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Abstract

We consider a modification of the standard G/G /1 quene with unlimited waiting space
and the first-in first-out discipline in which the service times and interarrival times depend
linearly and randomly on the waiting times. In this model the waiting times satisfy a modified
version of the classical Lindley recursion. We determine when the waiting-time distributions
converge to a proper limit and we develop approximations for this steady-state limit,
primarily by applying previous results of Vervaat [21] and Brandt [4] for the unrestricted
recursion Y, ,=C,Y, + X,. Particularly appealing for applications is a normal approxima-
tion for the stationary waiting time distribution in the case when the gueue only rarely
becomes empty. We also consider the problem of scheduling successive interarrival times at
arrival epochs, with the objective of achieving nearly maximal throughput with nearly
bounded waiting times, while making the interarrival time sequence relatively smooth. We
identify policies depending linearly and deterministically upon the work in the system which

- meet these objectives reasonably well; with these policies the waiting times are approximately
contained in a specified interval a specified fraction of time.

Keywords: State-dependent service and interarrival times, Lindley equation, recursive stochas-
tic equations, stability, stochastic comparisons, normal approximations, scheduling arrivals.

1. Introduction

In this paper we consider a modification of the standard G/G/1 queue (with
unlimited waiting space and- the first-in first-out discipline) in which the service
times and the interarrival times depend linearly and randomly on the waiting
times. Our model is specified by a stationary and ergodic sequence of four-tuples
of nonnegative random random variables {(U,, ¥,, 4,, B,): n = 0}. (We do not
assume independence among different vectors or within each vector, although we
will’ at various points below.) We study the sequence {W,: n> 0} which is
defined recursively by

W1 = [W + U] =0, (1.-1)
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where [x]* = max{x, 0},

U=U-+A4W,, (1.2)
V.=V,+BW,, (1.3)

and W, 1s a nonnegative random variable.

We interpret W, as the waiting time and ¥, as the service time of customer #;
we interpret U, as the interarrival time between customers n and n + 1. We call
V., the nominal service time of customer n and U, the nominal interarrival time
between customers n and n + 1, because these would be the actual times if the
state-dependent behavior were omitted, i.e., if A, = B, =0 w.p.1. We assume that
0 < E[l,] < o0 and E[V)] < oo, and define the nominal traffic intensity in the
usual way as p = E[V,]/E[}].

We analyze this model by recognizing that the waiting times satisfy the
generalized Lindley recursion

W,=CW,+Xx]", n=0, (1.4)
where :
C,=1+B,—A4, and X,=V,-U, n>0. (1.5)

Equation (1.4) reduces to the classical Lindley recursion when P(Cy=1)=1. As
in the classical case, our analysis depends on (1.4) and the sequence {(C,, X,)},
and not on the specific way (C,, X)) is defined in terms of (U,, ¥, 4,, B,) in
(1.5). Recursion (1.4) is a special case of more general recursions that have been
analyzed in the literature (e.g., Borovkov [3], Lisek [14] and references cited
there), but it seems that we obtain stronger results for (1.4) by exploiting the
special structure. There also has been considerable previous work on queues with
state-dependent service and arrival processes; e.g., see Brll [5], Callahan [6],
Hargs [10,11], Laslett, Pollard and Tweedie [13], Mudrov [16], Posner [17],
Rosenshine [18], and Sugawara and Takahashi [20].

Our analysis of (1.4) is primarily based on relating it to the unrestricted
recursion

Y, =CY,+X,, nx0, | (1.6)

n

(without the positive-part operator corresponding to the barrier at the origin)
which has been. studied by Vervaat [21] (who reviews the extensive earlier
literature) and Brandt [4). In the more general framework of (1.4) and (1.6), W, -or
Y, may represent an inventory in time period n (e.g., cash), C, may represent a
muitiplicative, possibly random,; decay or growth factor between times » and
n+1 (e.g., interest rate) and X, may represent a quantity that is added- or
subtracted between times » and n+1 (e.g., deposit minus withdrawal). Obwvi-
ously the positive-part operator in (1.4) is appropriate for many applications.
A major conclusion of this paper (developed in section 2) is that the system
studied here has dramatically different stability conditions than the nominal
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system in which C, =1 w.p.1 in (1.4). In the nominal system, the familiar stability
condition is p <1. In contrast, when P(C,=1) <1, stability depends on the
multiplicative factor C, instead of p (see theorem 1). Moreover, for this model,
the concept of stability is only a limited partial characterization. It is possible to
have instability, even though the time required to reach a high level, from which
the process can diverge to + 00, can be extraordinarily long with high probability.
On the other hand, it is possible to have stability even though the Limiting
distribution can concentrate on very high values. In section 3 we establish
stochastic comparison results that enable us to compare different systems.

