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AN ODE FOR AN OVERLOADED X MODEL INVOLVING
A STOCHASTIC AVERAGING PRINCIPLE

By Ohad Perry∗ and Ward Whitt†

CWI and Columbia University

We study an ordinary differential equation (ODE) arising as
the many-server heavy-traffic fluid limit of a sequence of overloaded
Markovian queueing models with two customer classes and two ser-
vice pools. The system, known as the X model in the call-center liter-
ature, operates under the fixed-queue-ratio-with-thresholds (FQR-T)
control, which we proposed in a recent paper as a way for one ser-
vice system to help another in face of an unanticipated overload.
Each pool serves only its own class until a threshold is exceeded;
then one-way sharing is activated with all customer-server assign-
ments then driving the two queues toward a fixed ratio. For large
systems, that fixed ratio is achieved approximately. The ODE de-
scribes system performance during an overload. The control is driven
by a queue-difference stochastic process, which operates in a faster
time scale than the queueing processes themselves, thus achieving a
time-dependent steady state instantaneously in the limit. As a result,
for the ODE, the driving process is replaced by its long-run average
behavior at each instant of time; i.e., the ODE involves a heavy-traffic
averaging principle (AP).

1. Introduction. We study an ordinary differential equation (ODE)
that arises as themany-server heavy-traffic (MS-HT) fluid limit of a sequence
of overloaded Markovian X queueing models under the fixed-queue-ratio-
with-thresholds (FQR-T) control. The ODE is especially interesting, because
it involves a heavy-traffic averaging principle (AP).

The system consists of two large service pools that are designed to operate
independently, but can help each other when one of the pools, or both,
encounter an unexpected overload, manifested by an instantaneous shift
in the arrival rates. We assume that the time that the arrival rates shift
and the values of the new arrival rates are not known when the overload
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occurs. We want the control to automatically detect the overload. The FQR-
T control is designed to prevent sharing of customers (i.e., sending customers
to be served at the other-class service pool) when sharing is not needed, and
automatically activate sharing when the system becomes overloaded due to
a sudden shift in the arrival rates. Others have also considered many-server
systems with unknown arrival rates [2, 20], but our overload control problem
addresses a different issue. Here the service pools are intended to operate
independently except during the overload incident.

This paper is the third in a series of five papers. First, in [16] we initiated
study of this overload-control problem and proposed the FQR-T control; see
[16] for a discussion of related literature. We used a heuristic stationary fluid
approximation to analyze the performance of the system during an overload.
For the fluid model, we derived the optimal ratio control parameters when
a convex holding cost is charged to the two queues during the overload
incident (considering the long-run average cost during the overload incident,
assuming that the overload condition lasts sufficiently long). Within that
framework, we showed with simulations that FQR-T outperforms the best
fixed allocation of servers, even when the new arrival rates are known. The
stationary point of the fluid model was derived using a heuristic flow-balance
argument, which equates the rate of flow into the system to the rate of flow
out of the system, when the system is in steady state.

Second, in [19] we applied the heavy-traffic AP as an engineering prin-
ciple in order to justify the ODE considered here to describe the transient
fluid approximation of the X system under FQR-T after an overload has
begun. For the overload problem, it is natural to go beyond the steady-state
performance during an extended overload incident considered in [16] to de-
velop a good approximation for the transient performance. We observed that
the FQR-T control is driven by a queue-difference stochastic process, which
operates in a faster time scale than the queueing processes themselves, so
that it should achieve a time-dependent steady state instantaneously in the
MS-HT limit, i.e., as the scale (arrival rate and number of servers) increases;
see §3.1. We argued heuristically that the ODE should arise as the limit of a
properly-scaled sequence of overloaded X-model systems, provided that the
driving process is replaced by its long-run average behavior at each instant
of time.

As reported in [16, 19], we performed simulation to justify the approxi-
mations. The close agreement between simulations of large-scale X queueing
systems with the FQR-T control and the results of the numerical algorithm
for solving the ODE demonstrated that the ODE considered here is indeed
properly defined, that the numerical algorithm is effective and that the fluid
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model approximation is effective for approximating the performance of the
queueing system; see also Figures 3–4, where the numerical solution to the
ODE is presented together with simulated sample paths of a large stochastic
system. However, it still remained to state and prove theorems mathemati-
cally justifying the results.

The present paper and the next two provide that mathematical support.
The present paper establishes important properties of the ODE introduced
in [19]. The fourth and fifth papers establish limits. In particular, in [17] we
prove that the fluid approximation, as a deterministic function of time, arises
as the MS-HT limit of a sequence of X models; i.e., we prove a functional
weak law of large numbers (FWLLN). This FWLLN is based on the AP; see
[5, 9] for previous examples. In [18] we prove the corresponding functional
central limit theorem (FCLT) that describes the stochastic fluctuations about
the deterministic fluid path.

We prove convergence to the ODE in [17] by the standard two-step pro-
cedure, described in Ethier and Kurtz [6]: (i) establishing tightness and (ii)
uniquely characterizing the limit process. The tightness argument follows fa-
miliar lines, but characterizing the limit process turns out to be challenging.
Indeed, characterizing the limit process depends on the results here. Thus,
the present paper provides a crucial ingredient for the limits established in
[17, 18].

The AP makes the ODE unconventional. The AP creates a singularity
region, causing the ODE not to be continuous in its full state space. Hence,
classical results of ODE theory, such as those establishing existence, unique-
ness and stability of solutions, cannot be applied directly. Moreover, existing
algorithms for numerically solving ODE’s cannot be applied directly either,
since the solution to the ODE requires that the time-dependent steady state
of the fast-time-scale process (FTSP) be computed at each instant. Never-
theless, we establish the existence of a unique solution to the ODE, show
that there exists a unique stationary point; and show that the fluid process
converges to its stationary point as time evolves. Moreover, we show that the
convergence to stationarity is exponentially fast. The key is a careful analysis
of the FTSP, which we represent as a quasi-birth-and-death (QBD) process.
Finally, we provide a numerical algorithm for solving the ODE based on the
matrix-geometric method [11].

Here is how the rest of this paper is organized: The next two
sections provide background, intending to help the reader understand the
motivation for the rigorous development that begins here in §4. In §2 we
elaborate on the X queueing model and the FQR-T control; that primarily
is a review of [16]. In §3 we provide a brief overview of the MS-HT scaling,
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a heuristic explanation of the AP and a statement of the MS-HT limit; that
primarily is a brief account of [17]. The reader should refer to [16, 17, 19]
for additional details.

In §4 we introduce the ODE that we study in subsequent sections. In §5 we
state out main result, establishing the existence of a unique solution. In §6 we
establish properties of the FTSP, which depends on the state of the ODE,
and whose steady-state distribution influences the evolution of the ODE.
In §7 we define the state space of the ODE, and prove the main theorem
about existence of a unique solution. In §8 we establish the existence of a
unique stationary point and show that the fluid solution converges to that
stationary point as time evolves. In §9 we prove that a solution converges to
stationarity exponentially fast. In §10 we provide conditions for global state
space collapse, i.e., for having the AP operate for all t ≥ 0. In §11 we develop
an algorithm to numerically solve the ODE (given an initial condition), based
on the theory developed in the previous sections. We conclude in §12 with
one postponed proof.

Additional material appears in an appendix, available from the authors’
web pages. There we analyze the system with an underloaded initial state,
and show that the approximating fluid models then lead to our main ODE
in finite time. We elaborate on the algorithm and give two more numeri-
cal examples. We also provide a few omitted proofs. Finally, we mention
remaining open problems.

2. The motivating queueing system. This section reviews the high-
lights of [16], starting with a definition of the original X queueing model,
for which the ODE serves as an approximation.

2.1. The original queueing model. The Markovian X model has two
classes of customers, arriving according to independent Poisson processes
with rates λ̃1 and λ̃2. There are two queues, one for each class, in which
customers that are not routed to service immediately upon arrival wait to
be served. Customers are served from each queue in order of arrival. Each
class-i customer has limited patience, which is assumed to be exponentially
distributed with rate θi, i = 1, 2. If a customer does not enter service before
he runs out of patience, then he abandons the queue. The abandonment
keep the system stable for all arrival and service rates. There are two service
pools, with pool j having mj homogenous servers (or agents) working in
parallel.

ThisX model was introduced to study two large systems that are designed
to operate independently under normal loads, but can help each other in face
of unanticipated overloads. We assume that all servers are cross-trained,
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so that they can serve both classes. The service times depend on both the
customer class i and the server type j, and are exponentially distributed; the
mean service time for each class-i customer by each pool-j agent is 1/µi,j .
All service times, abandonment times and arrival processes are assumed
to be mutually independent. The FQR-T control described below assigns
customers to servers.

We assume that, at some unanticipated point of time, the arrival rates
change, with at least one increasing. We further assume that the staffing
cannot be changed (in the time scale under consideration) to respond to
this unexpected change of arrival rates. Hence, the arrival processes change
from Poisson with rates λ̃1 and λ̃2 to Poisson processes with unknown (but
fixed) rates λ1 and λ2, where λ̃i < miµi,i, i = 1, 2 (normal loading), but
λi > miµi,i for at least one i (the unanticipated overload). Without loss of
generality, we assume that pool 1 (and class-1) is the overloaded (or more
overloaded) pool. The fluid model (ODE) is an approximation for the system
performance after the overload has occurred, so that we start with the new
arrival rate pair (λ1, λ2).

2.2. The FQR-T control for the original queueing model. The FQR-T
control is based on two positive thresholds, k1,2 and k2,1, and the two
queue-ratio parameters, r1,2 and r2,1. (Ways to choose these parameters
are discussed in [16, 19].) We define two queue-difference stochastic pro-
cesses D̃1,2(t) ≡ Q1(t) − r1,2Q2(t) and D̃2,1 ≡ r2,1Q2(t) − Q1(t). As long
as D̃1,2(t) ≤ k1,2 and D̃2,1(t) ≤ k2,1 we consider the system to be normally
loaded (i.e., not overloaded) so that no sharing is allowed. Hence, in that
case, the two classes operate independently. Once one of these inequalities is
violated, the system is considered to be overloaded, and sharing is initialized.
For example, if D̃1,2(t) > k1,2, then class 1 is judged to be overloaded and
service-pool 2 is allowed to start helping queue 1. As soon as the first class-1
customer starts his service in pool 2, we drop the threshold k1,2, but keep the
other threshold k2,1. Now, the sharing of customers is done as follows: If a
type-2 server becomes available at time t, then it will take its next customer
from the head of queue 1 if D̃1,2(t) > 0. Otherwise, it will take its next cus-
tomer from the head of queue 2. If at some time t, after sharing has started,
queue 1 empties, or D̃2,1(t) = k2,1, then the threshold k1,2 is reinstated.
The control works similarly if class 2 is overloaded, but with pool-1 servers
helping queue 2, and with the threshold k2,1 dropped once it is crossed.

In addition, we impose the condition of one-way sharing: we allow shar-
ing in only one direction at any time. Thus, in the example above, where
sharing is done with pool 2 helping class 1, we do not later allow pool 1 to
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help class 2 until there are no more pool-2 agents serving class-1 customers.
Sharing is initiated with pool 1 helping class 2 when D̃2,1(t) > k2,1 and there
are no pool-2 agents serving class-1 customers. And similarly in the other
direction.

In simulation experiments, we found that it may be advantageous to relax
one-way sharing in order to prevent the system from becoming stuck with
sharing in the wrong direction for a long time when sharing is needed in
the opposite direction. That could arise if two different overload incidents
occur in rapid succession. In addition, even with well-chosen thresholds to
activate sharing, it is possible that one-way sharing would get initiated due
to stochastic fluctuations under normal loading. If, after such an event, an
overload occurs in the opposite direction, then it might not be possible
to activate new sharing in the desired direction. (See Remark 8.1 of [17] for
further discussion.) We found that the problem posed by one-way sharing can
be substantially reduced by incorporating additional lower thresholds, such
that one-way sharing with pool 2 helping class 1 is no longer enforced when
the number of class-1 customers served by pool 2 falls below the threshold.
However, it is not the purpose of the present paper to investigate detailed
implementation of the FQR-T control. Hence, here we simply assume that
one-way sharing is enforced.

Once sharing is initialized, the control makes the overloaded X model op-
erate as an overloaded N model, and keeps the two queues at approximately
the target ratio, e.g., if queue 1 is being helped, then Q1(t) ≈ r1,2Q2(t). If
sharing is done in the opposite direction, then r2,1Q2(t) ≈ Q1(t) for all t ≥ 0.
That is substantiated by simulation experiments, some of which are reported
in [16, 19].

Let Qi(t) be the number of customers in the class-i queue at time t, and
let Zi,j(t) be the number of class-i customers being served in pool j at time
t, i, j = 1, 2. With the assumptions on the X system and the FQR-T control,
the six-dimensional stochastic process (Qi(t), Zi,j(t); i, j = 1, 2) describing
the overloaded system becomes a continuous-time Markov chain (CTMC)
(with stationary transition rates).

In addition to the thresholds k1,2 and k2,1, discussed above, the model
also includes shifting constants κ1,2 and κ2,1. The shifting constants may be
introduced after the threshold is dropped, because it may be dictated by the
optimal ratio function in [16]. If class 1 is overloaded, then shifted FQR-T
centers about κ1,2 instead at about zero. Then every server takes his new
customer from the head of queue 1 if D̃i,j(t) > κ1,2. Otherwise, it takes the
new customer from the head of its own class queue. With shifted FQR-T,
we aim to achieve Q1(t) ≈ r1,2Q2(t) + κ1,2. We can think of FQR-T as the
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special case of shifted FQR-T with κ1,2 = 0.
The beauty of the control is that, for large-scale service systems, FQR-T

and shifted FQR-T tend to achieve their purpose; i.e., they keep the two
queues approximately in fixed relation.

3. The many-server heavy-traffic fluid limit. In this section we
briefly describe the convergence of the sequence of stochastic systems to the
fluid limit, as established in [17]. That limit, and the ODE studied here,
only describe the performance of the the system after an overload incident
has occurred, and only during that overload incident. The analysis describes
the performance of the FQR control that is activated after the threshold is
crossed.

Since we consider an arbitrary single overload incident, without loss of
generality, we assume that class 1 is overloaded, and is more overloaded
than class 2, so that class 1 receives help from service-pool 2. (Class 2 may
also be overloaded, but less than class 1, so that pool 2 should be serving
some class-1 customers.) We also assume that one-way sharing is enforced.
As a consequence, the system is behaving like an overloaded N model with
a shifted FQR control.

3.1. Many-server heavy-traffic (MS-HT) scaling. To develop the fluid
limit in [17], we consider a sequence of X systems, indexed by n (denoted by
superscript), with arrival rates and number of servers growing proportionally
to n, i.e.,

(3.1) λ̄n
i ≡ λn

i

n
→ λi and m̄n

i ≡ mn
i

n
→ mi as n → ∞,

with the service and abandonment rates held fixed. We then define the
associated fluid-scaled stochastic processes

(3.2) Q̄n
i (t) ≡

Qn
i (t)

n
and Z̄n

i,j(t) ≡
Zn
i,j(t)

n
, i, j = 1, 2, t ≥ 0.

For each system n, there are threshold kn1,2 and kn2,1, scaled so that

(3.3)
kni,j
n

→ 0 and
kni,j√
n
→ ∞ as n → ∞, i, j = 1, 2.

