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A fundamental principle of queueing theory is L = AW (Little’s law), which states that the
time-average or expected time-stationary number of customers in a system is equal to the
product of the arrival rate and the customer-average or expected customer-stationary time
each customer spends in the system. This principle is now well known and frequently
applied. However, in recent years there have been extensions, such as H=AG and the
continious, distributional, ordinal and central-limit-theorem versions, which show that the
L = AW relation, when viewed properly, has much more power than was previously realized.
Moreover, connections have been established between H =AG and other fundamental
relations, such as the rate conservation law and PASTA (Poisson arrivals see time averages),
which show that there is a much greater unity in the overall theory than was previously
realized. This paper provides a review.

Keywords: L =AW, Little’s law, time averages and customer averages, conservation laws,
limit theorems, sample-path methods, stationary marked point processes, H = AG, rate
conservation law, level crossings, the inversion formula, Campbell’s formula, central limit
theorems, indirect estimation.

1. Introduction

The formula L =AW (Little’s law) expresses a fundamental principle of
queueing theory: Under very general conditions, the time-average or expected
time-stationary number of customers in a system, L (e.g., the average queue
length) is equal to the product of the arrival rate A and the customer-average or
expected customer-stationary time each customer spends in the system, W (e.g.,
the average waiting time). The relation L =AW is very useful because the
assumptions are minimal; it applies to other stochastic models besides queues; it
applies to queueing networks and subnetworks as well as individual queues; it
applies to subclasses as well as the entire customer population; and it is
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remarkably independent of modeling details, such as service disciplines and
underlying probability distributions. Moreover, there are extensions of L =AW,
such as H=AG and the continuous, distributional, ordinal and central-limit-
theorem (CLT) versions, that enable us to analyze many seemingly unrelated
problems.

The purpose of this paper is to review the work on L =AW and its exten-
sions. There are two frameworks for expressing these results. The first is a
deterministic framework involving averages over individual sample paths. The
second is a stationary framework involving steady-state distributions. The deter-
ministic framework is appealing because it requires only elementary arguments.
It thus lays bare the essential ideas, so that we can quickly understand the
principles and focus on their applied significance. The stationary framework is
appealing because it leads beyond the particular issue being investigated to a
full investigation of the concept of statistical equilibrium or steady state. A
primary concern in the stationary framework is the connection between equilib-
rium at arbitrary times and equilibrium at special random times such as
customer arrival epochs. Looking carefully at both frameworks is very useful,
because they are closely related. Indeed, there is an equivalence between the
relatively elementary sample-path relation H =AG in the deterministic frame-
work and a corresponding statement in the stationary framework obtained via
Campbell’s formula, so that a statement in one framework can be immediately
translated into a statement in the other framework; see remark 6.1.

. The fundamental principle is not L =AW, but its extension H =AG, because

L =AW is a special case of H=AG and because H =AG essentially embodies
the full relationship between time averages and associated customer averages.
Indeed, in the stationary framework, H =AG is essentially equivalent to the
basic Palm transformation relating the steady-state distribution at arbitrary
times and the steady-state distribution at random times. (We prove this equiva-
lence in a subsequent paper.) Nevertheless, to simplify the discussion, we first
consider the more familiar L =AW. We present the deterministic framework for
L =AW in section 2. We also state the main L =AW result there, which we
primarily ascribe to Little [42] and Stidham [64], but also partly to Jewell [33],
Newell [53] and Brumelle [8]. In section 3 we describe the steady-state version of
L =AW involving stationary marked point processes and the Palm transforma-
tion, which we primarily ascribe to Franken [20], but also partly to Miyazawa
[47] and Stidham [65-67]. In section 4 we give three illustrative applications of
L =AW and in section 5 we discuss the literature related to L =AW.

In section 6 we discuss the relation H = AG, which states that a more general
time-average or expected time-stationary quantity H is equal to the product of
the arrival rate A and an associated customer-average or expected customer-sta-
tionary quantity G. We discuss an average version in section 6(1), which we
primarily ascribe to Stidham [60,61], Brumelle [8] and Heyman and Stidham [32],
and a steady-state version in section 6(2), which we primarily ascribe to Franken
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[20] and Stidham [65-67]. In section 6(3) we present an extension of H=AG
due to Glynn and Whitt [27] to cover lump costs as well as cost rates. We also
discuss the relation between H =AG and other basic principles such as the
relation Y=AX of Stidham and El-Taha [68] and the rate conservation law of
Miyazawa [49-51]. Recent work of Brémaud [4], Miyazawa [51] and Sigman [59]
shows that these important principles as well as others are essentially equiva-
lent. We give a few applications of H =AG in section 6(4), including one to give
necessary and sufficient conditions for arrivals to see time averages (ASTA).
This result seems to be new as stated, but it is similar to previous results by
Stidham [66] and Stidham and El-Taha [68].

In section 7 we discuss indirect estimation via L =AW and H =AG, which
was initiated by Law [40] and continued by Carson and Law [11] and Glynn and
Whitt [26]. The idea is to use a finite average related to W and the known A to
estimate L or vice versa. We also discuss the central-limit-theorem versions of
L =AW and H = AG due to Glynn and Whitt [22—24,27], which provides a basis
for determining which estimator is more asymptotically efficient.

We conclude in section 8 by discussing other extensions, including the
distributional version due to Haji and Newell [30] and Keilson and Servi [34], the
continuous (and more general) versions due to Rolski and Stidham [58] and
Glynn and Whitt [27] and the ordinal version due to Halfin and Whitt [29].

For previous overviews of L =AW focusing on the deterministic framework,
see Stidham [66], Ramalhoto, Amaral and Cochita [55], chapter 11.3 of Heyman
and Sobel [31] and chapter 5.2, 5.15 of Wolff [72]. The first six sections here are
quite close to Stidham [66]. For previous overviews of other kinds of sample-path
analysis, see Stidham [66,67] and Stidham and El-Taha [68]. For previous
overviews of the steady-state version of L =AW and the associated marked
point process framework, see chapter 4 of Stidham [66], Franken, Konig, Arndt
and Schmidt [21], Rolski [57], Baccelli and Brémaud [1] and chapter 7 of
Walrand [69]. For overviews of the closely related ASTA topic, see Brémaud [3],
Brémaud, Kannurpatti and Mazumdar [5], Melamed and Whitt [46] and section
3 of and Stidham and El-Taha [68].

2. A deterministic framework forlL =AW

It is useful and instructive to have a simple general framework for L = AW.
This is provided by a sequence of ordered pairs of real numbers {(A4,, D,):
k> 1} satisfying 0 <A, <A4,,, and A, <D, for all k. In applications to
probability models, this sequence corresponds to one sample path of a stochastic
process; then the inequalities above and the limits discussed below are under-
stood to hold on this particular sample path.

In applications to queues, we usually interpret 4, and D, as the arrival and
departure epochs of the kth arriving customer. We think of the kth customer
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being in the system during the interval [4,, D,]. However, arrival and depar-
ture should be interpreted with respect to the system under consideration. For
example, if the system refers to a queue, excluding the servers, then A, is the
epoch when the kth customer to join the queue arrives (not counting customers
who do not join the queue) and D, is the epoch when the kth customer to join
the queue leaves the queue (which usually occurs when the customer begins
service). For many models, such as a single-server queue with the FCFS
(first-come first-served) discipline, we also have D, <D, , for all k, but we do
not make this assumption. For queueing applications, we think of the system as
being initially empty, but other initial conditions can be introduced by setting
A, =0, 1<k <m, for some m.

We now define associated quantities in terms of the basic sequence {(A4,,
D,): k = 1}. For each t > 0, let O(¢) be the number of k with A, <t <D, (the
number in system or queue length) and, for each k> 1, let W, =D, — A, (the
time spent in the system or waiting time). Let A(z) and D(¢) count the number
of k£ such that 4, and D,, respectively, are less than or equal to .

In the context of queueing models, it is significant that we have not specified
all the standard features of the model. For example, there is no mention of the
service discipline. Thus, any service discipline is allowed (subject to the cus-
tomer being in the system throughout the interval [4,, D,], but this can be
generalized using the extension to H =AG; see section 6(1) below). Moreover,
we do not specify customer service times (as distinct from the total time spent in
the system) as part of the primitive model data. As a consequence, there are
many different detailed queueing models consistent with our model. For exam-
ple, our model can always be interpreted as a standard infinite-server queueing
model in which customers enter service immediately upon arrival; simply interpret
W, as the service time of the kth customer.