We also focus on stable systems with p > 1. Having p > 1 can tend to keep the
process { W, } in (1.4) away from the origin, so that { W, } behaves much like {¥,}
in (1.6). In section 4 we show that a normal approximation for { ¥, } developed by
Vervaat [21] also applies to { W, } when p > 1 under appropriate conditions. In
section 5 we apply this normal approximation to determine specific policies of the
form (1.2} for scheduling interarrival times under which the waiting times are
approximately contained in a specified interval a specified fraction of time. These
policies have the property that the interarrival times change smoothly, which is
desirable in some contexts, e.g., in production smoothing (see pp. 400-413 of
Heyman and Sobel [12]). Our analysis in section 5. is somewhat in the spirit of
recent work by Denardo and Tang [8,9], Although this paper was done indepen-
dently, Denardo and Tang consider controlled service processes in queueing
networks using something like a vector generalization of (1.6) as a direct ap-
proximation. A multidimensional version of this paper is an intended sequel.

Something like the linear control in (1.4) is automatically achieved in queueing
systems with ¢ exponential servers when c is large. Then the arrival rate is fixed,
say at A, but the service rate is kp when there are k& busy servers; i.e., the service
rate is state-dependent. If ¢ is large, then typically A > kp for small %, but
A < cp, so that the number of busy servers tends to concentrate around k* <¢
such that A =k*u. Assuming that k£* is fairly high but not too close to c, the
steady-state number of customers tends to be approximately normally distributed
with mean k* and standard deviation of order vk* (see Whitt [24]).

2. Stability

We start with two preliminary lemmas. The first relates to recursion (1.4) to an
associated unrestricted recursion -of the form (1.6). We say that a sequence
{W,: n> 0} is stochastically bounded if for all € > 0 there exists a constant K
such that P(|W, | > K) <e¢ for all n, i.e., if the sequence { ¥, } is tight (see p. 90
of Chung [7]). A sequence is stochastically bounded if and only if every subse-
quence has a subsequence converging to a proper limit. Let = denote conver-
gence in distribution. '
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From (1.4), it is obvious that the waiting times will be at least as large if we
replace C, by [C,]* and X, by [X,]*. Moreover, when we make this change, the
positive-part -operator in (1.4) becomes unnecessary.

LEMMAl
If W, satisfies (1.4), then W, < Y, for all » w.p.1, where
n+1 [C] Y +[X] ﬂ?O, (2'1)

and Y, = W; =2 0.

COROLLARY

If W, satisfies (1.4), Y, satisfies (2.1) and Y, = Y as n — oo where Y is proper,
then { W,} is stochastically bounded and P(W > t) < P(Y > ¢) for all ¢, where W
is the limit (in =) of any convergent subsequence of { W, }.

We now obtain an explicit expression for W, in the case P((,>0)=1.
Without loss of generality, we assume that the stationary sequence {(C,, X,): n
> 0} has been extended to — oo <n < co. Let £ denote equality in distribution.
We say that a sequence { W,: n > 0} is stochastically increasing if W, < W, for
all n, where < ; denotes stochastic order, as on p. 4 of Stoyan [19].

LEMMA 2
If P(Cy>0) =1, then

W,,=max{0, X,, X, +C, X, _,, X,+C X, ,+CC,_X,_,,
, X, +C,X,_,+---+C,...C, X, (2.2)
X, +CX, 1+ +C...X+C,...C; X+ C,...CoWp )}
M, =max{0, X, X,+ CoX_,, X+ CoX_,+ CC_,X_,,
s X+ X+ -+ Gy C oy Xy,
Xo+ CoX_ 1+ -+ +Cooen C oy Xy
+GC...Copoy X, +GCy...C_ W, }.

(2.3)

If W, =0, then W, is stochastically nondecreasing in n, so that W, = WM as
n — oo where M, = M as n — oo, with M possibly being improper.

Proof -

Since P(C, > 0) =1, we can apply mathematical induction i in the usual way,
following Loynes [15] and chap 1 of Borovkov [2]. Since W, = M and M, is
nondecreasing in » w.p.1, W, is stochastically increasing.

