtue of the fundamental relation L = AW; see Stidham.®

Let @, be the steady-state number of customers in the ith system
(i =1, 2) and let @ be the steady-state number of customers in the
combined system. Then Theorem 1 is equivalent to

EQ=EQ + EQ: (7
for the loss systems, and Theorem 2 is equivalent to _
EQ=EQ + EQ: (8)

- for the delay systems.

Instead of comparing the means in (7) and (8), we prove Theorems
1 and 2 by making more general stochastic comparisons. We do this in
two different ways. Qur first method of proof is to compare the
distribution of @ with the distribution of @, + .. It turns out to be
very egsy to establish an appropriate ordering for the entire distribu-
tions, which in turn implies the desired inequality for the means. The
appropriate order is the monotone likelihood-ratio ordering. We défine
this ordering and prove the more general theorems implying Theorems
1 and 2 in Section II.

Our second method of proof is to compare entire stochastic processes
rather than just stationary distributions. As corollaries we obtain
stochastic-order relations for the stationary distributions which in turn
also imply the desired inequalities (7) and (8) for the means. This
approach has the advantage that the arrival processes can be arbitrary
rather than Poisson and the service-time distributions can be general
instead of exponential. The argument is also remarkably simple. The
idea in this approach is to construct artificially the two stochastic
processes being compared on the same probability space. The construc-
tion is carried out so that each stochastic process individually has the
correct distribution (family of finite-dimensional distributions) as orig-
inally specified. We choose a special joint distribution so that each
sample path of one process always lies below the corresponding sample
path of the other process. Because the construction is artificial, the
joint distribution of the two processes is not directly meaningful, but
it implies a strong stochastic ordering for the processes. Such special
constructions have been used previously to compare queuing processes;
see Sonderman,” Whitt,® Wolff,? and references there. In fact, the
generalization of Theorem 2 is a direct consequence of Wolff’s theorem
and the other proofs involve similar reasoning. We present our results
using this approach in Section IIL
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In Theorems 1 and 2 we assume equal service rates in the two
systems. It is natural to ask whether extensions of (2) and (4) hold
when the service rates are unequal. In Section IV we show that, with
unequal service rates, combining resources need not be more efficient;
in fact it can substantially degrade performance. Infrequent “bad”
customers from one system can adversely affect a large number of
“good” customers from the other system.

1II. MONOTONE LIKELIHOOD-RATIO COMPARISONS

Let X and Y be random variables assuming values in the nonnegative
integers. We say X is less than or equal to Y in the monotone
likelihood-ratio ordering and write X =, Y if

P(X=k+1)<P(Y=k+1)
PX=Fk ~— P(Y=kF)

for all integers k; see page 208 of Ferguson.'’ We say X is stochastically
less than or equal to Y and write X =, Y if Ef(X) < Ef(Y) for all
nondecreasing real-valued functions f for which the expectations are
well defined. Obviously, EX < EY whenever X <,, Y. What is important
for Theorems 1 and 2 is that X =<, Y implies X =,, Y. This is well
known and not difficult to show. In fact, the monotone likelihood-ratio
ordering is equivalent to stochastic order for all conditional distribu-
tions obtained by conditioning on subsets, ie., E(f(X)|X € A) =
E(f(Y)|Y € A) for all subsets A and all nondecreasing real-valued
functions f; this property is discussed in Whitt'*?; see Keilsoi and
Sumita® for additional material.

Returning to the notation of (7) and (8), we obtain the followmg
results which imply Theorems 1 and 2. ;

Theorem 3: For the M/M/s loss systems,

+Q:<-Q
Theorem 4: For the M/M/s delay systems,

Q<+ Q.

Theorems 3 and 4 can each be proved by simple calculations since
the stationary distributions are known and easy to work with. To
illustrate, we do one proof.

