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1 Overview of this Appendix

This appendix provides additional material expanding upon the main paper. It is divided into

two parts. First, in §§2-5 we focus on the classic bounds based on the first two moments of the

underlying cdf F of an interarrival time U and the cdf G of a service tims V , as in

(E[U ],E[U2],E[V ],E[V 2]) ≡ (1, c2a, ρ, c
2
s) (1.1)

taken from (1.4) of the main paper. In these sections we consider the impact of the support

bounds, but not yet the Laplace transform values, which play a prominent role in our main method

for generating intervals of likely values for the mean in §4 of the main paper.

In §2 we discuss the wide range of possible values of the mean E[W ] given only the the first

two moments of F and G, without yet introducing the finite support bounds Ma for F and Ms for

G. Then in §3 we elaborate on §4.1 of the main paper on how to choose the support bounds. In

§4 we supplement Table 1 of the main paper by presenting additional tables studying the direct

application of Theorem 3.1 of the paper, which gives bounds based on adding only support bounds

to the parameters in (1.1). In §5 we relate the support bound constraints to extra third-moment

constraints. In particular, we show that for appropriate choices, there is an explicit one-to-one

correspondence between the third moment and the support bound. Consequently, provided that

we decide to use a support bound, we can specify either the third moment or the support bound,

and the other will be determined. However, our approach in this paper is to introduce support

bounds that should have only negligible impact on the mean waiting time. Thus, it should not be

surprising that support bounds associated with natural third moments tend to take smaller values.

In §§6-7 we present additional results related to the Laplace transform constraints in Theorem

3.2 of the main paper, which forms the basis of our main approach for generating intervals of likely

values of the mean E[W ], as summarized in §6.1 of the main paper. In §6 we expand the study

in §4.3 of the main paper, complementing Table 3 of the main paper. In §7 we present additional

tables for the M/M/1 and M/M/2 model complementing Tables 4 and 7 of the main paper.

2 A Wide Range for E[W ] Given the First Two moments

The standard way to evaluate approximations such as the heavy-traffic approximation (HTA)

E[W ] ≈
ρ2(c2a + c2s)

2(1− ρ)
. (2.1)
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taken from (1.2) of the main paper is to compare it to simulation estimates for specific cases. Using

simulation is of course excellent if we have a specific model we want to analyze. An alternative

approach to obtain a broader understanding is to look at the set of all possible values, given the

partial specification by the parameter 4-tuple in (1.1) when this can be done.

A principle conclusion of this line of work is that the range of possible values for E[W ] given

the partial information in (1.1) is remarkably wide. We now illustrate by providing simple approx-

imation formulas for the absolute and relative errors, obtained by viewing the established bounds

in a revealing way. In particular, it is helpful to look at the accuracy of the upper bound (UB)

separately from the lower bound (LB), and it is helpful to use the simple HTA in (2.1) as a reference.

The most familiar UB on E[W ] is the Kingman (1962) [8] bound,

E[W ] ≤
ρ2([c2a/ρ

2] + c2s)

2(1− ρ)
, (2.2)

which is known to be asymptotically correct in heavy traffic (as ρ → 1). As an approximation for

the UB, we use the improved (but still non-tight) Daley (1977) [4] UB

E[W ] ≤
ρ2([(2− ρ)c2a/ρ] + c2s)

2(1− ρ)
. (2.3)

We could compute the conjectured exact tight UB using [2], but we want to produce a simple

formula. We use the tight LB

E[W (LB)] =
ρ((1 + c2s)ρ− 1)+

2(1− ρ)
. (2.4)

The LB has long been known, see [12], §5.4 of [11], §V of [14], [10], Theorem 3.1 of [5] and references

there. It is significant that the LB is often 0 for smaller values of ρ; indeed it occurs whenever

we can have P (V − U ≤ 0) = 1, which cannot be effectively prevented by moment constraints

alone. The main paper shows that a third moment and the transform constraints address this

shortcoming.

Let the absolute upper error (AUE) and the relative upper error (RUE) of the heavy-traffic

approximation (2.1) (HTA) be defined by the formulas

AUE ≡ UB −HTA and RUE ≡
UB −HTA

HTA
. (2.5)

Similarly, let the absolute lower error (ALE) and the relative lower error (RLE) of the heavy-traffic

approximation (2.1) be defined by the formulas

ALE ≡ HTA− LB and RUE ≡
HTA− LB

HTA
. (2.6)
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We subtract the smaller from the larger in each case, so that these measures of the possible errors

are always positive. We use the HTA in the denominator because it produces more revealing simple

formulas. (If we divided by the bound, then the RUE would decrease, but the RLE would increase.)

When ρ and E[W ] are not too small, it seems natural to focus on the relative error; otherwise

it may be better to focus on the absolute error.

Proposition 2.1 (upper and lower errors for the mean) Suppose that we use the non-tight UB

for the mean E[W ] in (2.3) and the tight LB in (2.4). For the LB, assume that ρ > 1/(1 + c2s);

otherwise it must be 0. Then the upper and lower errors given the parameter four-tuple (1, c2a, ρ, c
2
s)

can be expressed as

AUE = ρc2a,

RUE =

(

2(1− ρ)

ρ

)(

c2a
c2a + c2s

)

or
1− ρ

ρ
if c2a = c2s,

ALE =

(

ρ2

2(1− ρ)

)(

c2a +
1− ρ

ρ

)

=

(

ρ2c2a
2(1 − ρ)

)

+
ρ

2
and

RLE =
c2a + 1− ρ

c2a + c2s
or

1

2
+

1− ρ

c2a
if c2a = c2s. (2.7)

Corollary 2.1 (monotonicity as functions of the parameters) The relative errors RUE and RLE

in (2.7) are decreasing in ρ and c2s but are increasing in c2a.

Corollary 2.2 (heavy traffic and light traffic) The upper errors are asympotically effective in the

sense that RUE(ρ) → 0 as ρ ↑ 1, while AUE(ρ) → 0 as ρ ↓ 0. In contrast, RLE(ρ) → c2a/(c
2
a + c2s)

as ρ ↑ 1.