Remarks
(2.1) It is easy to see that the nonnegativity condition on (, is needed in
lemma 2; note that (2.2) fails for n =2 in example 2.4 below.
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(2.2) As on pp. 9-13 of Borovkov [2], under the condition of lemma 2, we can
show that the entire sequence W, = { W, .. n> 0} converges in distribution to
the stationary sequence W, = {W: n > 0} as kK — co when W, =0, where

k n
Ws,,=sup{0, E( Il C,-)Xn__j:k>0}, n>0, (2.4)

j=0\Jj=n+l1-j

where [17_,.,C;=1. 0O
Here is our main stability result.

THEOREM 1

There are five possible cases:

(a) If P(C, <0) >0, then W, is stochastically bounded for all p and W}. If, in
addition, {(C,, X,)} is a sequence of independent vectors with P((; <0, X, <0)
> 0, then the events { W, , =0} are regeneration points with finite mean time
and W, = W as n — oo, where W is proper for all p and W,

(b) If P(C4=0)=1 and P(C,=0) >0, then W,= W as n — oo, where W is
proper for all p and W,.

(o) If P(C,>0)=1 and E[log (] <0, then W,= W as n— co, where W is
proper for all p and W,

(d) If P(C,>0)=1 and Ef{log C,]> 0, then W,/(C,...C,_,) » W w.p.1 as
n — oo, where (C...C,_,)/" -8 > 1 wpl as n— oo and W is proper
for all p and W,. Moreover, there is a proper initial workload W, such that W,
diverges to + oo w.p.1. If, in addition, {(C,, X,)} is a sequence of independent
random vectors with P( X, > 0) > 0, then W, diverges to + oo w.p.1 for all p and
W

(e) f P(Cy>0)=1 and Eflog C;]=0, then W, = W when W, =0, where W
may be proper or improper. If P(C;=1) =1, then W, = W for all W,, where W
is proper (improper) for p <1 (p > 1).

Proof

(a) Theorem 1 of Brandt 4] implies that Y, satisfying (2.1) converges to a
proper limit if P([C,]" = 0) = P(C, < 0) > 0, which with lemma 1 implies that W,
is stochastically bounded. To establish the second statement, note that W, , =0
whenever C, <0 and X, <0. Hence, if P(C; <0, X;<0)=p>0,then W, ,=0
infinitely often w.p.1. If, in addition, {(C,, X,)} is a sequence of independent
vectors, then the events { W, , = 0} are regeneration points for the process. Let T
be a generic time between regenerations, i.e., the first passage time

T=min{n>1: W,=0|W,=0}. (2.5)

Since T 1is stochastically dominated by a geometrically distributed random
variable with parameter p, E[T]< o0. Moreover, P(T=1)=P(W;=0|W;=0)
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= p >0, so that the regenerations are aperiodic. Hence, W, = W where W is
proper. Indeed, for any bounded measurable real-valued function f,

5L100)] = 5| £ g0 i, eo

(b) Since P(C,=10) >0, {W,} is stochastically bounded just as in the proof of
part (a). Since P(C, > 0) =1, {W,} is stochastically increasing in » when W, =0
by lemma 2. Hence, W, converges to a proper limit when W, = 0. Let W, (W)
represent W, as a function of the initial workload W;. Since P((;>0)=
1, W,(W,) = W,(0) for all n, but W,(W,) = W,(0) for all n>n, where C, =0.
Since P(C,=0) >0, C, =0 infinitely often w.p.1. Hence, W, converges to the
same proper limit independent of the initial workload W,.

(c) Since P(C, = 0) =1, W, is stochastically increasing when W, = 0 by lemma
2. By theorem 1 of Brandt [4] and lemma 1 above, W, is stochastically bounded if
Ellog ¢,] <0 and E(log[X,]*) < 0. Since _

log[ %] "< [Xo] "< ¥ | | (2.7)

and we have assumed E[V,]< oo, we have E[log[X,]") < co. Hence, W, con-
verges to a proper limit when W, = 0. From (1.4), by mathemaucal induction,

| W, (W3) = W, (W5%) | < (Ceir - QWG = W], m>1. (2.8)
By the strong law of large numbers,
(G Gy )™ = loB Gy Gl — on ™ TITIOBC, _, o EUBG) < 1y p.1
as n— oo, (2.9)

sothat(C,_,...;)—~>0asn— 0 W.p. 1 and W, converges to a proper hn:ut for
any initial workload
(d) Note that

W+'1 ‘
. =max{0, Z,, Z,+Z, 1, Z,+ 2, 1+ Z,_5,
G---C, { n=l> Sm T Sme1 0 Snm2 (2.10)
s Zy ¥ 2 2+ W),
where
. X, _
Z,= [Tl n,>,;Q. | ) (2.11)