Direct Proof of Theorem 3: Let a; = Ai/u; for i = 1, 2. Then, using
convolution, we obtain for some constant C

P+ @=k+1)=C Y abla¥/irlis

- ®

O<iy=<s,
O=sip=<s,
i tip=k+1
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Stk 9, g

Cal . . . .
Y aiTlal/(i — D!
k+1 I=ij=<s,
O=tip=s,
iy tig=k+1

Ca : s oy
k+21 Y aba Vil ~ !
0=i,=<s
1=i=s,
iytig=k+l

a + a
<f{—— alial? /i)
( E+1 )Cosgss, la2 /ll ”

O=iy=<s,y
Iyrip=k

+

PQQ=Fk+1)

—WP(QVFQz—k). O
It is also significant that both Theorems 3 and 4 can be viewed as
trivial corollaries of a more general theorem. This more general theo-
rem is especially useful for comparisons when the limiting distributjons
are not known. To state our general result, consider two stochastic
processes on the integers, Y1(#) and Y»(t), that move only by jumps up
or down in unit steps to one of the neighboring states. Let all the
transitions be governed by birth-and-death rates, but in contrast to
those in birth-and-death processes, these rates may depend on infor-
mation other than the current state such as the history of the process
or other relevant variables. Let Ai(k, I.) and pi(k, I.) be the birth-and-
death rates, respectively, for the ith process (i = 1, 2) in state 2 with
additional information I, at time ¢, By having transitions govemed by

birth-and-death rates, we mean that

P(Ydt+h)=k+1 | Yi(t) = &, I} = WA (¢, I,) + o(h),
P(Yit + by =k = 1| Yit) = &, I) = hpi(t, I,) + o(h),
and
P(Yit+h) =k | Yit) = &, 1) =1 — h[Adt, 1)) + pi(t, ID] + o(h),

where o(h) means a quantity that converges to zero after division by
h as h — 0. Let X, and X; be random variables with the limiting
distributions of these two stochastic processes, which we assume exist
as proper distributions. Here is our general monotone likelihood-ratio
comparison result.

Theorem 5: Consider the processes Yi(¢) and Ya(t) defined above.
Suppose there exist sequences of constants {«a:(k))} and {8; (k))} such
that

Mk, I) =ailk), Ak, I) = oa(R),
mk, Iy = Buk),  p(k, I) < Ba(k),
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for all 2 and I.. If ay(R)/Bi(k + 1) < ax(k)/B2(k + 1) for all &, then
Xl sr':VXZ- ) ’
Corollary: If
Al(k9 Il) = A‘I(k, I:)
and
pi(k, 1) = po(k, ID)

for all k, I, and I, then X) <, Xa.

Proof of Theorem 5: Look at the stationary flow between states % and
k + 1. The flow from % to k& + 1 is less than or equal to P (X, = k)ai(k)
for process 1 and greater than or equal to P(X: = k)az(k) for process
2. Similarly, the stationary flow from % + 1 to k is greater than or
equal to P(X; = & + 1)B:1(%) in process 1 and less than or equal to
P(X2 = k + 1)B2(k) in process 2. Since the stationary flow from & to
k + 1 must equal the stationary flow in the opposite direction,

PX) =Rak) =PXi=k+ 1Bk +1)

and

PXp =Rax(k) = P(Xo =k + 1)B2(k + 1).
Consequently, i

PXi=k+1) = a(k) ‘< ax(k) - PX;=Fk+1)

PXi=F) B+ R+l PX=R) =

We can now apply the corollary to Theorem 5 to prove Theorems 3
and 4. :
Second Proof of Theorem 3: Note that the processes depicting the
number of customers being served satisfy the hypotheses of Theorem
5. In the case of two separate facilities, the sum is not a birth-and-
death process because the rates depend not only on the total number
but how many are in the individual facilities. When %k customers are
present, the death (service) rates are identical, but the birth (arrival)
rates can be higher in the combined system because if one of the
separate facilities is full, then it cannot accept any more arrivals.
Hence, the hypotheses of the corollary to Theorem 5 are
satisfied. ]

Proof of Theorem 4: Again we apply the corollary to Theorem 5. The
reasoning is similar except here when k customers are present, the
birth (arrival) rates are always identical, but the death (service) rates
can be less with the separate facilities because there can be idle servers
in one. facility while there are customers waiting in the other
facility. O ’
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Hl. SAMPLE PATH COMPARISONS