As in Corollary 1 of [14] for the GI/M/1 model, which shows that the overall relative error

(UB−LB)/LB for the mean queue length in the GI/M/1 model is c2a, Proposition 2.1 and Corollary

2.2 dramatically show the wide range of possible values. This suggests imposing further constraints

on these distributions to concentrate on realistic “typical” cases, as was done in [9] and [15] for the

GI/M/1 model. This program was extended to phase-type distributions by [6, 7]. The main paper

carries out the same program for the more general GI/GI/1 and GI/GI/K models in a new way

(by initially focusing on the asymptotic decay rate).

Now we present numerical examples, drawing on the algorithms in [2]. We include the conjec-

tured tight upper bound and the associated upper bound formula

E[W ] ≤
[2(1 − ρ)ρ/(1 − δ)]c2a + ρ2c2s

2(1− ρ)
, (2.8)
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where δ ∈ (0, 1) solves the equation

δ = exp(−(1 − δ))/ρ)). (2.9)

from Theorem 3.2 of [2]. In the following tables we show the values of both (2.8) and the associated

value of δ. We also show the maximum relative error (MRE) of (2.8) compared to the conjectured

tight UB.

Table 1: A comparison of the unscaled bounds and approximations for the steady-state mean E[W ]
as a function of ρ for the case c2a = 4.0 and c2s = 4.0

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(2.4) (2.1) [2] (2.8) (2.9) (2.3) (2.2)

0.10 0.000 0.044 0.422 0.422 0.000 0.00% 0.444 2.244
0.15 0.000 0.106 0.653 0.654 0.001 0.05% 0.706 2.406
0.20 0.000 0.200 0.904 0.906 0.007 0.19% 1.000 2.600
0.25 0.042 0.333 1.182 1.187 0.020 0.40% 1.333 2.833
0.30 0.107 0.514 1.499 1.508 0.041 0.60% 1.714 3.114
0.35 0.202 0.754 1.868 1.883 0.070 0.79% 2.154 3.454
0.40 0.333 1.067 2.304 2.326 0.107 0.94% 2.667 3.867
0.45 0.511 1.473 2.829 2.859 0.152 1.06% 3.273 4.373
0.50 0.750 2.000 3.470 3.510 0.203 1.15% 4.000 5.000
0.55 1.069 2.689 4.272 4.321 0.261 1.13% 4.889 5.789
0.60 1.500 3.600 5.295 5.352 0.324 1.07% 6.000 6.800
0.65 2.089 4.829 6.632 6.698 0.393 1.00% 7.429 8.129
0.70 2.917 6.533 8.441 8.520 0.467 0.93% 9.333 9.933
0.75 4.125 9.000 11.014 11.102 0.546 0.80% 12.000 12.500
0.80 6.000 12.800 14.917 15.017 0.629 0.67% 16.000 16.400
0.85 9.208 19.267 21.484 21.597 0.716 0.53% 22.667 22.967
0.90 15.750 32.400 34.721 34.843 0.807 0.35% 36.000 36.200
0.95 35.625 72.200 74.621 74.755 0.902 0.18% 76.000 76.100
0.98 95.550 192.080 194.557 194.702 0.960 0.07% 196.000 196.040
0.99 195.525 392.040 394.533 394.684 0.980 0.04% 396.000 396.020
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Table 2: A comparison of the unscaled bounds and approximations for the steady-state mean E[W ]
as a function of ρ for the case c2a = 4.0 and c2s = 0.5

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(2.4) (2.1) [2] (2.8) (2.9) (2.3) (2.2)

0.10 0.000 0.025 0.403 0.403 0.000 0.00% 0.425 2.225
0.15 0.000 0.060 0.607 0.607 0.001 0.05% 0.660 2.360
0.20 0.000 0.113 0.816 0.818 0.007 0.21% 0.913 2.513
0.25 0.000 0.188 1.036 1.041 0.020 0.45% 1.188 2.688
0.30 0.000 0.289 1.274 1.283 0.041 0.71% 1.489 2.889
0.35 0.000 0.424 1.538 1.553 0.070 0.96% 1.824 3.124
0.40 0.000 0.600 1.837 1.859 0.107 1.16% 2.200 3.400
0.45 0.000 0.828 2.184 2.214 0.152 1.35% 2.628 3.728
0.50 0.000 1.125 2.595 2.635 0.203 1.51% 3.125 4.125
0.55 0.000 1.513 3.096 3.144 0.261 1.53% 3.713 4.613
0.60 0.000 2.025 3.720 3.777 0.324 1.50% 4.425 5.225
0.65 0.000 2.716 4.519 4.586 0.393 1.45% 5.316 6.016
0.70 0.058 3.675 5.583 5.662 0.467 1.39% 6.475 7.075
0.75 0.188 5.063 7.077 7.165 0.546 1.23% 8.063 8.563
0.80 0.400 7.200 9.317 9.417 0.629 1.06% 10.400 10.800
0.85 0.779 10.838 13.055 13.168 0.716 0.86% 14.238 14.538
0.90 1.575 18.225 20.546 20.668 0.807 0.59% 21.825 22.025
0.95 4.037 40.613 43.033 43.168 0.902 0.31% 44.413 44.513
0.98 11.515 108.045 110.479 110.667 0.960 0.17% 111.965 112.005
0.99 24.008 220.523 222.971 223.167 0.980 0.09% 224.483 224.503

Table 3: A comparison of the unscaled bounds and approximations for the steady-state mean E[W ]
as a function of ρ for the case c2a = 0.5 and c2s = 4.0

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(2.4) (2.1) [2] (2.8) (2.9) (2.3) (2.2)