The first scaling by n is chosen to make the thresholds asymptotically neg-
ligible in MS-HT fluid scaling, so they detect overloads immediately when
they occur (asymptotically). The second scaling by

√
n is chosen to make

the thresholds asymptotically infinite in MS-HT diffusion scaling, so that,
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asymptotically, the thresholds will not be exceeded under normal loading. It
is significant that MS-HT scaling shows that we should be able to simulta-
neously satisfy both conflicting objectives reasonably well in large systems.

There are also the shifting constants κni,j discussed in §2.2, but we do
not specify their scale. If sharing is taking place, then at some time it was
activated by sending the first class-1 customer to service pool 2. We thus
need only consider κn1,2 and the weighted-difference process D̃n

1,2(t) ≡ Qn
1 (t)−

r∗1,2Q
n
2 (t). Note that if κn1,2 → ∞, then D̃n

1,2 → ∞ as n → ∞. Hence, we
redefine the difference process. Let

(3.4) Dn(t) ≡ (Qn
1 (t)− κn)− rQn

2 (t), t ≥ 0,

where κ ≡ κ1,2 and r ≡ r∗1,2.
With the new definition in (3.4), we allow κn to be of any order less than

or equal to O(n); in particular, we assume that κn/n → κ for 0 ≤ κ < ∞.
There are two principle cases: κ = 0 and κ > 0. The first case produces FQR
(after sharing has began); the second case produces shifted FQR (shifted by
the constant κn).

With the new process Dn in (3.4), we can apply the same FQR routing
rule for both the FQR and shifted FQR cases: if Dn(t) > 0, then every newly
available agent (in either pool) takes his new customer from the head of the
class-1 queue. If Dn(t) ≤ 0, then every newly available agent takes his new
customer from the head of his own queue.

3.2. A heuristic view of the AP. The AP is concerned with the system
behavior when sharing is taking place; i.e., when some, but not all, of the
pool 2 agents are serving class 1. That takes place whenQ1 = rQ2+κ. In that
situation, it can be shown that the queue-difference process Dn in (3.4) is an
order O(1) process, without any spatial scaling, i.e., for each t, the sequence
of unscaled random variables {Dn(t) : n ≥ 1} turns out to be stochastically
bounded (or tight) in R. That implies thatDn operates in a time scale that is
different from the other processes Qn

i and Zn
1,2, which are scaled by dividing

by n in (3.2). With the MS-HT scaling in (3.1), in order for the two queues
to change significantly (in a relative sense, which is captured by the scaling
in (3.2)), there needs to be O(n) arrivals and departures from the queues. In
contrast, the difference process Dn can never go far from 0, because it has
drift pointing towards 0 from both above and below. Thus, the difference
process oscillates more and more rapidly about 0 as n increases. Thus, over
short time intervals in which Xn remains nearly unchanged for large n, the
process Dn moves rapidly in its state space, nearly achieving a local steady
state. As n increases, the speed of the difference process increases, so that
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in the limit, it achieves a steady state instantaneously. That steady state is
a local steady state, because it depends on x(t), the fluid limit x at time t.

To formalize this separation of time scales, we define a family of time-
expanded difference processes: for each n ≥ 1 and t ≥ 0, let

(3.5) Dn
t (s) ≡ Dn(t+ s/n), s ≥ 0.

Dividing s by n in (3.5) allows us to examine what is happening right after
time t in the faster time scale. For each t, a different process Dn

t is de-
fined. For every t ≥ 0 and s > 0, the time increment [t, t + s/n) becomes
infinitesimal in the limit. Theorem 4.3 in [17] proves that, for each t ≥ 0,

(3.6) Dn
t ≡ {Dn

t (s) : s ≥ 0} ⇒ Dt(s) ≡ {Dt(s) : s ≥ 0} as n → ∞

where the limit Dt ≡ {Dt(s) : s ≥ 0} is the FTSP, and convergence is in the
space D of right continuous functions with left limits.

For each n, the control depends on whether or not Dn(t) > 0. In turn,
the limiting ODE depends on the corresponding steady-state probability of
the FTSP,

(3.7) π1,2(x(t)) ≡ lim
s→∞

P (Dt(s) > 0)

which depends on x because the distribution of {Dt(s) : s ≥ 0} depends on
the value of x(t) ∈ R3.

In this paper, we directly define the FTSP Dt and its steady-state prob-
ability π1,2 in §6. The limit provides important motivation.

3.3. The FWLLN. The main result in [17] is the FWLLN.We now briefly
summarize the main part of the statement, without providing all conditions.
The limit is for the six-dimensional scaled process X̄n

6 ≡ (Q̄n
i , Z̄

n
i,j), where Q̄

n
i

and Z̄n
i,j are defined in (3.2). Let D6(I) be the usual space of right-continuous

R6 valued functions on the interval I with left limits everywhere except the
left endpoint. Let ⇒ denote convergence in distribution. The FWLLN in
Theorem 4.1 of [17] concludes, under regularity conditions (including the
initial convergence X̄n

6 (0) ⇒ x(0) in R6), that

(3.8) X̄n
6 ⇒ x in D6([0,∞)) as n → ∞,

where x ≡ (qi, zi,j) is a continuous deterministic element of D6([0,∞)).
Throughout, the limit x in (3.8) is effectively three dimensional because

z1,1(t) = m1, z2,1(t) = 0 and z1,2(t) + z2,2(t) = m2 for all t. Hence, the
limit can be considered to be of the form x(t) ≡ (q1(t), q2(t), z1,2(t)). We
characterize the limit x in [17] as the solution to the ODE considered in this
paper.
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4. The ODE. We now specify the ODE, which is the main subject of
this paper. The rigorous development starts here.

We introduce the ODE to describe the evolution of the system state of
a deterministic fluid model, which is approximating the performance of the
stochastic system with FQR-T during an overload incident. The determinis-
tic fluid model has two classes, with class-i input arriving at rate λi. There
are two service pools with service pool j having capacity mj . The state at
time t is x(t) ≡ (q1(t), q2(t), z1,2(t)), where qi(t) is the content of the class-i
queue and zi,j(t) is the amount of service pool j occupied by serving class i
at time t. Since the service pools are always full in the setting we consider,
fluid enters service only from the queue and only when service is completed.
In the fluid model, we stipulate that a proportion π1,2(x(t)) of the newly
available capacity in pool 2 at time t, i.e., of z1,2(t)µ1,2 + (m2 − z1,2(t))µ2,2,
is allocated to class 1, while the remaining proportion 1− π1,2(x(t)) is allo-
cated to class 2. The proportion π1,2(x(t)) is a function of x(t), the state of
the fluid model (solution to the ODE) at time t. That function π1,2(x(t)) is
rigorously defined and characterized in §6 below.

For understanding why the ODE has the form it does, it is helpful to
recall that the fluid model is approximating the queueing system after an
overload incident has occurred. We are considering the case in which class
1 is overloaded and more so than class 2. Moreover, we are considering the
system after sharing has been initiated with pool 2 starting to help class 1.
Both service pools are fully busy and some of pool-2 is serving class 1, so that
z1,1(t) = m1, z2,1(t) = 0 and z1,2(t)+z2,2(t) = m2. As a consequence, we only
need consider z1,2 among the four zi,j variables. Hence, as in the statement
of the FWLLN above, the ODE is three-dimensional. The associated state
space is S ≡ [0,∞)2 × [0,m2].

The ODE characterizes the evolution of the fluid model described above.
Consistent with the description above, we define the transient behavior of
the fluid model by the ODE

(4.1) ẋ(t) ≡ (q̇1(t), q̇2(t), ż1,2(t)) = Ψ(x(t)) ≡ Ψ(q1(t), q2(t), z1,2(t)),

t ≥ 0, where Ψ : [0,∞)2 × [0,m2] → R3 can be displayed via

q̇1(t) ≡ λ1 −m1µ1,1 − π1,2(x(t)) [z1,2(t)µ1,2 + (m2 − z1,2(t))µ2,2]− θ1q1(t)

q̇2(t) ≡ λ2 − (1− π1,2(x(t))) [(m2 − z1,2(t))µ2,2 + z1,2(t)µ1,2]− θ2q2(t)

ż1,2(t) ≡ π1,2(x(t))(m2 − z1,2(t))µ2,2 − (1− π1,2(x(t)))z1,2(t)µ1,2,

(4.2)

with π1,2 : [0,∞)2 × [0,m2] → [0, 1] defined by §6 below when q1 − rq2 = κ,
π1,2(x) ≡ 1 when q1 − rq2 > κ and π1,2(x) ≡ 0 when q1 − rq2 < κ.
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We also consider the associated initial value problem (IVP)

(4.3) ẋ(t) = Ψ(x(t)), x(0) = w0

for Ψ(x) in (4.1)–(4.2).
It is significant that the ODE in (4.1) is autonomous, i.e., that Ψ in (4.1)

is a function of x and not of t. (It is a function of t only through x(t); we
do not have the more general form ẋ(t) = Ψ(x(t), t).)

The important function π1,2 has been defined informally by (3.7) in §3.2
above, referring to the MS-HT limit. The function π1,2 will be defined here
in a rigorous self-contained way in §6. The MS-HT limit is then proved in
[17], building on this paper.

5. The main result. The state space S is a subset of R3 with the
boundary constraints: q1 ≥ 0, q2 ≥ 0 and 0 ≤ z1,2(t) ≤ m2. The differ-
ential equation for z1,2 prevents its boundary states 0 and m2 from be-
ing active, because ż1,2(t) = π1,2(x(t))m2µ2,2 ≥ 0 when z1,2(t) = 0 and
ż1,2(t) = −(1−π1,2(x(t))m2µ1,2 ≤ 0 when z1,2(t) = m2. However, the queue-
length constraints can alter the evolution. In general, we can have q̇i(t) < 0
when qi(t) = 0, which we understand as leaving qi(t) fixed at 0. However, we
are primarily interested in overloaded cases, in which these boundaries are
not reached. Under Assumption A below, we can consider the ODE without
constraints.

Recall that the shifting constant satisfies κ ≥ 0. We consider the restricted
state space S ≡ [κ,∞)× [0,∞)× [0,m2]. We thus avoid the transient region
in which q1 < rq2 + κ with q2 = 0, where q̇1(t) > 0 and q̇2(t) < 0, but q2
remains at 0 while q1 increases to the shifting constant κ. The restricted
state space, with q1 ≥ κ is shown to be the space of the fluid limit of the
system in [17]. We will also show in Theorem 5.1 below that the ODE cannot
leave this restricted state space.

It is convenient to specify the conditions on the model parameters in terms
of the steady-state formulas for the queues in isolation. For that purpose, let
qai be the length of fluid-queue i and let sai be the amount of spare service
capacity in service-pool i, in steady state, when there is no sharing, i = 1, 2.
The quantities qai and sai are well known, since they are the steady state
quantities of the fluid model for the Erlang-A model (M/M/mi +M) with
arrival-rate λi, service-rate µi,i and abandonment-rate θi; see Theorem 2.3
in [23], especially equation (2.19), and §5.1 in [16]. In particular,

(5.1) qai ≡ (λi − µi,imi)
+

θi
and sai ≡

(
mi −

λi

µi,i

)+

, i = 1, 2,
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where (x)+ ≡ max{x, 0}. It is easy to see that qai s
a
i = 0, i = 1, 2. We thus

make the following assumption, which is assumed to hold henceforth.

Assumption A.

(I) The model parameters satisfy θ1(q
a
1 − κ) ≥ µ1,2s

a
2.

(II) The initial conditions satisfy x(0) ∈ S ≡ [κ,∞)× [0,∞)× [0,m2].

We now explain these assumptions. Clearly, a sufficient condition for both
pools to be overloaded is to have sa1 = sa2 = 0, i.e., to have no spare service
capacity in either pool in their individual steady states. However, if sa2 > 0,
both pools can still be overloaded, provided that enough class-1 fluid is
processed in pool 2. To have the solution be eventually in S, we require
that θ1(q

a
1 − κ) ≥ µ1,2s

a
2. This condition ensures that service pool 2 is also

full of fluid when sharing is taking place, i.e., z1,2(t) + z2,2(t) = m2 for all
t ≥ 0 (assuming that pool 2 is full at time 0). To see why, note that when
service-pool 2 has spare service capacity (sa2 > 0), sharing will be activated
if qa1 > κ, because qa2 = 0. Now, the maximum amount of class-1 fluid that
pool 2 can process, while still processing all of the class-2 fluid (so that q2 is
kept at zero), is µ1,2s

a
2. hence, µ1,2s

a
2 is the minimal amount of class-1 fluid

that should flow to pool 2. On the other hand, θ1q
a
1 = λ1 − µ1,1m1 is equal

to the “extra” class-1 fluid input, i.e., all the class-1 fluid that pool 1 cannot
process. Some of this “extra” class-1 fluid might abandon (if q1 > 0). The
minimal amount of class-1 fluid that abandons is θ1κ (but κ can be equal
to zero).

We thus require that all the class-1 fluid, that is not served in pool 1,
minus the minimal amount of class-1 fluid that abandons, is larger than
µ1,2s

a
2. With this requirement, pool 2 is assured to be full, assuming that

it is initialized full. (If pool 2 is not initialized full, then it will fill up after
some finite time period; see the appendix.)

Remark 5.1 (class 1 need not be more overloaded than class 2). In
this paper we are interested in analyzing the ODE (4.2) as given. Hence, in
Assumption A we do not assume that class 1 is more overloaded than class
2; i.e., we do not require that qa1 − κ ≥ rqa2 . This extra assumption is not
needed for our results for the specified ODE. In contrast, this assumption is
needed in order to show that the ODE holds as the fluid limit, with class 1
receiving help; see Assumption 3.1 in [17].

We exploit Assumption A to show that the boundaries of S in R3 play no
role.
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Theorem 5.1. x(t) ∈ S for all t ≥ 0.

We give the proof in §8.4 after the necessary tools have been developed.
Our main result establishes the existence of a unique solution.

Theorem 5.2 (existence and uniqueness). For any w0 ∈ S, there exists a
unique function x : [0,∞) → S such that, (i) for all t ≥ 0, there exist δ(t) >
0 such that x is right-differentiable at t, differentiable on (t, t + δ(t)) and
satisfies the IVP (4.3) based on the ODE (4.1) over [t, t+ δ(t)) with initial
value x(t), and (ii) x is continuous and differentiable almost everywhere.

Theorem 5.2 has two parts: First, there is (i) establishing the local exis-
tence and uniqueness of a conventional differentiable solution on each inter-
val [t, t+ δ(t)), for which it suffices to consider a single t, e.g., t = 0. Second,
there is (ii) justifying an overall continuous solution.

We prove Theorem 5.2 in the next two sections. The proof is tied to the
characterization of π1,2 in (4.2) and (3.7), and thus the FTSP Dt. We need
to determine conditions for the FTSP Dt to be positive recurrent, so that
the AP holds, and then calculate its steady-state distribution in order to find
π1,2. Moreover, we need to establish topological properties of the function
π1,2, such as continuity and differentiability. We discuss the FTSP Dt next.

6. The fast-time-scale process. In this section we define the function
π1,2, which is a crucial component of the ODE in (4.2). The value π1,2(x)
depends on the state x ∈ S of the ODE. The value π1,2(x) is a steady-state
probability of the fast-time-scale process (FTSP) Dt, which also depends on
the state x of the ODE. Below we will first define the FTSP and then we
will characterize π1,2.