Let {X(¢), =0} and {Y (¢), ¢ = 0} be real-valued stochastic processes.
We call a real-valued function f defined on the space of all sample
paths of X(#) and Y (¢) nondecreasing if f({x(t), £t = 0}) = f({y(¢), t =
0}) for all sample paths {x(¢), ¢ = 0} and {y(¢), ¢ = 0} such that x(¢)
=< y(¢) for all ¢ = 0. We say the stochastic process {X(#), ¢t = 0} is
stochastically less than or equal to the stochastic process {Y (¢), ¢t = 0}
and write {X(#), ¢ =0} =. {Y(?), t = 0} if f({X(2), t=0}) =. f({Y(2),
t = 0}) for all nondecreasing real-valued functions f defined on the
sample paths of X(¢) and Y (¢). Clearly, stochastic order of the processes
implies X(¢) <. Y (¢) for each ¢ [just use the projection: f({x(x), u =
0}) = x(#)], but it is much stronger, applying to many other nonde-
creasing functionals. In fact, since the queuing processes have sample
paths with left and right limits everywhere, stochastic order of the
processes is equivalent to stochastic order for all finite-dimensional
(joint), distributions; see Section 4 of Kamae, Krengel, and O’Brien.
Moreover, stochastic order of the processes here is equivalent to the
possibility of a strong sample-path comparison, In particular, ,

- {X(0),t=0}) <. {Y(1),t=0}

holds if and only if it is possible to construct stochastic processes
{X(2), ¢t = 0} and {Y(#), ¢t = 0} on a common probability space such
that {X(f), ¢ = 0} has the same distribution as {X(#), ¢ = 0},
{Y(#), t = 0} has the same distribution as {Y(?), £ = 0}, and every
sample path of {X(¢), t = 0} lies below the corresponding sample path
of {Y(2), t = 0}; see Theorem 1 of Kamae, Krengel, and O’Brien."
What we do is apply the easy half of this equivalence—the fact that
the sample-path construction implies stochastic order—to make sto-
chastic comparisons between the queuing processes. The proofs here
are done by actually constructing processes with the sample-path
ordering. Previous uses of such constructions appear in Sonderman,’
Whitt,® Wolff,” and references therein. The approach is also closely
related to the so-called “coupling” techniques; see Lmdvall“‘" and
references therein.

We begin with the generalization of Theorem 2 for delay systems
because it follows directly from Wolff.> As before, we assume the FCFs
discipline, but now we allow the arrival streams in the two separate
systems to be arbitrary. We assume the service times are independent
of the arrival processes and mutually independent and identically
distributed, but they need not be exponentially distributed. Since the
arrival process is assumed to be independent of the service-time
sequence, the evolution of the arrival process cannot depend on the
state of the system. This excludes finite-source models, for which
counterexamples to the efficiency of sharing are easy to construct; for
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example, see page 1377 of Benes.' Let Q;(£) be the number of customers
in the ith system and let @(f) be the number of customers in the
combined system at time ¢. ‘

Theorem 6: (Wolff) If @:1(0) = Q:(0) = Q(0) = 0, then {Q(t), t = 0}
=g {@:1(8) + @=(8), t = 0}.

Remarks: (i) Wolff® was actually interested in comparing the Fcrs
discipline with the cyclic assignment discipline in a single delay-system.
He showed that the queue length process with the FcFs discipline is
stochastically less than the queue length process in the same system
with any other discipline. This result applies here because the two
separate facilities can be interpreted as a single system with a special
queue discipline: Just label the arrivals in the special system according
to the stream from which they came and then assign them according
to the Fcrs discipline to one of the servers in the corresponding
subgroup of servers.

(ii) We can obtain corresponding results if the systems are not
empty initially. For more general initial conditions, we can assume
appropriate stochastic order for the residual service times at ¢ = 0.

(ii1) Wolff® also obtained similar comparison results for other pro-
cesses, all of which hold here too: the departure epochs, the number of |
customers in queue, the total work (in service time) in the system, and
the total work in queue. By the sample-path construction, the sto-
chastic order jointly holds for all these processes. See Theorem 8 here.