0.10 0.000 0.025 0.072 0.072 0.000 0.00% 0.075 0.300
0.15 0.000 0.060 0.128 0.128 0.001 0.07% 0.135 0.347
0.20 0.000 0.113 0.200 0.201 0.007 0.30% 0.213 0.413
0.25 0.042 0.188 0.292 0.294 0.020 0.68% 0.313 0.500
0.30 0.107 0.289 0.409 0.414 0.041 1.08% 0.439 0.614
0.35 0.202 0.424 0.558 0.565 0.070 1.32% 0.599 0.762
0.40 0.333 0.600 0.746 0.757 0.107 1.47% 0.800 0.950
0.45 0.511 0.828 0.986 1.002 0.152 1.58% 1.053 1.191
0.50 0.750 1.125 1.289 1.314 0.203 1.91% 1.375 1.500
0.55 1.069 1.513 1.692 1.716 0.261 1.45% 1.788 1.900
0.60 1.500 2.025 2.212 2.244 0.324 1.40% 2.325 2.425
0.65 2.089 2.716 2.913 2.950 0.393 1.26% 3.041 3.129
0.70 2.917 3.675 3.875 3.923 0.467 1.23% 4.025 4.100
0.75 4.125 5.063 5.250 5.325 0.546 1.41% 5.438 5.500
0.80 6.000 7.200 7.422 7.477 0.629 0.74% 7.600 7.650
0.85 9.208 10.838 11.075 11.129 0.716 0.48% 11.263 11.300
0.90 15.750 18.225 18.470 18.530 0.807 0.32% 18.675 18.700
0.95 35.625 40.613 40.871 40.932 0.902 0.15% 41.088 41.100
0.98 95.550 108.045 108.307 108.373 0.960 0.06% 108.535 108.540
0.99 195.525 220.523 220.783 220.853 0.980 0.03% 221.018 221.020
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Table 4: A comparison of the unscaled bounds and approximations for the steady-state mean E[W ]
as a function of ρ for the case c2a = 0.5 and c2s = 0.5

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(2.4) (2.1) [2] (2.8) (2.9) (2.3) (2.2)

0.10 0.000 0.006 0.053 0.053 0.000 0.00% 0.056 0.281
0.15 0.000 0.013 0.082 0.082 0.001 0.11% 0.088 0.301
0.20 0.000 0.025 0.113 0.113 0.007 0.54% 0.125 0.325
0.25 0.000 0.042 0.146 0.148 0.020 1.35% 0.167 0.354
0.30 0.000 0.064 0.184 0.189 0.041 2.36% 0.214 0.389
0.35 0.000 0.094 0.228 0.235 0.070 3.16% 0.269 0.432
0.40 0.000 0.133 0.280 0.291 0.107 3.82% 0.333 0.483
0.45 0.000 0.184 0.342 0.357 0.152 4.43% 0.409 0.547
0.50 0.000 0.250 0.414 0.439 0.203 5.72% 0.500 0.625
0.55 0.000 0.336 0.515 0.540 0.261 4.62% 0.611 0.724
0.60 0.000 0.450 0.637 0.669 0.324 4.71% 0.750 0.850
0.65 0.000 0.604 0.800 0.837 0.393 4.45% 0.929 1.016
0.70 0.058 0.817 1.017 1.065 0.467 4.53% 1.167 1.242
0.75 0.188 1.125 1.312 1.388 0.546 5.42% 1.500 1.563
0.80 0.400 1.600 1.822 1.877 0.629 2.95% 2.000 2.050
0.85 0.779 2.408 2.646 2.700 0.716 1.99% 2.833 2.871
0.90 1.575 4.050 4.295 4.355 0.807 1.38% 4.500 4.525
0.95 4.037 9.025 9.284 9.344 0.902 0.65% 9.500 9.512
0.98 11.515 24.010 24.271 24.338 0.960 0.27% 24.500 24.505
0.99 24.008 49.005 49.265 49.336 0.980 0.14% 49.500 49.503

3 Elaboration on Specifying Appropriate Support Bounds

In this section we elaborate on §3.1 of the main paper, expanding upon the discussion there. As we

wrote there, most applications of the GI/GI/1 queueing model do not have interarrival-times and

service-time distributions with finite support. We introduce the support bounds Ma and Ms as a

device to help expose the typical range of possible values of the simple approximations for decay

rate θW in equations (1.5), (3.1) and (3.2) of the main paper.. We propose using values of Ma and

Ms that should have negligible impact on the mean waiting time in typical cases of interest, so that

the bounds with Ma and Ms give a good indication of the likely set of possible values given the

partial information. (§II.5.9 of [3] provides theoretical support for this step.) Assumption 3.1 of

the main paper about the critical singularity s∗ of the moment generating function ĝ(−s) is critical.

We show how to construct support bounds that are typical as well ones that are conservative.

3.1 Starting from a Model or Data

Starting from a specific model with unbounded U and V , we suggest choosing the support bounds

Ma and Ms so that

P (U > MaE[U ]) = P (U > Ma) = P (V > MsE[V ]) = P (V > ρMs) = ǫ (3.1)
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for a suitably small ǫ such as 0.001. We might take ǫ = 0.0001 to be more conservative or ǫ = 0.01 to

narrow the range (but losing confidence in the reliability). With ample data, we would estimate the

corresponding empirical complementary cdf (ccdf) of the service time, and use the same criterion

in (3.1).

Example 3.1 (the M/M/1 case) As a helpful orientation, we first consider the M/M/1 queue

with arrival rate λ = 1 and mean service time ρ < 1. Notice that the service-time complementary

cdf (ccdf) is

P (V > x) = e−x/ρ, x ≥ 0, (3.2)

so that its decay rate θV ≡ limx→∞ {− log (P (V > x))/x} is independent of x, i.e.,

θV = − log (P (V > x))/x = 1/ρ for all x. (3.3)

while the associated waiting time ccdf is

P (W > x) = ρe−(1−ρ)x/ρ, x ≥ 0, (3.4)

so that its decay rate is

θW ≡ lim
x→∞

− log (P (W > x)/x = (1− ρ)/ρ. (3.5)

Hence, for the M/M/1 model we see that θW /θV = 1 − ρ < 1 which quantifies the well-known

property that large waiting times ar more likely than large service times, becoming ever more so

as the traffic intensity approaches 1.