In applications we are usually willing to assume that all relevant limits exist.
From an applied point of view, the main issue in L = AW is the relation among
the limits assuming that they exist. Hence, our first result is stated with an extra
existence assumption. (The extra assumption below that ~1D(¢) = A as t = » is
not restrictive; it can be established in the proof.) A good understanding of
L =AW and its extensions can be obtained from the simple proof here.

THEOREM 2.1
Suppose that t~'4(t) »A and ¢~ !D(t) > A as t—> o, where 0 <A <o, If
k~'Zt_ W, > W as k - =, then t7Y{Q(s) ds > L as t - » and L =AW.

Proof (sketch)

The key observation is that the integral [;Q(s) ds coincides with the sum of
the waiting times of the D(t) customers to depart by time ¢ plus a portion of the
sum of the waiting times of the A(¢) — D(t) customers who arrive by ¢ but have
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Fig. 1. The cumulative processes associated with Q(¢) and W,.

not yet departed (see fig. 1), i.e., we start by establishing the relation

D(r) . A(t)
Y W< [Q(s)ds< LW, t>0. (2.1)
j=1 0 ji=1

In fig. 1, time is on the horizontal axis and the customer index is on the vertical
axis. A bar at [k — 1, k] X[ A,, D,] appears for customer k, so that W, measure
the length of the kth bar and Q(¢) counts the number of bars intersecting the
vertical line at t. Both cumulative processes L;_,W, and [{QO(s) ds thus
measure the area of a set of bars and partial bars, from which (2.1) is evident.
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To justify (2.1) more formally, let I,(¢) be the indicator function of the
interval [4,, D,] and note that

Wk=f01k(t) dr and Q)= Y I(?). (22)
k=1
Then, for example,
D(@) D) D@ ., . D(t)
Z W= Z f I(s) ds= Z fIk(S) ds=f l: Z Ik(s)} ds
k=1 k=170 k=170 0| k=1
] & t
< I(s)| ds= s) ds.
[ Z o] as= flow
The rest is easy; e.g.,
A() 1A(t)
1LY W=t A1) (A1) L W= AW ast—o o (2.3)
j=1 j=1

when

k
t7'A(t)»>rast—w and k'Y WioWask—-o. O

j=1

Remark
(2.1) The content of L =AW is probably embodied in fig. 1 and (2.1) as much
as in the statement of theorem 2.1. For example, from (2.1), we immediately see
that
A()

ftQ(S) ds= ) W,
0 k=1
whenever Q(t) =A(t) —D(t)=0. O

The following is a mathematically more elegant (but somewhat harder to
prove) version. It is a minor variant of what is in Stidham [64,66], chapter 11.3 of -
Heyman and Sobel [31] and chapter 5.2, 5.15 of Wolff [72].

THEOREM 2.2
Suppose that k=4, > A~! as k — o, where 0 <A~! <. Then

k
kK'Y W,»W as k— o, (2.4

j=1
where W < o, if and only if
kK7W, >0ask—w and 17 ['Q(s)ds—Last -, (2.5)
A |

where L <, If (2.4) and (2.5) hold, then L =AW.
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Proof (sketch)
As in theorem 2.1, the key is (2.1) and the related relation

k ’
[0(s) ds< T W< [Po(s) as, k>1, 2.6)
0 j=1 0

where D; =max{D;: 1 <j<k}. Next we note that :~'4(¢) - A as ¢ — o since
k=14, - 1~! as k > ». (The two limits are easily seen to be equivalent.) We
then show, given that k™4, - A ™! as k — oo, that the following are equivalent:
k™D, —»>A"tas k- oo, k"W, >0as k—>»and k71D, > A" as k > ». We
then show that if k~'D, »A~! as k > x, then t~1D(¢) - A as t - =, (The two
limits are not equivalent; see theorem 2 of [22].) The rest is as in (2.3). O

Remarks

(2.2) As far as the minor issue of existence of limits is concerned, interest
centers on the asymmetry ((2.5) does not imply (2.4) if we remove the limit on
k='W, from (2.5)). Stated differently, (2.4) implies that k™'W, - 0 as k — o,
but t~Y{Q(s) ds > L as t — » does not imply that t~'Q(¢) » 0 as ¢t — ». The
asymmetry was evidently discovered by Brumelle [8] and was clearly expressed
by Stidham ([64]. The implication (2.5) — (2.4) follows from lemma 2.2 and
theorem 2.4 of Stidham [66]. A few additional results appear in theorem 2 of
Glynn and Whitt [22] and theorem 5 of Glynn and Whitt [27].

(2.3) If we assume that k~'W, — 0 as k — «, then theorem 2.2 remains valid
with W=oand L =o. O

Theorems 2.1 and 2.2 immediately imply corollaries for stochastic models
when we introduce probability structure and associate “with probability one
(w.p.1)” with all statements. To state this corollary to theorem 2.2, now suppose
that {(A4,, D,): k> 1} is a random sequence having the specified properties
w.p.1. Then O(¢), A~!, L and W become random variables. Of course, typically
A1, L and W are deterministic, but that is not necessary.

COROLLARY
Suppose that k=4, = A~ as k — o w.p.1, where P(0 <A~ ! <o) =1. Then

k
k'Y W,»W as k—-wowp.l,

j=1

where P(W < «) =1, if and only if
k™'W,—>0as k>» and t‘lftQ(s) ds—>Last—>ow.p.l,
0

where P(L < ) = 1. If the w.p.1 limits hold, then P(L =AW)=1.
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3. A stationary framework for steady-state quantities

In applications to probability models, we are often interested in steady-state
means. Theorems 2.1 and 2.2 typically apply because in great generality L
coincides with the expected steady-state (continuous-time) number of customers
in the system, while W coincides with the expected steady-state (discrete-time)
length of time each customer spends in the system.

To be more precise, let = denote convergence in distribution and let {( A,
W,): k > 1} and {Q(¢): t > 0} be stochastic processes. If we are thinking about
steady-state, then we typically are willing to assume that

Q(t)=Q(»)ast—>x and W,= W(x)as k—» (3.1)

as well as

t‘lftQ(s) ds > EQ(w) as t > and
0

k
k™' ). W,— EW(») as k > »w.p.1. (32)
i=1
Under (3.1) and (3.2), if k™4, — A~! w.p.1, then the corollary to theorem 2.2
implies that

L = EQ(x) = AEW () = AW. (33)

For practical purposes, we are usually willing to assume (3.1) and (3.2), so that
theorem 2.2 captures the steady-state version of L =AW in (3.3) as well as the
sample-path-average version in section 2. However, it is also instructive to
directly construct appropriate stationary versions of the stochastic processes and
then obtain the steady-state version of L =AW in (3.3). When this approach is
followed, (3.3) is only one of many consequences.

We now present a steady-state version of L = AW, drawing on the theory of
stationary marked point processes. (The rest of this section and section 6(2) are
somewhat more technical than the rest of this paper; they are not essential for
reading the rest of this paper.) For more details, see Franken et al. [21], Rolski
[57] and Baccelli and Brémaud [1]. Our account is similar to the introduction in
chapter 7 of Walrand [69]. However, there is an important difference. The
stationary-process literature presents the steady-state version of L =AW in the
context of one special model, in particular, the standard G/G /s /o model with
s servers working in parallel and the FCFS service discipline, whereas we
(following Stidham [65—-67]) present a steady-state version of L =AW in the
natural stationary-process analog of the much more general framework in
section 2.

The reason for the more restrictive framework in the stationary-process
literature is that the primary concern there is the construction of all stochastic
processes of interest in terms of the primitive data of the model, which consist
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of the arrival times and service times as well as the service discipline and related
detailed full specifications of system operation. In contrast, as in section 2, we
assume that we are given only a partial specification of the system, in particular,
only the arrival and departure times (or, equivalently, the interarrival times and
waiting times) with appropriate stationary structure. The stationary-process
literature indicates how to construct the process we start with in the standard
G /G /s case. Moreover, as we observed in section 2, the G/G /s results in the
stationary-process literature apply to our model, because our model can always
be interpreted as a G/G/» model. Thus what we present, both here and in
section 6(2), is an easy consequence of Franken [20] and Franken et al. [21].