The claimed convergence of (2.10) follows because ¥°_,Z, converges absolutely
w.p.1. To see this, recall that, by (2.9), (G,...C,) > "1 for some o> 1 and all
n>n, wpl (wheré r, depends on the sample path). Then X2 ja~"*DX,
converges absolutely w.p.1 ‘because E[| X, []1< E[V,]+ E{U,] < cc (see theorem
5.3.4 and exercise 7, pp. 120-122, of Chung [7]). If

> Yzl | (212)
i=0 ) . ' . ..
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then the limit of (2.10) is always strictly positive, implying that W, — c0 w.p.1
because
Woia

e > L Zi+ W, nz0. | (2.13)

i=qQ

To establish the final conclusion under the independence condition, note that
from the limit for (2.10) we have W, » W* w.p.1 where P(W*=0)=1- P(W*
= o0). However, from (1.4),

P(W*=0)=P([CW*+X,] ' =0) = P(W*=0)P(X,<0), (2.14)

where C, and X, are independent of W *. Since P(X, > 0) > 0, we must have
P(W*=0)=0. :

(e} Stochastic monotonicity when W, = 0 follows from lemma 2. The possibil-
ity of different cases follows from the standard case with P(C,=1) =1 (see p. 14
of Borovkov [2]). O

Remarks

(2.3) As we should expect, theorem 1 concludes that in (1.4) the multiplicative
adjustment C, is stronger than the additive adjustment X,. Moreover, the
distribution of C, for positive values does not cause instability provided that
P(Cy<0)>0. Given that C, assumes only positive values, the critical quantity
for stability is Eflog (,], which is understandable when we see that in successive
iterations of (1.4) we encounter the products (C,, C,_; ... () (see lemma 2).

(2.4) Under extra independence conditions, the results of Laslett, Pollard and
Tweedie [13] are applicable to this problem, but the familiar mean-drift criterion
yields only a weaker sufficient condition for stability, namely, P(C;> 0) =1 and
E[C,] < 1. (By Jensen’s inequality, E[C,]< 1 implies that Elog C;] <0, but not
conversely.) However, an appropriate Liapounov function to obtain the same
results for the i.i.d. cdse is 2(x) =log x.

(2.5) A standard random walk argument can be used to establish divergence in
the final statement of theorem 1(d) under stronger conditions, namely, {(C,, X,)}
being a sequence of independent vectors with ECy > 1and P(X; >0, Gy 1) > 0.
Since P(X, >0, Gy > 1) > 0, arbitrarily large values of W, will occur infinitely
often w.p.1. For sufficiently high w, {W,} starting above w is greater than a
random walk with mean step size E[(C— 1)w]+ E[X]> 0. By theorems 8.2.4,
8.3.4 and 8.4.4 of Chung {7], this random walk will diverge to + co before going
below w with positive probability. Since the process W, necessarily exceeds w
infinitely often, W, — oo w.p.1. (If P(C;>1+ e) 1 and P(X0 = —m) =1, then
the argument is much more direct.) . :

(2.6) To see that independence is needed in the final statement of theorem 1(d)
and remark 2.5, note that without it arbitrarily large values of w need not be
reached by W,. When P(X,<m)=1 and E[X,]<0, it is possible to have
X, +...+X,<m for all i and n. Indeed this occurs in example 2.5 below.: 'O
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Examples '

(2.1) Suppose that we only modify the service times via {1.3); i.e., let P(A,=0)
=1 and P(B,> 0) > 0. Theorem 1(d) implies that if {({/,, ¥,, B,)} is a sequence
of independent vectors with P(V, > U,) > 0, then W, diverges to + co w.p.1 for
all initial workloads W, and all nominal traffic intensities p.

(2.2) Suppose that we only modify the interarrival times via (1.2); ie., let
P(By=0)=1 and P(A,>0)>0. Theorem 1(b) and (¢) imply (without any
independence assumptions) that if P(0 < 4, < 1) =1, then W, converges in distri-
bution. to a proper limit for all initial workloads W, and all nomina! traffic
intensities p.

{2.3) Suppose that we consider a symmetric case involving both (1.2) and (1.3);
i.e., let 4, be distributed the same as By with P(0<A4;<1)=1 and P(4,=0)
< 1. As a consequence, E[(,] =1, so that in a certain mean-value sense (1.4) is
like the standard G/G/1 queue. However, theorem 1(c) implies (without any
independence assumptions) that, if P(C,=1) <1, then W, converges in distribu-
tion to a proper limit for all initial workloads ¥, and all nominal traffic
intensities p. The situation is not all good here, however, because E[W,] = co as
n— oo when p > 1 (see the corollary to theorem 2).