For understanding, it is helpful to recall §3.2, where we indicated that the
FTSP Dt arises as the limit of Dn

t without any scaling (see (3.6)), where Dn
t

is the time-expanded difference process defined in (3.5) associated with the
queue-difference stochastic process Dn ≡ (Qn

1 − κn) − rQn
2 in (3.4). Since

there is no scaling of space, the state space for the FTSP Dt is the countable
lattice {±j±kr : j, k ∈ Z} in R. To see this, first observe from (3.4) that Dn

has state space {±j ± kr − κn : j, k ∈ Z}. Next, because of the subtraction
in (3.5), Dn

t has state space {±j ± kr : j, k ∈ Z}. Finally, because of the
convergence in (3.6), the FTSP Dt has this same state space. This limiting
behavior motivates what we do below, but here what is given below can be
taken as the definition.

6.1. The fast-time-scale CTMC. We fix a time t and assume that we are
given the value x(t) ≡ (q1(t), q2(t), z1,2(t)). In order to simplify the analysis
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we assume that r is rational. That clearly is without any practical loss of
generality. Specifically, we assume that r = j/k for some positive integers j
and k without any common factors. We then multiply the process by k, so
that all transitions can be expressed as ±j or ±k in the state space Z. In
that case, the FTSP Dt ≡ {Dt(s) : s ≥ 0} becomes a CTMC.

Let λ
(j)
+ (x(t)), λ

(k)
+ (x(t)), µ

(j)
+ (x(t)) and µ

(k)
+ (x(t)) be the transition rates

of the FTSP Dt for transitions of +j, +k, −j and −k, respectively, when

Dt(s) > 0. Similarly, we define the transitions when Dt(s) ≤ 0: λ
(j)
− (x(t)),

λ
(k)
− (x(t)), µ

(j)
− (x(t)) and µ

(k)
− (x(t)). (We remark that these rates are the

limits of the rates of Dn
t as n → ∞ with X̄n(t) ⇒ x(t).)

First, for Dt(s) ∈ (−∞, 0], the upward rates are

λ
(k)
− (x(t)) = λ1,

λ
(j)
− (x(t)) = µ1,2z1,2(t) + µ2,2(m2 − z1,2(t)) + θ2q2(t),

(6.1)

corresponding, first, to a class-1 arrival and, second, to a departure from the
class-2 queue, caused by a type-2 agent service completion (of either cus-
tomer type) or by a class-2 customer abandonment. Similarly, the downward
rates are

(6.2) µ
(k)
− (x(t)) = µ1,1z1,1(t) + θ1q1(t), µ

(j)
− (x(t)) = λ2,

corresponding, first, to a departure from the class-1 customer queue, caused
by a class-1 agent service completion or by a class-1 customer abandonment,
and, second, to a class-2 arrival.

Next, for Dt(s) ∈ (0,∞), we have upward rates

(6.3) λ
(k)
+ (x(t)) = λ1, λ

(j)
+ (x(t)) = θ2q2(t),

corresponding, first, to a class-1 arrival and, second, to a departure from
the class-2 customer queue caused by a class-2 customer abandonment. The
downward rates are

µ
(k)
+ (x(t)) = µ1,1z1,1(t) + µ1,2z1,2(t) + µ2,2(m2 − z1,2(t)) + θ1q1(t),

µ
(j)
+ (x(t)) = λ2,

(6.4)

corresponding, first, to a departure from the class-1 customer queue, caused
by (i) a type-1 agent service completion, (ii) a type-2 agent service comple-
tion (of either customer type), or (iii) by a class-1 customer abandonment
and, second, to a class-2 arrival.
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6.2. Representing the FTSP Dt as a QBD. Further analysis is simpli-
fied by exploiting matrix geometric methods, as in [11]. In particular, we
represent the integer-valued CTMC Dt ≡ {Dt(s) : s ≥ 0} just constructed
as a homogeneous continuous-time quasi-birth-and-death (QBD) process, as
in Definition 1.3.1 and §6.4 of [11]. In passing, note that the special case
r = 1 is especially tractable, because then the QBD process reduces to an
ordinary birth-and-death (BD) process.

To represent Dt as a QBD process, we must re-order the states appropri-
ately. We order the states so that the infinitesimal generator matrix Q can
be written in block-tridiagonal form, as in Definition 1.3.1 and (6.19) of [11]
(imitating the shape of a generator matrix of a BD process). In particular,
we write

(6.5) Q ≡


B A0 0 0 . . .
A2 A1 A0 0 . . .
0 A2 A1 A0 . . .
0 0 A2 A1 . . .
...

...
...

...


where the four component submatrices B,A0, A1 and A2 are all 2m × 2m
submatrices for m ≡ max {j, k}. In particular, These 2m × 2m matrices
B,A0, A1 and A2 in turn can be written in block-triangular form composed
of four m×m submatrices, i.e.,

(6.6) B ≡
(

A+
1 Bµ

Bλ A−
1

)
and Ai ≡

(
A+

i 0
0 A−

i

)
for i = 0, 1, 2. (All matrices are also functions of x(t) because for each t we
have a different generator matrix corresponding to the FTSP Dt.)

To achieve this representation, we need to re-order the states into levels.
The main idea is to represent transitions of Dt above and below 0 within
common blocks. Let L(n) denote level n, n = 0, 1, 2, . . . We assign original
states ϕ(n) to positive integers n according to the mapping:

(6.7)
ϕ(2nm+ i) ≡ nm+ i and ϕ((2n+1)m+ i) ≡ −nm− i+1, 1 ≤ i ≤ m.

Then we order the states in levels as follows

L(0) ≡ {1, 2, 3, 4, . . .m, 0,−1,−2, . . . ,−(m− 1)},
L(1) ≡ {m+ 1,m+ 2, . . . , 2m,−m,−(m+ 1), . . . ,−(2m− 1)}, . . .

With this representation, the generator-matrix Q can be written in the form
(6.5) above, where A1 groups all the transitions within a level, A0 groups
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the transitions from level L(n) to level L(n+1) and A2 groups all transitions
from level L(n) to level L(n − 1). Matrix B groups the transitions within
the boundary level L(0), and is thus different than A1.

To illustrate, consider an example with r = 0.8, so that we can choose
j = 4 and k = 5, yielding m = 5. The states are ordered in levels as follows

L(0) = {1, 2, 3, 4, 5, 0,−1,−2,−3,−4},
L(1) = {6, 7, 8, 9, 10,−5,−6,−7,−8,−9},
L(2) = {11, 12, 13, 14, 15,−10,−11,−12,−13,−14}, . . .

Then the submatrices Bµ, Bλ, A
+
i and A−

i , which form the block matrices
B and Ai, i = 0, 1, 2, have the form in (6.12) below, where

(6.8) σ+ = λ
(5)
+ + λ

(4)
+ + µ

(5)
+ + µ

(4)
+ and σ− = λ

(5)
− + λ

(4)
− + µ

(5)
− + µ

(4)
− .

(We solve a full numerical example with these matrices in §11.3.)
Henceforth, we refer to Dt interchangeably as the QBD or the FTSP.

6.3. Positive recurrence. We show that positive recurrence depends only
on the constant drift rates in the two regions, as one would expect. Let δ+
and δ− be the drift in the positive and negative region, respectively; i.e., let

δ+(x(t)) ≡ j
(
λ
(j)
+ (x(t))− µ

(j)
+ (x(t))

)
+ k

(
λ
(k)
+ (x(t))− µ

(k)
+ (x(t))

)
δ−(x(t)) ≡ j

(
λ
(j)
− (x(t))− µ

(j)
− (x(t))

)
+ k

(
λ
(k)
− (x(t))− µ

(k)
− (x(t))

)
.

(6.9)

Theorem 6.1. The QBD Dt is positive recurrent if and only if

(6.10) δ−(x(t)) > 0 > δ+(x(t)).

Proof. We employ the theory in §7 of [11], modified for the continuous-
time QBD.We first construct the aggregate matrices A ≡ A0+A1+A2, A

+ ≡
A+

0 +A+
1 +A+

2 and A− ≡ A−
0 +A−

1 +A−
2 . We then observe that the aggregate

matrix A is reducible, so we need to consider the component matrices A+

and A−, which both are irreducible CTMC infinitesimal generators in their
own right. Let ν+ and ν− be the unique stationary probability vectors of
A+ and A−, respectively, e.g., with ν+A+ = 0 and ν+1 = 1. The theory
concludes that our QBD is positive recurrent if and only if

(6.11) ν+A+
0 1 < ν+A+

2 1 and ν−A−
0 1 < ν−A−

2 1.

In our application it is easy to see that both ν+ and ν− are the uniform
probability vector, attaching probability 1/m to each of the m states, from
which the conclusion follows directly.
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(6.12)

Bµ =


0 0 0 µ

(4)
+ µ

(5)
+

0 0 µ
(4)
+ µ

(5)
+ 0

0 µ
(4)
+ µ

(5)
+ 0 0

µ
(4)
+ µ

(5)
+ 0 0 0

µ
(5)
+ 0 0 0 0

 Bλ =


0 0 0 λ

(4)
− λ

(5)
−

0 0 λ
(4)
− λ

(5)
− 0

0 λ
(4)
− λ

(5)
− 0 0

λ
(4)
− λ

(5)
− 0 0 0

λ
(5)
− 0 0 0 0



A+
0 =


λ
(5)
+ 0 0 0 0

λ
(4)
+ λ

(5)
+ 0 0 0

0 λ
(4)
+ λ

(5)
+ 0 0

0 0 λ
(4)
+ λ

(5)
+ 0

0 0 0 λ
(4)
+ λ

(5)
+

 A−
0 =


µ
(5)
− 0 0 0 0

µ
(4)
− µ

(5)
− 0 0 0

0 µ
(4)
− µ

(5)
− 0 0

0 0 µ
(4)
− µ

(5)
− 0

0 0 0 µ
(4)
− µ

(5)
−



A+
1 =


−σ+ 0 0 0 λ

(4)
+

0 −σ+ 0 0 0
0 0 −σ+ 0 0
0 0 0 −σ+ 0

µ
(4)
+ 0 0 0 −σ+

 A−
1 =


−σ− 0 0 0 µ

(4)
−

0 −σ− 0 0 0
0 0 −σ− 0 0
0 0 0 −σ− 0

λ
(4)
− 0 0 0 −σ−



A+
2 =


µ
(5)
+ µ

(4)
+ 0 0 0

0 µ
(5)
+ µ

(4)
+ 0 0

0 0 µ
(5)
+ µ

(4)
+ 0

0 0 0 µ
(5)
+ µ

(4)
+

0 0 0 0 µ
(5)
+

 A−
2 =


λ
(5)
− λ

(4)
− 0 0 0

0 λ
(5)
− λ

(4)
− 0 0

0 0 λ
(5)
− λ

(4)
− 0

0 0 0 λ
(5)
− λ

(4)
−

0 0 0 0 λ
(5)
−


The alternative cases are simplified by the following relation:

δ−(x(t))− δ+(x(t)) = (j + k)(µ1,2z1,2 + (m2 − z1,2)µ2,2)

> (j + k)m2(µ1,2 ∧ µ2,2) > 0.
(6.13)

Hence there are only two cases in which the drift does not point inward: (i)
δ+(x(t)) ≥ 0 and δ−(x(t)) > 0, (ii) δ−(x(t)) ≤ 0 and δ+(x(t)) < 0. In both
cases the behavior is unambiguous: In case (i), clearly π1,2(x(t)) = 1; in case
(ii), clearly π1,2(x(t)) = 0.

6.4. Computing π1,2. When the QBD is positive recurrent, the stationary
vector of the QBD can be expressed as α ≡ {αn : n ≥ 0} ≡ {αn,j : n ≥
0, 1 ≤ j ≤ m}, where αn ≡ (α+

n , α
−
n ) for each n, with α+

n and α−
n both being

1×m vectors. Then the desired probability π1,2 can be expressed as

(6.14) π1,2 =
∞∑
n=0

m∑
j=1

α+
n,j =

∞∑
n=0

α+
n 1 =

∞∑
n=0

αn1+,
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where 1 denotes a column vector with all entries 1 of the right dimension
(herem×1), while 1+ represents a 2m×1 column vector, withm 1′s followed
by m 0′s.

By Theorem 6.4.1 and Lemma 6.4.3 of [11], the steady-state distribution
has the matrix-geometric form

(6.15) αn = α0R
n,

where R is the 2m × 2m rate matrix, which is the minimal nonnegative
solutions to the quadratic matrix equation A0 +RA1 +R2A2 = 0, and can
be found efficiently by existing algorithms, as in [11] (see §11 below). Since
the matrices A0, A1 and A2 have the block-diagonal form in (6.6), so does
R, with submatrices R+ and R−.

Since the spectral radius of the rate matrix R is strictly less than 1 (Corol-
lary 6.2.4 of [11]), the sum of powers of R is finite, yielding

∞∑
n=0

Rn = (I −R)−1.

Also, by Lemma 6.3.1 of [11], the boundary probability vector α0 in (6.15)
is the unique solution to the system

(6.16) α0(B +RA2) = 0 and α1 = α0(I −R)−11 = 1.

Finally, given the above, and using (6.14), we see that the desired quantity
π1,2 can be represented as

(6.17) π1,2 = α0(I −R)−11+.

For further analysis, it is convenient to have alternative representations
for π1,2(x). Let the vector 1 have the appropriate dimension in (6.19) below.

Theorem 6.2 (alternative representations for π1,2). Assume that δ+(x) <
0 < δ−(x), so that the QBD is positive recurrent at x. (a) For r = 1,

(6.18) π1,2(x) =
δ−(x)

δ−(x)− δ+(x)
.

(b) For rational r, we have the sub-block representation

(6.19) π1,2(x) =
α+
0 (x)(I −R+(x))−11

α+
0 (x)(I −R+(x))−11+ α−

0 (x)(I −R−(x))−11
,

where we choose α0(x) to satisfy α0(B(x)+R(x)A2(x)) = 0, renormalize to
α0(x)1 = 1, which corresponds to multiplying the original α0(x) by a con-
stant, decompose α0(x) consistent with the blocks as α0(x) = (α+

0 (x), α
−
0 (x)).
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Proof. (a) When r = 1, the FTSP Dt ≡ Dt(x) evolves as an M/M/1
queue in each of the regions Dt > 0 and Dt ≤ 0. Thus, we can look at the
system at the successive times at which Dt transitions from state 0 to state
1, and then again from state 1 to state 0. That construction produces an
alternating renewal process of occupation times in each region, where these
occupation times are distributed as the busy periods of the corresponding
M/M/1 queues. Hence, π1,2(x) can be expressed as

(6.20) π1,2(x) =
E[T+(x)]

E[T+(x)] + E[T−(x)]
,

where T+(x) is the busy period of the M/M/1 queue in the upper region,
while T−(x) is the busy period of the M/M/1 queue in the lower region.
By the definition of A, these mean busy periods are finite in each region. In
particular,

(6.21) E[T±(x)] =
1

µ±(x)(1− ρ±(x))
=

1

µ±(x)− λ±(x)
=

1

|δ±(x)|
,

where ρ±(x) ≡ λ±(x)/µ±(x), λ+(x) and µ+(x) are the constant drift rates
up (away from the boundary) and down (toward the boundary) in the upper
region in (6.3) and (6.4), depending on state x, while λ−(x) and µ−(x) are
the constant drift rates down (away from the boundary) and up (toward the

boundary) in the lower region in (6.1) and (6.2); e.g., λ−(x) ≡ µ
(j)
− (x) +

µ
(k)
− (x) with j = k = 1 from (6.2).
(b) We first observe that we can reason as in the case r = 1, using a regen-

erative argument. We can let the regeneration times be successive transitions
from one specific QBD state in level 0 with Dt ≤ 0 to a specific state in level
1 where Dt > 0. The intervals between successive transitions will be i.i.d.
random variables with finite mean. Hence, we can represent π1,2(x) just as
in (6.20), but where now T+(x) is the total occupation time in the upper
region with Dt(s) > 0 during a regeneration cycle, while T−(x) is the total
occupation time in the lower region with Dt(s) ≤ 0 during a regeneration
cycle. Each of these occupation times can be broken up into first passage
times. For example, T+(x) is the sum of first passage times from some state
at level 0 to some other state in level 1 where Dt(s) > 0. The regenerative
cycle will end when the starting and ending states within levels 0 and 1
are the designated pair associated with the specified regeneration time. The
successive pairs (i, j) of starting and ending states within the levels 0 and
1 evolve according to a positive-recurrent finite-state discrete-time Markov
chain.
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Paralleling that regenerative argument, we can work with the QBD matri-
ces, as in (6.17), but now using an alternative representation. Since 1++1− =
1, where all column vectors are 2m × 1, we can apply the second equation
in (6.16) to write

π1,2 =
α0(I −R)−11+

α0(I −R)−11+ + α0(I −R)−11−
.