We assume that we have a strictly stationary stochastic sequence {(A4, — A, _,,
W,): —o <k <o} with 4,=0, A, <A,,, and W, >0 w.p.1 for all k; ie., the
distribution of the sequence {(A;,;, ~A;,s_1, Wi.): —% <k <o} is indepen-
dent of j> 1. (We interpret A4, as the arrival epoch of customer k& and W, as
the time he spends in the system.) From this, we obtain the customer-stationary
means, i.e., A"'=E(A, —A,_,) and W=EW,. We assume that 0 <A <o,
Then {(A,, W,): —o <k < =} is called a synchronous (or customary-stationary)
stationary marked point process with A, being the kth point and W, the kth
mark.

We now indicate how to construct the associated time-stationary marked
point process, say {( A}, W)): —o <k <}, associated with {(A4,, W,): —o <k
<}, It is important to note that this is not a sample-path construction. We
construct the probability law of {( A}, W)} in terms of the probability law of
{(A,, W,)}. For this purpose, we assume that the point process is simpie, i.e.,
P(A, —A,_,>0)=1. Of course, this condition makes this section less general
than section 2. Miyazawa [51] shows how to treat multiple points.

Let £ denote equality in distribution. Let a and b be positive numbers. We
stipulate that

({(As, W} Ag= —a, A =b) L ({(A,—a, W)} 4, =a+b), (34)

1
EA, 0
and
s
P(—Ag<s|A;—Ag,=t)=?, 0<s<t. (3.6)

It is useful to think of constructing {(A},, W;)} from {(A,, W,)} by first
shifting all the points A, to the left by a common amount, so that Ay <0 <A4j.
(We use the assumption that the point process is simple here.) Then the
conditional distribution of {( A}, W)} given Aj and A] is expressed in terms of
the conditional distribution of the shifted sequence {(A, —a, W,)} given the
lengths of the first interval, as in (3.4). The length A;—A4; of the interval
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covering the origin is then given the equilibrium spread distribution associated
with A4, as in (3.5), which has the familiar length-bias density #(¢) /EA4, = Atf(t)
if P(A4,<t) has a density f(¢); e.g., see p. 66 of Wolff [72]. The conditional
distribution of —A4j, given A} —Aj is then uniform in the available interval.

To express this relationship more concisely, let (4, W) represent the se-
quence {(A,, W,)} in (R?)” and similarly for (4’, W'). Moreover, let (4, W)+t
represent {(A4, —¢, W,)}, corresponding to moving the time origin to ¢. Then
(3.4)-(3.6) leads to the inversion formula

© .t
Ef(A',W’) =[0 [OE[f(A', W) Ay—Ay=t, A= —s]
XP(A]—As€dt, —Azeds)

=/:°/:E[f((,4,W)+s)|A1=t]P(A’1 ~Ayedt, —Ayeds)
=/0°°['E[f((A, W) +s)| A, =t]A dsP(4, €dr)

A
=AE[Tf((4, W) +s) ds (3.7)
0
for all nonnegative measurable real-valued functions f on (R2).
Upon reflection, it should be intuitively clear that (4’, W') ={( 4}, W)} so

constructed is a stationary stochastic process in the sense that its distribution is
independent of shifts by time ¢, and this is easily verified.

LEMMA 3.1
If f is bounded, then for each ¢ > 0,

Ef((A’,W')+1t)=Ef(4’, W').
Proof
By the assumed stationarity of {(A4, —A,_,, W,)}, the interval of integration -
[0, 4,]in (3.7) can be replaced by [A4,, 4, .,] for any k. Hence, by (3.7),

Ef((4',W') +1)= %E/;Akf((A, W)+s+t)ds

A A+t
= —I;E/; F((4, W) +5) ds,
so that, if f is bounded by M, then
A
| Ef((4', W') +t)—Ef(A’,W')| < ZZtM' (3.8)

Letting k — o in (3.8) completes the proof. O
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Remark

(3.1) The standard time-stationary marked point process is (4’, W’) above,
while the associated synchronous or Palm version is (4, W). In the literature it
is customary to characterize these processes, not in terms of the random
variables of random sequences, but in terms of the underlying probability
measures on a common measurable space, say (2, ). The probability measure
on (2, &) supporting (4’, W') is denoted by P, while the probability measure
supporting (A4, W) is denoted by P° and called the Palm probability measure.
For our problem, we may take £ = (R?)* and let % be its associated Borel
o-field (using the product topology). If we use the identity map from (R?)* to
(R?)” to map into (4, W), then the Palm probability measure P° coincides with
the probability law of (4, W). Then probability measure P can be defined on
the same underlying measurable space in terms of P® according to (3.4)-(3.6).
The image of the identity map on (R?)® with P then has the same probability
law as (4’, W'). With this construction, (4, W) and (4’, W') can be regarded as
a single function on an underlying measurable space with respect to two
different probability measures, P° and P. Expectations of functionals can then
be computed with respect to either probability measure, and it is customary to
use the notation E® and E, respectively. This discussion shows that what we
have done is no less general. O

The associated time-stationary queue-length process {Q'(¢): —® <t <o} is
defined in terms of {( A}, W/)} by
k=
Ql(t)=k2 1(A2<1<AL+WIC']’ —00 <t <™, (3.9)
Since {( A4}, W))} is time-stationary, {Q'(¢): —o <t <} is a stationary process
and it suffices to evaluate EQ’'(0).

The key to-relating EQ’(0) to AEW, is Campbell’s theorem, which we now
state in a simple form suitable for our application; see p. 229 of Walrand [69], p.
11 of Baccelli and Brémaud [1] and p. 20 of Franken et al. [21]. Campbell’s
theorem is a special case of Mecke’s theorem or the generalized Campbell
theorem, which gives an expression for the law of (4, W) in terms of the law of
A, w').

THEOREM 3.1
For any nonnegative measurable function g on R?,
E[ Y g(AL, W,;)] =i [ g(a, w)P(W, € dw) da. (3.10)
k= —c —oY —w
Proof (sketch)

First consider functions g that are products of indicator functions, i.e.,
g(a, w) =15(a)15(w). Afterwards extend to general g by the monotone conver-
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gence theorem. For g of this indicator form, the left hand side of (3.10)
corresponds to the expected number of pairs (A}, Wy) such that A} € B, and
W, € B,, which can easily be shown to be A times the Lebesgue measure of B,
times P(W, € B,); see pp. 23, 107 of [21]. This in turn coincides with the right
hand side of (3.10). O

We now apply theorem 3.1 to establish the steady-state version of L =AW.

THEOREM 3.2

If {(A, —A,_;, W): —o <k <} is a stationary sequence with 4, =0 and
EA; =171 0<A71<x, then {Q'(¢): —» <t <} defined by (3.4)—((3.6) and
(3.9)) is a stationary process with EQ'(0) = AEW,,.

Proof
In (3.10) let g(a, w) be the indicator function of {e < 0 <a + w}. By (3.9) and

(3.10),

EQ'(0) =/\fm fm g(a, w)P(W,€dw) da

—00% =0

=A[" [ P(W,edw) da
=\ [ P(W,>a) da=AEW,. O
0

Remark

(3.2) We can also obtain theorem 3.2 via theorem 2.2 and ergodic theorems, if
we assume ergodicity. First, the stationary marked point process is ergodic if and
only if the synchronous marked point process is: p. 28 of [1] and p. 35 of [21].
Moreover, the limits are then the same; e.g.,

k
k74, »Ar7! and k7')Y W,-W wplask—w

i=1

if and only if
k74, ->1"! and k7? i W'->W w.p.lask— o,
j=1
and
t‘lj;tQ(s) ds—> L as t » o if and only if t‘lfotQ’(s) ds > L as t - o;

i.e., we have the cross-ergodic theorems, p. 29 of [1] and p. 36 of [21]. Hence, in
the presence of stationarity and ergodicity, theorem 3.2 is equivalent to theorem



W. Whitt / A review of L =AW 247

2.2. Of course, the real advantage of theorem 2.2 is that we can obtain L =AW
for averages without discussing stationarity. On the other hand, if we want to
discuss steady-state quantities, then we need to know that they are well defined,
so that the stationary framework is an appropriate general framework (which
does not require ergodicity).

4. Applications of L =AW

There are two rather distinct ways to apply L =AW in the deterministic
framework: first, to calculate one of the three limiting averages L, A or W given
that all the limits exist and two of them are known and, second, to prove the
existence of one limit given that the existence of the other two limits has been
established. L = AW seems to be much more useful (as well as more interesting)
as an aid in calculation than it is an aid in proving existence. Typically, if we can
establish w.p.1 convergence for either the time average to L or the customer
average to W, then by a minor modification of the same argument we can
directly establish the w.p.1 convergence of the other average. However, even for
proving existence, theorem 2.2 can simplify matters a little.