Moreover, in the present light-tail case, provided that ρ is not too small, large waiting times

are likely to be the result of several service times associated with a cluster of arrivals rather than

one especially large service time.

For the M/M/1 model where U and V have exponential distributions, the target in (3.1)

becomes e−M = ǫ. For Ma = Ms = M = (4, 5, 6, 7, 8, 9, 10), the corresponding values are ǫ(M) =

(0.0183, 0.0067, 0.0025, 0.0091, 0.0033, 0.00123, 0.00045). We use 7 and 9 in our experiments later.

Based on this analysis, we conduct a simulation comparison to show how the support bounds

affect the decay rate θW of the extremal queues for the case ρ = 0.7 and c2a = c2s = 1 in Table 5.

We implement Monte-Carlo Simulation with N = 108 and R = 20 to simulate the tail probability

with different quantities and report 95% confidence interval length (CIL).

Table 5 shows that there is rapid convergence of − log(P (W > x))/x to the decay rate θW as x

increases; it is not necessary to make x extraordinarily large. Notice that the estimated decay rate
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Table 5: Simulation comparison of the waiting time ccdf and delay rate θW for two-point extremal
models with Ma = {1 + c2a, 5, 10} and Ms = {1 + c2s, 5, 10} under c2a = c2s = 1, ρ = 0.7
Ma = 2,Ms = 10 x = 10 CIL x = 12 CIL x = 14 CIL x = 16 CIL x = 18 CIL

P (W > x) 2.90E-02 3.65E-05 3.54E-01 3.63E-05 8.85E-03 2.82E-05 4.83E-03 1.49E-05 2.64E-03 1.16E-05
− log(P (W > x))/x 3.54E-01 3.44E-01 3.38E-01 3.33E-01 3.30E-01
Ma = 2,Ms = 5 x = 10 CIL x = 12 CIL x = 14 CIL x = 16 CIL x = 18 CIL

P (W > x) 1.94E-02 3.02E-05 9.42E-03 3.04E-05 4.56E-03 1.54E-05 2.21E-03 1.20E-05 1.07E-03 8.66E-06
− log(P (W > x))/x 3.94E-01 3.89E-01 3.85E-01 3.82E-01 3.80E-01
Ma = 2,Ms = 2 x = 10 CIL x = 12 CIL x = 14 CIL x = 16 CIL x = 20 CIL

P (W > x) 1.31E-02 2.68E-05 5.77E-03 2.81E-05 2.51E-03 1.55E-05 1.08E-03 7.94E-06 4.58E-04 5.21E-06
− log(P (W > x))/x 4.33E-01 4.30E-01 4.28E-01 4.27E-01 4.27E-01
Ma = 5,Ms = 2 x = 4 CIL x = 5 CIL x = 6 CIL x = 7 CIL x = 8 CIL

P (W > x) 7.50E-02 4.46E-05 4.12E-02 3.00E-05 2.32E-02 2.20E-05 1.27E-02 1.67E-05 6.97E-03 1.47E-05
− log(P (W > x))/x 6.48E-01 6.38E-01 6.28E-01 6.24E-01 6.21E-01
Ma = 10,Ms = 2 x = 4 CIL x = 5 CIL x = 6 CIL x = 7 CIL x = 8 CIL

P (W > x) 2.39E-02 2.13E-05 9.98E-03 2.35E-05 4.24E-03 9.87E-06 1.73E-03 6.92E-06 7.08E-04 5.77E-06
− log(P (W > x))/x 9.33E-01 9.21E-01 9.11E-01 9.08E-01 9.07E-01

is monotone in Table 5, with the M/M/1 exact value (1− ρ)/ρ = 0.3/0.7 = 0.4285 bounded below

and above by the values for (Ma,Ms) = (2, 5) and (5, 2) taken from the last column of Table 5.

4 Direct Application of Theorem 3.1 to the Mean E[W ]

We now elaborate on §4.1 of the main paper by providing additional results about how the extremal

UB model F0/Gu/1 and LB model Fu/G0/1 for the decay rate from Theorem 3.1 of the main paper

apply to the mean E[W ] with K = 1 when we introduce the support bounds Ma and ρMs following

the prescription in §4.1 of the main paper.

This issue relates strongly to [1, 2], which studied the extremal models for E[W ]. For the mean,

there is strong evidence (but not yet a mathematical proof) that the model F0/Gu/1 directly yields

the UB for the mean, for both bounded and unbounded support, just as it does for the decay

rate. However, the situation is different for the LB, as discussed in §2.4.1 of [2]. For unbounded

support, the tight LB is given here in (2.4). It is attained by the D/A3/1 model, where A3 denotes

a three-point distribution, which has all mass on multiples of the deterministic interarrival time.

The D interarrival time violates the moment condition, but nevertheless is attained asymptotically.

We have found that the Fu/A3(u)/1 model attains the LB, where A3(u) is a natural analog of A3

4.1 Elaborating on Table 1 of the Main Paper

Table 1 of the main paper shows how the support bounds reduce the range of the possible values of

E[W ]. It reports results for the cases (ca, c
2
s) = (1.0, 1.0), (4.0, 4.0), (0.5, 0.5), (4.0, 0.5), (0.5, 4.0).

We now supplement Table 1 of the main paper by showing the UB and LB for the mean E[W ]

with the support bounds chosen to satisfy (3.1) with targets ǫ = 0.001 and 0.0001 for all four cases
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of c2a, c
2
s ∈ {0.5, 4.0} for 10 values of ρ.

