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otivated by models of tenant assignment in public housing, we study approximating deterministic fluid

models for overloaded queueing systems having multiple customer classes (classes of tenants) and mul-
tiple service pools (housing authorities), each with many servers (housing units). Customer abandonment acts
to keep the system stable, yielding a proper steady-state description. Motivated by fairness considerations, we
assume that customers are selected for service by newly available servers on a first-come, first-served (FCFS)
basis from all classes the corresponding service pools are allowed to serve. In this context, it is challenging to
determine stationary routing flow rates between customer classes and service pools. Given those routing flow
rates, each single fluid queue can be analyzed separately using previously established methods. Our ability to
determine the routing flow rates depends on the structure of the network routing graph. We obtain the desired
routing flow rates in three cases: when the routing graph is (i) a tree (sparsely connected), (ii) complete bipartite
(fully connected), and (iii) an appropriate combination of the previous two cases. Other cases remain unsolved.
In the last two solved cases, the routing flow rates are actually not uniquely determined by the fluid model, but
become so once we make stochastic assumptions about the queueing models that the fluid model approximates.
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1. Introduction

In this paper, we investigate deterministic fluid ap-
proximations for overloaded queueing systems hav-
ing multiple customer classes and multiple service
pools, each with many servers. Each customer class
has a fixed subset of service pools where it can be
served. Customer abandonment acts to keep the sys-
tem stable, yielding a proper steady-state description
(e.g., queue lengths and waiting times). We consider
the case in which customers are selected for service by
newly available servers on a first-come, first-served
(FCFS) basis from all classes that the corresponding
service pools are allowed to serve.

We have in mind (overloaded) queueing systems as
depicted in Figure 1. Customers from class i arrive at
rate A; and abandon the queue at rate ;. In the long
run, class i customers are served by service pool j
at rate r; ;. Customers complete service from pool j
at rate u;. The natural direct queueing model con-
sistent with that description has independent Poisson
arrival processes, independent and identically dis-
tributed (i.i.d.) exponential times to abandon, and
multiple pools of servers, each with i.i.d. exponential

service times. However, here we focus on an approxi-
mating deterministic fluid model, where we regard all
flows as being deterministic. In the queueing model,
there are s; servers at service pool j, each serving cus-
tomers at rate 7;. Because the system is overloaded,
these servers are busy almost all of the time, so that
the overall service rate at pool j in the fluid model is
w; = s;m;. We are interested in the steady-state behav-
ior, where the fluid flow rates are constant.

1.1. Motivation

This problem was suggested to us by E. H. Kaplan
(2006), who had previously introduced both net-
work queueing models and associated fluid models
to study tenant assignment policies in public hous-
ing (Kaplan 1984, 1985, 1986, 1988; Caldentey and
Kaplan 2002). New housing applicants (prospective
tenants) are the customers, whereas different housing
authorities form the service pools, with the individual
housing units playing the role of servers. Applicants
fall into one of several different classes characterized
by the housing authorities to which the applicant
is eligible to apply. Unfortunately, these systems are
often overloaded. Of course, that points to a need
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Possible Network Models

Figure 1

Note. The first three pictures depict W, X, and X + 1 models, whereas the last picture depicts a more complicated model that we are unable to analyze.

for additional public housing, but the supply may
inevitably lag behind demand. With the prevailing
overloaded systems, it may be helpful to have good
models that make it possible to analyze the conse-
quence of alternative policies. We might be able to
investigate how much tenant abandonment proba-
bilities and waiting times can be reduced by differ-
ent actions. Indeed, the results of this paper can be
applied for that purpose. For other recent analyses of
public housing, see Johnson (2001, 2003) and refer-
ences cited there.

Kaplan (2006) also suggested another application:
the adoption of children. The customers are prospec-
tive parents seeking to adopt children, whereas the
service pools are different adoption programs, with
service rates determined by the arrival rates of chil-
dren to be placed for adoption. The possible rout-
ing is determined by parental preferences (country
of origin, gender, age, etc.) and parental participation
in more than one waiting list (agency program, pri-
vate lawyer, etc.). In addition, potential parents may
renege for many reasons.

1.2. Routing Flow Rates

As soon as we introduce a multiclass, multi-server-
pool fluid model of the kind above, we discover, as
Kaplan did, that the routing flow rates 7; ; are critical.
We might directly specify these routing flow rates as
part of the system design, but it is natural to ask what
the routing flow rates would be for various schedul-
ing rules. In particular, it is natural to consider the
FCFS scheduling rule from fairness considerations.
Kaplan specifically asked how the routing flow rates
could be determined with FCFS scheduling.

Given any feasible set of routing rates yielding an
overloaded fluid model (with all queues positive),
we can analyze the queues for each customer class
separately, using the methods for analyzing a single
overloaded fluid queue with abandonment in Whitt
(2006a). A network fluid model was analyzed this
way in Whitt (2006b), but there the routing flow rates
were exogenously specified, as part of the model
construction. Here, in contrast, we want the routing
flow rates to arise endogenously as a consequence of
applying the FCFS assignment rule.

1.3. A Hierarchy of Complexity

We are able to determine the desired routing flow
rates as well as the equilibrium behavior for a large
subclass of the FCFS fluid models, but not for all pos-
sible fluid models. We identify a hierarchy of com-
plexity among these systems based on the structure of
the routing graph of the system. The easiest models
to analyze are sparsely connected models, those with
tree routing graphs, such as the W model, appearing
first in Figure 1. (We follow the notation for routing
topologies in service networks given in Garnett and
Mandelbaum 2000.) Next in line are the fully con-
nected models, those with complete bipartite routing
graphs, such as the X model, shown second in Fig-
ure 1 above. Then, there are hybrid connected models,
models that consist of a fully connected component
with one or more sparsely connected components
attached. The so-called X + 1 model belongs to this
class. Finally, there are models that do not fall into
any of these three categories. We are not yet able to
analyze those models. One example from each of the
four cases appears in Figure 1.

Our analysis can be summed up as follows. In the
sparsely connected case, if global FCFS is possible,
flow rates can be obtained by using Equations (5)—(8).
In the fully connected case, they can be determined
by using Equation (16). In the hybrid case, the same
equations can be used, but in a stepwise manner,
first treating the sparsely connected components sep-
arately, and then treating the remaining fully con-
nected component as above, but with appropriate
new parameters.

1.4. Associated Fluid Limits

We use the fluid-model description to generate ap-
proximations for the corresponding queueing system.
To make a clear connection between the queueing
system and the fluid model, it is helpful to think of
the fluid model as the limit of the queueing model
as the arrival rate and the number of servers at
each service-pool increase. Indeed, we conjecture that
such a many-server heavy-traffic limit exists and is
described by our fluid model, and hope to prove
this in future work. Examples of such single-queue
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fluid limits in this overloaded regime are contained
in Whitt (2004, 2006a). Although we do not estab-
lish such a limit here, we are able to answer practi-
cal questions concerning the corresponding queueing
system, assuming that the limit does hold. The fluid
model can also be considered as a direct model or a
direct approximation of the queueing model, without
considering the limit, but the limit is helpful.

1.5. The Importance of Associated Stochastic
Queueing Models

In fact, we discover what we believe is an important
new phenomenon associated with fluid models, for
which the limit plays an essential role. We show that
the convergence of a sequence of queueing systems to
the fluid model limit is itself important for determin-
ing unique routing flow rates 7, ; in the fluid model.
In other words, if we assume that the fluid model is a
limit of appropriate queueing systems, satisfying gen-
eral stochastic assumptions (to be specified), then we
can identify unique routing flow rates r; ; in the fluid
model. However, if we do not make that assump-
tion, then the rates are not uniquely determined. This
phenomenon occurs for fully connected models and
hybrid models having a fully connected component.