Example 4.1. The M /G /1 queue with a non-FIFO service discipline

Consider a standard M/G/1 queue with a non-FIFO (first in, first out)
service discipline (rule for selecting which waiting customer starts service next),
such as LIFO (last in, first out) or ROS (random order of service), for which the
distribution of the queue length process is the same as it is for FIFO. The
steady-state queue length distribution and its mean are thus well known from
the FIFO theory, but the steady-state waiting time distribution and its mean are
in general hard to calculate directly. Thus, we can apply L =AW to calculate the
long-run average waiting time W. ‘

In particular, we can apply the corollary to theorem 2.2. However, to verify
existence of the limit, we must show that k='W, — 0 w.p.1. For this step, let B,
be the length of the kth busy period and let N, be the index of the busy period
in which the kth customer is served. Note that B, and N, are the same as for
the FIFO discipline. Since the successive busy periods are i.i.d. with finite mean,

obviously k~1B, — 0 as k — » w.p.1. Hence,
—_ <
k SN,

P —0 as k—>owp.l. (4.1)

=~

Example 4.2. Sojourn times in a Jackson network

Consider an open Markovian Jackson queueing network with a product-form
steady-state distribution for the number of customers at each queue. In general,
the expected equilibrium sojourn time for a customer in the network is difficult
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to calculate directly, so that L =AW is very handy. As with example 4.1, we can
use (4.1) and regenerative structure to establish the extra condition in the
corollary to theorem 2.2. Here B, is the kth busy period for the whole network,
which is the interval during which there is at least one customer in the network.

Example 4.3. Conservation of load in a loss model

A nice application of L =AW is to characterize the blocking probability in a
model with finite waiting space. Assume that customers arrive at a service
facility at rate a and that a fraction 8 of them are blocked (do not enter the
system). Assume that each customer who is not blocked first waits in a waiting
space (perhaps for zero time) and then enters a service mechanism to receive
service, which continues uninterrupted until service is complete. Assume that
there is a bound on the number of customers that can be waiting. (Any arrivals
when the waiting space is full are necessarily blocked). Let the average time
spent in service per customer be 7 and let v be the long-run time-average
number of customers in service. (For example, if we are considering a conven-
tional G/G/s/r model with s identical servers in parallel, r extra waiting
spaces and the first-come first-served discipline, then 7 is the long-run average
service time per customer and v is the long-run time-average number of busy
servers.)

From L =AW, we easily obtain

14
B=1 b ‘ (4.2)
Just let the system be the service mechanism, so that L =v, A =a(1 —B) and
W = 7. (Note that we have assumed all limits exist.) Since the waiting space is
bounded, the rate of arrivals to the service mechanism is the same as the flow
rate into the system, i.e., a(1 — 8). Hence, any three components of the vector
(a, B, 1, v) determine the fourth.
It is interesting that (4.2) was established directly by Rice [56] using a
sample-path argument much like the proof of theorem 2.1. For other applica-
tions of L = AW, see Heyman and Sobel [31] and Wolff [72].

5. Historical commentary

The relation L =AW is one of many fundamental conservation laws, like the
conservation of mass, which help us understand the physical world; e.g., see
Krakowski [39]. The relation L =AW may seem so obvious that a proof hardly
seems worthwhile. Indeed, L =AW was evidently applied frequently without
proof. (An early example cited by Maxwell [43] is Cobham [13].) However, we
should recall how the early Greeks developed new levels of understanding (and
the mathematical method) by proving “obvious™ things, e.g., that a circle is
bisected by any diameter; see chapter 1 of Eves and Newsom [18].
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The first fundamental insight, evidently due to Morse [52], pp. 22, 75, was the
recognition that it would be desirable to have a general proof of L =AW. A
fairly general proof was then proposed by Morse’s student Little [42], in what
has become one of the most frequently referenced papers in applied probability
and operations research.

Given this celebrity, it is interesting that Little’s [42] version of L =AW
actually has a serious flaw, which was first noted by Brumelle [8], p. 511; see also
p. 140 of [21]. In particular, Little’s [42] assumptions are much more restrictive
than they first appear, because they require that all the processes be defined on
the same sample space and be simultaneously stationary. In general, stationary
versions of the discrete-time process {(A4, —A4,_,, W,): k > 1} and the continu-
ous-time process {Q(z): t > 0} need to be related by the Palm transformation as
in (3.4)—(3.7) and (3.9). (Little [42] worked with (3.9), but omitting the primes on
A, and W,.) However, Brumelle [8] showed how this difficulty can be circum-
vented by not assuming that the continuous-time process {Q(¢): ¢ > 0} is station-
ary.

Franken [20] then established the stationary-process version for the standard
G /G /s model by exploiting the Palm transformation and applying Campbell’s
theorem; see (4.2.2) on p. 137 of [21]. Closely related results were obtained by
Miyazawa [47,48]. As noted in section 3, if we apply the G /G /» representation
of our model in section 2, then Franken’s [20,21] results for G/G /s apply to it,
thus yielding theorem 3.2. With this interpretation, we evidently have a proper
treatment of what Little [42] intended.

The stationary-process framework for L = AW proposed by Little [42] was not
entirely satisfactory, however, not only because it was not quite correct, but also
because it requires steady-state conditions and is technically complicated. This
motivated Jewell [33] to establish a version of L =AW based on regenerative
structure. The key idea here is that [;Q(s) ds = Z{#W, whenever Q(¢) =0, as
noted in remark 2.1. The result then follows from (2.3). Jewell’s [33] version is
appealing because it does not require steady-state conditions, it applies to most
queueing models of interest, and it is easier to understand. It also was the first
correct proof. Examples 4.1 and 4.2 above illustrate that repeated empty epochs
often help establish the conditions for existence.

However, to many researchers, it appeared that stochastic conditions are not
really essential. Indeed, one immediately gets this impression from reading
Little [42], but toward the end (see p. 386) his proof actually relies on the special
stochastic assumptions. Quick sample-path arguments were proposed by Eilon
[16] and Maxwell [43], but these did not address the key issues. A sample-path
analog of Jewell's [33] regenerative proof was given by Newell [53]. A truly
satisfactory sample-path proof of L =AW was finally obtained by Stidham [64].
More complicated sample-path proofs also follow from Brumelle [8] and Stid-
ham [62].

Closely related to the sample-path approach to L =AW is the operational



250 W. Whitt / A review of L = AW

analysis of Buzen [10] and Denning and Buzen [15], which has played an
important role in computer system performance analysis; e€.g., see chapter 3 of
Lazowska, Zahorjan, Graham and Sevcik [41]. Operational analysis provides an
elementary finite-time analog of L = AW as well as other results. The finite-time
version of L =AW is primarily a rediscovery of the fact that, for each sample
path, [§O(s) ds =YW, whenever O(¢) =0, which was exploited earlier by
Jewell [33] and others. Given a ¢ for which Q(¢z) =0, we obtain the finite-time
version of L =AW by simply defining L, A and W to be t~Y;Q(s) ds, t~'A(z)
and A(1)7'ZOW,. If O(¢) # 0, then we define W to be L/A with L and A
defined as above. This finite-time result is remarkably easy to understand (there
need be no limits or stochastic processes), as is illustrated by chapter 3 of
Lazowska et al. [41]. (The brief remark on p. 43 there is perhaps sufficient
warning about the approach.) Thus operational analysis has helped make
L =AW well known and more frequently applied. However, the finite-time
“measurement” version leaves open the question of how the finite-time aver-
ages are related to the limits (e.g., prediction).

6. The relation H =AG

The well known relation L =AW which we have been discussing is actually a
special case of a much more fundamental and far reaching relation, H = AG.
We develop H =AG in the deterministic and stationary frameworks in section
6(1) and 6(2), respectively. We use the same notation to emphasize the fact that
a statement in one framework can immediately be translated into a statement in
the other framework.

In section 6(3) we present a more general version of H =AG due to Glynn
and Whitt [27] to cover lump costs as well as cost rates. We then use this version
of H=AG to derive related conservation laws. In section 6(4) we discuss a few
applications of H =AG.

(1) THE DETERMINISTIC FRAMEWORK

Motivated by design problems for queues with nonlinear waiting costs, Stid-
ham [60,61] evidently first noted that the relation L =AW can be extended to
relate a general time average H to an associated customer average G. The most
significant developments toward a general theory were provided by Brumelle
[8,9], based on his thesis with Wolff, and Heyman and Stidham [32], with other
contributions by Stidham [60,61,63,66] and Maxwell [43].