Then we can choose α0 to satisfy α0(B+RA2) = 0, renormalize to α01 = 1
(which corresponds to multiplying the original α0 by a constant), decompose
α0 consistent with the blocks, letting α0 = (α+

0 , α
−
0 ), to obtain (6.19).

With the QBD representation, we can determine when the FTSP Dt

is positive recurrent, for a given x(t), using (6.10), and then numerically
calculate π1,2. That allows us to numerically solve the ODE (4.1) in §11.
We will also use the representations (6.17), (6.18), (6.19) and other QBD
properties to deduce topological properties of π1,2.

7. Existence and uniqueness of solutions. This section is devoted
to proving Theorem 5.2. For the local existence and uniqueness in Theo-
rem 5.2 (i), we will show that the function Ψ in (4.2) is locally Lipschitz
continuous in Theorem 7.1 below. That allows us to apply the classical
Picard-Lindelöf theorem to deduce the desired existence and uniqueness
of solutions to the IVP (4.3); see Theorem 2.2 of Teschl [21] or Theorem
3.1 in [10]. Afterwards, in §7.4 we establish the global properties in Theo-
rem 5.2 (ii).

7.1. Subsets of the state space. The analysis is complicated because the
function Ψ in (4.1) and (4.2) is not continuous, let alone Lipschitz contin-
uous, on all of the state space of the ODE, i.e., on S ≡ [κ,∞) × [0,∞) ×
[0,m2] ≡ {(q1, q2, z1,2)}. However, we can obtain the required local Lipschitz
continuity in appropriate neighborhoods about each point in S, but specify-
ing these neighborhoods requires care. When care is taken, we can eventually
construct a continuous solution to the ODE, which is differentiable a.e. with
respect to Lebesgue measure.

We first divide the state space S into three regions:

Sb ≡ {q1 − rq2 = κ}, S+ ≡ {q1 − rq2 > κ}, S− ≡ {q1 − rq2 < κ},(7.1)

with S = Sb ∪ S+ ∪ S−. The boundary subset Sb is a hyperplane in the state
space S, and is therefore a closed subset. It is the subset of S where the AP
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is taking place. In Sb the function π1,2 can assume its full range of values,
0 ≤ π1,2(x) ≤ 1.

The regions S+ and S− are open subsets of S. For all x ∈ S+, π1,2(x) = 1;
for all x ∈ S−, π1,2(x) = 0. In order for S− to be a proper subspace of S,
both service pools must be constantly full. Thus, if x ∈ S−, then z1,1 = m1

and z1,2 + z2,2 = m2, but q1 and q2 are allowed to be equal to zero.
To analyze Ψ on Sb, we exploit properties of the QBD introduced in §6.

We partition Sb into three subsets, depending on the drift rates in (6.9). Let
A be the set of all x ∈ Sb for which the QBD is positive recurrent, as given
in (6.10); i.e., let

(7.2) A ≡ {x ∈ Sb | δ−(x) > 0 > δ+(x)}.

Let the other two subsets be

(7.3) A+ ≡ {x ∈ Sb | δ+(x) ≥ 0} and A− ≡ {x ∈ Sb | δ−(x) ≤ 0}.

By the relation (6.13), there are no other alternatives; i.e., Sb = A∪A+∪A−.
From §6, we know that π1,2(x) = 1 in A+, while π1,2(x) = 0 in A−.

7.2. Local Lipschitz continuity. We now are ready to establish the local
Lipschitz continuity. Here we need an unconventional setting, because we
will be changing the reference set.

Definition 7.1 (local Lipschitz continuity). A function f : Ω2 → Rm,
where Ω1 ⊆ Ω2 with Ω2 a connected subset in Rn, is locally Lipschitz con-
tinuous on Ω1 within Ω2 if, for every v0 ∈ Ω1, there exists a neighborhood
U ⊆ Ω2 of v0 such that f restricted to U is Lipschitz continuous; i.e., there
exists a constant K ≡ K(U) such that ∥f(v1) − f(v2)∥ ≤ K∥v1 − v2∥ for
every v1, v2 ∈ U .

The complexity of Definition 7.1 occurs because we are envisioning, not
a single application of the Picard-Lindelof Theorem, but instead different
applications over different regions. When we consider initial states in the set
A, we are regarding A as a two-dimensional subset; we are regarding A as a
subset of R2. In the other cases, the subset is three-dimensional.

To elaborate, let S2 be the subset of all x ≡ (x1, x2, x3) in R3 such that
x1−rx2 = κ. Equivalently, we can let S2 be the set of all (x2, x3) in R2, which
is just R2 itself, with the understanding that we separately define x1 in terms
of x2 via x1 = rx2+κ. In this sense S2 can directly be identified with R2. It
is a Banach space, as required for the Picard-Lindelof Theorem. Moreover,
it is easy to see that A is an open subset of Sb and thus of the Banach
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space S2. When we consider the set A, we are requiring that q1 = rq2 + κ
hold for all time (over the short interval we are considering). Exploiting this
perspective, we will show that the IVP starting in A has a solution that
remains in A over a positive interval. A variant of that same conclusion will
be deduced for every initial point in S, but for the other statements the
region is three-dimensional.

Theorem 7.1. The function Ψ in (4.2) is locally Lipschitz continuous
on A within Sb, on S+ within S+, on S− within S−, on A+ within Sb ∪ S+
and on A− within Sb ∪ S−.

We prove Theorem 7.1 in §12, drawing heavily upon the properties of π1,2
established in §6. In particular, we use the fact that π1,2(x) is continuous in
Sb. In order to ensure that the ODE starting at a point in the set A within
Sb ⊂ S2 remains in the set A, we apply the FTSP studied in §6. The FTSP
has a proper steady state distribution at a state x, with 0 < π1,2(x) < 1, if
and only if x ∈ A, which requires that q1 = rq2+κ. Since π1,2(x) is continuous
for x ∈ A, that steady-state probability can change only smoothly, all of
which takes place within the set A. This property of the FTSP implies that
the solution to the ODE, starting within A will remain in A for a short
interval of time. For any x outside A, we necessarily have either π1,2(x) = 0
or π1,2(x) = 1.

7.3. Proof of Theorem 5.2 (i).

Proof. Note that all of S is covered by the five cases in Theorem 7.1;
i.e., every point in S belongs to one (and only one) of the five sets A, S+, S−,
A+ and A−. In each of the five cases, we can apply Theorem 7.1 to conclude
that Ψ is locally Lipschitz continuous on Ω1 within Ω2 for the specified
reference set Ω2. Thus, for every initial point in S, we can apply the Picard-
Lindelöf theorem to deduce the desired existence and uniqueness of solutions
to the IVP (4.3) over an interval [0, δ) for δ > 0; see Theorem 2.2 of Teschl
[21]. That solution will be right differentiable at t = 0 and differentiable in
the open interval (0, δ). In particular, this reasoning applies in the case A;
in that cases, as discussed after Definition 7.1, the set A is regarded as a
two-dimensional subset of the Banach space S2. As a consequence of this
reasoning, we deduce that if the initial point is in A, then there will be a
solution that remains entirely in A over an initial interval [0, δ).

So far, this construction only yields a solution over the initial time interval
[0, δ) for some δ > 0. However, if x(t) is the value of a solution to the ODE
at time t and that value is within S, then the same construction applies over
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an interval [t, t + δ). Hence, provided that we can establish claim (ii), we
obtain the full statement in part (i).

7.4. Global existence and uniqueness. The remainder of section is de-
voted to completing the proof of Theorem 5.2 by establishing global existence
and uniqueness. We first observe that, in general, one overall differentiable
solution to the ODE over [0,∞) may not exist. From S+ or S−, the solution
can eventually move to anywhere in Sb. That movement can produce a dis-
continuity in π1,2(x) and thus in Ψ. For example, in S+ we necessarily have
π1,2(x) = 1. However, in general there is nothing preventing x(t) → x(tb) as
t ↑ tb, where x(t) ∈ S+ with π1,2(x(t)) = 1 but also δ+(x(t)) < 0 < δ−(x(t))
while x(tb) ∈ A, necessarily with δ+(x(tb)) < 0 < δ−(x(tb)). The probability
π1,2(x(t)) jumps instantaneously from 1 to some value strictly between 0
and 1 when A is hit. A numerical example is given in the appendix.

Nevertheless, we can treat time points at which π1,2 and thus Ψ are dis-
continuous by starting a new ODE at each hitting time of A from S+ or S−.
That makes the solution continuous and differentiable a.e. We justify that
claim in the remainder of this section.

Before doing so, we observe that the only difficulty occurs when the solu-
tion goes from S+ or S− to Sb. As a consequence of Theorem 5.2 (i), a solution
starting in A can only leave A via one of the sets A+ or A−. To understand
what can happen, let d(x(t)) ≡ q1(t) − rq2(t) and d′(x(t)) ≡ q̇1(t) − rq̇2(t),
from (4.2), where we regard d′(x(t)) as a right derivative. In Sb we have
d(x(t)) = 0 and in A we have d′(x(t)) = 0. On A+ and A−, the possibilities
can be determined from the following lemma.

Lemma 7.1. On Sb, if π1,2(x) = 1, then d′(x) = δ+(x); if π1,2(x) = 0,
then d′(x) = δ−(x). Hence, on A+, d′(x) ≥ 0, while on A−, d′(x) ≤ 0.

Proof. Substitute the appropriate values of π1,2(x(t)) into (4.2) and
compute δ±(x) from (6.1)–(6.4), recalling that r = j/k.

We next separate equality from strict inequality for the weak inequalities
in Lemma 7.1. For that purpose, we decompose the sets A+ and A− by
letting

A+
+ ≡ {x ∈ A+ | δ+(x) > 0}, A+

0 ≡ {x ∈ A+ | δ+(x) = 0},
A−
− ≡ {x ∈ A− | δ−(x) < 0}, A−

0 ≡ {x ∈ A− | δ−(x) = 0}.
(7.4)

Lemma 7.2. Consider a solution to the ODE over a sufficiently small in-
terval starting at x(0). If x(0) ∈ A+

+, then x(t) ∈ S+ for all t > 0 sufficiently
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small; if x(0) ∈ A+
0 , then x(t) ∈ S−S−−A− for all t > 0 sufficiently small;

if x(0) ∈ A−
−, then x(t) ∈ S− for all t > 0 sufficiently small; if x(0) ∈ A−

0 ,
then x(t) ∈ S− S+ − A+ for all t > 0 sufficiently small.

Proof. We only treat the first two cases, because the reasoning for the
last two is the same. Recall the critical role played by the drifts of the FTSP,
as first defined in (6.9). Their critical role in positive recurrence is established
in (6.10). The inequality in (6.13) implies that there are only three possible
cases. If x(0) ∈ A+

+, then d(x(0)) = 0 and d′(x(0)) > 0 by Lemma 7.1. That
implies that d(x(t)) > 0 for all t > 0, which in turn implies that x(t) ∈ S+
for all t > 0, the claimed result. If x(0) ∈ A+

0 , then d′(x(0)) = 0 by Lemma
7.1. To see why we cannot have x(t) ∈ A− ∪ S− for all t > 0 sufficiently
small, note that then π1,2(x) would jump from 1 to 0, which would cause a
jump in d′(x) because of Lemma 7.1 and the inequality in (6.13).

7.5. Boundedness. We now show that the possible values of a solution
to the ODE are contained in a compact subset of S, provided that the
initial values of the queue lengths are constrained. That is accomplished by
proving that a solution to the IVP (4.3) is bounded. We use the notation:
a ∨ b ≡ max{a, b}.

Theorem 7.2 (boundedness). Every solution to the IVP (4.3) is bounded.
In particular, the following upper bounds for the fluid queues hold:

(7.5) qi(t) ≤ qbdi ≡ qi(0) ∨ λi/θi t ≥ 0, i = 1, 2.

Proof. Since 0 ≤ z1,2 ≤ m2 and qi ≥ 0 in S, we only need to establish
the upper bounds for the queue contents in (7.5). To do so, it suffices to
consider the bounding function describing the queue-length process of each
queue in a modified system with no service processes, so that all the fluid
output is due to abandonment, which produces a simple one-dimensional
ODE for each queue; for the remaining details, see §D in the appendix.

7.6. Proof of Theorem 5.2 (ii).

Proof. It follows from Theorem 5.2 (i) established above, and Theorems
7.1 and 7.2, that any solution x on [0, δ) can be extended to an interval
[0, δ′), δ′ > δ (even δ′ = ∞), with the solution {x(t) : t ∈ [0, δ′)} again being
unique, provided that that the solution x makes no transitions from S− Sb
to Sb, causing a discontinuity in π1,2(x) and thus Ψ in (4.2). (See Theorem
3.3 in [10] and its proof for supporting details.)
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Moreover, the solution in S+ or S− necessarily has a left limit at the time
it hits Sb. The left limit exists because, by Theorem 7.2, the solution is
bounded, and because the derivative in either S+ or S− is bounded as well,
by virtue of (4.2). At each such hitting time, a new ODE is constructed
starting in Sb. That ensures the overall continuity of x.

In general, there can be accumulation points of such hitting times of the
set Sb from S−Sb; i.e., there could exist sequences {tin : n ≥ 1}, i = 1, 2 with
x(t1n) ∈ S−Sb and x(t2n) ∈ Sb for all n with tin ↑ t < ∞ and x(tin) → x(t) ∈ Sb
as n → ∞ for i = 1, 2. However, we claim that, at any such accumulation
time t, x(t) must be in either A+ or A−. We now show by contradiction that
there cannot be an accumulation point in A.

Starting from x(t) in A, it necessarily will take a given positive time for
the solution to move through the set A until it reaches A+∪A−, after which
it must transition to S − Sb, after which it may again later hit A. We can
apply the continuity of the solution within the set A as a function of the
initial value within A, due to the Lipschitz continuity, see §2.4 of [21]. Since
t2n → t and x(t2n) → x(t) ∈ A as n → ∞, the solution of the ODE over an
initial interval starting at x(t2n) in A at time t2n must converge to the solution
of the ODE over an initial interval starting at x(t) in A at time t. Thus, we
can conclude that the time to reach A+ ∪ A− from x(t2n) at time t2n must
be bounded below by a strictly positive number for all n sufficiently large.
Thus, such an accumulation point x(t) cannot be in A. All such accumulation
points must be in either A+ or A−.