1.6. Call-Center Models

The class of models we are considering is also rele-
vant to the design and management of telephone call
centers and related customer contact centers; see Gans
et al. (2003). In the call-center literature, such systems
are said to have skill-based routing. In models with
skill-based routing, the routing policy used is crucial
to the analysis of the model. Well managed call cen-
ters are usually not overloaded, but are more likely to
be when the call center is service oriented as opposed
to revenue-generating. We may also be interested in
overloaded call centers in order to understand how
they perform under exceptional circumstances, such
as unanticipated high load or in the face of some sys-
tem failures. Thus, overloaded models often prove to
be useful in the call-center context as well.

A related paper in the call-center context, with refer-
ences to many other recent related papers, is Gurvich
and Whitt (2007). That paper establishes many-server
heavy-traffic limits for the same type of queueing
model, except routing is performed using a fixed-
queue ratio (FQR) rule instead of FCFS. There it is
observed that the same methods apply equally well
to an analogous fixed-waiting ratio (FWR) rule, which
reduces to FCFS as a special case. The motivation
for the FQR and FWR routing policies is to per-
form service-level differentiation among the customer
classes. That work differs from the present study
in several respects: It focuses on the quality-and-
efficiency-driven (QED) many-server heavy-traffic

limiting regime, as in Halfin and Whitt (1981), rather
than the efficiency-driven (ED) or overloaded many-
server heavy-traffic limiting regime. It also restricts
attention to Markovian models, although we also con-
sider non-Markovian models. As in Whitt (2006a),
the steady-state performance measures in this paper
depend on general time-to-abandon cumulative dis-
tribution functions beyond their means.

1.7. Organization

We begin in §2 by introducing the queueing model we
are approximating, and defining the classes of routing
graphs we are able to analyze. Then, in §3, we intro-
duce the corresponding fluid model. The fluid model
is intended to arise as a limit of appropriately scaled
queueing models as the arrival rates and number of
servers increase. In this section we conjecture the exis-
tence and form of this limit. In §4, we go on to discuss
stationary dynamics of the fluid model. It is here that
we specify the important routing flow rates that must
be determined and present a system of equations that
they obey. Transient dynamics for our model are dis-
cussed in the e-companion' to this paper. In §§5-8, we
discuss the fluid and queueing models in more detail
for the special classes of routing graphs. In §5, we
focus on the sparsely connected case. In §6, we focus
on the fully connected case. In §7, we give an example
to show that we must take into account the stochastic
structure of the converging queueing models in order
to compute the routing flow rates in the fully con-
nected case. In §8, we show that it is easy to extend
the analysis of the fully connected case to analyze the
hybrid case. In §9, we show that our approximations
for the routing flow rates are effective by making com-
parisons with simulations. Finally, in §10, we draw
conclusions and discuss future work. Additional sup-
porting material appears in the e-companion.

2. The Queueing Model
In our model there are sets € ={1, ..., n} of customer
classes and & = {1, ..., m} of service pools (= here
denotes equality by definition). We assume that there
is a queue with unlimited capacity for each customer
class. Arriving customers who cannot enter service
immediately go to the end of the queue for their class,
to be served thereafter in order of arrival. Throughout
this paper, we use the FCFS routing policy.
DEerFINITION 1. We say that customers are routed
according to the FCES routing policy if, when a server
becomes free and there are customers waiting from
more than one customer class eligible for service by
that server, the customer who entered the system first
from the eligible classes is assigned to the freed server.

! An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.
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The definition leaves unspecified the way cus-
tomers are assigned upon arrival to servers if there
are idle servers in more than one eligible service pool.
We are assuming that case will occur infrequently, and
eventually not at all in the approximating fluid model.

2.1. Stochastic Model Elements

Figure 1 suggests a Markovian queueing model, but
we actually consider more general queueing models.
We define arrival processes A; = {A,(f), t > 0} with
rates A; for each class i; i.e.,, A, is a stochastic point
process such that

AlD) — A; ast— oo with probability 1. (1)

We let A={A;, i € €}

Each class-i customer may elect to abandon the
queue prior to starting service. We assume that these
abandonment decisions for different customers are
mutually independent, and independent of the arrival
processes and service times. A class-i customer will
abandon within time t of entering the system with
probability E(t), if the customer has not entered ser-
vice by that time. We assume that F, is a continuous
cumulative distribution function (cdf), strictly increas-
ing on its support, with F(0) =0, mean 1/6;, and prob-
ability density function (pdf) f;. Let F={E, i € ¢}.

We let the service-time cdf depend only on the
service pool. We assume that the service times are
mutually independent random variables independent
of the arrival processes and the abandonment deci-
sions. Let pool j have s; servers, each with continuous
service-time cdf G; having mean 1/%; and pdf g;. Let
G={G,jeS}, n={n,jeF}, and s={s;, j€ T}
The maximum possible total service rate for pool j is
w;=sm; forall je .

2.2. The Routing Graphs

We assume that each class-i customer can be served
by any server in a subset 5(i) C & of the service pools.
Let C(j) denote the set of customer classes that can be
served by service pool j; i.e., C(j) = {i € €: j € 5(i)}, for
all j € &. We characterize the allowed routing between
customer classes and service pools by a routing graph.
The nodes of the routing graph {1,...,n—1,n,n+
1,...,n+m} correspond to the customer classes in €
and the service pools in . There is an arc (i, 1 + j)
in the graph if class i can be served by service pool ;.
Thus, the set of arcs in the routing graph is a subset
of {1,2,...,n}x{n+1,n+2,...,n+m}. The routing
graph is bipartite because all arcs connect customer
classes to service pools.

We now characterize the classes of models we will
be analyzing. We start by assuming that the bipartite
graph is connected; i.e., it is not possible to decom-
pose the bipartite graph into two unconnected com-
ponents. If we could do so, then we could analyze

each component separately. The first class of routing
graphs we consider are acyclic connected bipartite
graphs or trees. In these models, there are precisely
n+m — 1 arcs connecting the n customer classes
to the m service pools, without it being possible to
decompose the system into two separate subsystems.

DEerFINITION 2. We say the model is sparsely con-
nected if its routing graph is a tree.

The prototype of a sparsely connected model is the
W model (see Figure 1).

The second class has routing graphs that are com-
plete bipartite. In these models, each customer class
can be served by any service pool.

DEerINITION 3. We say a model is fully connected if
its routing graph is complete.

The prototype of a fully connected model is the
X model.

We will also deal with models that are combina-
tions of the sparsely and fully connected cases.

DErFINITION 4. We say a model is a hybrid if its
routing graph can be decomposed into one complete
graph component and one or more tree component,
such that the tree components are disjoint and each
of them shares exactly one node with the complete
component.

The X 41 model in Figure 1 is a hybrid model. Fig-
ure 2 shows a broader range of routing graphs. The
routing graphs in the first row correspond to sparsely
connected models, the I, V, A, N, W, and M mod-
els, respectively. The second row contains more com-
plicated sparsely connected models. The third row
contains two fully connected models, one being the
X model and the other being a 4 x 3 fully connected
model. The final row contains examples of three rout-
ing graphs that do not belong to the first two classes
mentioned above. The first of these is the double-I
model, which is disconnected. The second is the X +1
model, which is a hybrid model because it can be

Figure 2

[V VAN VAN
A VAN

(V+A+1) Sparsely connected

M} D

Fully connected

11 M YA

11 X+1 General connected
Note. The first two rows contains sparsely connected routing graphs, the

third row contains fully connected routing graphs, and the fourth row con-
tains other routing graphs.

Candidate Routing Graphs
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decomposed into an X model and an I model. We will
discuss this model in more detail in §8. Finally, there
is an example of a connected 5 x 5 model that does
not belong to any of the three classes defined. Natu-
rally we would like to treat models with such routing
graphs, but we are currently unable to do so.

3. The Fluid Model

We are interested in analyzing deterministic fluid
models corresponding to these queueing models. In
this section, we discuss how these fluid models can
arise as limits of sequences of appropriately scaled
queueing models. We also define the notion of global
FCFS for fluid models.

3.1. Fluid Limit
The fluid model is intended to arise as the limit of
a sequence of queueing models indexed by r, where
in model r we have arrival processes for each i € €
defined by Al(t) = A;(rt), t >0, and each pool j € &
has rs; servers. We regard r as a positive integer and
let r — oo. The service times and abandonment times
are left unchanged, independent of r.