To state an H = AG analog of theorem 2.2, we augment the model of section
2 by a sequence of nonnegative integrable real-valued functions {f,(2): ¢ > 0}:
k > 1}, with f,(z) being interpreted as a cost rate associated with customer k at
time ¢. As illustrated by the applications of H = AG, the functions f,(z) allow us
to incorporate additional model details, such as the service times. The following
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is a slight extension of the version of H =AG in Heyman and Stidham [32]. It
follows from Glynn and Whitt [27] (and theorem 6.3 below). For related results
(e.g., when f,(¢) is not assumed to be nonnegative or 0 outside a finite interval),
see chapter 3 of Stidham [66].

THEOREM 6.1
Suppose that

k74, ->A27! and k7D, —>A"! as ko, (6.1)
where 0 <A~! < and, for each k> 1,

Ft)=0 if t&[A,, D,]. (6.2)
Then

k  «
G,=k'Y [ f(1)dt>G ask—o (6.3)
j=1"0

if and only if
H,Et‘lfthj(s) ds—>H ast— . (6.4)
0 =1
If (6.3) and (6.4) hold, then H =AG.

A variant of theorem 2.2 is obtained from theorem 6.1 by simply letting f,(¢)
be the indicator function of the interval [A4,, D,], as in (2.2). An obvious
application of theorem 6.1 is to treat the case in which a customer may enter
and leave the system more than once before finally departing for good, as in a
subset of the queues in a queueing network. To apply theorem 6.1, we let f,(2)
be the indicator function of the set of times that the kth customer is in the
system.

(2) THE STATIONARY FRAMEWORK

Paralleling section 3, it is easy to obtain a steady-state version of H =AG in
section 6(1). The idea is to generalize the marks in section 3, replacing the
real-valued random variable W, by a stochastic process {X,(¢): ¢ > 0} having
sample paths coinciding with f,(z +4,) for f,(¢) in section 6(1). As a regularity
condition, we assume that, in addition to being nonnegative, the sample paths of
{X,(t): t >0} are right-continuous with limits from the left, so that we can
regard the space of sample paths as a complete separable metric space, i.e., the
function space D[0, ») with the Skorohod topology; see Ethier and Kurtz [17].
We assume that {(A4, —A4,_,, {X,(¢t): t>0}: k>1} is a stationary sequence
with 4,=0. We then extend it to a stationary sequence on —o <k <.
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Paralleling (6.3), we are interested in the “cumulative cost” associated with
an arbitrary customer, i.e.,

Z= “X(t—A4,) dt (6.5)

and its expected value EZ,=G.

We construct the associated stationary marked point process {( A}, {X,/(?):
t>0}); —o<k<o} just as in (3.4)—(3.6). The time-stationary quantity of
interest to us is the total “instantaneous cost rate” of all customers at an
arbitrary time ¢, i.e.,

k=+o :
Y'(t)= X Xi(t—A4), t>0, (6.6)
k=-—
with X}/(¢) =0 for ¢ <0, and its expected value EY'(0) =H.

Like theorem 3.2, the following result is an immediate consequence of
Campbell’s theorem (theorem 3.1 with general marks). Thus, it is primarily a
consequence of Franken [20]; see chapter 4.2 of Franken et al. [21]. The explicit
statement was made by Stidham [65,66).

THEOREM 6.2

If (A, —A4,_;, {X(2): t>0): —0 <k <o} is a stationary sequence with
Ay=0 and E4,=1"", 0<A~ ! <o, then {Y'(¢): t> 0} defined by (6.6) is a
stationary process with H=FEY'(0) =AEZ,=AG.

Proof (sketch)
As for theorem 3.2, we apply theorem 3.1, but extended to allow a general
mark space. From (6.5), we see that

H=EY'(0)=E f‘, g( Ay, {X((t): 1> 0))

k=—-®

for g(a, {x(t): t > 0}) =x(—a). Hence, by the extended (3.10),

H=)\f_w/;)[0’m )x(-—a)P(XOE dx) da

=)«Ef_ X,(—a) da=AEZ,=AG,

where X, ={X(#): t >0} and x ={x(z): # > 0} is a typical element of D[0, ).
d

Remark

(6.1) From the above, it should be clear that there is essentially an equiva-
lence between steady-state applications of H =AG and sample-path average
applications. Hence, once we have a result within one framework, we can easily
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obtain the corresponding result in the other framework, provided that we check
a few additional regularity conditions. The arrival epochs come from {A4,} in
both cases and the sample paths of {X,(¢): ¢ > 0} coincide with {f, (¢ +A,):
t>0}; e.g., given X,(¢) we let f,(¢) =X, (t —A4,), t >0. Of course, the condi-
tions In theorems 6.1 and 6.2 are not identical, so there are additional conditions
to check in such a conversion, but these can be expected to hold, i.e., they are
typically only technical regularity conditions. For example, as noted at the end
of section 3, if we assume ergodicity in the stationary-process framework, then
we can apply theorem 6.1 and the cross-ergodic theorems to obtain the corre-
sponding steady-state statement in theorem 6.2. O

(3) AN EXTENSION OF H =AG AND OTHER CONSERVATION LAWS

We now present an extension of H =AG in section 6(1) due to Glynn and
Whitt [27] to represent lump costs as well as cost rates. Instead of the functions
fi(#) in section 6(1), consider nondecreasing nonnegative functions F,(z), with
F,(t) being interpreted as the cumulative cost associated with customer k at
time ¢. Section 6(1) is the special case in which

Fi(t) = f_tmfk(s) ds. (6.7)

Let 4, and D, be as in section 2.

THEOREM 6.3
Suppose that (6.1) holds and
F (t)=0for t <A, and F,(t)=F/(D,)fort>D,. (6.8)
Then
k
G,=k ') F(w)>G ask—-w (6.9)
j=1
if and only if
H,=t"') F(t)>H ast— . (6.10)
j=1

If (6.9) and (6.10) hold, then H =AG.

Proof -

We indicate how to apply theorem 4 of [27]. We first specify the quantities T,
and S, considered there. For any € >0, let T,,=A4,—¢€, W,=D,~A, and
S,=W,+e.By(6.1), n7'T, »r"as n >, 0 <A~ 1<, and t7'N(t) - A as
t—> 00,0 <A <o By(6.8), F(T,) =0 for all k> as in (21) of [27], so that (17)
of [27] holds. Moreover, F,(«) — F, (T, + S,) =0 for all k as in (22) of [27] so
that (18) of [27], holds if and only if S_ /T, —» 0 as n — «. However, by (6.1),
W,./n— 0 as n — o, which implies S,/7, > 0as n—>». O
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Remark

(6.2) It is almost possible to apply theorem 6.1 to prove theorem 6.3. Let
fi(t) =F/(¢), where F[(t) is the (nonnegative) derivative of the absolutely
continuous part of F,(z). Then theorem 6.1 applies to f,(z). Let J, = F,(») —
JoFi(2) dt, so that G, and H, in (6.12) and (6.13) can be expressed as

ko k
Ge=k™' L [ fu() dt+k™' LI,
j=1 Jj=1

and
A()

-t‘lf Zf(s) ds+¢71 ZJ

To apply theorem 6.1, we must treat the two components of G, and H,
separately. However, it is possible for H, —» H without having the two compo-
nents converge, and similarly for G,. To establish the equivalence of :~'L#)J,
—AJ and k™'T¥_,J; = J, we can apply theorem 6.4 below. O

We now present a “sample path version of the renewal reward theorem”
called Y=AX, which was used by Stidham and El-Taha [68] to derive many
different sample path results; see p. 134 of [68]. This result has an easy direct
proof, but we show that it also can be regarded as an elementary consequence of
H = AG in the form of theorem 6.3.

THEOREM 6.4

Suppose that Y(¢) is a nondecreasing real-valued function of a real variable,
0<A,<A4,,, for all k and k™'4, >A~! as k > o with 0 <A ™! <. Then
t7Y(¢t)>Y as t > « if and only if k71Y(A,) > X as k— o, in which case
Y=AX.