Finally, by Theorem 7.1, the function Ψ is locally Lipschitz continuous at
each point in A+ ∪ A−. Hence, the ODE is well defined there. First, a new
ODE can be constructed starting at the accumulation point in A+ ∪ A−.
However, since the ODE is well defined at each accumulation time, the
solution x must actually be differentiable at each of these accumulation
times of hitting times. As a consequence, x is continuous and differentiable
almost everywhere throughout [0,∞).

We remark that we have not yet ruled out the possibility of infinitely many
discontinuity points of π1,2(x(t)) and thus Ψ(x(t)); i.e., we have not shown
that the solution to the ODE necessarily only makes finitely many transitions
from S − Sb to A over the entire positive halfline [0,∞). In later sections
we obtain conditions guaranteeing that does not happen. In the proof of
Theorem 5.2 (ii), just completed, we have established the following result.

Corollary 7.1 (extension to a global solution). Let x be the unique
differentiable solution to the IVP (4.3) on an interval [0, δ), established in
§7.1. If it is known that the solution can never transition from S+ or S− to
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Sb, which is implied by remaining in the set A for all time, then there exists
a unique differentiable solution to the IVP (4.3) on [0,∞).

We give conditions for the solution to the IVP (4.3) to lie entirely in A
in §10.

8. The existence of a unique stationary point. We now indicate
what is meant by a stationary point for an autonomous ODE. Then we
show that there exists a unique stationary point for the autonomous ODE
in (4.1) and (4.2). We then give conditions under which the fluid solution
x ≡ {x(t) : t ≥ 0} converges to stationarity as t → ∞. In §9 we show that it
does so exponentially fast.

Definition 8.1 (stationary point for an autonomous ODE). We say
that x∗ is a stationary point for an autonomous ODE ẋ(t) = Ψ(x(t)) if
Ψ(x∗) = 0, i.e., if x(t) = x∗ for all t ≥ 0 is a solution to the ODE. If a
solution x of the ODE is a constant function, then we say that the solution
is stationary, or in steady state.

Definition 8.1 actually contains two different definitions of a stationary
point of an ODE, but they are equivalent for an autonomous ODE; see pp.
20-21 of [21]. Note that an autonomous ODE can have a stationary point
without all solutions to the ODE being constant functions. For example,
the ODE ẋ(t) = 2

√
x has a stationary point x∗ = 0, but it also has the

non-constant solution x(t) = t2, t ≥ 0. For this example, the Lipschitz
continuity required for the Picard-Lindelof Theorem is violated, so that that
non-uniqueness is possible, and occurs.

8.1. Characterization of the stationary point. By definition, a stationary
point x∗ ∈ S satisfies Ψ(x∗) = 0. From (4.2), we see that this gives a sys-
tem of three equations with three unknowns, namely, q∗1, q

∗
2 and z∗1,2. The

apparent fourth variable π∗
1,2 ≡ π1,2(x

∗) is a function of the other three vari-
ables and its value is determined by x∗. In principle, the three equations in
Ψ(x) = 0 can be solved directly to find all the roots of Ψ. However, π∗

1,2 is
a complicated function of x∗ having the complicated closed-form expression
in (6.14) and (6.17).

Theorem 8.1 below states that, if there exists a stationary point for the
fluid ODE (4.2), then this point is unique, and must have the specified
form. The uniqueness of x∗ is proved by treating π∗

1,2 as a fourth variable,
and adding a fourth equation to the three equations Ψ(x) = 0. However, it
does not prove that a stationary point exists. In general, the solution π∗

1,2
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we get from the system of four equations may not equal to π1,2(x
∗), for the

function π1,2 defined in (3.7). The existence of a stationary point is proved
in the next section.

The proof of existence is immediate from the proof of uniqueness when
π1,2(x

∗) is known in advance to be 0 or 1, with the value determined. That
occurs everywhere except the region A; it occurs in the two regions S+ and
S−, but it also occurs in Sb −A. Since the QBD is not positive recurrent in
Sb − A, it follows that π1,2(x

∗) can only assume one of the values, 0 or 1,
achieving the same value as in the neighboring region S+ or S−. (We omit
detailed demonstration.) But we will have to work harder in A.

We now focus on uniqueness. Although π∗
1,2 is treated as a variable, we

still impose conditions on it so that it can be a legitimate solution to (3.7).
In particular, if q∗1 − rq∗2 > κ then we let π∗

1,2 = 1; if q∗1 − rq∗2 < κ, then
we let π∗

1,2 = 0. Equation (8.3) below shows that 0 ≤ π∗
1,2 ≤ 1 whenever

q∗1 − rq∗2 = κ, i.e., whenever x∗ ∈ Sb.
For a, b ∈ R, recall that a ∨ b ≡ max{a, b} and let a ∧ b ≡ min{a, b}. Let

(8.1) z ≡ θ2(λ1 −m1µ1,1)− rθ1(λ2 −m2µ2,2)− θ1θ2κ

rθ1µ2,2 + θ2µ1,2
.

Theorem 8.1 (uniqueness of the stationary point). There can be at most
one stationary point x∗ ≡ (q∗1, q

∗
2, z

∗
1,2) for the ODE (4.1), which must take

the form

z∗1,2 = 0 ∨ z ∧m2, q∗1 =
λ1−m1µ1,1−µ1,2z

∗
1,2

θ1
, q∗2 =

λ2−µ2,2(m2− z∗1,2)

θ2
,

(8.2)

for z in (8.1). Moreover,

(8.3) π∗
1,2 =

µ1,2z
∗
1,2

µ1,2z∗1,2 + (m2 − z∗1,2)µ2,2
.

Proof. We start with (8.3). This expression is easily derived from the
third equation in (4.2), by equating ż1,2(t) to zero. Observe that if z∗1,2 = m2

then π∗
1,2 in (8.3) is equal to 1, and if z∗1,2 = 0 then π∗

1,2 = 0. Now, by
plugging the value of π∗

1,2 in the ODE’s for q̇1(t) and q̇2(t) in (4.2) we get
the expressions of q∗1 and q∗2 in (8.2). We now have the two equations for
the stationary queues, but there are three unknowns: z∗1,2, q

∗
1 and q∗2. We

introduce a third equation to resolve this difficulty.
Consider the following three equations with the three unknowns: z, q1(z)

and q2(z). (here q1 and q2 are treated as functions of the variable z, not to be
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confused with the fluid solution which is a function of the time argument t.)

q1(z) =
λ1 − µ1,1m1 − µ1,2z

θ1
, q2(z) =

λ2 − µ2,2(m2 − z)

θ2
,

κ = q1(z)− rq2(z).

(8.4)

Notice that q1(z) is decreasing with z, whereas q2(z) is increasing with z.
Thus, there exists a unique solution to these three equations, which has z
as in (8.1). We can recover x∗ from the solution to (8.4), and by doing so
show that x∗ is unique and is always in one of the three regions S−, S+ or
Sb (so that x∗ ∈ S).

Let (q1(z), q2(z), z) be the unique solution to (8.4). First assume that
z > m2, which implies that q2(z) > 0, and, by the third equation, q1(z) > κ.
By replacing z with m2, q1(·) is increased and q2(·) is decreased (but is
still positive), so that q1(m2) − rq2(m2) > κ (and, trivially, q1(m2) > κ,
q2(m2) > 0). This implies that x∗ ≡ (q1(m2), q2(m2),m2) ∈ S+ and, if it is
indeed a solution to Ψ(x) = 0, then x∗ is the unique stationary point for the
ODE.

Now assume that the unique solution to (8.4) has z < 0. By replacing z
with 0 we have q1(0) < q1(z) and q2(0) > q2(z), which imply that q1(0) −
rq2(0) < κ. Now, since q1(0) = qa1 we have that q1(0) ≥ κ by Assumption A.
This implies that q1(z) > κ, which further implies that rq2(z) = q1(z)−κ >
0, so that rq2(0) > rq2(z) > 0. Taking x∗ ≡ (q1(0), q2(0), 0), we see that
x∗ ∈ S−, and if x∗ is indeed a solution to Ψ(x) = 0, then x∗ is the unique
stationary point for the ODE.

Finally, assume that the solution x(z) ≡ (q1(z), q2(z), z) to (8.4) has 0 ≤
z ≤ m2. To conclude that x(z) is in Sb we need to show that q(z), q2(z) ≥ 0,
so that q∗1 = q1(z) and q∗2 = q2(z) are legitimate queue-length solutions. We
now show that is the case under Assumption A.

Let Sa
2 ≡ m2−λ2/µ2,2. Note that, if Sa

2 ≥ 0, then Sa
2 = sa2, for s

a
2 in (5.1).

We start by rewriting q1(z) and q2(z) in (8.4) as

q1(z) = qa1 − µ1,2

θ1
z, q2(z) =

µ2,2

θ2
(z − Sa

2 ).(8.5)

Now, it follows from Assumption A that

κ ≤ qa1 −
µ1,2

θ1
sa2 ≤ qa1 −

µ1,2

θ1
Sa
2 ,(8.6)

where the second inequality follows trivially, since Sa
2 ≤ sa2. From the third

equation of (8.4), κ = q1(z)− rq2(z). Combining this with (8.5), we see that

(8.7) κ = q1(z)− rq2(z) = qa1 −
µ1,2

θ1
z − r

µ2,2

θ2
(z − Sa

2 ).
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Combining (8.6) and (8.7), we get

qa1 −
µ1,2

θ1
z − r

µ2,2

θ2
(z − Sa

2 ) ≤ qa1 −
µ1,2

θ1
Sa
2 ,

which is equivalent to

0 ≤
(
µ1,2

θ1
+ r

µ2,2

θ2

)
(z − Sa

2 ).

This, together with the fact that the solution has z ≥ 0, implies that z ≥
max{0, Sa

2} = sa2. It follows from (8.5) that q2(z) ≥ 0 and, by using the third
equation in (8.4) again, q1(z) = rq2(z) + κ ≥ κ ≥ 0.

An immediate consequence of the proof of Theorem 8.1 is that, in order to
find the candidate stationary point x∗, one has to solve the three equations
in (8.4). The next corollary summarizes the values x∗ may take, depending
on its region; the proof appears in the appendix.

Corollary 8.1. Let x∗ = (q∗1, q
∗
2, z

∗
1,2) be the point defined in Theo-

rem 8.1.

(i) If x∗ ∈ Sb, then, for z defined in (8.1),

z∗1,2 = z =
θ1θ2(q

a
1 − κ)− rθ1(λ2 − µ2,2m2)

rθ1µ2,2 + θ2µ1,2

=


θ1θ2(qa1−rqa2−κ)
rθ1µ2,2+θ2µ1,2

, if qa2 ≥ 0, sa2 = 0.

θ1θ2(qa1+rµ2,2sa2/θ2−κ)
rθ1µ2,2+θ2µ1,2

, if qa2 = 0, sa2 > 0.

q∗1 =
λ1 −m1µ1,1 − z∗1,2µ1,2

θ1
, q∗2 =

λ2 − (m2 − z∗1,2)µ2,2

θ2
.

(ii) If x∗ = S+, then

z∗1,2 = m2, q∗1 =
λ1 −m1µ1,1 −m2µ1,2

θ1
, q∗2 =

λ2

θ2
.

(iii) If x∗ ∈ S−, then

z∗1,2 = 0, q∗1 =
λ1 −m1µ1,1

θ1
, q∗2 =

λ2 −m2µ2,2

θ2
.
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If x∗ ∈ S+, as in (ii), then the system does not have enough service
capacity to keep the weighted difference between the two queues at κ, even
when all agents are working with class 1. In this case, the only output from
queue 2 is due to abandonment, since no class-2 fluid is being served (in
steady state). Queue 2 is then equivalent to the fluid approximation for an
M/M/∞ system with service rate θ2 and arrival rate λ2. On the other hand,
queue 1 is equivalent to an overloaded inverted-V model: a system in which
one class, having one queue, is served by two different service pools.

The next corollary gives necessary and sufficient conditions for x∗ to be
in each region. It shows that the region of x∗ can be determined from rate
considerations alone. We give the proof in the appendix.

Corollary 8.2. Let x∗ be as in (8.2). Then

(i) x∗ ∈ Sb if and only if

(8.8)
µ1,2s

a
2

θ1
∨ rqa2 ≤ qa1 − κ ≤ rλ2

θ2
+

µ1,2m2

θ1
;

x∗ ∈ A if and only if both inequalities are strict.

(ii) x∗ ∈ S+ if and only if qa1 − κ > rλ2
θ2

+
µ1,2m2

θ1
.

(iii) x∗ ∈ S− if and only if rqa2 > qa1 − κ.

Remark 8.1 (most likely region in applications). It follows from Corol-
lary 8.2 that, in applications, A is the most likely region for the stationary
point when the system is overloaded, provided that the arrival rates are
about 10 − 50% larger than planned during an overload incident. Typi-
cally, a much higher overload is needed in order for the stationary point
to be in S+. As an example, consider the canonical example from [16]:
There are 100 servers in each pool, serving their own class at rates µ1,1 =
µ2,2 = 1. Type-2 servers serve class-1 customers at rate µ1,2 = 0.8. Also,
θ1 = θ2 = 0.3, r = 0.8 and κ = 0. Suppose that class 2 is not overloaded
with λ2 = 90. Then, for the stationary point to be in S+, we need to have
λ1 > µ1,1m1+µ1,2m2+ θ1rλ2/θ2 = 252, i.e., the class-1 arrival rate is 252%
larger than the total service rate of pool 1. If λ2 > 90, especially if pool 2 is
also overloaded, then λ1 needs to be even larger than that.

8.2. Existence of a stationary point. We have just established uniqueness
of the stationary point in S, and characterized it. In the process, we have also
established existence in S−A, because the form of π1,2(x) is then known in
advance. Now we will establish existence of the stationary point in A. First,
we calculate the drift rates at x∗ ∈ A.
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Lemma 8.1 (the drift rates at x∗). For x∗ in Corollary 8.1 (i), where
0 < z∗1,2 < m2,

(8.9) δ+(x
∗) = −(j+k)µ2,2(m2−z∗1,2) < 0, δ−(x

∗) = +(j+k)µ1,2z
∗
1,2 > 0.

Proof. Substitute x∗ in Corollary 8.1 (i) into (6.9), using (6.1)-(6.4).

We now are ready to prove existence.

Theorem 8.2 (existence). If the model parameters produce x∗ ∈ A, i.e.,
as in Corollary 8.1 (i), where 0 < z∗1,2 < m2, then x∗ is the unique stationary
point.

Proof. We will prove that there must exist at least one stationary point.
Given that result, by Theorem 8.1 and Corollary 8.1, there must be exactly
one fixed point and that must be the x∗ given there. To establish existence,
we will apply the Brouwer fixed point theorem. It concludes that a continu-
ous function mapping a convex compact subset of Euclidean space Rk into
itself has at least one fixed point. We will let our domain be the set

(8.10) C(η) ≡ {x ∈ A ∩ B : δ+(x) ≤ −η and δ−(x) ≥ η}

for an appropriate small positive η, where B ≡ [0, qbd1 ]× [0, qbd2 ]× [0,m2] with
qbdi being the bound on qi from Theorem 7.2. Choose η sufficiently small
that x∗ ∈ C(η); that is easily ensured by Lemma 8.1. Since the rates in
(6.1)–(6.4) and the drift in (6.9) are linear functions of x, we see that C(η)
is a convex subset of A for each η > 0. Since the inequalities in (8.10) are
weak, the set is closed. The intersection with B guarantees that the set C(η)
is also bounded. Hence, C(η) is compact.