(iv) As a consequence of Theorem 6, Q(t) <. €:(f) + Q-(t) for each
¢t. With the general assumptions here, steady-state distributions need
not exist, but if @:(¢) and @(t) converge in law to @: and @, respectively,
as t — o, then @ =, @, + @-; see Proposition 3 of Kamae, Krengel,
and. O’Brien.”* The convergence of course holds in the setting of
Theorem 2, so Theorem 6 implies (8) and thus Theorem 2.

(v) Since Theorem 2 concerns the mean-waiting time, it is‘natural
to ask if the steady-state waiting-time distribution is also stochastically
less in the combined system. Unfortunately, in general it is not. The
counterexample in Whitt'” applies here too; the cyclic discipline there
can be interpreted as arrivals to separate facilities.

(vi) When the arrival streams are not Poisson, which we now permit,
a new phenomenon occurs. Then the customers in the different streams
experience different congestion when the systems are combined, even
if the service times are independent and identically distributed. This
phenomenon can be an important consideration in combining systems,
but we do not consider it here; it has been studied by Kuczura.'*"

We now turn to our generalization of Theorem 1 for loss systems. In
addition to allowing arbitrary arrival streams and general service-time
distributions, we allow a finite waiting room. The number of waiting
spaces in the combined system is the sum of the numbers of waiting
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spaces in the separate systems. Let N;(#) [N(¢)] be the number of
customers lost in the interval (0, ¢) in the ith separate system (in the
combined system); let S;(£) [S(#)] be the number of service completions
in the interval (0, £) in the /th separate system (in the combined
system); and let Ci(¢) [C(£)] be the amount of work performed—service
given—in the interval (0, £) in the ith separate system (in the combined
system). _

Theorem 7: If :(0) = @:(0) = Q(0) = 0 in these systems with finite
waiting rooms, then _

{N(t), t = 0} = {N:\(2) + Na(t), t =0},
{S(@), t =0} =, {S:(2) + Su(8), t =0},

and
{C(1), t = 0} = {C1(8) + C2(t), t=0}.

Now assume that Ni(¢)/t and N(t)/¢t converge (either in probability
or with probability one) as ¢t — o, Let the limits be denoted L(s;, &;,
Ai(2), F) and L(s1 + sz, k1 + k2, A1(2) + Az(2), F), respectively, with k;
denoting the number of waiting spaces, Ai(¢) the arbitrary arrival
process and F(x) the general service-time c.d.f. From Theorem 7 we
immediately obtain the following generalization of Theorem 1.

Corollary: For all positive integers s, sz, k1 and ks all arrival
processes A\(t) and Ax(t); and all service time c.d.f’s F(x) such that
the loss-rate limits exist,

L(81 + 8o, kl + k2, Al(t) + A2(t), F) i
= L(Sl, kl, Al(t), F) + L(S2, kZ, AZ(t), F)-

To prove Theorem 7, we establish a finite-waiting-room generaliza-
tion of Wolff’s’ comparison theorem. Following Wolff, we shall state
the result in terms of the sample-path comparison. Since the joint
distribution of the two systems being compared is artificially obtained,
the appropriate conclusion is the general stochastic order as in Theo-
rems 6 and 7.

We carry out the artificial construction by letting the systems being
compared have identical arrival processes and service times. Note that
we are now focusing on a single (arbitrary) sample path. We let the
nth service time v, be associated with the nth customer to enter
service in each system rather than the nth arrival. Let a, be the arrival
epoch of the nth arrival, 0 < @) < a; = -.-. We assume there are s
servers operating in parallel and % extra waiting spaces in both systems.
We also assume the systems are initially empty.

One system, called the original system, will be the conventional
system where the servers are fed by a single queue using a FCFs
discipline. Moreover, there are % extra waiting spaces and arriving
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customers enter the system if the number of customers in the system
is less than s + &, and are lost otherwise.