Our first conjecture is a stochastic-process limit, as
in Billingsley (1999), Chen and Yao (2001), and Whitt
(2002). To express it, let = denote convergence in dis-
tribution; let D = D(]0, o), R) be the function space
of all right-continuous real-valued functions on the
interval [0, co) with limits from the left everywhere in
(0, ), endowed with the usual Skorohod (J;) topol-
ogy; and let e be the identity function in D, i.e.,
e(t)=t, t >0. Let D, = D([0, 00)?, R) be the associated
two-parameter function space (see Whitt 2006a). We
will also consider product spaces, which are always
understood to be endowed with the product topol-
ogy; e.g., D" =D([0, =), R)".

We start by applying (1) to obtain a correspond-
ing stochastic-process limit. The ordinary strong law
of large numbers (SLLN) in (1) is actually equivalent
to the stronger functional strong law of large num-
bers (FSLLN); e.g., see Theorem 5.10 of Chen and Yao
(2001) and Theorem 5.3.2 of Whitt (2002) and the cited
material in the Internet supplement to that book. We
will state our conjecture in the weaker form = (even
though we think the stronger FSLLN actually does
hold). We remark that convergence in distribution =
to a deterministic limit is equivalent to convergence
in probability. We also remark that there is no equiv-
alence between the weak LLN (WLLN) and its func-
tional counterpart, the FWLLN. We obtain the desired
FWLLN through the implications: SLLN = FSLLN =
FWLLN. Hence, starting from (1), we deduce that a
scaled version of A={A,, i € €} satisfies the FWLLN
= A0 _Ar)

A’ . . = Ae() inD"asr—oo. (2)

We describe the system content in model r using

the following stochastic processes:
o B’ = {Bi’,j, i€€6,je ¥}, where Bi’,j(t,y) is the
number of class i customers in service in pool j at
time t that have been in service for time less than or
equal to y.

e Q'={Q¢, i € €}, where Q/(t, y) is the number of
class i customers in queue at time ¢ that have been in
queue for time less than or equal to y.

Then, form the scaled processes B" = {B'(t,y), t >0,

y >0} and Q’E{Q’(t,y), t>0,y >0} by

Br(t,vy) Q'(t, y)
r

. and Q’(t, y) =

fort>0,y>0, and r > 0.

B'(t,y)=

Also, to further describe the dynamics of the sys-
tem, we will need to keep track of how customers are
routed and virtual waiting times at the queues. For
model 7, let

* R"=({R]; i€€,je ¥}, where R} /(t) is the num-
ber of class i customers routed to pool j by time t.

o W'={W/, i € €}, where W/ (t) is the virtual wait-
ing time of a class i customer at time ¢.

Then, just as for B” and Q", form the scaled processes
R"={R'(t), t > 0} by

Er(t) = RrT(t),

t>0,r>0.

We do not have to scale the virtual waiting times W’
because our fluid scaling does not involve time scal-
ing of the content stochastic process.

A discussion of the transient dynamics of the lim-
iting fluid model is given in the e-companion. Here,
we will only be interested in stationary dynamics of
the model. We assume that the limiting models are
initially empty. However, we believe this assumption
can be generalized to appropriate convergence of the
initial conditions.

Congecture 1 (FLuip Limrr). Consider an initially
empty queueing model of the type described in §2 and
construct a sequence of fluid-scaled versions of this model
indexed by positive integers r as indicated above. Then,

(B, Q" R,W) = (B,Q,R, W) ®)

in D™ x D" gs v — oo, where B and Q are contin-
uous deterministic functions in (t,y) and R and W are
continuous deterministic functions in t, consistent with the
description of the transient dynamics given in §1 of the
e-companion.

The deterministic functions B(t,y), Q(t,y), R(t),
and W(t) serve as fluid approximations for the scaled
stochastic processes B'(t,y), Q'(t,y), R’(t), and the
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nonscaled process W’(t) so that

B'(t,y) ~rB(t,y), Q'(t,y)~rQ(t, y),

(4)
R7(t) = rR(t), W' (t) ~ W(t)

for t >0, y >0, and r large.

3.2. Global FCFS
When going from the queueing model to the fluid
model, we would expect that the FCFS routing policy
of the limiting queueing models would imply some
notion of FCFS for the fluid model. In fact, in the
fluid model we can hope to achieve a stronger notion
of FCFS scheduling: global FCFS. In the queueing
model, global FCFS means that all customers enter
service in order of arrival. For queueing models in
which servers do not sit idle when there is a waiting
customer they can serve, global FCFS is only possible
for fully connected models. However, we can hope to
achieve global FCFS in fluid models with more gen-
eral structure. Global FCFS holds in the fluid model
if when one atom of fluid arrives to the system before
a second atom of fluid, it starts service before the sec-
ond atom of fluid. Formally, we have the following:

DEerINITION 5. We say that global FCFS holds in the
fluid model if, for all 0 <t < ¢, and for all i, € G,
we have

b+ Wi(h) <t + ij(tz)-

A key (intuitive) observation for our analysis is that
this global FCFS condition for the fluid model is actu-
ally equivalent to the wait times W;(t) not depend-
ing on i.

LemwMma 1. For the fluid model described above, with its
evolution described by continuous functions, the specified
global FCES condition is equivalent to the existence of a
function W: [0, c0) — R such that W;(t) = W(t) for all
ie€Cand t>0.

Proor. The implication of global FCFS from the
existence of a single waiting-time function is immedi-
ate from the FCFS property of each individual queue.
Assuming that global FCFS holds, we will show that
unequal waiting times leads to a contradiction. Thus,
suppose W;(t) > W;(t) + € for some i, j€ €, t > 0, and
€ > 0. By the definition of W;(t), class i fluid that
enters the system at time ¢, enters service at time ¢+
W;(t). By the continuity of W;, we must have

1;%1 Wi(t+68) +86=W(t),

so that for 0 < 17 < € there exists 6 small enough so
that W;(t + 8) + 8 — W,(t) < n < €. Therefore, class j
customers entering the system at time f + 8, after
a class i customer entering at time f, enters service
at time

t+0+Wi(t+0) <t+W(H) +n<t+W,(t)+e<t+W(t),

contradicting the FCFS assumption. Therefore, we
must have W(t) = W;(t) for all i #j. O

We will want to find stationary routing rates yield-
ing global FCFS. However, it is not guaranteed that
we can achieve global FCFS in the limiting fluid
model, even when FCFS scheduling is used in the cor-
responding prelimit queueing models. When global
FCFS cannot be achieved, the waiting times of dif-
ferent classes cannot all be identical. We believe for
that to happen in a connected model, one or more
flows must be zero, which effectively changes the net-
work. In particular, it implies that some arcs can be
removed, so that the network actually can be decom-
posed into two or more subnetworks, with global
FCFS prevailing in each. In this paper, we do not
fully analyze what happens when global FCFS fails to
occur, because we do not determine which arcs need
to be removed, but we provide insight. Our analysis
helps identify appropriate decompositions.

4. Stationary Dynamics of
the Overloaded Fluid Model

We now describe the stationary behavior of the fluid
model. Except for the routing flow rates, the story
is the same as in Whitt (2006a), so we are primarily
interested in the routing flow rates. We assume our
fluid models are overloaded in stationarity.

DEerINITION 6. A fluid model is said to be over-
loaded in stationarity if in stationarity all queues are
nonempty, which in turn implies that all the service
pools are working at full capacity.

This overloaded property can be determined from
the stationary equations of the FCFS fluid model, to
be developed below. A necessary condition for this
property is 37, A; > 3oi )

We now define quantities of interest for the station-
ary fluid model. Let B; ;(y) be the amount of class i
fluid in service pool j that has been in service for
time less than or equal to y, and Q;(y) the amount of
class i fluid in queue that has been in queue for time
less than or equal to y. We assume that the functions
B; i(y) and Q;(y) have densities b; ; and g;, so that

B, ()= b, (0du and Q)= [ g(w)du
1,]y_0 i,j zy—o%
forallie€, je %, and y > 0.