By Theorem 5.2, for any x(0) ∈ C(η), there exists a unique solution to the
ODE over [0, δ] for some positive δ. Hence, for any t with 0 < t < δ, the map
from x(0) to x(t) is continuous; see §2.4 of [21]. Let x∗L ≡ (q∗1,L, q

∗
2,L, z

∗
1,2,L)

and x∗U ≡ (q∗1,U , q
∗
2,U , z

∗
1,2,U ), where q

∗
1,L ≡ q∗1−ϵ, q∗2,L ≡ q∗2−ϵ, z∗1,2,L ≡ z∗1,2−ϵ,

q∗1,U ≡ q∗1 + ϵ, q∗2,U ≡ q∗2 + ϵ and z∗1,2,U ≡ z∗1,2 + ϵ. Let ϕt : C(η) → C(η) be
the continuous function defined by ϕt(x(0)) ≡ (q1,t, q2,t, z1,2,t), where

(8.11) qi,t ≡ qi(t) ∨ q∗i,L ∧ q∗i,U and z1,2,t ≡ z1,2,t ∨ z∗1,2,L ∧ z∗1,2,U ,

for i = 1, 2. We can choose η > 0 and ϵ > 0 sufficiently small so that, first,
x∗ ∈ C(η) and, second, that xi,t ∈ C(η) for each x(0) ∈ C(η). Hence, the
pair (C(η), ϕt) satisfies the conditions for the Brouwer fixed point theorem.
Hence, there exists x(0) ∈ C(η) such that x(t) = x(0).
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Now let {tn : n ≥ 1} be a sequence of time points decreasing toward 0.
We can apply the argument above to deduce that, for each n, there exists
xn(0) in C(η) such that xn(tn) = xn(0). However, from the ODE, we have
the relation |x(t)− x(0)−Ψ(x(0))t| ≤ Mt2 for all sufficiently small t. Since
{xn(0) : n ≥ 1} is bounded, there exists a convergent subsequence. Let x(0)
be the limit of that convergent subsequence. For that limit, we necessarily
have Ψ(x(0)) = 0. Hence, that x(0) must be a stationary point for the ODE.
By Theorem 8.1, we must have x(0) = x∗.

8.3. Global asymptotic stability. Having a unique stationary point of an
autonomous ODE does not imply that the solution necessarily converges to
that point as t → ∞. It does not even guarantee that a solution to the IVP
(4.3) is asymptotically stable in the sense that, if ∥x(0) − x∗∥ < ϵ, then
x(t) → x∗ as t → ∞, no matter how small ϵ is. In fact, there is not even
a guarantee that x(t) will remain in the ϵ-neighborhood of x∗ for all t ≥ 0.
We will establish all of these properties in Theorem 8.3 below by showing
that x∗ in §8.1 is globally asymptotically stable, as defined below:

Definition 8.2 (global asymptotic stability). A point x∗ is said to be
globally asymptotically stable for an autonomous ODE if it is a stationary
point and if, for any initial state x(0) and any ϵ > 0, there exists a time
T ≡ T (x(0), ϵ) ≥ 0 such that ∥x(t)− x∗∥ < ϵ for all t ≥ T .

Global asymptotic stability goes beyond simple convergence by also re-
quiring that the limit be a stationary point.

Theorem 8.3 (global asymptotic stability of x∗). The unique stationary
point x∗ of the autonomous ODE in (4.1) is globally asymptotically stable.

Our proof of Theorem 8.3 relies on Lyapunov stability theory for deter-
ministic dynamical systems; see Chapter 4 of Khalil [10]. Let E be an open
and connected subset of Rn containing the origin. We use standard vector no-
tation to denote the inner product of vectors a, b ∈ Rn, i.e., a ·b =

∑n
i=1 aibi.

Definition 8.3 (Lie derivative). For a continuously differentiable func-
tion V : E → R, and a function Ψ : E → Rn, the Lie derivative of V along
Ψ is defined by

V̇ (x) ≡ ∂V

∂x
Ψ(x) = ∇V ·Ψ(x),

where ∇V ≡ ( ∂V
∂x1

, . . . , ∂V
∂xn

) is the gradient of V .
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Definition 8.4 (Lyapunov-function candidate). A continuously differ-
entiable function V : E → R is a Lyapunov-function candidate if:

(i) V (0) = 0

(ii) V (x) > 0 for all x in E − {0}

In proving Theorem 8.3 we use the following theorem, which is Theorem
4.2 pg. 124 in [10]:

Theorem 8.4 (global asymptotic stability for nonlinear ODE). Let x =
0 be a stationary point of ẋ = Ψ(x), Ψ : E → Rn, and let V : Rn

+ → R be a
Lyapunov-function candidate. If

(i) V (x) → ∞ as ||x|| → ∞ and

(ii) V̇ (x) < 0 for all x ̸= 0,

then x = 0 is globally asymptotically stable as in Definition 8.2.

Notice that, under the conditions of Theorem 8.4, the Lyapunov-function
candidate V provides a form of monotonicity: We necessarily have V (0) = 0
and V (x(t)) strictly decreasing in t for x(t) ̸= 0. To elaborate, we introduce
the notion of a V -ball. We say that βV (α) is the α V -ball with center at x∗

and radius α if

(8.12) βV (α) ≡ {x ∈ Rn : ∥V (x)− V (x∗)∥ ≤ α}.

If x(t0) ∈ βV (α) for some α ≥ 0 and t0 ≥ 0, then x(t) ∈ βV (α) for all t ≥ t0.

Proof of Theorem 8.3. Theorem 8.4 applies directly only within a sin-
gle region, starting at a point in S+, S−, A, A− or A+. However, we will
show that the same Lyapunov function V can be used in all regions, leading
to global decrease of V as x∗ is being approached.

Let x be the unique solution to (4.3). Let x∗ ≡ (q∗1, q
∗
2, z

∗
1,2) be the sta-

tionary point for the system (4.1). Without loss of generality, we perform a
change of variables and define a new system whose unique stationary point
is x = 0. To this end, let y = x − x∗ so that ẏ = ẋ = Ψ(x). Hence,
Ψ(x) = Ψ(y + x∗) ≡ g(y) and we have that g(0) = Ψ(0 + x∗) = Ψ(x∗) = 0.
That is, if x∗ is a stationary point for the original system ẋ = Ψ(x), then
the stationary point for the new system, ẏ = g(y), is y∗ = 0. We distinguish
between two cases: (i)µ1,2 > µ2,2 and (ii)µ1,2 ≤ µ2,2.

(i) First, if µ1,2 > µ2,2, then choose V1(x) ≡ x1 + x2 and apply its Lie
derivative along g(y) = Ψ(y+x∗) where y+x∗ = (q1(t)+q∗1, q2(t)+q∗2, z1,2(t)+
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z∗1,2) and x∗ is given in (8.2). By the definition of the Lie derivative, V̇1(y)
is equal to the inner product

V̇1(y) = (1, 1, 0) · (q̇1(t), q̇2(t), ż1,2(t))′ = q̇1(t) + q̇2(t),

for q̇1, q̇2 and ż1,2 in (4.2), after the change of variables. Let z̃1,2(t) ≡ z1,2(t)+
z∗. Then, for x∗ = (q∗1, q

∗
2, z

∗
1,2) as in (8.2)

V̇1(y) = λ1 −m1µ1,1 − π1,2(y(t))[z̃1,2(t)µ1,2 + (m2 − z̃1,2(t))µ2,2]

− θ1(q1(t) + q∗1)− (1− π1,2(y(t)))[(m2 − z̃1,2(t))µ2,2 + z̃1,2(t)µ1,2]

+ λ2 − θ2(q2(t) + q∗)

= λ1 + λ2 −m1µ1,1 −m2µ2,2 + z1,2(t)µ2,2 + z∗µ2,2 − z1,2(t)µ1,2

− z∗1,2µ1,2 − θ1q1(t)− θ1q
∗
1 − θ2q2(t)− θ2q

∗
2

= −θ1q1(t)− θ2q2(t)− z1,2(t)(µ1,2 − µ2,2).

Thus, V̇1(y) < 0 for all y ∈ R3 unless y = 0.
(ii) When µ1,2 ≤ µ2,2, there exists a B ≥ 1 such that µ2,2 = Bµ1,2.

We next show that for any C > B the candidate-function V2(x) ≡ Cx1 +
x2 + (C − 1)x3 is a Lyapunov function. The Lie derivative of V2(x) for the
modified system g(y) is

V̇2(y) = (C, 1, C − 1) · (q̇1(t), q̇2(t), ż1,2(t)) = Cq̇1(t) + q̇2(t) + (C − 1)ż1,2(t).

Hence,

V̇2(y) = C [λ1 −m1µ1,1 − π1,2(y(t))(z̃1,2(t)µ1,2 + (m2 − z̃1,2(t))µ2,2)]

− θ1(q1(t) + q∗1) + λ2 − θ2(q2(t) + q∗2)

− (1− π1,2(y(t)))(z̃1,2(t)µ1,2 + (m2 − z̃1,2(t)µ2,2))

+ (C − 1) [π1,2(y(t))(m2 − z̃1,2(t))µ2,2 − (1− π1,2(y(t)))z̃1,2(t)µ1,2]

= −Cθ1q1(t)− θ2q2(t)− z1,2(t)(Cµ1,2 − µ2,2),

so that V̇2(y) < 0 for all y ̸= 0.
By Theorem 8.4, y∗ = 0 is globally asymptotically stable for the modified

system g(y). Hence, x∗ is globally asymptotically stable for the original
system Ψ(x). That is, for every initial value x(0) we have that x(t) → x∗.

Remark 8.2 (eliminating π1,2 from the argument). As often occurs with
Lyapunov functions, our choice of Lyapunov functions in the two cases (i)
and (ii) of the proof of Theorem 8.3 above simplifies the argument. We have
chosen the two Lyapunov functions so that we can eliminate π1,2 from the
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analysis. This suggests that there is some some flexibility in the control
for achieving the stationary point x∗. That is consistent with Theorem 8.1,
which characterizes the form of the unique stationary point. In both cases,
we do not need to analyze the FTSP.

8.4. Staying in S. We also use the Lyapunov argument to prove Theorem
5.1, i.e., to show that the solution to the ODE can never leave S.

Proof of Theorem 5.1. To simplify the writing of the proof, we use
the following notation (with an abuse of conventions): For a function f of
a real variable that is continuous at t, let f(t+) ≥ c mean that f(s) ≥ c
for all s ∈ (t, t + ϵ], for all ϵ > 0 sufficiently small (and similarly for other
inequalities, e.g., > c). If f is not continuous at t, then f(t+) has the usual
meaning, i.e., the right limit at the point t. We apply this definition below
to functions that are derivatives, e.g., f = ż1,2.

By Assumption A, x(0) ∈ S and we must show that, for all t > 0, z1,2(t) ∈
[0,m2], q1(t) ∈ [κ,∞) and q2(t) ∈ [0,∞). Consider t ≥ 0. It is easy to see
that if z1,2(t) = 0, then ż1,2(t) ≥ 0. If ż1,2(t) > 0, then z1,2(t) is increasing
and, in particular, z1,2(t+) > 0. However, if ż1,2(t) = 0, we must rule out the
case z1,2(t+) < 0. (Observe that ż1,2(t) = z1,2(t) = 0 implies π1,2(x(t)) = 0.)
To do that, we take the contradictory assumption, namely we assume that
z1,2(t+) < 0. Hence, for any s > t in a small-enough neighborhood of t, we
can find ε > 0, such that z1,2(s) = −ε. Plugging that value of z1,2(s) in the
ODE (4.2), we see that, regardless of the value of π1,2(x(s)),

(8.13) ż1,2(s) = π1,2(x(s))(m2 + ε)µ2,2 + (1− π1,2(x(s)))εµ1,2 > 0,

implying that z1,2(s) is strictly increasing at each s > t in a small-enough
neighborhood of t. This further implies that no value −ε can be reached by
z1,2 because, by continuity, z1,2 must first attain all the values in (−ε, 0).
But z1,2(s) is almost-everywhere differentiable by Theorem 5.2, and for all
regular points s for which z1,2(s) < 0, (8.13) holds. (Where s is a regular
point if z1,2(s) is differentiable at s.) In other words, z1,2 cannot decrease
towards −ε, and this is true for all −ε < 0.

We now treat the case z1,2(t) = m2. It is easy to see that in that case
ż1,2(t) ≤ 0. If ż1,2(t) < 0, then z1,2(t) is strictly decreasing, so that z1,2(t+) <
m2. Once again, we need to show that when ż1,2(t) = 0 we cannot have
that z1,2(t+) > m2. (Observe that z1,2(s) = m2 and ż1,2(s) = 0 implies
π1,2(x(s)) = 1.) We prove the desired result similarly as above, by taking
the contradictory assumption that z1,2(t+) > m2, so that for any s > t in
a small-enough neighborhood of t, we can find ϵ > 0 such that z1,2(s) =
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m2 + ε. Plugging that value of z1,2(s) in the ODE of z1,2 in (4.2) we see
that, regardless of the value of π1,2(x(s)),

ż1,2(x(s)) = π1,2(x(s))(−ε)µ2,2 − (1− π1,2(x(s)))(m2 + ε)µ1,2 < 0,

which implies that z1,2(s) is strictly decreasing at each s > t in a small-
enough neighborhood of t. As before, that implies that z1,2(t+) ≤ m2.

Turning to the queues, note that to leave S just after time t, we must have
q1(t) = κ or q2(t) = 0 (or both). If q1(t) = κ and q2(t) > 0, then x(t) ∈ S−
so that π1,2(x(t)) = 0. Plugging this value of π1,2(x(t)) in the ODE for q1(t)
in (4.2), we see that q̇1(t) ≥ λ1 − µ1,1m1 − θ1κ ≥ 0 by Assumption A.
Hence, q1(t) is nondecreasing. If q1(t) > κ and q2(t) = 0, then x(t) ∈ S+ and
π1,2(x(t)) = 1, which gives q̇2(t) = λ2 > 0. Hence q2 is increasing at time t.

Now consider the case q1(t) = κ and q2(t) = 0, so that x(t) ∈ Sb. For one
of the queues to become negative at time t+, we need to have its derivative
be negative at time t. We will consider various subcases.

First assume that q̇1(t) < 0 and q̇2(t) ≥ 0. In that case (q2 − q1)(t+) > 0,
so that π1,2(x(t+)) = 0. Plugging this value of π1,2(x(t+)) in the ODE
(4.2), together with q1(t+) = κ, we see that q̇1(t+) > 0 by Assumption
A. Next assume that q̇1(t) ≥ 0 and q̇2(t) < 0. Then (q1 − q2)(t+), so that
π1,2(x(t+)) = 1. Plugging this value of π1,2(x(t+)), together with q2(t+) =
0, we see that q̇2(t+) > 0.

We finally consider the remaining more challenging subcase: q̇1(t) < 0
and q̇2(t) < 0. We will show that this subcase is not possible. To that end,
we further divide this case into three subcases: x(t) ∈ A+, x(t) ∈ A− and
x(t) ∈ A. (Recall that Sb = A ∪ A+ ∪ A−.) However, x(t) cannot be in A−,
since then π1,2(x(t)) = 0, which implies that q1(t) is nondecreasing (plug
π1,2(x(t)) = 0 and q1(t) = κ into the ODE (4.2)). Moreover, x(t) cannot
be in A+, since then π1,2(x(t)) = 1, which implies that q2(t) is strictly
increasing.