(2.4) To see that there need not be either convergence to a proper limit or
divergence to + o0, and to see the reason for having P(A, < 1) in examples 2.2
and 2.3, consider the purely deterministic model with U, =1, ¥, =2, 4, =2 and
B,=0 for all n, and W;=0. Then W,,,;=1 and W,,=0 for all n. Since
= —1], this example is in the setting of theorem 1(a).

(2.5) To see that W, can be stochastically bounded when Eflog C,]1>0 in
theorem 1(d), let

P(Cy,=¢*and C,,,; =e > forall n)
=P(C,=e?and G,,,=¢’forall n) =1/2

n

and
P(X,,= —100 and X,,,, =1 for all n)
=P(X,,=1and X,,,;,=—100 fdr all n) =1/2,
where {C,} is independent of { X, }. If W, =0, then
P(W,,=1and W,,,,=0forall n)
= P(W,,,,=1and W,, =0 for all n) =1/2;

1e., W,= W where P(W=0()=P(W=1)=1/2. On the other hand, if W,=
1000, then W, — oo w.p.1., so that whether or not { ¥, } is stochastically bounded
depends on the initial workload Wj.

(2.6) To clearly see that convergence to a proper limit can occur for all initial
workloads W, and all nominal traffic intensities p, as claimed in theorem 1(c), we
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give an example for which it is easy to calculate the limiting distribution
explicitly. Let P(X;=x)=1 for x > 0 (so that p > 1) and let :

P(C,,,1=0¢ and C,, = ¢, for all n)
=P(Cyy1=¢,and G, =c; forall n) =1/2,

where ¢; > ¢, > 0 and c,c, < 1. Then the two-step transition operator applied to
any state w is either

Ti(w)=c[e;w+x] +x=creaw+ (14 ¢))x
or

T(w)=cfew+x] +x=cie,w+ (1 +¢;)x,
each with probability 1/2. Operators T; and 7, are contractions with unique
fixed points
_(1+¢)x

1—c

_(1+4ey)x
- 1_(:2(:2 -

*

Wy and wy*

Moreover, ¢c,w* + x = wy,* and e;w,* + x = wi*. Hence, W, = W as n — oo, where
P(W=wf)=P(W=w>*)=1/2,

independent of ¥, and x. Unlike the standard GI/GI/1 queue, this example is
stable without 0 being visited infinitely often. [

3. Stochastic comparisons

We now make some stochastic comparisons in the spirit of Stoyan [19], which
for example allow us to compare our model to the standard GI/GI/1 queue. Let
< 4 denote stochastic order and < _ increasing convex order, as on pp. 4, 8, 26 of
[19]. The following is the analog of the external monotonicity result in Stoyan’s
theorem 5.2.1. Let a second subscript index the system.

THEOREM 2 _

(a) Let {(C,;, X,;)} be a sequence of i.i.d. vectors characterizing system / with
P(C,;>0)=1 for each i. If Wy, < W,; and (Cy, Xp1) < (Cpps Xg), then W, <
W,, for all n, where < denotes either <4 or < throughout. '

(b) If, in addition, E[Wp,] < o0, E[Cy,] < o0 and E{Xg;,]") < oo, then E[W,,]
< E[W,]< oo for all n. If E[Cy,] <1 as well, then W,,= W, and E[W,;]—
E[W]< o0 as n— oo for each i, and W, < W, (ordering for the steady-state
waiting times) in the same sense. '

Proof :
(a) First, for <4 note that [ew + x]™ is a nondecreasing function of (¢, w, x)
provided that ¢ > 0 and w > 0. Then apply induction. For <, note that

CWM+ X< G+ X, < GW, + X,
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by first conditioning on W, and then conditioning on ((,, X;). Then [C\W, +
X7 < J[GW, + X,]" because [x]* is nondecreasing and convex. Complete the
proof by applying induction.