Also, let B; ; = B; ;(c0) be the total amount of class i
fluid in pool j and let Q; = Q;(c0) be the total amount
of class i fluid in queue for i € ‘€, j € &. Furthermore,
define the following quantities:

a; = the rate at which class i fluid abandons the
queue,

v; = the total rate at which class i fluid enters
service,
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r; ;= the rate at which class i fluid enters service at

pool j (routing flow rates),

the rate at which class i fluid is served by

pool j,

p: ] = the proportion of class i fluid served by pool j,
= the common waiting time for the system

l]_

for all i € 6, j € ¥. So far, we do not know if these
quantities exist. It turns out that if we assume 7; i
exists for i € €, j € ¥, and we assume the conjectures
of Whitt (2006a) concerning the single-customer-class
single-service-pool case, then we can analyze each
individual queue and service pool in our model sep-
arately using Theorem 3.1 of Whitt (2006a), implying
existence of the rest of the quantities defined above.

CoNJECTURE 2. The quantities r; ; = lim,  R; ;()/t
exist as proper limits for all i € €, j € &.

From now on, we assume Conjectures 1 and 2 here as
well as Conjectures 2.1 and 2.2 of Whitt (2006a).

LemwMa 2. If the fluid model is overloaded in station-
arity, then all rates defined above exist. Furthermore, the
fluid model has a unique steady state where each individual
queue i € € and each individual service pool j € & satisfies
the relations of Theorem 3.1(b) of Whitt (2006a) with p
there set to A;/v;.

Proor. By the existence of the quantities 7, ;, i € €,
J€F, vi=Yeciti,; must exist for each i € ‘€. For
each individual queue i € €, our fluid limit Q; in (3)
is constructed exactly like the fluid limit of the queue-
ing process in Whitt (2006a) except, for each individ-
ual queue, customers enter the queue at rate rA; and
leave the queue at the rate rv;. By the overloaded in
stationarity assumption, each queue is overloaded so
that p = A;/v; > 1 and the relations of Theorem 3.1(b)
of Whitt (2006a) involving the queueing process hold
with p = A;/v;. Similarly, each B; ;, i € ‘€, j € #, in (3)
can be analyzed separately. O

Using this lemma, we can now characterize our
stationary performance measures in terms of the
rates 1, ;, i€ €% je ¥ and the common waiting
time w. As in Whitt (2006a), not all the model ele-
ments from the original queueing model remain rel-
evant in the fluid model. For stationary behavior of
the fluid processes (except for b; ;j(x), which is not
crucial), the relevant model elements are (A, u, F). In
particular, the arrival processes A appear only in the
fluid model via the rates A, and the service-time cdfs
G and the quantities s appear only via u; =s;n;, j€ ¥,
but the time-to-abandon cdfs E beyond their means
1/6; remain relevant. For a cdf F, let Ff =1 —F be the
associated complementary cdf.

THEOREM 1. Given a fluid model described by (A, G,
F,s), it is overloaded in stationarity and global FCFS holds
if and only if for i € ‘€, j € ¥, there exist numbers r; ; >0,

v; >0, and w' > 0 satisfying the following three sets of
equations. First, we have the n global FCFS equations

MES(w')y=v, forallie€. )
Second, we have the single flow-conservation equation

Zv _Z.U«] (6)

i=1

Third, we have the n+m flow-rate equations

Yorij=p forallje?, @)
ieC(j)
Yor;=v forallie. (8)
jes()

Given that these equations have a solution, w' and v; will
always be uniquely determined. Also, there will always
exist r; ;, 1 €€, j € ¥, satisfying the equations, but they
will not necessarily be uniquely determined and nonnega-
tive. If a solution exists for which these quantities are in
fact nonnegative, then v, =v;, w=w' for each i € ‘€, and

a=A—-v, )

rI,]
g-./,:rA,., pA,.z—, (10)
G v 2 kesiy Tk

b; j(x) = @Gj(x), x>0, (11)
5i
AE(x) O=<x=w,

q:(x) = (12)

B, =-, (13)

Q=[ awd=x[ F@a

for all i € € and j € #. If, in addition, the quantities r; ;,
i€€, jeF are uniquely determined, then we also have

1= 1],16% je<.

Proor. Assume that the fluid model is overloaded
in stationarity and admits global FCFS. Then the
equatlons are satisfied by the quantities 7/, =71,
v;=v;, and W’ = w, the common wait time at all the
queues, which exists by Lemma 1: Equation (5) holds
by Lemma 2 and (3.9) of Whitt (2006a), (6) holds sim-
ply by conservation of flow, and (7)—(8) hold by local
balance of flow at each queue and each service pool.
Conversely, suppose the equations have a solution

>0,v,>0, w >0foriec%,jeS. Then, itis possi-
ble to route fluid from the queues to the service pools
in such a way that wait times at all queues will be w'.
This implies that the fluid model admits global FCFS.
Since w’ > 0, the model is overloaded in stationar-
ity. Furthermore, combining (5) with (3.9) of Whitt
(2006a), for each i € € we will have v, =v,.

/
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We now argue that when the flow equations have
a solution, w’ and v»; are uniquely determined. We
can combine Equations (5) and (6) to obtain the single
waiting-time equation

S AE @)=Y w (15)
i=1 j=1

Consider the left side of this equation as a func-
tion of w'. Notice that this function is continuous
and strictly decreasing when it is positive because we
assumed that all the abandonment cdfs F, are contin-
uous and strictly increasing on their support. When
w’ =0, by the overloaded in stationarity assumption,
we have Y1 A; > Z}”:l ;- Also, as w' — oo, the left
side approaches zero. Therefore, by the intermediate
value theorem, there must exists some w’ > 0 such
that the equation holds.

If a solution to (5)(8) exists for which 7] ; > 0,i €€,
j € ¥, then by Lemma 2 we must have (9)—(14) for
the true 7; ; given by Conjecture 2. The r;; do not
appear in these equations unless they are uniquely
determined by the flow-rate equations. O

The focus of the rest of the paper is to compute
the flow rates T js i€%, je ¥ and, thus determine
stationary dynamics of the fluid model. We are able
to do this in the three cases:

1. The model is sparsely connected.

2. The model is fully connected with nonlattice
service-time distributions with no mass at zero.

3. The model is hybrid connected with nonlattice
service-time distributions with no mass at zero.

In the next section, we show that our system of sta-
tionary fluid equations has a unique solution in the
sparsely connected case (but not necessarily nonneg-
ative!). In §§6 and 7, we show that in other cases we
must make further assumptions on the stochastic ele-
ments of the queueing model to determine stationary
behavior of the corresponding fluid model. The flow
rates r; ; are not uniquely determined by the fluid

i,j
model alone.

5. The Sparsely Connected Case

We now show that we can uniquely determine the sta-
tionary dynamics of the fluid model when the model
is sparsely connected.

THEOREM 2 (SPARSELY CONNECTED MODELS). For
sparsely connected fluid models that are overloaded in sta-
tionarity, the system of stationary fluid equations in (5)—(8)
has a unique solution for w', v, and r, ; with w' >0 and
vi >0 for all i € €. If, in addition, v/ ;> 0 for all i € €,
j €, then the corresponding fluid model has a unique
stationary solution satisfying global FCFS, where w = w’,
vi=vj,and v, ;=1 for i€ €, j€F.