Now assume the remaining possibility, x(t) ∈ A, and recall that Ψ is
Lipschitz continuous in A, so that the Lyapunov argument holds over [t, t+
η), for some η > 0. Specifically, the Lyapunov function V is monotone
increasing in x(t), because x∗ > 0. (The inequality holds componentwise.)
If µ1,2 > µ2,2, then we take the Lyapunov function V1(x(t)) = q1(t) + q2(t).
The monotonicity of V1 at x(t) implies that at least one of the queues must
be increasing, which contradicts the assumption that the derivative of both
queues is negative at t. If µ1,2 ≤ µ2,2, then we take the Lyapunov function
V2(x(t)) = Cq1(t) + q2(t) + (C − 1)z1,2(t). We then choose C = 1 + ϵ with
ϵ small enough, such that V̇2(x(t)) < 0 (assuming the derivatives of both
queues are strictly negative at t). Once again, this contradicts the positive
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monotonicity of V at x(t). This concludes the proof.

9. Exponential stability.

Definition 9.1 (exponential stability). A stationary point x∗ is said to
be exponentially stable if there exist two real constants ϑ, β > 0 such that

∥x(t)− x∗∥ ≤ ϑ∥x(0)− x∗∥e−βt,

for all t ≥ 0 and for all x(0), where ∥ · ∥ is a norm on Rn.

We use Theorem 3.4 on p. 82 of Marquez [12], stated below.

Theorem 9.1 (exponential stability of the origin). Suppose that all the
conditions of Theorem 8.4 are satisfied. In addition, assume that there exist
positive constants K1, K2, K3 and p such that

K1∥x∥p ≤ V (x) ≤ K2∥x∥p and V̇ (x) ≤ −K3∥x∥p.

Then the origin is exponentially stable, and

∥x(t)∥ ≤ ∥x(0)∥ (K2/K1)
1/p e−(K3/2K2)t for all t and x(0).

We use the L1 norm: ∥x∥ = |x1|+ |x2|+ |x3| for x ∈ R3.

Theorem 9.2 (exponential stability of x∗). Each x∗ in S is exponentially
stable.

(i) If µ1,2 > µ2,2, then

∥x(t)− x∗∥ ≤ ∥x(0)− x∗∥e−(K3/2)t for all t and x(0)

for all x(0) ∈ S and t ≥ 0, where K3 ≡ max{θ1, θ2, µ1,2 − µ2,2}.

(ii) If µ2,2 = Bµ1,2, B ≥ 1, then

∥x(t)− x∗∥ ≤ ∥x(0)− x∗∥(C/K1)e
−(K4/2)t

for all x(0) ∈ S, t ≥ 0 and C > B, where K1 ≡ min{1, C − 1} and K4 ≡
max{Cθ1, θ2, (Cµ1,2 − µ2,2)}.

Proof. As in the proof of Theorem 8.3, Theorem 9.2 applies directly
only within one region, starting at a point in S+, S−, A, A− or A+. However,
again, the same Lyapunov function V can be used in all regions.
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We consider the two cases in turn: (i) In the proof of Theorem 8.4, V1(x) ≡
x1 + x2 was shown to be a Lyapunov function with a strictly negative Lie
derivative. Since x ≥ 0, we can take K1 = K2 = 1 and p = 1. Since
V̇1(x) = −θ1q1(t) − θ2q2(t) − (µ1,2 − µ2,2)z1,2(t), we can take K3 specified
above, and the result follows from Theorem 9.1.

(ii) We use the Lyapunov function V2(x) = Cx1 + x2 + (C − 1)x3. Then
K1∥x∥ ≤ V2(x) < C∥x∥ for K1 ≡ min{1, C−1}. From the proof of Theorem
8.4, we know that V̇2(x) = −Cθ1q1(t) − θ2q2(t) − (Cµ1,2 − µ2,2)z1,2(t), so
that V̇2(x) ≤ −K4∥x∥.

10. Conditions for state-space collapse. In this section we give
ways of verifying that x lies entirely in A, given that x(0) and x∗ are both
in A. In the appendix we provide conditions for the solution to eventually
reach A after an initial transient. The results here are intended to apply
after this initial transient period has concluded.

Theorem 10.1 (sufficient conditions for global SSC). Let ν ≡ µ1,2∧µ2,2,
and suppose that x(0) ∈ A. Also assume that

(10.1) q2(0) ≤ λ2/θ2 and q1(0) ≤ (λ1 −m1µ1,1)/θ1.

If, in addition, the following inequalities are satisfied, then the solution to
the IVP (4.3) is in A for all t:

(i) λ1 < νm2 +m1µ1,1 and (ii) λ2 > νm2.(10.2)

Proof. We start by showing, under Condition (i), that δ+(x(t)) in (6.9)
is strictly negative for each t. For a fixed t,

δ+(x(t)) ≡ j
(
λ
(j)
+ (t)− µ

(j)
+ (t)

)
+ k

(
λ
(k)
+ (t)− µ

(k)
+ (t)

)
< 0

if and only if

(10.3)
(µ2,2 − µ1,2)z1,2(t)−m2µ2,2 < −(λ1 −m1µ1,1) + r(λ2 − θ2q2(t)) + θ1q1(t).

If µ2,2 > µ1,2, then the left-hand side (LHS) of (10.3) is maximized at
z1,2(t) = m2, and is equal to −µ1,2m2. If µ2,2 < µ1,2, the the LHS is maxi-
mized at z1,2(t) = 0, and is equal to −µ2,2m2. When µ2,2 = µ1,2 the LHS is
equal to −µ2,2m2 = −µ1,2m2. Overall, the LHS of (10.3) is smaller than or
equal to −νm2.
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Since q2(0) ≤ λ2/θ2, we conclude, using the bound in (7.5), that θ2q2(t) ≤
λ2 for all t ≥ 0. This, together with the fact that q1(t) ≥ 0 for all t, implies
that the RHS of (10.3) is larger than or equal to −(λ1 −m1µ1,1), so that

(µ2,2 − µ1,2)z1,2(t)− µ2,2m2 ≤ −νm2 < −(λ1 −m1µ1,1)

≤ −(λ1 −m1µ1,1) + r(λ2 − θ2q2(t)) + θ1q1(t)

where the second inequality is due to condition (i).
To show that condition (ii) is sufficient to have δ−(x(t)) > 0 for all t, fix

t ≥ 0 and note that, for δ−(x(t)) in (6.9), we have

δ−(x(t)) ≡ j
(
λ
(j)
− (t)− µ

(j)
− (t)

)
+ k

(
λ
(k)
− (t)− µ

(k)
− (t)

)
> 0

if and only if

(10.4)
r(µ1,2 − µ2,2)z1,2(t) + rµ2,2m2 > −(λ1 −m1µ1,1) + r(λ2 − θ2q2(t)) + θ1q1(t).

It is easy to see that the LHS of (10.4) has a minimum value of r(µ1,2 ∧
µ2,2)m2 ≡ rνm2. By essentially the same arguments as in Theorem 7.2
we can show that q1(t) ≤ q1(0) ∨ (λ1 − m1µ1,1)/θ1. Since we assume that
q1(0) ≤ (λ1 −m1µ1,1)/θ1, we have the bound q1(t) ≤ (λ1 −m1µ1,1)/θ1 for
all t ≥ 0. With this bound, we see that the RHS of (10.4) is smaller than or
equal to rλ2. Overall, we have

r(µ1,2 − µ2,2)z1,2(t) + rµ2,2m2 ≥ rνm2 > rλ2

≥ −(λ1 −m1µ1,1) + r(λ2 − θ2q2(t)) + θ1q1(t),

where the second inequality is due to Condition (ii). Since (6.10) holds for
all t ≥ 0, we also have 0 < π1,2(t) < 1 for all t. Hence, every solution to the
IVP in (4.3) must lie entirely in A.

For x∗ ∈ A, we will now show that there exist α > 0 and T ≡ T (α), such
that global SSC can be inferred once ∥x(T )− x∗∥ < α. We exploit the drift
rates at stationarity, defined by δ∗+ ≡ δ+(x

∗) and δ∗− ≡ δ−(x
∗). It follows

from the expressions in (6.9) that

(10.5)
δ∗+ ≡ δ+(x

∗) = −µ2,2(r + 1)(m2 − z∗1,2), δ∗− ≡ δ−(x
∗) = µ1,2(r + 1)z∗1,2.

Thus, if 0 < z∗1,2 < m2, then the positive recurrence condition (6.10) holds
at the stationary point x∗. (This agrees with (8.3) which has 0 < π∗

1,2 < 1 if
and only if 0 < z∗1,2 < m2.)
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In the next theorem we give explicit expressions for α. For reasonable
rates, such as will hold in applications, α is quite large. In fact, in the nu-
merical example considered in §11.3 we show that, typically in applications,
α is so large, that we can infer that x lies entirely in A without even solving
the IVP; i.e., x(0) ∈ βV (α).

Theorem 10.2. Suppose that x∗ ∈ A and let ξ ≡ min{|δ∗+|, δ∗−}.

(i) If µ2,2 ≥ µ1,2, then let α = ξ/rθ2

(ii) If µ2,2 < µ1,2, then let α = ξ/ς, where ς ≡ µ1,2−µ2,2+θ1+rθ2 > 0. In
both cases, if there exists T ≥ 0 such that x(T ) ∈ βV (α), then {x(t) : t ≥ T}
lies entirely in A.

Proof. We use βV (α), the α V -ball with center at x∗ and radius α,
in (8.12). To find a proper α for the V -ball βV (α), we once again use the
conditions (10.3) and (10.4). We first show how to find α for the case µ2,2 =
Bµ1,2 for some B ≥ 1, i.e., when µ1,2 ≤ µ2,2. Recall (proof of Theorem 8.3)
that in this case, V2(x) = Cx1 + x2 + (C − 1)x3 is a Lyapunov function
for any C > B. Also, the Lyapunov function was defined for the modified
system in which the origin was the stationary point.

Let x∗ = (q∗1, q
∗
2, z

∗
1,2) be the stationary point in A. First assume that, at

some time T , V2(x(T )) = ϵ1, i.e., Cq1(T ) + q2(T ) + (C − 1)z1,2(T ) = ϵ1. If
x(t) ∈ βV2(ϵ1) for all t > T , then it must hold that

q∗1 −
ϵ1
C

< q1(t) < q1 +
ϵ1
C
, q∗2 − ϵ1 < q2(t) < q∗2 + ϵ1 and

z∗1,2 −
ϵ1

C − 1
< z1,2(t) < z∗1,2 +

ϵ1
C − 1

, t ≥ T.

(10.6)

To make sure δ+(x(t)) < 0, we use (10.3), reorganizing the terms. We need
to have

(µ2,2 − µ1,2)z1,2(t) + rθ2q2(t)− θ1q1(t) < −(λ1 − µ1,1m1) + rλ2 + µ2,2m2.

By (10.6), the above inequality holds if

(µ2,2 − µ1,2)

(
z∗1,2 +

ϵ1
C − 1

)
+ rθ2(q

∗
2 + ϵ1)− θ1

(
q∗1 −

ϵ1
C

)
< −(λ1 − µ1,1m1) + rλ2 + µ2,2m2.

Plugging in the expressions for q∗1, q
∗
2 and z∗1,2, we see that we need to find

an ϵ1 > 0 such that

(µ2,2 − µ1,2)
ϵ1

C − 1
+ rθ2ϵ1 + θ1

ϵ1
C

< µ2,2(r + 1)(m2 − z∗1,2).
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We can take C as large as needed, so that the only term that matters on
the LHS is rθ2ϵ1. Hence, we need to have

ϵ1 <
µ2,2(r + 1)(m2 − z∗1,2)

rθ2
=

|δ∗+|
rθ2

.

Similarly, to make sure that δ−(x(t)) > 0, we use (10.4), reorganizing the
terms. We need to have

r(µ1,2 − µ2,2)z1,2(t) + rθ2q2(t)− θ1q1(t)

> −(λ1 − µ1,1m1) + r(λ2 − µ2,2m2).

Using (10.6) again (with a different ϵ2), we see that it suffices to show that

r(µ1,2 − µ2,2)

(
z∗1,2 +

ϵ2
C − 1

)
+ rθ2(q

∗
2 − ϵ2)− θ1

(
q∗1 +

ϵ2
C

)
> −(λ1 − µ1,1m1) + r(λ2 − µ2,2m2).

Once again, plugging in the values of q∗1, q
∗
2 and z∗1,2, and taking C as large

as needed, we can choose ϵ2 > 0 such that

ϵ2 <
µ1,2(r + 1)z∗1,2

rθ2
=

δ∗−
rθ2

.

Hence, we can take α as in (i).
For the second case, when µ1,2 > µ2,2, we use the Lyapunov function

V1(x) = x1 + x2. Using similar reasoning as above, we get

ϵ1 <
µ2,2(r + 1)(m2 − z∗1,2)

µ1,2 − µ2,2 + θ1 + rθ2
=

|δ∗+|
ς

and ϵ2 <
µ1,2(r + 1)z∗1,2

µ1,2 − µ2,2 + θ1 + rθ2
=

δ∗−
ς
.

Hence, in this case we can take α in (ii).

11. A numerical algorithm to solve the IVP.

11.1. Computing π1,2(x) at a point x. The QBD structure in §6.2 allows
us to use established efficient numerical algorithms from [11] to solve for the
steady state of the QBD to compute π1,2(x), for any given x ≡ x(t) ∈ A.
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We start by computing the rate matrix R ≡ R(x). (To simplify notation, we
drop the argument x, with the understanding that all matrices, are functions
of x.) By Proposition 6.4.2 of [11], R is related to matrices G and U via

G = (−U)−1A2, U = A1 +A0G and R = A0(−U)−1.(11.1)

In addition, the matrices G and R are the minimal nonnegative solutions to
the quadratic matrix equations

(11.2) A2 +A1G+A0G
2 = 0 and A0 +RA1 +R2A2 = 0.

Hence, if can compute the matrix G, then the rate matrix R can be found
via (11.1). Once R is known, we use (6.16) to compute α0. With α0 and R
in hand, π1,2(x) is easily computed via (6.17).

It remains to compute the matrix G. We use the logarithmic reduction
(LR) algorithm in §8.4 of [11], modified to the continuous case, as in §8.7
of [11]. The LR algorithm is quadratically convergent and is numerically
well behaved. These two properties are important, because the matrix R(x)
needs to be computed for many values of x when we numerically solve the
IVP (4.3). From our experience with this algorithm, it takes fewer than ten
iterations to achieve a 10−6 precision (when calculating G).

11.2. Computing the solution x. To compute the solution x, we combine
the forward Euler method for solving an ODE with the algorithm to solve
for π1,2(x(t)) described above. Specifically, we start with a specified initial
value x(0), a step-size h and number of iterations n, such that nh = T .
First, assume that z1,1(0) = m1 and z1,2(0)+z2,2(0) = m2, so that x(0) ∈ S.
If D̄(0) ≡ (q1(0) − κ) − rq2(0) > 0 then π1,2(x(0)) = 1. If D̄(0) < 0 then
π1,2(x(0)) = 0 and, if D̄(0) = 0, then we check to see whether (6.10) holds.
If it does, then x(0) ∈ A and we calculate π1,2(x(0)) as described above.
If x(0) ∈ Sb − A then we can still determine the value of π1,2(x(0)) in the
following way: If δ−(x(t)) = 0 > δ+(x(t)), then we let π1,2(x(t)) = 0; if
instead δ−(x(t)) > 0 = δ+(x(t)), then we let π1,2(x(t)) = 1.