(b) Apply lemma 1 to bound W,, by the unrestricted process. By the assumed
independence,

EY, 1= E([Col " Yo + [ %] 7 ) = E([Ca] ") EX,o + E([X,0] "),

which is finite by induction. Apply theorem 5.1 of Vervaat [21] to establish
convergence of the moments for the unrestricted process. Since E{log C,] <0
when E[C,] <1 (remark 2.4), theorem 1(b) and (¢) imply that W, = W, where W,
is proper. Apply the stochastic dominance to get the uniform integrability needed
to establish E{W,,] — E[W,] < oo (as on p. 32 of Billingsley [1]). Finally, apply
proposition 1.3.2 of Stoyan [19] to get preservation of <. order under conver-
gence in distribution. 0O

The following corollary to theorems 1 and 2 supports a conclusion about
example 2.3. In particular, it shows that the means diverge even though the modet
is stable. '

COROLLARY _ _

Let (G, ) and { X,;} be independent sequences of i.i.d. random variables for
each i. Let P(Cy = 1) 1, as in a standard GI/GI/1 queue. If E[Cyl=> 1,
Wy, & W, and Xo = S X, then Ca € (o, S0 that W, < W,, for all n. If, in
addition, E[ X;]> 0, then W, 5 o and E{W, 1< E{W, 5] = o0 as n — co..How-
ever, if E[log Cy,] <0, then W, = W, as n = co, where W, is proper.

4. Normal approximation when p > 1

In this section we assume that {( X, C,)} is a sequence of i.i.d. random vectors
with E[X?] < 0, P(C,>0) =1, E[(log C;))*] < oo and E[log C;] <0, so that
W, = W as n — oo, where W is proper, by theorem 1(c). Drawing on section 6 of
Vervaat [21], we show that if E [Xo] >0, which corresponds to. p>1, and
| E{log C,]| is suitably small, then W is approxxmately normally distributed with
mean ‘

___E[x)] '
EW1~ TEfog GTT -
and variance -
_(E[%,])Var|log G)] Var| X,]
Var[W] = 2| Eflog G] 1% 2|E[19g Gl
E[X,] Cov[ X,, log Gy | (4.2)

- (E[log C(J])2
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Remarks

(4.1) Since W is nonnegative, one test for the reasonableness of this approxi-
mation is that the mean E[W] should be sufficiently far away from 0 in the scale
of the standard deviation (Var[W V>

(4.2) Assuming that the process { W, } tends not to be near the origin (Whlch is
what is happening in this case, asymptotically), we should have

E[w]=E[CW + X,] (4.3)

(without the positive-part operator) as a reasonable approximation, which yields
E[X,]

E[W] = T—-_I?W ) (4.4)

provided that E[C,] < 1. Note that (4.4) is consistent with (4.1) when G tends to
be slightly less than 1, ie, if C; =1 — ¢Z, for some random variable Z;, because
then

log Co=1log(l—¢Z,}) = —eZ;=C,—1. O (4.5)
To obtain a proper limit theorem we introduce a sequence of systems indexed
by m. Let W,(m) be the waiting time of the nth customer and W(m) the
steady-state wait in system m, which will exist by theorem 1(c) and assumptions
below. The sequence of systems is constructed from a single system with sequence
{(X,, G} by letting X,(m)=X, and C,(m)=C,/™ for n>0 and m > 1. Let
N(a, b) represent a normally distributed random variable with mean a and
variance b. e

THEOREM 3 .

Let {(X,, C,)} be a sequence of ii.d. random vectors with E[ XZ] < oo, E[X,]
>0, P(Cy>0)=1, E[(log C;)*] < o and E[log C,] <0. If W, (m) is the wait of
customer n determined by the generalized Lindley recursion

Wyn(m) = [CY/"W,(m) + X,] ", n>0, (4.6)
then, for each ¢ > 0,

(W (m) — pm) = Z(1) a5 m > oo,
- where g, — ., Z(t) = N(0, ¢?) and W,,,,,(m) = W(m) as t— o0, ,
n=E[X,]/1E[log G| @)
and :

2 _ Var[log Co](E[X()])z Var[Xol 1 E[Xﬂ] COU[Xo, log C()] )
2| Eflog G] |? 2| Elog G| (E[log G| -

(4.8)
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Proof
As in remark 4.2, in this case we should expect that the limiting behavior for
W, (m) would be the same as if the positive-part operator were deleted, and
indeed this is what occurs. The key result, therefore, is the limit for ¥,(m)
satisfying Y, (m) = C}/"Y, (m) + X,, n > 0, established in section 6 of Vervaat
[21]. What remains to be shown is that the limit for W, (m) satisfying (4.6) must
be the same. To do this, we work with the stronger FCLT (functional central limit
theorem) version, which is also established in {21}; see remark 6.2 and the proof
of theorem 6.1 there. Abstractly this FCLT gives Z, = Z as m — o0 in function
space, where Z is displayed on line 2 of p. 778 of [21],
frmt]
Z,(t)=m"Y*Y T,—am'*(1—e7%), >0, (4.9)
k=1 :
with 7, being random variables based on {(C,, X,)} and & and b are constants
with a > 0 (because E[X;] > 0) and b > 0. Hence, Z,, = Z too, where