Proor. As indicated in the proof of Theorem 1, for
models that are overloaded in stationarity, we can first

use (15) to uniquely solve for w’, and thus v}, i € €.
We are then left with the linear system (7)—(8). In the
sparsely connected case, the routing graph is a tree,
so that as in Proposition A.2 of Atar (2005) we can
solve for the flow rates uniquely as follows. Because
the routing graph is a tree, it contains at least one leaf.
If the leaf is a customer class i € € and its adjacent
edge is (i, j), then let r; = v]. If the leaf is a service
pool j € ¥ and its adjacent edge is (j, i), then let r;; =
;. Then strip off the leaf and its incident edge and
recurse. Finally, the last claim follows from the last
sentence of Theorem 1. [

It may happen that one or more of the unique rout-
ing rates r; ; is negative. In that case, by Theorem 1
we can conclude that it is not possible to achieve a
solution that is overloaded in stationarity and exhibits
global FCFS. We do not carefully analyze the case
when negative flows occur. It is our experience that
when there is a single negative flow, then we can
describe the network behavior by replacing this flow
by 0, which is equivalent to removing the arc from the
routing graph. If the model is sparsely connected, this
action always produces two separate sparsely con-
nected models, which then can be analyzed in pre-
cisely the same way.

When there are multiple negative flows, the situ-
ation is more complicated. We have found examples
where more than one of these should be set equal
to 0, but also examples where only one should be set
equal to 0. We do not yet have a systematic way to
determine which case prevails and, thus, what actu-
ally happens in the network. Right now, we would
rely on simulation to confirm that we have the correct
reduced network with global FCFS in each separate
sparsely connected component. It is our experience
that, in all cases, the actual behavior can be captured
by such reductions; it only remains to be determined
which reduction is the correct one.

The negative flow rates also tell us that, if we want
to achieve global FCFS, then we need to redesign
the network. One approach is to eliminate one or
more arcs, by fiat as a redesign decision, by setting
routing flow rates equal to 0, giving us two sepa-
rate sparsely connected components. Then, we may
possibly achieve global FCFS in each component, but
way may need to make further reductions. Indeed, by
this recursive network reduction, we will necessarily
arrive at a collection of sparsely connected subnet-
works, each of which exhibits global FCFS, provided
that all the subnetworks are overloaded. The analysis
above provides guidance for the network redesign.

6. The Fully Connected Case

In the fully connected case, customers in each class
can be served by servers in any pool. In this case,
after solving (15), our system of stationary flow-rate
equations (7)—=(8) has nm + 1 unknowns and n + m
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equations. When either n =1 or m =1, the model is
also sparsely connected, so we can apply the method
of the previous section. When # > 1 and m > 1, we
have nm +1 > n+m, so the analysis in the previous
section will not go through; we have extra degrees
of freedom. To resolve the additional degrees of free-
dom, we exploit stochastic properties of the queue-
ing model in addition to the fluid model. In fact, we
will show in the next section that we must consider
stochastic elements of the queueing model.
Assuming that the fluid model is indeed overloaded
in stationarity, all queue lengths are strictly positive,
so that all service pools are processing at maximum
rate. Therefore, for large r and ¢, after time ¢, all ser-
vice pools in models with an index greater than r are
almost always busy (but never all busy with probabil-
ity 1). We will carry out an analysis of the queueing
model based on the assumption that all servers are in
fact always busy. This significantly simplifies analysis.
Even though we scale the queueing models indexed
by r in order to relate them to the limiting fluid
model, we will want to look at the departure pro-
cesses of the queueing model in the time scale of indi-
vidual departures. That means that we must dilate
time by a factor of r. (For a previous asymptotic
analysis with such time dilation, see Whitt 1984.)
Let Di(t) be the number of departures from service
pool j by time ¢, assuming that all servers are always
busy. Then, we consider the processes 5}(1&) =Di(t/r),
as r — oo. We first discuss the case of exponential
service-time distributions, and then generalize.

6.1. Exponential Service Times

Let each service pool contain servers having a com-
mon exponential service-time distribution. Because
we assume that all servers are always busy, pool j
in model r of the sequence of fluid scaled mod-
els has a Poisson departure process with intensity
ru; = rn;s;. Therefore, the dilated departure processes
5}(t) are Poisson processes with intensity u; = 7;s;.

LeMmMA 3 (Busy EXPONENTIAL SERVICE Poots). For
pools of permanently busy servers, each with an exponen-
tial service distribution with mean 1/, the dilated process

5]?(t) is a Poisson process with intensity p; for each r > 0.

Now consider the customer who has been waiting
in the queue the longest. Because we have a fully con-
nected model, that customer can be served by any
service pool. The customer will enter service in the
service pool where a server frees up first. Because all
residual service times are exponential, the probabil-
ity that the customer ends up being served at a pool
j€F is uj/ X4, e By the memoryless property, the
pools where customers get served are mutually inde-
pendent random variables. Therefore, by the SLLN,
the proportion of class-i customers that get served at

pool j must be w;/ >""; py-

Now;, let w be the solution to the waiting-time equa-
tion (15) for our system. Then, the rate that fluid
leaves queue i € € for service is v; = A F°(w) and
we have

v, .= M]
ij— ~xm
Zk=1 M

Notice that this solution (16) satisfies our system of
stationary fluid equations (7)—(8) with r; ; > 0 for all i
and j.

v; forallie€,je. (16)

6.2. General Service Times

We now argue that the result in the previous section
extends to the more general case of ii.d. nonlattice
service times with no point mass at zero, in the limit
as r — oo. We do this by showing that the stationary
departure process of each service pool j € & in the
time scale of individual departures is asymptotically
Poisson with rate u;.

In model r, the departure process D}, j € ¥, can
be represented as the superposition of rs; departure
processes D]-, «» with one for each of the servers in the
service pool:

rs;

DI =YD, ().
k=1

In general, for different values of r, the sample paths
of the departure processes will differ, but the distri-
butions of the departure processes will not. Because
we have assumed that the servers are permanently
busy, each of these individual departure processes
is a (possibly delayed) renewal process with inter-
renewal-time cdf G; for all r. Because the distribution
of Gj has been assumed to be nonlattice, each of these
renewal processes approaches the associated equilib-
rium renewal process as time ¢ increases, by Theorem
V4.3 (4.6) of Asmussen (2003, p. 155). Hence, in sta-
tionarity, the rs; departure processes are i.i.d. station-
ary point processes (with stationary increments), each
having rate 7,. Hence, we can apply the classical limit
theorem for sums of i.i.d. point processes with sta-
tionary increments; see Chapter 5 of Khintchine (1960)
and Proposition 9.2.VI of Daley and Vere-Jones (1988).
Our assumption of no point mass at zero implies that
we have unit jumps in the individual departure pro-
cesses D; ;. This gives us

LEmMA 4 (Busy GENERAL SERVICE PootLs). For pools
of permanently busy servers, each with nonlattice service-
time cdf G; having no point mass at zero and with
mean 1/m;, we have

VS]'

5;(')52Dj,k(~/r) = IL() asr— oo,
k=1

where 11; is a Poisson process with intensity ;.

Because in the time scale of individual departures
the departure process of each service pool j € ¥ is
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asymptotically Poisson with intensity u;, our analysis
from §6.1 applies, giving us

THEOREM 3. If the service-time cdfs G; are nonlattice
with no point mass at zero, and if the servers are perma-
nently busy, then the routing flow rates in the fluid model
are as given in (16).

Overall, this reasoning must be regarded as heuris-
tic, because we have assumed that the servers are
always busy. However, simulation experiments con-
firm that this reasoning does indeed produce the cor-
rect fluid flow rates. We will see in the next section
that the stochastic conditions on the service-time dis-
tributions cannot be eliminated altogether.

7. Dependence Upon the Stochastic
Models

In this section we demonstrate that the behavior of the
fully connected fluid model depends on the stochastic
structure of the sequence of prelimit queueing models
that converge to the fluid model. For that purpose, we
present a sequence of deterministic queueing mod-
els indexed by r that would converge to a symmet-
ric X fluid model described by (16) as r — oo if they
satisfied the stochastic assumptions of Theorem 3,
but which actually admit an asymmetric solution.
Note that the deterministic queueing models in our
example are simply special cases of the more general
stochastic queueing models we are studying.

Our fluid model will have two customer classes
and two server pools. Routing is possible from each
customer class to each pool, so that we may have
;>0 for i=1,2 and j=1,2. Let the fluid arrival
rates be A; = A, =2 and the fluid service rates be
W1 = i, = 2. This makes the model symmetric in i and
in j. Because the total input rate is equal to the total
output rate, we are actually in the QED heavy-traffic
regime (for which this result is also of interest!), but
we can easily put ourselves in the overloaded ED
regime by adding deterministic abandonment.