Given x(0) and π1,2(x(0)) we can calculate Ψ(x(0)) explicitly, and perform
the Euler step x(h) = x(0) + hΨ(x(0)). We then repeat the procedure for
each k, 0 ≤ k ≤ n− 1, i.e.,

(11.3) x((k + 1)h) = x(kh) + hΨ(x(kh)), 0 ≤ k ≤ n,

where x(kh) is given from the previous iteration, and Ψ(x(kh)) can be com-
puted once π1,2(x(kh)) is found.
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If z1,1(0) < m1 or z1,2(0) + z2,2(0) < m2, so that x(0) /∈ S, we use the
appropriate fluid model for the alternative region, as specified in the ap-
pendix, where at each Euler step we check to see which fluid model should
be applied.

The forward Euler algorithm is known to have an error proportional to
the step size h, and to be relatively numerically unstable at times, but it
was found to be adequate. It would be easy to apply more sophisticated
algorithms, such as general linear methods, which have a smaller error, and
can be more numerically stable. The only adjustment required is to replace
the Euler step in (11.3) by the alternative method.

In the numerical example in §11.3 below we let the ratio be r = 0.8 = 4/5,
so that all the matrices, used in the computations for π1,2, are of size 10×10.
It took less than 10 seconds for the algorithm to terminate (using a relatively
slow, 1 GB memory, laptop). The same example, but with r = 20/25, so
that the matrices are now 50× 50, the algorithm took less than a minute to
terminate. Moreover, the answers to both trials were exactly the same, up
to the 7th digit. In both cases, we performed 5000 Euler steps (each of size
h = 0.01, so that the termination time is T = 50). It is easily seen that π1,2
had to be calculated for over 4500 different points, starting at the time π1,2
becomes positive (see Figure 2 in the following example).

The validity of the solution can be verified by comparing it to simulation
results, as in the example below and others in [16, 19]. There are two other
ways to verify the validity: First, we can check that the solution converges
to the stationary point x∗, which can be computed explicitly using (8.2).
Second, within A we can see that the two queues keep at the target ratio r,
even though this relation between the two queues is not forced explicitly by
the algorithm.

11.3. A numerical example. We now provide a numerical example of the
algorithm for solving the ODE in (4.1). In addition, we added the sample
paths of the stochastic processes Qn

1 and Zn
1,2, after scaling as in (3.2), on

top of the trajectories of the solution to their fluid counterparts q1 and z1,2.
The model has the same target ratio r = 0.8 as in the example in §6.2

with component rate matrices in (6.12). We chose a large queueing system
with scaling factor n = 1000, so that the stochastic fluctuations do not to
hide the general structure of the simulated sample paths. We let the ODE
model parameters be m1 = m2 = 1, λ1 = 1.3, λ2 = 0.9, µ1,1 = µ2,2 = 1,
µ1,2 = µ2,1 = 0.8, θ1 = θ2 = 0.3 and κ = 0. The associated queueing model
has the same parameters µi,j and θi, but the other parameters are multiplied
by n. The plots are shown without dividing by n.



60 O. PERRY AND W. WHITT

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

r

Fig 1. Ratio between the queues.
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Fig 2. π1,2 calculated at each iteration.

We ran the algorithm and the simulation for 50 time units. We used an
Euler step of size h = 0.01, so we performed 5000 Euler iterations. In each
Euler iteration we performed several iterations to calculate the matrix G in
(11.1), which is used to calculate the instantaneous steady-state probability
π1,2.

Figures 1–4 show q1(t)/q2(t), π1,2(x(t)), q1(t) and z1,2(t) as functions of
time t for a system initialized empty. After a short period, the pools fill up.
Then q1(t) starts to grow, and immediately then fluid (customers) starts
flowing to pool 2, causing z1,2(t) to grow. Figures 1–4 show that, for practical
purposes, steady state is achieved for t ∈ [10, 20].

In Figure 1 we see that once Sb is hit, the ratio between the queues is kept
at the target ratio 0.8. This is an evidence for the validity of the numerical
solution, and a strong demonstration of the AP. In Figure 2 we see that
initially, while q1 = 0, π1,2 = 0. This lasts until z2,2(t) + z1,2(t) = m2, at
which time the space S is hit, specifically Sb), and the averaging begins. Once
Sb is hit, π1,2 becomes almost constant, even before the system reaches steady
state. Thus the functions q1, q2 and z1,2 have exponential form, supporting
the results of §9.

We got x(tn) ≡ (q1(tn), q2(tn), z1,2(tn)) = (0.3639, 0.4550, 0.2385) and
π1,2(tn) = 0.2 when the algorithm terminated. From (8.2), x∗ ≡ (q∗1, q

∗
2, z

∗
1,2) =

(0.3667, 0.4595, 0.2375). From (8.3), we get π∗
1,2 = 0.2.

Before solving the ODE, we can apply Theorem 10.2 to conclude that the
solution will remain in A after it first hits A.

12. Proof of Theorem 7.1. It is immediate that the function Ψ in
(4.1) and (4.2) is Lipschitz continuous on S+ and S−, because π1,2(x) = 1
when x ∈ S+ and π1,2(x) = 0 when x ∈ S−, so that Ψ is linear in each of
these regions. However, Ψ is not linear on Sb, because Ψ involves π1,2(x),
which is a nonlinear function of the state x determined by the FTSP in §6.

We now prove the three conclusions involving A, A+ and A−. We will
use the fact that a function mapping a convex compact subset of Rm to Rn
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Fig 3. Trajectory of q1 together with a
simulated sample path of the stochastic
process Q1 in a system initializing empty.
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Fig 4. Trajectory of z1,2 together with
a simulated sample path of the stochas-
tic process Z1,2 in a system initializing
empty.

is Lipschitz on that domain if it has a bounded derivative. Since we can
always work with balls in Rm (which are convex with compact closure), that
in turn implies that a function mapping an open subset of Rm to Rn is locally
Lipschitz whenever it has a bounded derivative on each ball in the domain;
e.g., see Lemma 3.2 of [10]. The three sets A, A+ and A− are convex. The
key is what happens in A.

For understanding, it is helpful to first verify this theorem in the special
case r = 1, where the QBD process reduces to a BD process. Thus we first
give a proof for that special case.

Proof for the special case r = 1. Since Sb is homeomorphic to a closed
subset of R2, we can (and do) regard A as an open connected convex subset
of R2. The key component of the function Ψ in A is π1,2. We exploit the
explicit representations in (6.18) and (6.21). From (6.1)–(6.4), the partial
derivatives of λ±(x) and µ±(x) with respect to the three components of x,
i.e., q1, q2 and z1,2, are constants. From (6.18) and (6.21), we see that the
partial derivatives of π1,2(x) with respect to each of the three components
of x exist, are finite and continuous. That takes care of A.

We elaborate: We can obtain an explicit expression for the derivatives
by applying the chain rule. Suppose that we consider the partial derivative
with respect component i of x = (q1, q2, z1,2) (e.g, x1 = q1). By (6.1)–(6.4)
and (6.9), the partial derivatives of δ+(x) and δ−(x) with respect to xi are
constant as functions of x; let these constants be denoted by δ̇+ and δ̇−.
Let π̇1,2(x) denote the partial derivative of π1,2(x) with respect to xi. Then,
from (6.18), we obtain the explicit representation

(12.1) π̇1,2(x) =
δ̇+δ−(x)− δ̇−δ+(x)

(δ−(x)− δ+(x))2
in A.

By (7.2), the denominator in (12.1) is strictly positive in A. Since the func-
tions δ+(x) and δ−(x) are linear in this case, they are continuous. Thus,
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from (12.1), we see that indeed the partial derivative π̇1,2(x) is well defined
and continuous on A.

We next consider A− and A+; the reasoning for these two cases is es-
sentially the same, with the representations in (6.13), (6.18), and (12.1)
making it quite elementary. The relation (6.13) implies that the denomi-
nator in (12.1) is uniformly bounded below in A. Thus, π1,2(x) → 0 and
these partial derivatives approach finite limits as x → xb ∈ A− for x ∈ A,
while π1,2(x) → 1 and these partial derivatives approach finite limits as
x → xb ∈ A+ for x ∈ A. In both cases we have a conventional heavy-traffic
limit: ρ±(x) ↑ 1 as x → xb. Hence, the partial derivatives of π1,2(x) are con-
tinuous and bounded on Sb. As a consequence, for any ϵ-ball in S−S− about x
in A+, there exists a constantK such that |π1,2(x1)−π1,2(x2)| ≤ K∥x1−x2∥3
for all x1 and x2 in the ϵ-ball, where ∥·∥3 is the maximum norm on R3. A sim-
ilar statement applies to A−. Hence we have completed the proof for r = 1.

We make two concluding remarks. We first note that the derivative de-
pends on the neighborhood of x that we consider. At a point x in A+ (and
similarly for A−), if we take a sequence of points xn : n ≥ 1 with xn → x as
n → ∞, where xn ∈ S+ for all n ≥ 1, then π1,2(xn) = 1 for all n, so that
the derivative is 0. On the other hand, the derivative approaching x ∈ A+

through A need not be 0. However, by the reasoning above that derivative
is finite, That is sufficient for the required local Lipschitz continuity.

Second, we observe that we cannot conclude that π1,2(x) is even contin-
uous on all of S, because for x ∈ A we can have a sequence {xn : n ≥ 1}
with xn ∈ S+ for all n (or xn ∈ S− for all n), with xn → x as n → ∞,
π1,2(xn) = 1 for all n (or = 0), while 0 < π1,2(x) < 1.

We now treat the general case.

Proof of Theorem 7.1 in the general case. We first consider A. As in the
case r = 1, we are regarding A as an open connected convex subset of R2.
We will look at π1,2, and thus the QBD, as a function of the variable x ∈ A,
which is an element of R3. By the definition of the matrices A0, A1 and A2

in (6.6) (see also the example in §6.2), these matrices are twice differentiable
with respect to any of their elements. By the definition of the rates in (6.1)-
(6.4), which are the elements of the matrices A0, A1 and A2, these matrix
elements in turn have constant partial derivatives with respect to each of
the three real components of x at each x ∈ A, i.e., with respect to q1, q2
and z1,2. It follows from Theorem 2.3 in He [8] that the rate matrix R in
(6.15), which is the minimal nonnegative solution to the quadratic matrix
equation A0 + RA1 + R2A2 = 0, is also twice differentiable with respect to
the matrix elements of A0, A1 and A2, and thus also with respect to the
three real components of x at each x ∈ A.
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It thus suffices to look at the derivatives with respect to one of the ele-
ments of the matrices A0, A1 or A2. It follows from the normalizing expres-
sion in (6.16) and the differentiability of R, that α0 is also differentiable.
Hence, from (6.17), we see that π1,2 is differentiable at each x ∈ A, with

(12.2) π′
1,2 = α′

0(I −R)−11+ + α0(I −R)−1R′(I −R)−11+.

By differentiating (6.16), we have

(12.3) α′
0(I −R)−11+ α0(I −R)−1R′(I −R)−11 = 0,

so that α′
0 is continuous. The continuity of R′ and α′

0 with respect to one of
the elements of the matrices A0, A1 or A2 implies that the derivative π′

1,2

with respect to one of the elements of the matrices A0, A1 or A2 is finite
and continuous on A, which in turn implies that the partial derivatives
with respect to the three real components of x at each x ∈ A are finite
and continuous as well. Hence, Ψ is locally Lipschitz continuous on A, as
claimed.

We next show that π1,2 and thus Ψ are locally Lipschitz continuous in
neighborhoods of points in A+ within S − S− and of points in A− within
S− S+. We will only consider A+, because the two cases are essentially the
same. In both cases, the situation is complicated starting from (12.2) because
the entries of α0(x) become negligible, while the entries of (I − R)−1(x)
explode as x → xb. However, the two different limits cancel their effect.
We exploit (6.19). The representation in (6.19) is convenient because now
α0(x) → α0(xb) as x → xb, where α0(xb) is finite. All key asymptotics take
place in R+.

Since the crucial asymptotics involves only R+, we see that we only need
carefully consider one of the two regions, in this case the upper one. To
obtain results about R+, from a process perspective, it suffices to replace
the given QBD by a new QBD with the upper region and reflection at
the lower boundary. The new QBD model involving only R+ is equivalent
to a relatively simple single-server queue. The net input is a linear com-
bination of four Poisson processes, and so has stationary and independent
increments. The queue length process in the revised model is an elementary
MAP/MSP/1 queue, as in §4 of [1], which has as QBD representation with
rate matrix R+.

For the asymptotics, the key quantities are the spectral radii of the matri-
ces R+(x) and R−(x), say η+(x) and η−(x), and the way that these depend
on the drifts δ+(x) and δ−(x) as x → xb. The spectral radius η+(x) is the
unique root in the interval (0, 1) of the equation det[A+

0 (x) + A+
1 (x)η +

A+
2 (x)η

2] = 0, and similarly for η−(x); see (39) on p. 241 of [13], the
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Appendix of [14] and §4 of [1]. We see that η+(x) → η+(xb) = 1 and
η−(x) → η−(xb) < 1 as x → xb ∈ A+. In general, we can represent powers
of the matrix R (and similarly for R+ and R−) asymptotically as

(12.4) Rn = vuηn + o(ηn) as n → ∞,

where u and v are the left and right eigenvectors of the eigenvalue η, re-
spectively, normalized so that u1 = 1 and uv = 1. Moreover, as η → 1, the
matrix inverse (I −R)−1 is dominated by these terms.

Hence, we can do a heavy-traffic expansion of η+(x) and the related quan-
tities as x → xb ∈ A+ with x ∈ A, as in [3]; see the Appendix of [14]. As
x → xb, all quantities in (6.19) have finite continuous limits as x → xb ∈ A+

except (I−R+(x))−1. We first have |δ+(x)| → 0 and δ−(x) → δ−(xb), where
0 < δ−(xb) < ∞. We then obtain

1− η+(x) = c(xb)|δ+(x)|+ o(|δ+(x)|)

(I −R(x)+)−1 =
v+(xb)u

+(xb)

1− η+(x)
+ o((1− η+(x))−1)

=
v+(xb)u

+(xb)

c(xb)|δ+(x)|
+ o(|δ+(x)|−1)

(12.5)

as x → xb and |δ+(x)| → 0, where c, v+ and u+ are continuous functions
of xb on A+. The asymptotic relations in (12.5) together with (6.19) imply
that

(12.6) |π1,2(x)− π1,2(xb)| = |π1,2(x)− 1| = | − r(x)/(1 + r(x)|,

where

(12.7) r(x) ≡ α−
0 (I −R−)−11

α+
0 (I −R+)−11

∼ h(xb)|δ+(x)|

as x → xb and |δ+(x)| → 0, where h is a continuous function on A+. Hence,
there exist constants K1 and K2 such that

(12.8) |π1,2(x)− π1,2(xb)| ≤ K1|δ+(x)| ≤ K2∥x− xb∥3

for all x sufficiently close to xb. Finally, we can apply the triangle inequality
with (12.8) to obtain |π1,2(x1)− π1,2(x2)| ≤ 2K2∥x1 − x2∥3 for x1, x2 in an
ϵ ball about xb in S − S−. Hence, π1,2(x) and thus Ψ are locally Lipschitz
continuous on A+ within S− S−. Hence the proof is complete.
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