The other system, called the modified system, is any alternative to
the original system which assigns customers to servers in some manner,
independent of the sequence of service times {v,}, and which loses
arrivals whenever the system is full and in some manner otherwise.

Let a, be the arrival epoch of the nth customer. For the original
system, let ¢, be the time that the nth customer to enter the system
enters; obviously #, = a, for some &, £ = n. Also, for the original
system, let b, be the time the nth customer to begin service begins and
let d, be the nth ordered departure epoch from the system. Let a,, ¢,
br, and d;, be the corresponding quantities for the modified system.
Theorem 8: For all integers n, thn < t}, b, < b}, and d, < d.

Proof: The sets of unordered departure epochs in the two systems are
clearly {(b. + v,)} and {(b,z + vn)}, respectively. For the original
system,

dy = 'mm {b;+ v} = mm {t, + v}, '
d. = nth-order statistic from {(b; + vi): i <n + s} (10).
and

b = max{t,, dn-.}, n=1, v (11)
where d; = 0 if j = 0. For the modified system,
d; = nth-order statistic from {(b; + v):i<n + s} (12)

and

-

bn = max{t,, dn-s}, n=1, ; (13)

!
because in the modified system it is possible to have a positive queue
and an idle server.

Since the nth-order statistic is a monotonic function, to prove
Theorem 8 it suffices to show that ¢, < ¢, and b, < b, for all n. We
show this induction. Obviously b; = t; = a; < t{ < b}, 1 < < s. Suppose
ti=<tiand b; < b for all i, f = n — 1. We first show that £, < ¢.

Suppose not; then
> th = th1 = by,

and thus n — 1 customers have entered both systems before the arrival
associated with £,. (Note that customers could arrive in batches, i.e.,
ar = aps1 is a possibility, but this presents no serious difficulty.)
However, by the induction hypothesis b; + v; < bi + v, i <n — 1, so
the original system has at most the same number of customers as the
modified system before the arrival associated with ¢,.. Thus, ¢, > ¢,

cannot occur. Hence ¢, < ¢, as claimed.

RESOURCE SHARING IN TRAFFIC SYSTEMS 49



To continue the induction proof for b,, note that (10) and (12) imply
that d; = d/ for i < n — s. Then, from (11) and (13), we have

b, = max{t,, dn-} < max{¢t;, d;-;} < b,

which completes the proof. a

Remark: Our proof of Theorem 8 is closely related not only to Wolff’s
proof,’ but also to Sonderman’s comparison proofs.?>?' Sonderman was
concerned with the effect of different service-time distributions instead
of different queue disciplines.

We close this section with another result about pure-loss systems
With waiting rooms or with general service times it is easy to show
that the stochastic processes representing the number of customers in
the system need not be stochastically ordered, but we do get stochastic
order with exponential distributions and no waiting rooms.

Theorem 9: In the setting of Theorem 7, if there are no waiting rooms,
if the ser}vwe-tzme distribution is exponential and if Q(0) = €:.(0) +
@:(0), then

{Q2), t = 0} = {Qu(2) + Qu(2), t = 0}

and
{N(t), t = 0} <. {N:i(t) + Na(t), t = 0}.

Proof: Here the argument follows Sonderman’**# and Whitt.? As the
first step in constructing the two systems on the same probability
space, we let the two systems being compared have identical arrival
processes; i.e., we let the arrival process to the combined group of s;
+ s, servers be the sum of the two arrival processes to the separate
groups of s; servers. This not only means that the arrival processes
have the same joint distributions, but that they have the same sample
paths. Similarly, we let both systems start off with the same number
of customers in the system; i.e.,, given the pair [@,(0), §2(0)], we let
Q(0) = @,(0) + Q2(0). We now show how to construct the departures
so that