Table 6: Evaluation of E[W ] for Fu/G0/1 and F0/Gu/1 with (Ma,Ms) for c
2
a = c2s = 4

ρ Tight LB Ma = 39.9 Ma = 31.1 HTA Ms = 31.1 Ms = 39.3 Tight UB

0.10 0.000 0.000 0.000 0.044 0.401 0.402 0.422
0.20 0.000 0.026 0.033 0.200 0.867 0.873 0.904
0.30 0.107 0.172 0.186 0.514 1.453 1.463 1.499
0.40 0.333 0.458 0.498 1.067 2.254 2.265 2.304
0.50 0.750 1.013 1.097 2.000 3.419 3.430 3.470
0.60 1.500 2.079 2.282 3.600 5.239 5.251 5.295
0.70 2.917 4.303 4.748 6.533 8.384 8.394 8.441
0.80 6.000 9.829 10.697 12.800 14.856 14.865 14.917
0.90 15.750 28.924 30.239 32.400 34.658 34.671 34.721
0.95 35.625 68.695 70.106 72.200 74.553 74.568 74.621

Table 7: Evaluation of E[W ] for Fu/G0/1 and F0/Gu/1 with (Ma,Ms) for c
2
a = c2s = 0.5

ρ Tight LB Ma = 4.5 Ma = 3.5 HTA Ms = 3.5 Ms = 3.5 Tight UB

0.10 0.000 0.000 0.000 0.006 0.050 0.050 0.053
0.20 0.000 0.000 0.000 0.025 0.101 0.101 0.113
0.30 0.000 0.000 0.000 0.064 0.159 0.163 0.184
0.40 0.000 0.000 0.000 0.133 0.243 0.255 0.280
0.50 0.000 0.000 0.000 0.250 0.377 0.388 0.414
0.60 0.000 0.076 0.164 0.450 0.588 0.601 0.637
0.70 0.058 0.410 0.530 0.817 0.966 0.982 1.017
0.80 0.400 1.167 1.311 1.600 1.760 1.774 1.822
0.90 1.575 3.613 3.771 4.050 4.207 4.229 4.295
0.95 4.037 8.596 8.735 9.025 9.185 9.220 9.284

Table 8: Evaluation of E[W ] for Fu/G0/1 and F0/Gu/1 with (Ma,Ms) for c
2
a = 4, c2s = 0.5

ρ Tight LB Ma = 39.9 Ma = 31.1 HTA Ms = 3.5 Ms = 4.5 Tight UB

0.10 0.000 0.000 0.000 0.025 0.400 0.400 0.403
0.20 0.000 0.000 0.000 0.113 0.805 0.806 0.816
0.30 0.000 0.000 0.000 0.289 1.253 1.254 1.274
0.40 0.000 0.000 0.000 0.600 1.806 1.808 1.837
0.50 0.000 0.000 0.000 1.125 2.556 2.559 2.595
0.60 0.000 0.005 0.065 2.025 3.669 3.675 3.720
0.70 0.058 0.342 0.450 3.675 5.524 5.533 5.583
0.80 0.400 1.268 1.798 7.200 9.250 9.261 9.317
0.90 1.575 9.075 11.988 18.225 20.469 20.486 20.546
0.95 4.037 32.083 34.934 40.613 42.955 42.970 43.033
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Table 9: Evaluation of E[W ] for Fu/G0/1 and F0/Gu/1 with (Ma,Ms) for c
2
a = 0.5, c2s = 4.0

ρ Tight LB Ma = 4.5 Ma = 3.5 HTA Ms = 31.1 Ms = 39.9 Tight UB

0.10 0.000 0.000 0.000 0.025 0.064 0.065 0.072
0.20 0.000 0.034 0.046 0.113 0.184 0.188 0.200
0.30 0.107 0.179 0.192 0.289 0.388 0.393 0.409
0.40 0.333 0.462 0.487 0.600 0.720 0.726 0.746
0.50 0.750 0.957 0.988 1.125 1.263 1.270 1.289
0.60 1.500 1.841 1.869 2.025 2.176 2.186 2.212
0.70 2.917 3.464 3.494 3.675 3.841 3.851 3.875
0.80 6.000 6.973 6.985 7.200 7.374 7.379 7.422
0.90 15.750 17.973 17.993 18.225 18.408 18.427 18.470
0.95 35.625 40.183 40.322 40.613 40.811 40.826 40.871

Table 1 of the main paper and Tables 6-9 above show that the support bounds reduce the range

of possible value in all cases. The tables also show that the cases differ dramatically. Just as in

Corollaries 2.1 and 2.2, we see that the relative errors are remarkably small for (c2a, c
2
s) = (0.5, 4.0),

but remarkably large for (c2a, c
2
s) = (4.0, 0.5), even with the support bounds.

5 Relating Third Moments to Support Bounds

So far, we have obtained a reduced range of possible values of E[W ], by introducing the support

bounds Ma and ρMs in addition to the model parameters (1, c2a, ρ, c
2
s). We can then apply Theorem

3.1 of the main paper. In §3 we chose Ma and Ms so that the approximate tail probability was

suitably small, as in (3.1). To cover typical distributions, we used the approximate tail probabilities

based on the decay rates of typical distributions.

An alternative way is to exploit third moments. For third moments, we might also specify can-

didate values by looking at candidate distributions with the given parameters (1, c2a, ρ, c
2
s). Indeed

that was done in §5.1 of [13], and we use the same prescription here. For c2a ≥ 1, based on the

H2 distribution with balanced means as before, m3,a = 3c2a(1 + c2a). For c2a ≤ 1, based on the Ek

distribution, let m3,a = (2c2a + 1)(c2a + 1).

We apply these “typical” third moments to go with (1, c2a, ρ, c
2
s) by relating the third moments

to the support bounds M associated with Fu and Gu. We observe that the third moment of Fu is

mU
3 =

c2aM
3
a

c2a + (Ma − 1)2
+

(Ma − 1− c2a)
3

(Ma − 1)(c2a + (Ma − 1)2)
, (5.1)

while the third moment of F0 is

mL
3 =

c2a(1 + c2a)
3

c2a + c4a
. (5.2)
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Now observe that the third moment in (5.1) is a strictly increasing function of Ma, so that we

can invert it to obtain Ma as a function of m3, getting

Ma =
−1− c2a +mU

3 +
√

1 + 6c2a + 9c2a + 4c3a − 2mU
3 − 6c2am

U
3 + (mU

3 )
2

2c2a
. (5.3)

Hence, given typical values of m3 associated with any parameter 4-tuple (1, c2a, ρ, c
2
s), we can

construct a corresponding support bound M∗

a for which we can determine the range of possible

mean values. With this approach, we obtain M∗

a = 13.081 for c2a = 4, M∗

a = 3.414 for c2a = 1

and M∗

a = 2.366 for c2a = 0.5. We note that these values are substantially smaller than the values

determined in §3. Table 10 presents the numerical ranges of third moment as a function of c2 and

M .