Proof
We apply theorem 6.3, letting D, =A,,, and
0, t<A,,
F () ={Y(t) = Y(A, ), A <t <Apy, (6.11)

Y(Ak+1 _) —Y(Ak _): t>Apg
Since k74, > A7 as k — =, (6.1) holds. By (6.11), (6.8) holds. Note that
k
Ge=k™' L F() =k [Y(Aps1—) =Y (4, )] (6.12)
j=1
and

H,=t"1 .iFf(t) =171y (2). (6.13)
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The rest is an easy consequence of theorem 6.3, using k~'Y(A4, —) <k~'Y(A4,)
<k 'Y(4,,). O

Remark

(6.3) The nondecreasing property in theorem 6.4 plays an essential role. To
see this, let Y(£)=X1,J. and A4,=2k. If J,;=—J,;_,=—j, j>1, then
Y(2j) =0 while Y(2j—1)=j, j>1. Hence, t~'Y(z) does not converge, while
k=1Y(A,)=0for all k. O

We next state an elementary deterministic-framework version of the station-
ary-framework rate conservation law (RCL) of Miyazawa [49~51]. This determin-
istic RCL comes from Sigman [59]. Closely related analysis of a queueing
workload process was done by Zazanis [73]. A minor modification can be
considered a consequence of theorem 6.4 (and thus H =AG in theorem 6.3).

THEOREM 6.5
Suppose that x(¢) is a real-valued function of a real variable such that

A
x(1) =x(0) + [x'(s) ds+ ¥ T, >0, (6.14)
0 k=1

where 0<A4, <A, ., for all k£ with A(z) =max{k > 0: A4, <t}. Also suppose
that ¢~ 'x(¢) > 0 and #724(z) > A as ¢t — » with 0 <A <. Then

t
t‘lfx’(s) ds—»a ast—w (6.15)
0
if and only if

k
k1Y J,—>B as k-, (6.16)

j=1

in which case a = —AB.

Proof
Since A, <A, ., for all k and t7'4(¢t) - A as t —» x, it is easy to see that
(6.16) holds if and only if
A
VY I, oAB astow. (6.17)
k=1
From (6.14) and the various conditions, (6.15) is easily seen to be equivalent to
(6.17) with = —AB8. O

Remarks
(6.4) The equivalence between (6.16) and (6.17) follows from theorem 6.4
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when J, > 0 for all k. A modified version of theorem 6.5 with (6.16) replaced by

k k
k™'Y JF—»pB* and k') JT —»BT ast-oo,
j=1 j=1

where x*=max{x, 0}, x~= —min{x, 0} and g=pB"~p", thus follows from
theorem 6.4. Such convergence usually would hold in practice.

(6.5) A sufficient condition for (6.14) is for x to be of bounded variation on [0,
t] for each ¢ with the continuous component being absolutely continuous. Then
x=y —z, where y and z are nondecreasing and bounded on [0, ¢t] for each t.
Thus x can be written uniquely as a convex combination of discrete, singular
and absolutely continuous components; see pp. 9-10 of Chung [12]. The discrete
component is x(0)+ L/9J, and the absolutely continuous component is
fex'(s) ds.

(6.6) Sigman [59] showed that the version of H =AG in theorem 6.1 can be
obtained as a corollary to the RCL in theorem 6.5. It suffices to let

2= L L ) $:(5) s, (6.18)
where 1 (t) is the indicator function of A. Then
g @ AW o
x(t) =x(0) +f0[ Y fn(s)} ds+ ) f fi(s)ds. O
n=1 j=1"—

In the stationary framework of Miyazawa [49,50], x(¢) in (6.14) corresponds to
the sample path of a stochastic process, a in (6.15) corresponds to the expected
time-stationary value of the derivative, while 8 corresponds to the expected
customer-stationary value of a jump. Using the terminology of remark 3.1 (which
is used by Miyazawa [49,50]), we would write the conclusion of the RCL in the
stationary framework as

EX'(0)= —AE[X(0+)-X(0-)]. (6.19)

Since the RCL in theorem 6.5 can be considered a consequence of theorem
6.4 and theorem 6.4 can be considered a consequence of theorem 6.3, we can
regard H =AG as the fundamental principle. On the other hand, arguments
such as theorem 6.4 are used to prove theorem 4 of [27], which is used to prove
theorem 6.3. In any case, it appears that several different principles can be
regarded as fundamental.

Recently several different principles have been shown to be equivalent in the
stationary framework. Miyazawa [49] applied the inversion formula (3.7) to
establish the RCL in the stationary framework, but Brémaud [4] showed that the
inversion formula can also be deduced from the RCL. Moreover, Miyazawa [51]
showed that Mecke’s formula, which implies Campbell’s formula (3.10) and the
inversion formula, also can be deduced from the RCL. Hence, all these various
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principles can be regarded as equivalent. In applications we can use any one
that is convenient.

Work related to the RCL includes the level crossing analysis of Brill and
Posner [6,7] and Cohen [14], the intensity conservation principle of Konig and
Schmidt [36,37] and recent work by Stidham and El-Taha [68], Brémaud {4],
Ferrandiz and Lazar [19], Mazumdar, Kannurpatti and Rosenberg [44], Sigman
[59] and Zazanis [73].

(4) APPLICATIONS OF H=AG

Perhaps the best known application of H =AG is Brumelle’s [8] formula
relating the expected time-stationary workload, say V, in the general G/G/s
queue to the expected customer-stationary service time, say S, and waiting time
before beginning service, say W, i.e.,

EV=MA[E(SW)+E(S?)/2]. (6.20)
The sample-path version of (6.20) is obtained from theorem 6.1 by setting
Si» A, <t <A, +W,, ‘
fit) =S, —(t—-W,—A,), A, +W,<t<A,+W,+S5,, (6.21)
0, otherwise,

where A, is the arrival epoch, S, is the service time and W, is the waiting time
(before beginning service) of customer k. The steady-state version in (6.20) is
obtained from theorem 6.2 by setting X, (¢) =f,(z +A4,) for f,(z) in (6.21); see
(4.2.4) on p. 107 of Franken et al. [21].

From (6.21), it is apparent that the model can be quite general. Customer k is
in the queue waiting from A4, until 4, + W, and then is in service from
A, +W, until 4, + W, +S,. The remaining workload associated with this
customer is S, in the interval [A4,, A, + W, ] and then decreases at rate 1 while
he is in service. To apply theorem 6.1, we need k=4, - A~! and k"YW, +S,)
—=0as k = o,

Often a customer’s service time is independent of his waiting time, in which
case E(SW)=E(S)E(W) in (6.20). If, in addition, the model is a single server
queue with the FIFO discipline, then V is the virtual waiting time, i.e., W is the
customer quantity associated with V. Moreover, if ASTA holds [46,70], then V is
distributed the same as W, so that (6.20) yields the Pollaczek—Khintchine
formula; see pp. 408~412 of Heyman and Sobel [31].

The relation of H =AG can also be applied to derive the equilibrium excess,
age and spread distributions, although they are also easy to obtain directly.
These are well known within the stationary-process framework; see p. 27 of [21].
The sample-path equivalent via H =AG has been given by Wolff {71,72].

We also mention Brumelle’s [9] application of H =AG to relate the higher
moments of the time-stationary number in queue in a G/G/s model to the
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higher moments of the customer-stationary waiting time; see also Miyazawa [48].
McKenna [45] has recently obtained interesting generalizations of these moment
relations for closed, product-form queueing networks. These network results
have yet to be “explained” by being treated in either a general stationary-pro-
cess framework or a sample-path framework.

An interesting class of applications of H =AG are those that lead to relations
between the steady-state distribution of a continuous-time stochastic process
and the steady-state distribution of an embedded sequence obtained by evaluat-
ing this stochastic process at times of an associated point process. The first such
application of H = AG appears in section 2 of Heyman and Stidham [32]. It is
extended in chapter 5.3 of Stidham [66] and will be further extended here using
similar reasoning. Stidham and El-Taha [68] obtain related results via an
application of theorem 6.4.

To state our application of H = AG, we introduce a function Z ={Z(¢): t > 0}
(sample path of a stochastic process) mapping the interval [0, ) into a separable
metric space § with limits from the left and right. We suppose that our
sequence {A,: k > 0} is a subsequence of another arrival sequence {B,: k > 0}
and let D, =A, ,,, k > 0. In particular, we let 4, =B, if Z(B;,—) € C, for the
kth time when j =m. We then let f,(z) =1if Z(t) € C, and 4, <t <D, and 0
otherwise. (Of course, C, and C, must be measurable subsets of S.)