N(t) = Ni({t) + Na(¢) (14)
and
Q(t) = Qi(¢) + Qz(t) (15)

for all ¢ = 0. We generate departures from both systems usmg a single
Poisson process with rate (s, + s2)u. Each point in this Poisson process
-corresponds to a potential departure. Suppose the point occurs at time
t. With probability @.(2)/(s1 + s2), the point corresponds to a departure
from both the single group of s; servers and the combined group of s;
+ s, servers; with probability @:(¢)/(s: + sz), the point corresponds to
a departure from both the single group of s, servers and the combined
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group of s; + s, servers; with probability [@() — @.(2) — &2(2)1/(s1 +
s2) the point corresponds to a departure from only the combined group
of s; + s. servers; and finally, with probability [s; + s: — @(£)}/(s1 +
s2), the point corresponds to no departure at all. This can be shown to
yield the proper distributions for each system; see Sonderman’ for
more detail. This also guarantees that there is a departure in the
combined group of s; + s: servers whenever there is a departure from
one of the groups with s; and s; servers. There also cannot be a
departure from the combined group alone when @(t—) = Gh{t—) +
Q:(t—), so inequality (15) is maintained. This means that all departures
and losses from the combined group of s1 + s; servers that are not
matched by corresponding departures or losses from one of the groups
of s, and s; servers can be matched with earlier losses from one of the
groups of s; and s, servers. Mathematical induction on the arrival
index establishes (14) and (15) and formally completes the proof. O
Remark: For the special case of M/M/s systems, the stochastic order
in Theorems 6 and 9 can also be established under the conditions in
the corollary to Theorem 5 using existing comparison theorems for
continuous-time Markov chains; see Sonderman.” However, we know A
of no direct connections between the monotone likelihood-ratio order-
ings and the sample-path orderings.

IV. DIFFERENT SERVICE RATES

In this section we let the service rates in the two separate systems
be different. One way to extend (2) and (4) occurs when the service
times are associated with the arrivals. If two independent Poisson
streams with rates A; and A: and associated service-time c.d.f.’s Fi(x)
and F»(x) are combined, then the resultant stream is a Poisson stream
with rate A; + Az and associated service-time c.d.f.: N

F(x) = [AFi(x) + A2F2(x)]/ (A1 + A2).

Of course, when F(x) is exponential with mean u;! for each i, F(x) is
not exponential unless u; = y;. However, the blocking probability for
an M/G/s loss system depends only on the mean service time. Thus
the loss rate for the combined system is L(s1 + s2, Ay + Az, (A1 + A2}/
(@1 + az)), and a natural extension of (2) to conjecture is

L(s1 + 82, A + A2, (M + A2)/ (a1 + @2)) = L(s1, M1, pu) + L(s2, Az, pa).

Unfortunately, this conjectured inequality is not valid. To see this, let
A =1 =€, A2 =¢ and gz = €?; then a, = € and a; = €. Obviously,

L(si+ 82, A1 + A2, (M + A2) /(a1 + a2)) = (A1 + A2)B(sy + 82, a1 + a2)
= (1+ €)B(s; + s2,€+€ ")

—]1 as €—0,
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whereas
L(sly Aly “l) + L(s2y A2y .u'2) = Al-B(sly al) + A2-3(32) a2)
B(s1, €) + €B(sz, €™")

-0 as e—0.

Consequently, in this case
L(s1 + 52, A1 + Az, (A1 + A2) /(a1 + @2)) = L(s1, A1, 1) + Liso, Az, p2)

for sufficiently small ¢. The previous measure, rate of customer loss, is
not the only reasonable way to evaluate system performance in this
case. For example, one might be interested in the rate of loss of service
time. (Note that there is no real difference between these measures
when the mean service times of the systems are identical.) With this
new measure, the natural extension of (2) to conjecture is: -

a, + az
A F A

Lisi + 55, M + A, (A1 + A /(@1 + @)

= -1- L(sy, A;, [11) + l L(s,, Az, p.z)
- m M2
This inequality is in fact always true, since substitution of L(s, A, p)
= AB(s, A/p) quickly reduces it to the second version of the inequality
of Theorem 1. Thus the server occupancy is always increased for the
combined system.