Under the previous minimal stochastic assumptions
for the service times in §6, we have the symmetric
solution to this fluid model and the rates become
T, =1,="1,1="1,=1 However, we can actually
construct prelimit models achieving

r1=nho=1+€ and r,=rn,=1-¢€

forany e, -1<e<1, (17)

which is an asymmetric solution for € # 0. Therefore,
the extra degrees of freedom in the system of linear equa-
tions in Theorem 1 can actually be exploited. And the reso-
lution depends on extra structure beyond the limiting fluid
model itself. So the argument we gave in §6, starting
from the stochastic model is actually necessary.

We now proceed to construct a sequence of queue-
ing models indexed by r for which (17) holds with
€ = 1. From our construction, it will be evident that
constructions can be made for any other € in the spec-
ified range as well. In our queueing models, let all the
service times be deterministic of length 1. In model 7,
let each service pool have 2r servers. Thus, the maxi-
mum possible long-run average total service rate is 2r
for each service pool in model r, but we will scale by
dividing by r, so that the total average fluid service
rate from each service pool j =1, 2 becomes p; =2.

Similarly, we will let the arrival rate in model r for
each customer class be 2r, making the fluid arrival rate
A; =2 after dividing by r, again as already stipulated
for the fluid model. We will choose a special deter-
ministic batch arrival process. We let arrivals occur
in batches of size 2 with intervals between succes-
sive batches deterministic with length 1/r to ensure
that the long-run average arrival rate is 2r. But we
make the two arrival processes for the two customer
classes be asynchronous. In particular, in model r we
let class-1 arrivals occur at times (k + 1)/r, k > 0,
but we let class 2 arrivals occur at times (2k + 1)/
(2r), k = 0. As stated above, a batch of two arrivals
comes at each arrival epoch. Note that the arrival
epochs for batch arrivals in the two arrival processes
alternate.

We also consider special initial conditions. We sup-
pose that all servers are initially busy at time 0, but
the two queues are initially empty. Moreover, we sup-
pose that the 2r servers in service pool 1 free up two
at a time at the times

1

2 r—1
6r1;+671;+671-"/

r

+9,, (18)

whereas the 2r servers in service pool 2 free up two
at a time at the times

1 3 5 2r —

> +9,, 5 +9,, > +0,,..., o
for some constant 8, with 0 <, <1/(2r) for all r. For
example, we could have 6, =1/(4r).

With these definitions, all customers from class 1
are served by servers from service pool 1, whereas
all customers from class 2 are served by servers from
service pool 2. The servers free up in pairs from alter-
nating service pools. Following the requirement of
the FCFS service discipline, these pairs of servers will
serve the two customers that have been waiting the
longest, but the customers that have been waiting the
longest will also alternate from customer class to cus-
tomer class, in a way that guarantees that servers
from pool 1 always select customers from class 1,
whereas servers from pool 2 always select customers
from class 2. Moreover, in model r, all customers
spend exactly time w, = 8, in queue so in the fluid
limit we have w =0.

! +6, (19)
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Note that both batch arrivals and batch service
can be relaxed by making small perturbations of the
arrival times and service times. We thus could have
an example with arrivals and service both occurring
one at a time, but we would get the same assignments
as above. Even without the batches, the conditions for
the theorems in §6 are not satisfied. In particular, the
example exploits lattice structure in the service-time
distribution. For this model, the servers are always
busy, but they do not eventually behave as the super-
position of ii.d. stationary point processes.

In summary, we constructed a sequence of special
prelimit queueing models, which converges to the ini-
tial fluid model as r — o, but for which the rout-
ing flow rates are not the unique solution we get for
queueing models satisfying the assumptions of The-
orem 3. We have thus proven that extra degrees of
freedom in the routing flow rates cannot be resolved
from the fluid model itself. They must be resolved by
stochastic properties of the prelimit queueing models
indexed by .

8. The Hybrid Case

We now observe that we can combine the methods
in 8§85 and 6 to analyze hybrid models, as defined
in §2. We analyze hybrid models by first treating the
sparsely connected components, obtaining the unique
solution for the flow rates of each. If these flow rates
are nonnegative for each sparsely connected compo-
nent, we subtract the committed flow from the con-
necting arc to the fully connected component. After
we have done that for all sparsely connected compo-
nents, we solve for the flows in the remaining fully
connected model. If we get any negative flow rates
when analyzing the sparsely connected components,
we can conclude that the model is not overloaded in
stationarity with global FCFS, by Theorem 1. For the
final analysis of the fully connected component, we
assume that the relevant service-time distributions are
nonlattice without an atom at zero, so that we get the

Figure 3 More General Hybrid Connected Models

27\

Sparsely connected model Common node

N
N \
N N
N N
N N
A X Vv

X model plus acyclic A and V components

K

+
\ / X model

unique solution in (16); again, otherwise the model is
not overloaded in stationarity with global FCFS.

We illustrate this technique with the X + 1 model
with exponential service as shown in Figure 1. The
idea is that the allocation for class 3 can be easily
determined. Then after removing that predetermined
flow, we can solve the remaining X model as in the
previous section. Note that the waiting time w can be
determined using the conservation of flow equation.
Then, we must have ry, = v; = AF (w). Given that
1y, = v3, the pool 2 service rate available for classes 1
and 2 becomes w; — v;. Therefore, reasoning as for the
X model, we get

P 2 Le! = (o — v3)1y
n=——>", nh=——"F—-7,
My + (1o —v3) My + (1o — v3)
L] (Mg —v3)¥,
tyhy=————"-, and 1, = —-"-"=_|
T+ (g — v3) 27 (g — vy)

Note that this solution satisfies the steady-state equa-
tions (7)-(8).

This approach can easily be extended to more gen-
eral hybrid connected models. Figure 3 illustrates
the technique applied to slightly more complicated
models.

9. Simulation Results

In this section, we compare our fluid approximations
to simulated values. First, we do this for a hybrid
model, then for the X model with many different
combinations of interarrival and service-time distribu-
tions, and finally for sparsely connected models yield-
ing negative flows.

9.1. A Hybrid Model

Because computing the fluid approximation for a
hybrid model requires computation of fluid approx-
imations for both sparsely and fully connected com-
ponents, presenting simulation results for a hybrid
model helps validate our method for all three classes

V+A+1)+X
(€] @ .0
A N ’ - -7
4 Nl e
,x\ /)l)u’:”
VAR z><
(€]

X model plus four acyclic components:
Three I models and one V model

Note. The first hybrid contains one sparsely connected component connected to the fully connected component, the second contains two sparsely connected

components, and the third contains four sparsely connected components.
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Table 1 Simulation Results for Hybrid Model with Exponential and
Uniform Service-Time Distributions
Route Fluid approx. EXP UNIFORM
P11 0.4667 0.4652 4 0.0058 0.4623 4 0.0083
D12 0.4667 0.4682 + 0.0084 0.4678 4+ 0.0076
P13 0.0667 0.0664 4+ 0.0115 0.0698 4+ 0.0107
Das 0.4615 0.4617 +0.0134 0.4612 4+ 0.0089
Pos 0.5385 0.5382 +0.0134 0.5387 4 0.0089
Dss 0.2692 0.2691 4+ 0.0124 0.2714 4+ 0.0073
Das 0.3141 0.3164 4 0.0049 0.3164 4 0.0052
Dss 0.4167 0.4144 4+ 0.0141 0.4120 4 0.0073
Pa s 1 1 1

of routing graphs. Therefore, we will be working with
a queueing model with the routing graph in the bot-
tom left of Figure 3 and approximating its dynamics
with the corresponding fluid model. We simulated
the model with both exponential and uniform service-
time distributions. For both cases, we simulated
Poisson arrivals and exponential abandonment. We
simulated 100,000 arrivals to the system, disregarding
an initial transient 20% of the run. Labelling the nodes
in the figure from left to right, the remaining model
parameters we used are

0,=1 fori=1,...,4,

A, =10,000, A,=4,000, A;=8,000,

m;=2 forj=1,23,4 ns =4,
s;=1,000 forj=1,...,5.