Table 10: Reasonable ranges in third moment relating to reasonable setting of bounded support

M 5.25 6.75 7.00 9.00 17.5 22.5 mL
3

c2 = 0.5 4.566 5.332 5.458 6.469 10.735 13.238 2.25
c2 = 1 8.015 9.576 9.833 11.875 20.439 25.454 4.000
c2 = 4 26.235 33.217 34.333 43.000 78.030 98.256 25.000

We again applied simulation to study the performance of the extremal queues based on the third

moments in addition to the basic model parameters in (1.1). As a first step, we use the support

bounds that come from the third moments via (5.3). Based on Theorem 3.1 of the main paper, the

candidate UB and LB models for the mean E[W ], based on the reverse order for θW , are F0/Gu/1

and Fu/G0/1. As shown in [2], there is strong evidence that F0/Gu/1 actually yields the tight UB

for the mean E[W ], but it known that Fu/G0/1 is not actually the tight LB for E[W ], although it

is close. It is conjectured that the LB for E[W ] is attained by a special three-point distribution,

denoted by A3(u). Table 11 compares the resulting LB and UB extremal queues to the HTA in

(2.1). We include results for both the Fu/A3(u)/1 and Fu/G0/1 candidate LB models.
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Table 11: Range of mean waiting times after including typical third moments: balanced models

c2a = 4, c2s = 0.5,Ma = 13.1,Ms = 2.37 c2a = 4, c2s = 4,Ma = 13.1,Ms = 13.1

ρ E[W (Fu, A3(u))] E[W (Fu, G0)] HTA E[W (Fu, G0)] E[W (Fu, A3(u))] E[W (F0, Gu)] HTA E[W (F0, Gu)]
0.50 0.040 0.154 1.125 2.552 0.917 1.856 2.000 3.336
0.60 0.174 0.737 2.025 3.663 1.750 3.622 3.600 5.148
0.70 1.213 2.577 3.675 5.515 3.886 6.768 6.533 8.289
0.80 5.799 6.572 7.200 9.235 10.591 13.263 12.800 14.758
0.90 17.447 17.988 18.225 20.451 30.510 33.004 32.400 34.555

c2a = 0.5, c2s = 0.5,Ma = 2.37,Ms = 2.37 c2a = 0.5, c2s = 4,Ma = 2.37,Ms = 13.1

ρ E[W (Fu, A3(u))] E[W (Fu, G0)] HTA E[W (Fu, G0)] E[W (Fu, A3(u))] E[W (F0, Gu)] HTA E[W (F0, Gu)]
0.50 0.058 0.131 0.250 0.348 0.933 1.015 1.125 1.216
0.60 0.200 0.353 0.450 0.550 1.775 1.886 2.025 2.124
0.70 0.537 0.725 0.817 0.924 3.385 3.516 3.675 3.780
0.80 1.336 1.496 1.600 1.714 6.884 7.019 7.200 7.311
0.90 3.749 3.935 4.050 4.169 17.899 17.994 18.225 18.340

From Table 11, we see that

E[W (Fu, A3(u))] ≤ E[W (Fu, G0)] ≤ E[W (F0, Gu)]

in all cases. In addition,

E[W (Fu, G0)] ≤ HTA ≤ E[W (F0, Gu)]

in all cases except (c2a, c
2
s) = (4.0, 4.0). In that case, the smaller values of M than produced by (3.1)

makes it important to use the better LB model (Fu/A3(u)).

Most important, we see that our range of possible values of the mean E[W ] is reduced subtan-

tially by adding the additional parameters (Ma,Ms) obtained from (ma,3,ms,3). To illustrate, note

that the range in the case (ρ, c2a, c
2
s) = (0.8, 4, 4) is reduced from [6.000, 14.917] to [10.593, 14.758].

The change is obviously much greater for F than for G.

6 The Impact of the Laplace Transform Constraints

We now elaborate on §4.2 of the main paper, which investigates the application of Theorem 3.2 in

the main paper to obtain practically useful shorter intervals of likely values for the mean E[W ] by

exploiting values of the Laplace transform f̂(s) and the moment generating function (mgf) ĝ(−s).

Recall that the Laplace transform is defined as

f̂(s) ≡

∫

∞

0
e−st dF (t) = E[e−sU ], s ≥ 0 (6.1)

When we look at ĝ(−s), it corresponds to the mgf, i.e.,

ĝ(−s) ≡

∫

∞

0
est dG(t) = E[esV ], s ≥ 0. (6.2)
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We now show how a direct application of Theorem 3.2 in the main paper reduces the range. In

this section we avoid issues involving the singularity s∗ in Assumption 3.1 of the main paper, by

primarily considering case (ii) in (2.14) of Theorem 3.2 in the main paper, in which

µs < θW < µa, (6.3)

which we achieve by following (3.6) of the main paper, i.e.,

µs ≡ θW/R and µa ≡ RθW (6.4)

for suitable R. We begin by considering a range of R.

6.1 The Impact of Truncation

We initially truncate the basic models by Ma,Ms because Theorem 3.2 of the main paper only

applies to models with bounded support. In the implementation, we do not want to µs > s∗. Thus,

if we are considering one of the cases with µs ≥ θW , then we first check to see if RθW > s∗ for our

largest value of R, which we take to be R = 20. If it is, then we create alternative values of µs in

the interval (θW , s∗). In particular, we use

µs ≡ θW +

(

R

25

)

(s∗ − θW ), 1 ≤ k ≤ 4, (6.5)

so that the values of R remain in {5, 10, 15, 20}, but all values are within (θW , s∗).

Table 12 shows a careful comparison between parameters under truncation or not.