We assume that k~'B, —>A;! as k — « and that the proportion of j such
that Z(B; —) € C; converges to w(C,). Hence, k™4, = (Apm(C))) ' as k -
and t7'A(¢) = Azm(C,) as t - ». Then, assuming that the limits exist, H = H(C,)
is the long-run proportion of time that Z(¢) € C,, which we denote by p(C,),
and G =G(C,, C,) is the long-run average time spent in C, per A, — arrival
(between successive B, arrivals for which Z(B, —) € C,). Hence, by H =G,
we have

THEOREM 6.6
The customer average m(C,) is related to the time average p(C,) by
p(C,) =H(C,) =Apm(C,)G(C,, Cy). (6.22)

For example, let {Z(z): t > 0} be in a system in which arrivals and departures
occur one at a time. Let {B, : k > 0} be the sequence of arrival times. Then, if we
let C,={m} and C, ={m — 1}, we obtain the relation

r(k)p(k) =Aw(k~1), k>1, (6.23)

where A is the arrival rate and r(k) is the departure rate while in state k (the
limit as ¢ — o of the ratio of the number of departures while in state k& during
[0, ¢] and the time spent in k during [0, t]), as given in theorem 5.4 of Stidham
[66]. To justify (6.23), note that there is precisely one departure in state k
between A4; and A;,, for each j. Hence, G(k — 1, k) =1/r(k) as in (5.6) of
[66]. Of course, in general it is hard to evaluate r(k), but for the special case of
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the GI/M/c /k queue, r(k)=min{k, c}u and we have the special case consid-
ered by Heyman and Stidham [32].

Now, for a new application of H =AG to determine when arrivals see time
averages (ASTA), consider (6.22) and let C,=C,=C and G(C)=G(C, C).
Then (6.23) becomes

p(C)=Azm(C)G(C), (6.24)
so that
p(-)=a(-) if and only if G(C)=Az" for all C such that p(C) > 0.
(6.25)

Note that G(C) in (6.24) is the long-run average time spent in C between
successive arrivals finding the system in C. Hence A(C) = 1/G(C) is the long-run
rate of arrivals in C; i.e.,

B(1)
__Z:II{Z(B;—)EC} A(t)
A(C) = lim — = lim — , (6.26)
t—>co t=>00
fo lziec ds fo Lzsyecy ds

where B(t) counts the number of k such that B, <t. From above, (6.25) is
equivalent to

THEOREM 6.7
The customer-average distribution 7(-) coincides with the time-average dis-
tribution P(-) if and only A(C) =Aj for all C such that p(C) > 0.

We regard (6.25) and theorem 6.7 as sample-path versions of ASTA generaliz-
ing the discrete-state sample-path versions of ASTA given in theorem 3.5 and
corollary 3.6 of Stidham and El-Taha [68]. Moreover, the proof is similar.

Unfortunately, the stochastic implications of theorems 6.6 and 6.7 are not so
clear. It is intuitively obvious that if { A(¢): ¢ > 0} is a Poisson process satisfying a
lack of anticipation assumption (LAA) as in Wolff [70], then A(C) =A(S5)=A,
for all C such that p(C) >0, so that p(-)=m(-), but a rigorous proof that
A(C) =A(S) for all measurable C in S.requires further argument. For example,
theorem 2 of Melamed and Whitt [46] implies that p(-) =a(-), so that indeed
AMC) = Ay for all C such that p(C) > 0 by theorem 6.7. However, theorems 6.6
and 6.7 do show how the same conclusions can hold without the customary
assumptions on the local behavior of the stochastic processes.

7. Estimation of CLTs

Maxwell [43] seems to have been the first to point out the significance of
L =AW for estimation, e.g., by simulation. Operational analysis [10,15] also uses
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L =AW for estimation. Assuming that we know A, we can apply L =AW to
estimate both L and W if we can estimate either one (and similarly for
H=AG).

It is natural then to ask whether it is more efficient to estimate L and W
directly or indirectly via the other. Such an investigation was first carried out by
Law [40] for the M/G/1 queue, based on his thesis with Wolff, and then
extended to the GI/G /s queue by Carson and Law [11] and to general models
in the framework of chapter 2 by Glynn and Whitt [22-24,26,27].

An important insight of Glynn and Whitt was that the relations L =AW and
H=AG can be generalized to provide central-limit-theorem (CLT) versions,
which provide a basis for comparing the asymptotic efficiency (the size of
confidence intervals with large samples) of the estimators. The probability
structure underlying L =AW becomes crucial when we want to compare finite
averages to their limits. The CLTs can be interpreted as providing rates of
convergence associated with the limiting averages.

To illustrate the CLT versions, we state one result in the setting of section 2.
For this purpose, let = denote convergence in distribution. The following is a
consequence of theorem 1 of Glynn and Whitt [24]. Let 4, =0 and let [x] be
the integer part of x.

THEOREM 7.1
If {(A4,—A4,_;, Wi): k> 1} is a stationary sequence of nonnegative random

vectors satisfying
x
k'l/z(Ak—/\“lk, Z”C—“Wk) =(X,Y) ask-w, (7.1)
j=1

where A~! and W are constants satisfying 0 <A~ <o and W< «, and (X, Y) is
an arbitrary random vector, then E(A4, —A4,_,) =A"!, EW, =W and

[Az] A) ‘

i DT }_jl W, — AW, 21 W, — AWE, jOQ(s) ds — AWt
7= 7=
= AN/(X,Y,Y-WX,Y-WX) ast—o. (7.2)

Moreover, if (X, Y') has a bivariate normal distribution with zero means and
covariances (o;7), then A'/*(Y — WX) is normally distributed with zero mean and
variance MA*W 20} — 2AWeh + o5).

Note that the standard version of L =AW is reflected by the centering
constants in (7.1) and (7.2). The joint convergence in (7.2) implies that
™ V(LW — AWe) and ¢~V/?([§O(s) ds — AWt) not only have the same distri-
bution asymptotically as ¢ — o, but assume the same values in the limit; i.e.,

A(e)

t71 Y W=171['0(s) ds +0p(¢7172), (73)
j=1 0
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which means that modulo a term that converges in probability to zero after
dividing by ¢7'/?, the averages ¢~ LW, and .t~'/jQ(s) ds have the same
value; equivalently,
AW
ALY Wt 1/'Q(s)ds =0 ast— o, (7.4)
j=1

The key to obtaining relations among the classical limit theorems (including
laws of iterated logarithm [22,25] and weak laws of large numbers as well as
CLTs and strong laws of large numbers) is the recognition that the fundamental
relation behind L =AW is the relation among cumulative processes in (2.1) and
(2.6).

Theorem 7.1 has the drawback of requiring stationarity, but the stationarity
can be omitted if we use functional central limit theorems (FCLTs) instead of
ordinary CLTs; see [22,23]. Indeed, the FCLT versions of L =AW and H =G
are much easier to prove than theorem 7.1 (using sample path arguments as in
theorem 2.1 and the continuous mapping theorem); see [22] and [27]. Unlike all
the previous theorems in this paper, we know of no easy proof of theorem 7.1.

To apply the CLT version of L =AW in theorem 7.1, we need to establish the
joint CLT in (7.1). We now give a sufficient condition in terms of regenerative
structure from [23]. We suppose that there is a sequence of i.i.d. nonnegative
integer-valued random variables {C,: k > 1} with EC, =m,0<m < o, such that
the random vectors (Cy, Xg _ 41,.-., Xp,) are iid., where g, = .. +C,,
By=0,and X, = (A —Ai_q, W) The varlables By constitute the regeneratlon
points. Let Uk ~Ai_1

Sk:UBk_1+1+ oo tlUp, and T, =W, ,,+...+W,. (7.5)
As a consequence of the i.i.d. assumptions above, (C,, S,, T}) are i.i.d. Let
A'=m™ES, and W=m"'ET,, (7.6)
and assume that 0 <A <o,
THEOREM 7.2
If, in addition to the regenerative structure assumptions above, EC?, ES? and

ET? are finite, then (7.1) holds with the limit (X, Y) there having a bivariate
normal distribution with zero means and

of=Var X=m™' Var (§, —17'C,),
oi=Var Y=m"! Var (T wC,),
ohb=Cov (X,Y)=m""! Cov (S, —A7'C,, T, - WC,). (7.7)

As a consequence of the CLT-versions of L = AW, Glynn and Whitt [26] show
that an indirect estimator for L, using the natural estimator for W and the
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known arrival rate A is more asymptotically efficient than a natural estimator for
L using the same data, provided that the interarrival and waiting times are
negatively correlated. (Note that this is the typical situation: when the interar-
rival times become shorter, the waiting times typical become larger.) For
example, suppose that we use data available from the interval [0, t]. Then
AW, =AD(t)~ 1LPOW, is more asymptotically efficient than L,=t"0(s) ds
under this condition. (Note that we do not work with A 4(r)~ lZf(‘fW because
the time spent in the system by customers still present at time ¢ is typically not
known.) An estimator that is even more asymptotically efficient (m some sense,
the most asymptotically efficient) is the linear control estimator AW, +4 (/\ o

A™Y), where /\ =¢t~!D(¢) and @, is a consistent estimator for a constant times
the ratio of covariance matrix elements. These gains in asymptotic efficiency can
be realized because we know the arrival rate A. In [26] it is also shown that
L = AW does not change the asymptotic efficiency when the arrival rate A needs
to be estimated as well.