[rms]
Z,.(1)=m"V? sup { > Tk} —am*(1—e™%), >0, (4.10)

Ogsst L k=1

by a slight modification of theorem 6.2(ii) of [23] A modification is required for
two rcasons first, the translation term is not of the form am'/? but includes
1 — e and, second, the space of functions and the topology are different (as in
[22]). However, essentially the same proof as in theorem 6(ii) of 23] applies. By
the continuous mapping theorem, Z A{2)=Z(t) in R as m— oo for each ¢
Finally, by lemma 2, Z, (1) is asymptotically equivalent to the normalized version
of Wy,.q(m). (Apply theorem 4.1 of Billingsley [1].) O

Remarks
(4.3) We conjecture that the corresponding limit theorem holds directly for the
steady-state wait W{(m), i.e.,

m~*(W(m) —mp) = N(0, 6*) as m— o0, (4.11)

but we have not yet established it. This defect exists for the standard heavy-traffic
limits for queues too.
(4.4) We obtain the normal approximation with (4.1) and (4.2) from theorem 4
by choosing a large ¢ and setting A
m™ (W (m) — pm) = m ™ (W0 (m) — pm) = Z(1) = N(0, o),
(4.12)

or, equivalently,

W(n) ==N(mp., mo?). . (4.13)
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The m in (4.12) and (4.13) disappears when we go to (4.1) and (4.2) because (4.1)

and (4.2) are based on the random variable C}/™ instead of C,, and

k
E[(log Cﬂl/m)"] — fz_[(ﬁg_;“ﬁ_]_; (4.14)
m
i, in a given system to be approximated we act as if the actual G, is C3/™ for
some C, and some suitably large m. (Of course, we obtain C; by setting
Co=C") ‘

(4.5) The full independence assumed in theorem 3 is not needed. It suffices to
have an appropriate FCLT for the partial sums of (log C,, X},), as in (6.4) and
(6.5) of [21].

(4.6) In the case E[X]=0 (p=1) a limit for m~'?W,,,(m) also follows
from section 6 of [21]. In this case, since there is no translation term, we can
apply the continuous mapping theorem; the limit is sup, ., ., Z(s) for Z dis-
played in {21], which seems to be rather complicated.

(4.7) In our normal approximation, we could just as well use the exact first two
moments of Y, the steady-state distribution of (1.6), as given in theorem 5.1 of
Vervaat [21]. Instead of (4.1) and (4.2), we can use the moments E[Y*] as
approximations for the desired moments E[W*]. Thus, provided that E[C;] <1,
we can use (4.4) instead of (4.1). Similarly, if E[Cf] <1 for k=1, 2, then (from
5.2.2 of [21))

Var[W] = Var[Y] = (2E[ %] E[ X,G](1 - E[G])
+E[ %] - E[G]) - (1~ E[G])(E[ x%]))

/(- E[C])1 - E[G]). (4.15)

Using (4.4) and (4.15) instead of (4.1) and (4.2) obviously can be important if it is
easier to calculate E[CF] than E[(log C))*]. O

5. Scheduling arrivals

In this final section we consider the problem of scheduling the interarrival
times, as might occur in a production system. For our model, we assume that the
service times come from a given sequence {V,} of ii.d. random variables not
subject to control. At each arrival epoch, we must select the next interarrival time,
given the history up to that time, i.e., give the service times of all arrivals up to
that time and all previous interarrival times. We assume that the interarrival time
between customers n'and n + 1 is at least U, where {U,} is ii.d. and indepen-
dent of {¥,}, so that we are to determine U,, where

U,=U,+D, (5.1)
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with
D,=f(U_y, Vit i<n). (52)
If D, = A,W,, which is one possibility in (5.2), then (5.2) reduces to (1.2).

The general idea here is that something like what we have previously consid-
ered should be a reasonable policy in some circumstances. We mention three
natural general criteria for choosing D,. First, we probably do not want the
waiting times to be too large, so that we might want to control the expectation of
some increasing function of the waiting time, such as the mean E[W] or a tail
probability P[W > ¢]. Second, we may want the throughput to be as high as
possible (near the upper limit 1/E[V,]), so that we might want to make the
probability of emptiness upon arrival, P(# = 0), small. Third, we may want the
sequence of interarrival times to be relatively smooth, as in production smoothing
problems (see pp. 400413, 438 of Heyman and Sobel [12]), so that we may want
to control |U,,, — U, | or its distribution. This last objective clearly is important
for a policy of the form (1.2) to be reasonable.