A, = 6,000,

We can think of this model as being model r =1,000
in a sequence of models indexed by r, where s; =1,
A =10, A, =4, A; =8, and A, = 6. We focus on the
proportions p; ; given in (10). Table 1 gives our results.
EXP refers to the model with service times exponen-
tial with mean 1/7;, whereas UNIFORM refers to
the model with service times uniform in the inter-
val [1/(2m;),3/(27n;)]. The second column contains

the fluid approximation values computed using the
method described in §8. As indicated in §8, the ded-
icated flow rates for the sparsely connected compo-
nents are computed first, and then the fully connected
component is considered. All simulation results in
this section are given as 95% confidence intervals. We
see that for all routing proportions our fluid approx-
imation gives results very close to the simulated val-
ues in both the exponential and uniform cases.

9.2. The X Model
We now focus on the X model in more detail. We
work with the X model because it is the simplest non-
trivial fully connected model. In light of §6, we should
expect our fluid approximations to be close to accu-
rate for arbitrary arrival processes satisfying the SLLN
in (1) and for i.i.d. service times with nonlattice cdfs
without atoms at 0. We see evidence that this is true
by simulating the X model with mutually indepen-
dent i.i.d. sequences of interarrival times and service
times, for various combinations of interarrival-time
and service-time distributions.

The parameters we used for our X model simula-
tions are

A, =2,000, A,=3,000,
Sl == 52 == 1,000.

01=02=%,

m=1 mn,=2,

As in §6, the fluid approximation gives p, ; =p, ; =
1—-p,=1-p,,=1/3. Table 2 gives our simula-
tion results. In this table, EXP and UNIFORM denote
exponential and uniform distributions, respectively,
as defined as in the previous section. In addition, we
have the following:

* GAMMA denotes a gamma distribution with
mean 1/n and squared coefficient of variation (SCV,
variance divided by the square of the mean) 1/2
(equivalent to E,, an Erlang of order 2),
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Table 2 X Model Simulation Results for Various Combinations of Interarrival-Time and Service-Time Distributions
Interarrival
Service Param. EXP GAMMA HYPEREXP UNIFORM TWOPOINT CONSTANT
EXP P11 0.3335 + 0.0039 0.3320 + 0.0063 0.3302 + 0.0054 0.3328 + 0.0055 0.3348 + 0.0043 0.3330 + 0.0041
Dot 0.3320 4 0.0048 0.3330 + 0.0021 0.3334 4 0.0049 0.3331 4 0.0023 0.3334 4 0.0049 0.3329 4 0.0063
GAMMA P11 0.3344 4+ 0.0056 0.3326 + 0.0067 0.3333 & 0.0054 0.3315 4 0.0046 0.3315 4 0.0055 0.3328 4+ 0.0044
Doy 0.3322 + 0.0035 0.3335 + 0.0045 0.3342 + 0.0049 0.3346 + 0.0046 0.3341 + 0.0029 0.3333 + 0.0027
HYPEREXP P11 0.3327 £ 0.0096 0.3334 + 0.0066 0.3331 & 0.0057 0.3312 & 0.0046 0.3331 & 0.0066 0.3355 + 0.0072
Dot 0.3334 4+ 0.0058 0.3332 4 0.0033 0.3335 + 0.0057 0.3342 4+ 0.0030 0.3332 4 0.0061 0.3320 4 0.0046
UNIFORM P11 0.3335 4 0.0045 0.3334 4 0.0048 0.3343 4 0.0044 0.3342 4 0.0047 0.3337 4 0.0044 0.3337 4 0.0037
Doy 0.3328 + 0.0027 0.3325 + 0.0052 0.3327 + 0.0044 0.3323 + 0.0033 0.3339 + 0.0033 0.3339 + 0.0025
TWOPOINT P11 0.3335 + 0.0066 0.3325 + 0.0040 0.3341 + 0.0062 0.3346 + 0.0034 0.3311 4 0.0059 0.3326 + 0.0044
Do 0.3323 4 0.0056 0.3333 & 0.0031 0.3331 & 0.0029 0.3322 4+ 0.0026 0.3342 4 0.0040 0.3329 4 0.0030
CONSTANT P11 0.3343 4+ 0.0056 0.3321 4 0.0038 0.3328 + 0.0022 0.3328 + 0.0034 0.3333 4 0.0034 0.3340 4 0.0047
Do 0.3331 £ 0.0037 0.3346 + 0.0022 0.3341 £+ 0.0018 0.3337 4 0.0020 0.3334 4 0.0022 0.3328 + 0.0032
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e HYPEREXP denotes a hyperexponential distri-
bution (a mixture of two exponentials with means 1/ fj
and probability weights p;) with mean 1/n=(p,/&,) +
(p2/£,), balanced means (p,/£,) = (p»/&,) and SCV =4,

e TWOPOINT refers to a two-point distribution
attaching probability 1/2 to each of the two points
1/(27) and 3/(27),

e CONSTANT refers to the constant 1/7.

Each box in the table contains 95% confidence inter-
vals for p, ; and p, ;. We exclude p, , and p, , be-
cause, necessarily, p; , =1—p;; and p, ,=1—p, ;.
For this example, we have no difficulties even with
the lattice service distributions TWOPOINT and
CONSTANT because the random, exponentially dis-
tributed abandonment serves to remove the deter-
ministic regularity. We also ran the same simulations
with batch arrivals of size 2 and obtained essentially
the same results. This gives further evidence that the
arrival distributions do not play a role in the fluid
approximations. These results are presented in the
e-companion.

9.3. Negative Flows

In this subsection, we consider examples of sparsely
connected models in which the unique solution for
the flow rates r; ; produces one or more negative val-
ues, so that global FCFS cannot be achieved for the
model. First, we give a simple example with a single
negative flow, and show that simulation matches the
result obtained by decomposing the network into two
separate sparsely connected networks by setting the
negative flow equal to 0, with global FCFS in each
component. Next, we consider a more complicated
example with two negative flows. We give one exam-
ple in which only one of these flows should be set
equal to zero and another in which both should be
set equal to zero. From the parameters, we can per-
haps guess the right result, but we have yet to devise
a systematic procedure for determining which nega-
tive flows should be set equal to zero. We have not

Figure 4 “Super” NV and “Super” I/ Model Simulation Parameters

A, = 2,000

yet shown that an initially positive flow never should
be set equal to zero, but we have not experienced it.

9.3.1. One Negative Flow. Consider a W model
with the following parameters: A; = A, =3, A; =10,
6, =0,=06;=2, and pu; = u, = 1. After solving
the system of Equations (7) and (8), we find that
P2, » = —2/3 <0, with all other flow rates positive. This
indicates that global FCFS can not be achieved for this
model. When simulating the model with Markovian
parameters for * =1,000, we find that

P11=Ps1=P32=1, Pp.=0, w;=0.89240.006,
w, =0.893£0.006, w;=1.150+0.007.

Because p,, =0, with all other proportions positive,
the model actually decomposes into two models. The
first model consists of customer classes 1 and 2 and
service pool 1. The second model consists of customer
class 3 and service pool 2. Because wait times for both
queues are practically the same, we see that global
FCFS is achieved in the first model in the decompo-
sition. Because the second model only contains one
queue, global FCEFS is trivially achieved in the second
model.

9.3.2. Two Negative Flows. We now simulate
models for which the fluid flow-rate equations give
two negative flow rates. In the first model, both flows
in the simulated queueing model are actually close to
zero. In the second, only one of the flows is actually
close to zero. That shows that we have difficulty in
deciding how to decompose the model, without per-
forming simulations. But we do find that the fluid
approximation closely matches simulation after we
have found the proper decomposition. We show the
fluid model description both before and after doing
the decomposition.