Turning to delay systems, we again ﬁnd examples where sharing can
be counterproductive. To see this, consider two M/M/1 delay sys-
tems with A} = 1, iy = 2, A2 = ¢, and p» = 2e. Then EQ () = EQ»(x)
= p/(1 — p) = 1, but EQ(x) can be shown to be of order e ' as € — 0:
Consider the interval following a low-intensity arrival. With probability
A2/ (A2 + p2) = %, a second low-intensity arrival occurs before the first
departs. Then there follows an exponentially distributed interval of
mean length 1/4e during which the combined system fills up with high-
intensity customers. In computing the average number of customers
- in the system, we get a term of order €2 (the total area in the plot of
the number of customers in the system versus time, starting from the
moment the second low-intensity customer arrives and ending when
one of the two low-intensity customers departs), divided by a term of
order € *. In other words, with the mean steady-state delays held fixed
in the two separate systems, the mean steady-state delay in the
combined system can be arbitrarily large.

Note that the combined system can be modeled as an M/G/s\+s:
delay system where the service-time distribution is the mixture of two
exponential distributions, but in contrast to the case of loss systems
the mean delay does not depend only on the mean of the service-time
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distribution. Hence, the appropriate generalization of (4) involves a
system which is not M/M/s.

Another possible extension for p; 5 p2 occurs when the service-time
distributions are associated with the servers. Here the combined
system is not M/M/s because there are heterogeneous servers, so there
are no equations similar to (2) and (4). In this case, it can be shown
that with exponential service-time distributions and no waiting rooms,
resource sharing is always better if customers always are sent to the
fastest available server. In particular, as in Theorems 6 to 8, it can be
shown for any single system that assigning customers to the fastest
available server produces fewer losses than any other rule, where by
“fewer losses” we mean in the sample-path ordering of Section III. One
other rule, corresponding to the two separate systems, is to assign the
customer only to servers associated with their original separate arrival
streams.

When we focus on delay systems with heterogeneous servers, it is
easy to give counterexamples showing that resource sharing can again
be counterproductive. Related literature on the assignment of cus-
tomers to heterogeneous servers appears in Winston,”>* Smith,? and
references therein. ,

This section shows that, with unequal service-timé distributions,
resource sharing can be counterproductive. However, with unequal
service-time distributions, much depends on the criterion of system
performance. Also, it should be noted that such counterexamples have
been observed before; others have discovered that infrequent “bad”
customers can affect adversely a large number of “good” customers.

—
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APPENDIX

Here we give two results that are due to others. First, we present Paul
Burke’s proof that B(ts, ta) is strictly decreasing in ¢ for ¢ = 0. This
result implies Theorem 1 when Ay/s; = Az/s2, because then
B(s: + s2, a1 + a2) = Bl(ts;, ta;) for some t = 1, so B(si, @) =
B(s;, + s2, a1 + a3) for each i and

A B(sy, a1) + A2 B(s:, a;)
At A A+ A
which is equivalent to (2).

To see that B(ts, ta) is strictly decreasing in ¢, ﬁrst recall the
following equation relating two different expressions for the tail of the

= B(SI + 82, ) + a‘l);
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‘gamma distribution:

ken ® n,—x
- X e
e Y a'/kl= — dx.
« n.

h=0

f e *x" dx o
1 — ta

B(ts, ta) e “(ta)”

Then note that

= f e™"""(x/ta)" dx
[

(43

/ = J e~ (1 + [x/ta])" dx;
[{]
also see Theorem 3 of Jagerman.’ Finally, (1 + [x/ta])* is strictly
increasing in £.

Second, Herbert Shulman has shown that Paul Burke’s result and
the convexity of B(s, a) in s for s = 1 imply a version of Theorem 1.
Such convexity has frequently been conjectured but has been proved
only for lattices of points with unit spacing, see Messerli?® and refer-
ences therein. These versions of convexity are not strong enough to
make the following valid even when s, and s; are integers; however,
general convexity would establish the proof for all real numbers s; and
sz = 1, a2 more general mathematical result. We reproduce Shulman’s
argument here: :

a + a

a

a; B a + a
a + a az

a
B(s) + 52,0y + az2) = ! B( s, a + 0.2)
a) + a

Sz, ay + az)

a
<E—-’:—2B(S|,a|) +— fa B(Sz, Gz)
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