From the perspective of applied relevance, there is a difficulty with the
scheduling problem as we have formulated it, because the waiting time before
beginning service (W,) often would not be known at the decision point. However,
in practice it may-be possible to obtain a quick rough estimate of W,. The
analysis below for the idealized case in which W, is known should be useful to
understand the more complex problem in which W, is estimated.

ZERO LOWER BOUND

First consider the case in which P(Uj = 0) = 1. In this case, we can obviously
have the server continuously busy and W, =0 for all n (and thus clearly satisfy
the first two criteria above) by setting

U,=D,=W,+V¥,, n>0, (5.3)

which becomes simply U, = ¥, for n > 1. However, with this policy the successive
interarrival times can fluctuate substantially. In particular, for n > 1, this policy
yields

U .,.i— U Vs 1= Vs ' o - (5.4)
so that E[U;H U]— 0 and ,
Var[U,. - -7 = war[V,]. | (5.5)

A natural altemahve to (5. 3) if smoothing {U }is of concern is the smoothed
response ,

U=D,=¢«(W,+ V), n>0, (5.6)
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for small positive ¢. Then W, can grow but [U,,, — U, | is better controlled. Then

Wor =W, + ¥, = G] =[1- W, + (1 -]
=(1—-e)W,+(1—-¢)V,, n=1, (5.7)
2
ppw) = L= E] _elE[V“] . var[w) =4 _:()2 '_/‘f)[y"] : (5.8)
and
5"+1_ 5"=E(I’Vn+1+ Vi) — (W, + V)
=V, ,— &V, —W,, n=1, (5.9)
so that
E[T— T » (1~ ) E[V,] - E[W] =0 (5.10)
and
Var[U, ., — U] = EQ + )Var[V,] + e*Var | W]
-5 iz_e'Var[%] . (5.11)

Note that (5.11) is of order O(e?), so that (5.6) enables us to reduce Var[U,,, — Ul
dramatically, but at the expense of increasing W.

RANDOM LOWER BOUND

We now return to (5.1) without assuming that P(U, = 0) = 1. We shall find a
policy of the form D,=d+ ¢(W,+ V,) that tends to keep the process W, in a
prescribed interval [a, b}. To do this, we apply the normal approximation in
section 4 to produce control parameters d and € so that

P(W<a)=P(W>b)=q (5.12)

for any specified probability #. Our solution will require that E{V,] > E[{}], ie.,
p >1, and the other assumptions of theorem 3.

Since U, = U, + d+ e(W,+ V), in this case we have C,=1 —¢, X, =(1 —¢€)V,
— U, —d and, by (4.4) and (4.15),

E[W]z (I_G)E[VO] :(E[[]()]+d) (5.13)
and
Var[W] = cg";Xg) _ (=9 _V‘:r(y/_"]e;r Var[G] (5.14)

We first use the desired range r =& — a to specify e. Since

r=b—a=28yVar[W], ' (5.15)
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where P(N(0, 1) > 8) = =, we can apply (5.14) to obtain
72

(Var [%) + Var[G:])* |

(var[Vs] + 1r/281)

which has a solution provided that Var[U,] < (r/28)>. _
Next we use the intended mean E[W]=(a+ b)/2 to solve for d. We apply
(5.13) to get

e=1-|1- (5.16)

a+b _ (1-Q)E[%] ~E[4] -d

E[w] =% - , (5.17)
so that
d=(1- ) E[V] - B[t] - L2F2) (5.18)

Of course, a feasible solution requires that 4> 0 in (5.18). A necessary condition
is E[V,]> E[l}], but € determined by (5.16) must also be sufficiently small.

As noted above, a primary motivation for considering policies of this form 1s to
control the fluctuations in the interarrival times. We have done this in two ways.
First, given that a < W, < b, we have overall bounds on the final interarrival
times, i.e.,

U+dte(la+V)<U<U-+d+e(b+ V). (5.19)
Second, we have controlled the short-run fluctuations in {T,}, i.e.,
U1 = U= Upyy = (L + YU, + ¥, — €W, — €7V, (5.20)
so that E[U = E[V,} and E[U, ,,— U]= 0 for large n, and
Var[U,.1— U] = (1+ @+ &) )Var[G] + (1 + &) Var [Vy] + *Var [ W]

= (z—(jz—j%))v’ar[%] + (zz_e_ze)Var[P{)]. (5.21)
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