Remark

(7.1) Glynn, Melamed and Whitt (forthcoming paper) have recently obtained
a joint central limit theorem for customer and time averages related to PASTA
that is similar in spirit to the CLT versions of L = AW.

8. Other extensions

(1) L =AW FOR PARTIALLY OBSERVABLE PROCESSES

Our discussion of estimation in section 7 focused on asymptotic efficiency,
where asymptotic efficiency referred to the width of confidence intervals with
large samples. However, in estimation it is important to consider the effort
required to obtain an estimator as well as its statistical precision; e.g., see Glynn
and Whitt [28]. Thus, even when the confidence intervals should be smaller with
one estimator, it may be desirable to use another estimator.

For example, in many manufacturing settings it is much easier to count the
work in process (WIP, L) at any given time than it is to measure production
intervals (the time spent in the system by each product, W). Thus we may want
to apply L =AW to estimate W using L, even though the statistical precision
would be better using W. However, there is a fundamental difficulty with this
approach. The observation of WIP does not take into account such features as
partial yields, changing lot sizes and reconstituted lots. We may want to estimate
the average time from start to finish, conditional on the item turning out to be
good product. Thus, what we want to observe to apply L = AW is only the WIP
that will eventually be good, but this eventually good WIP is not directly
observable. Nozari and Whitt [54] investigate this problem and suggest estimat-
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ing the expected amount of good product associated with current WIP. How-
ever, such estimation seems to require considerable care.

(2) CONTINUOUS AND MORE GENERAL VERSIONS

Rolski and Stidham [58] extended L =AW and H = AG to situations in which
the input can be continuous as well as discrete, as in fluid storage models. Then
one relates the time-average system content to the average time spent in the
system per particle. Glynn and Whitt [27] further extended L =AW and H=AG
to the setting of general two-dimensional cumulative processes that need not be
expressible as integrals or sums. Theorem 6.3 is an application of this general-
ization to cover lump costs as well as cost rates. The generalization also can be
used to treat stochastic integrals; see section 1.7 of [27]. The generalization also
leads to higher dimensions; see section 1.8 of [27].

(3) AN ORDINAL VERSION OF L =AW

Halfin and Whitt [29] established a relation which can be interpreted as an
ordinal version of L = AW. The idea is to measure time solely in terms of arrival
indices, so that the waiting time becomes the number of arrivals during the time
a customer is in the system. The conclusion is that the long-run average number
of customers in a queueing system at an arrival epoch is equal to the long-run
average number of arrivals during a customer’s sojourn time in the system. (This
result is fairly obvious for a single-server queue with the FCFS discipline, but
that is not assumed.)

To be precise, consider the setting of section 2 and let X, be the number of
customers with indices greater than k that arrive while customer & is in the
system, and let N, be the number of customers with indices less than & that are
in the system at the arrival epoch of customer k. (The qualifications on the
indices are included to cope with multiple events occurring at the same time.)

The following is theorem 2 of [29].

THEOREM 8.1
The following are equivalent:
(a) k7'Ef_ X, > x as k> o
(b) k™'T¥_ N, > x and k7'X, > 0as k > =,

Theorem 8.1 is proved in [29] by applying theorem 2.1; let 4, =k (so that
A =1) and W, = X,. Then theorem 8.1 corresponds to a discrete-time version of
L =AW, which is an easy consequence of theorem 2.1 or, directly,

. k
/Q(s) ds= Y N, k>1
0

j=1
Theorem 8.1 is applied in [29] to obtain a conservation law for single-server
queues. The conservation law is applied to establish extremal properties for the
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FIFO service discipline: In a G/GI/1 system, the FIFO discipline minimizes
(maximizes) the long-run average sojourn time per customer among all work-
conserving disciplines that are non-anticipating with respect to the service times
(may depend on completed service times, but not on residual service times)
when the service-time distribution is NBUE (NWUE), i.e., new better (worse)
than used in expectation. Among the disciplines in this class are round robin,
processor sharing and shortest expected remaining processing time.

(4) A DISTRIBUTIONAL VERSION OF L =AW

From the perspective of the average version of L =AW in section 2, the
CLT-version of L =AW discussed in section 7 might reasonably be regarded as
the natural distributional generalization, but from the perspective of the steady-
state version of L =AW in section 3 a natural distributional version is the one
proposed by Haji and Newell [30], an especially interesting special case of which
was recently discovered by Keilson and Servi[34]. See also (3.19) and (3.21) of
Miyazawa [48], theorem 4.2.7 and p. 140 in Franken et al. [21] and Bertsimas
and Nakazato [2]. Keilson and Servi [34,35] also present many interesting
applications.

The distributional version of L =AW seems most useful when the arrival
process is a Poisson process, which is the case considered by Keilson and Servi
[34]. The Poisson version of the distributional version of L =AW is said to hold
if the time-stationary number in Q’(0) is related to the customer-stationary time
in system W, by

Q'(0) L II(AW,), (8.1)

where {II(z): ¢ > 0} is a Poisson process with rate 1 that is independent of W, It
is reasonable to regard (8.1) as a distributional version of L = AW, because it
connects the distributions of Q’(0) and W,. We obtain L =AW when we take
expected values in (8.1), but we should not make too much of this, because from
the general theory we know that we obtain L =AW whether or not (8.1) holds.

As indicated above, a similar relation also may hold when the arrival process
is not Poisson; then II(A -) in (8.1) is replaced by the time-stationary arrival
counting process A(-). The starting point for the more general statement is to
observe that, in the stationary process framework of section 3 in which A <0 <
Aj, Q'(0)>n holds if and only if W, _;,>A4" ,_;, when the dlsmphne is
FCFS; see p. 618 of Haji and Newell [30] and (3.19) of Mlyazawa [48]. Note that
when the discipline is FCFS a general model can always be represented as a
stationary G/G/1 model by redefining the service times. Thus, the specific
model considered by Miyazawa [48] and Franken et al. [21] can be generalized.

The following is a minor variant of the Poisson result from Keilson and Servi
[34]. (A lack of anticipation assumption has been added to ensure that ASTA
holds.)
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THEOREM 8.2

In the steady-state setting of section 3, (8.1) holds if: (i) {A(¢): t>0} is a
Poisson process with {A4(z + u) —A(2): u > 0} independent of Q(¢) for each ¢,
(i) {D(2): t > 0} has jumps of size one only w.p.1, (iii) D, < D, , for all k¥ w.p.1
and (iv) W, is independent of the arrival process after A4,.

Proof

Condition (i) yields PASTA [70,72], i.e., Q'(0) £ (0 — ) where Q(0 —) is the
customer-stationary number in system just prior to an arrival. Let Q*(0 +) be
the customer-stationary number in system after the departure D,, which by (iii)
coincides with Q(W,). By (i), Q*(0+)L0(0-); e.g., see p. 112 of [21].
However, since service is in a FIFO manner by (iii), 0*(0 + ) is just the number
of arrivals during the time W, that customer 0 spends in the system, i.e.,
Q(W,) = A(W,). Finally, by (iv), W, is independent of {A(z): ¢ > 0}. Hence, (8.1)
holds. O

A useful consequence of (8.1) is the relation

Var Q'(0) =A? Var W, + AEW,. (8.2)

Note that theorems 8.1 and 8.2 have some similarities. In the steady-state
setting of section 3, theorem 8.1 implies that

EQ(0 —) =EA(W,), (83)
whereas in the proof of theorem 8.2 it is shown that
Q(0 —) L AW,) £ I(AW,) (84)

under the stronger conditions there. From (8.3), we obtain necessary and
sufficient conditions for an expected-value version of ASTA for the process Q.

THEOREM 8.3
In the steady-state setting of section 3, EQ'(0) =EQ(0 —) if and only if
EA(W,) = \EW,.

Proof
By theorem 8.1, (8.3) holds. By theorem 3.2, EQ'(0) =AEW,. O
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