“Super” N Model. Consider a model with parameters
given in the left of Figure 4, again with exponential
interarrival, abandonment, and service distributions.
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Table 3 Simulation Results for the “Super” N/ Model
P11 P2 P2 P23 P35 W W, Wy
Fluid approx. 2.333 —1.333 3.667 —2.667 1 0.770 0.770 0.770
Removing (2, 3) 1 0 1 0 1 0.346 0.346 1.151
Removing (1, 2) 1 0 1 0 1 0.346 0.346 1.151
Simulation 0.976 +0.006  0.024 + 0.006 1 0 1 0.333+0.007 0.359+0.006 1.151 +0.010
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We refer to this model as a “super” N model. Our
fluid approximation and simulation results are given
in Table 3. Notice here we have p;, <0 and py; <0 in
the initial fluid approximation. For this example, our
simulation gives p;, ~ 0 and p,; ~ 0 as well, and shows
that the waiting times are quite different at the three
queues. We clearly are not able to achieve global FCFS
in this model. This result is consistent with decompos-
ing the original model by either (i) removing the route
from class 2 to pool 3 first or (ii) removing the route
from class 1 to pool 2 first. In both cases, after the
first decomposition we are left with the N model of
the previous subsection and an I model, and in both
cases we get the same approximation. In this exam-
ple we could have simply eliminated the two negative
flows at the outset. This is in contrast to the “super”
W model discussed below.

“Super” W Model. Now consider a model with
parameters given in the right of Figure 4, again fully
Markovian. We refer to this model as a “super” W
model. We give our fluid approximation and simu-
lation results in Table 4. After solving the system of
routing flow equations, we find that p, , = —1/9 and
ps,3 = —11/9, with all other flow rates positive. Again,
this indicates that global FCFS cannot be achieved for
this model. Here we see that although the fluid rate
equations give us a negative value for p, ,, simula-
tion tells us that this proportion is not actually zero. If
we decompose the model by first removing the flow
from class 3 to pool 3, then we get a symmetric W
model and an I model (second row of Table 4), where
each of these models can achieve global FCFS. Clearly,
this would give us a good fluid approximation. How-
ever, if we instead decompose the model by removing
the flow from class 2 to pool 2, we get a symmet-
ric V model and an N model (third row of Table 4).
But because simulation results tell us p, , > 0, this
would not give us a good fluid approximation. In this

example, we can anticipate in advance what will hap-
pen in the initial fluid calculation. Moreover, we can
easily see how the network should be decomposed,
but we have yet to specify an automatic procedure to
determine the appropriate decomposition. This phe-
nomenon tells us that further analysis is necessary in
order to determine what actually happens in models
for which the fluid rate equations yield multiple neg-
ative flow rates.

10. Conclusions

We have shown how to determine the fluid flow rates
and, thus, also full steady-state performance descrip-
tions, for a large subclass of overloaded multiclass
fluid models with abandonment. We have identified a
hierarchy of complexity in the models, which is cap-
tured by the routing graph. We obtain the desired
routing flow rates in three cases: when the model
is (i) sparsely connected, (ii) fully connected, and
(iii) an appropriate combination of these two cases.
Other cases remain unsolved. The analysis determines
whether or not global FCFS is achievable; we obtain
a complete description when it is (in the second case
it always is). When it is not, the behavior is evidently
captured by an appropriate decomposition in which
one or more arcs with negative flows are removed
from the model. In the last two solved cases, the rout-
ing flow rates are actually not uniquely determined
in general, but become so once we make stochas-
tic assumptions about prelimit queueing models con-
verging to the fluid limit. But the results hold for quite
general stochastic models, as a consequence of the
classic limit theorem establishing convergence of the
superposition of independent stationary point pro-
cesses to a Poisson process.

There are many fascinating open problems. We
have yet to determine the stationary behavior in the
sparsely connected and hybrid cases when global
FCFS fails. We have shown that this occurs when

Table 4 Simulation Results for the “Super” I/ Model

P11 Pa 1 P2 P32 P33 Py 3 W, Wy W3 Wy
Fluid approx. 1 1.111 —0.111 2222 1222 A 0.923 0.923 0.923 0.923
Removing (3,3) 1 0.500 0.500 1 0 1 0.752 0.752 0.752 1.151
Removing (2,2) 1 1 0 2167 —-1.167 1 0.896 0.896 0.936 0.936
Simulation 1 0.500 & 0.025 0.500 + 0.025 1 0 1 0.754 +£0.007 0.754 +0.00 0.754 4+0.007 1.151 & 0.008
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the characterizing linear system yields negative flows.
Evidently, the system behavior can be described by
setting some of these negative flows to zero and
analyzing the separate components of the resulting
decomposed network, but we have yet to determine
precisely what happens.

There are many routing graphs we have not yet
been able to analyze. Moreover, it remains to prove
Conjectures 1 and 2, stating that the steady-state fluid
equations are asymptotically correct both as r — oo
and then as t — oo.

11. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.

Acknowledgments

The authors thank Ed Kaplan for suggesting this problem.
The authors were supported by National Science Founda-
tion Grant DMI-0457095.

References

Asmussen, S. 2003. Applied Probability and Queues. Springer-Verlag,
New York.

Atar, R. 2005. A diffusion model of scheduling control in queueing
systems with many servers. Ann. Appl. Probab. 15(1B) 820-852.

Billingsley, P. 1999. Convergence of Probability Measures. Wiley, New
York.

Caldentey, R. A., E. H. Kaplan. 2002. A heavy-traffic approximation
for queues with restricted customer-server matchings. Working
papet, Yale University, New Haven, CT.

Chen, H., D. D. Yao. 2001. Fundamentals of Queueing Networks.
Springer-Verlag, New York.

Daley, D. J., D. Vere-Jones. 1988. An Introduction to the Theory of
Point Processes. Springer-Verlag, New York.

Gans, N., G. Koole, A. Mandelbaum. 2003. Telephone call centers:
Tutorial, review, and research prospects. Manufacturing Service
Oper. Management 5(2) 79-141.

Garnett, O., A. Mandelbaum. 2000. An introduction to skills-based
routing and its operational complexities. http://iew3.technion.
ac.il/serveng/Lectures/SBR.pdf.

Gurvich, 1., W. Whitt. 2007. Service-level differentiation in many-
server service systems: A solution based on fixed-queue-
ratio routing. Working paper, Columbia University, New York,
http://www.columbia.edu/~ww2040.

Halfin, S., W. Whitt. 1981. Heavy-traffic limits for queues with
many exponential servers. Oper. Res. 29(3) 567-588.

Johnson, M. P. 2001. Tenant-based subsidized housing location
planning under uncertainty. Socio-Econom. Planning Sci. 35(3)
149-173.

Johnson, M. P. 2003. Single-period location models for subsi-
dized housing: Tenant-based subsidies. Ann. Oper. Res. 123(2)
105-124.

Kaplan, E. H. 1984. Managing the demand for public housing. Tech-
nical Report 183, MIT Operations Research Center, Cambridge,
MA.

Kaplan, E. H. 1985. How PHA's fill their units. J. Housing 42(1)
13-20.

Kaplan, E. H. 1986. Tenant assignment models. Oper. Res. 34(6)
832-843.

Kaplan, E. H. 1988. A public housing queue with reneging and
task-specific servers. Decision Sci. 19(2) 383-391.

Kaplan, E. H. 2006. Personal communication.

Khintchine, A. Y. 1960. Mathematical Methods in the Theory of Queue-
ing. Charles Griffin & Co. Limited, London.

Whitt, W. 1984. Departures from a queue with many busy servers.
Math. Oper. Res. 9(4) 534-544.

Whitt, W. 2002. Stochastic-Process Limits. Springer-Verlag, New York.

Whitt, W. 2004. Efficiency-driven heavy-traffic approximations for
many-server queues with abandonments. Management Sci.
50(10) 1449-1461.

Whitt, W. 2006a. Fluid models with multiserver queues with aban-
donments. Oper. Res. 54(1) 37-54.

Whitt, W. 2006b. A multi-class fluid model for a contact center
with skill-based routing. Internat. |. Electronics Comm. 60(2)
95-102.