Table 12: A numerical comparison of truncated and original Laplace transform values for E2/H2/1
(θW = 0.1527) and M/M/1 (θW = 0.4286)

E2/H2/1 Truncated Original Truncated Original M/M/1 Truncated Original Truncated Original

Ra = Rs f̂(s) f̂(s) ĝ(−s) ĝ(−s) Ra = Rs f̂(s) f̂(s) ĝ(−s) ĝ(−s)

µa, µs ≥ θW

1 0.8630 0.8632 1.1568 1.1585 1 0.6998 0.7000 1.4293 1.4286
5 0.5229 0.5238 1.4582 1.5498 5 0.3180 0.3182 4.9983 4.9779
10 0.3205 0.3216 1.4582 1.5498 10 0.1890 0.1892 4.9983 4.9779
20 0.1558 0.1566 1.4582 1.5498 20 0.1044 0.1045 4.9983 4.9779

µa, µs ≤ θW

1 0.8630 0.8632 1.1568 1.1585 1 0.6998 0.7000 1.4293 1.4286
5 0.9701 0.9701 1.0226 1.0226 5 0.9210 0.9210 1.0639 1.0638
10 0.9849 0.9849 1.0110 1.0110 10 0.9589 0.9589 1.0310 1.0309
20 0.9924 0.9924 1.0054 1.0054 20 0.9790 0.9790 1.0152 1.0152

Additionally, the first three moments with and without truncation are close, i.e, s2 = 2.44, s3 =

20.191 for the truncated model and s2 = 2.45, 20.58 for the original model for E2/H2/1. Since

difference between parameters are negligible, it may suffice to apply the original ma,2,ma,3 instead
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of m′′

a,2,m
′′

a,3 for reducing computation complexity. In other word, we could ignore the truncation

effect and simply apply Theorem 3.2 of the main paper using parameters of the basic models

without truncation.

6.2 The Parameter Pair (Ra, Rs)

However, we also report results exploring a more general two-parameter range, using (Ra, Rs) with

Ra applying to F and Rs applying to G. In summary, we proceed as follows: Given an initially

specified decay rate θW , the range vector (Ra, Rs) with Rs ≤ 1 ≤ Ra and the specified parameters

(1, c2a,ma,3, µa,Ma) partially characterizing F and (1, c2s ,ms,3, µs,Ms) partially characterizing G,

where µs ≡ θW/Rs ≤ θW < RaθW , we identify the set of possible performance measures in two

steps.

In the first step, we can determine the extremal distributions FL, GL, FU , GU by solving n

equations in n unknowns for the appropriate n. In the second step, we simulate E[W (FL, GL)] and

E[W (FU , GU )] by Monte-Carlo simulation and obtain decay rates by solving equation (6) of the

main paper for the LB and UB models FL/GL and FU/GU .

We now illustrate the results.

6.3 The H2/H2/1 Model with c2a = c2s = 4.0

We use UB (LB) to refer to the minimum (maximum) decay rate, which yields our estimate of the

UB (LB) for E[W ]. Table 13 shows estimates of the UB and LB for the decay rate θW and the

mean E[W ] in the case c2a = c2s = 4 and ρ = 0.7 for a range of Ra and Rs varying from 1 to 20,

based on the first three moments and LT transforms from model H2/H2/1 with balanced means,

which has exact mean E[W (H2,H2)] = 6.608 and exact decay rate θW = 0.1064. (See Table 2 of

the main paper.)

As indicated above, here we allow Ra and Rs to differ, but we still require that µs ≡ θW/Rs

and µa ≡ Raθ for Ra ≥ 1 and Rs ≥ 1.
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Table 13: The improved LB and UB based on information of H2/H2/1

c2a = c2s = 4, ρ = 0.7, θW = 0.1064 and exact E[W (H2,H2)] = 6.608

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (UB) 1 0.106 0.105 0.104 0.104 E[W ] (UB) 1 6.292 6.197 6.175 6.708
5 0.106 0.105 0.104 0.103 5 6.329 6.275 6.163 6.684
10 0.106 0.105 0.104 0.103 10 6.336 6.278 6.155 6.688
20 0.100 0.099 0.099 0.098 20 6.884 7.047 7.134 7.225

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (LB) 1 0.106 0.107 0.108 0.108 E[W ] (LB) 1 6.667 6.516 6.465 6.410
5 0.107 0.108 0.108 0.108 5 6.692 6.485 6.443 6.387
10 0.107 0.108 0.108 0.108 10 6.693 6.474 6.448 6.386
20 0.109 0.110 0.110 0.110 20 6.866 6.664 6.532 6.420

Consistent with part (d) of Theorem 3.2 in the main paper, Table 13 show that the UB decay

rate θW is monotone decreasing in Ra and Rs, while the LB decay rate is monotone increasing.

Moreover, recall we utilize information from the exact queueing models where F and G have

unbounded support, so that we do not expect perfect consistency. On the other hand, there is

less order in the corresponding values of E[W ]. Nevertheless, from Table 13, we conclude that a

reasonable range of E[W ] can be generated by Ra = Rs = 20.

To elaborate further, Table 14 shows the explicit numerical values of the three-point extremal

distributions FL, GL and FU , GU obtained in the case c2a = c2s = 4, ρ = 0.7 with R = Ra = Rs ∈

{1, 5, 10, 20}, supporting Table 13.

Table 14: Numerical examples of extremal distributions
Ra = Rs = 1 F G Ra = Rs = 5 F G

FL/GL/1 q1 q2 q3 p1 p2 p3 FL/GL/1 q1 q2 q3 p1 p2 p3
0.620 0.370 1.04E-02 0.677 0.317 6.08E-03 0.526 0.459 1.57E-02 0.656 0.336 7.69E-03
y1 y2 y3 x1 x2 x3 y1 y2 y3 x1 x2 x3
0 2.21 17.6 0 1.93 14.4 0.0 1.65 15.5 0 1.78 13.4

FU/GU/1 q1 q2 q3 p1 p2 p3 FU/GU/1 q1 q2 q3 p1 p2 p3
0.956 0.0433 2.88E-04 0.965 0.0345 1.73E-04 0.936 0.0639 4.30E-04 0.963 0.0370 2.12E-04
y1 y2 y3 x1 x2 x3 y1 y2 y3 x1 x2 x3

0.587 9.86 39.9 0.440 7.86 27.9 0.505 7.99 39.9 0.431 7.54 27.9

Ra = Rs = 10 F G Ra = Rs = 20 F G

FL/GL/1 q1 q2 q3 p1 p2 p3 FL/GL/1 q1 q2 q3 p1 p2 p3
0.451 0.530 1.87E-02 0.654 0.338 7.88E-03 0.358 0.621 2.14E-02 0.653 0.339 7.97E-03
y1 y2 y3 x1 x2 x3 y1 y2 y3 x1 x2 x3
0.0 1.37 14.6 0 1.76 13.4 0 1.13 14.0 0 1.75 13.3

FU/GU/1 q1 q2 q3 p1 p2 p3 FU/GU/1 q1 q2 q3 p1 p2 p3
0.917 0.0828 5.02E-04 0.962 0.0374 2.17E-04 0.891 0.108 5.62E-04 0.962 0.0376 2.20E-04
y1 y2 y3 x1 x2 x3 y1 y2 y3 x1 x2 x3

0.439 6.97 39.9 0.430 7.50 27.9 0.360 6.08 39.9 0.429 7.48 27.9

Next, Figure 1 plots the extremal Laplace transforms f̂(s) and 1/ĝ(−s) for UB (LHS) and LB

(RHS) for the case c2a = c2s = 4 and ρ = 0.7. The curves intersect at the decay rate θW . The decay
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rate for Ra = Rs = 1 is 0.106, while for R = Ra = Rs = 20 it is 0.098 for the UB and 0.110 for the

LB.
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Figure 1: Display of f̂(s) and 1/ĝ(−s) for UB (LHS) and LB (RHS) for the case c2a = c2s = 4 and
ρ = 0.7: the decay rate for R = 1 is 0.106 and for R = 20 in UB is 0.098 and in LB is 0.110

Next Tables 15 and 16 show the estimated extremal values of θW and E[W ] as a function of

Ra, Rs ∈ {1, 5, 10, 20} based on simulation for ρ = 0.5, 0.9 for this same case (c2a, c
2
s) = (4, 4).

Table 15: The improved LB and UB based on information of H2/H2/1 with ρ = 0.5

c2a = c2s = 4, ρ = 0.5, θW = 0.2444, E[W ] = 2.02

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20
θW (UB) 1 0.244 0.235 0.231 0.227 E[W ] (UB) 1 1.97 2.32 2.48 2.60

5 0.239 0.231 0.227 0.224 5 1.95 2.02 1.97 2.20
10 0.239 0.230 0.227 0.224 10 1.96 2.03 1.98 2.20
20 0.238 0.230 0.227 0.224 20 1.96 2.03 1.99 2.21

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (LB) 1 0.244 0.251 0.253 0.255 E[W ] (LB) 1 2.09 1.87 1.81 1.75
5 0.250 0.258 0.261 0.263 5 2.12 1.83 1.80 1.75
10 0.251 0.258 0.261 0.263 10 2.12 1.84 1.80 1.75
20 0.251 0.259 0.261 0.264 20 2.12 1.85 1.80 1.75
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Table 16: The improved LB and UB based on information of H2/H2/1 for ρ = 0.9

c2a = c2s = 4, ρ = 0.9, θW = 0.0278, E[W ] = 32.6

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20
θW (UB) 1 0.0278 0.0277 0.0277 0.0277 E[W ] (UB) 1 32.9 31.4 31.7 32.1

5 0.0278 0.0277 0.0277 0.0277 5 32.8 31.8 31.5 32.1
10 0.0278 0.0277 0.0277 0.0277 10 32.8 31.7 31.6 32.2
20 0.0278 0.0277 0.0277 0.0277 20 33.0 31.6 31.5 32.2

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (LB) 1 0.0278 0.0278 0.0278 0.0278 E[W ] (LB) 1 32.8 32.6 32.7 33.2
5 0.0278 0.0278 0.0278 0.0278 5 32.8 32.7 32.9 33.4
10 0.0278 0.0278 0.0278 0.0278 10 32.7 32.8 32.7 33.4
20 0.0278 0.0278 0.0278 0.0278 20 32.7 32.9 32.9 32.4

6.4 The H2/E2/1 Model with c2a = 4.0, c2s = 0.5

Next, Tables 17-19 show corresponding results for the case c2a = 4, c2s = 0.5, based on the first third

moments and LT transform values from the model H2/E2/1, again using H2 with balanced means.

The exact values for the original H2/E2/1 model are given in Table 2 of the main paper. The exact

values for ρ = 0.7 are E[W (H2, E2)] = 3.368 and exact decay rate θW = 0.2602.

Table 17: The improved LB and UB based on information of H2/E2/1

c2a = 4, c2s = 0.5, ρ = 0.7, θw = 0.2602 and exact E[W (H2, E2)] = 3.368

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (UB) 1 0.260 0.228 0.218 0.210 E[W ] (UB) 1 3.438 3.920 4.091 4.265
5 0.260 0.228 0.218 0.210 5 3.436 3.925 4.093 4.265
10 0.260 0.228 0.217 0.210 10 3.436 3.993 4.194 4.335
20 0.260 0.228 0.217 0.210 20 3.441 3.993 4.197 4.341

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (LB) 1 0.260 0.291 0.306 0.321 E[W ] (LB) 1 3.343 2.951 2.782 2.638
5 0.260 0.291 0.306 0.321 5 3.345 2.950 2.789 2.641
10 0.260 0.292 0.307 0.321 10 3.345 2.965 2.815 2.692
20 0.260 0.292 0.307 0.321 20 3.345 2.966 2.815 2.692

Table 18: The improved LB and UB based on information of H2/E2/1 for ρ = 0.5

c2a = 4, c2s = 0.5, θw = 0.8260, ρ = 0.5

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20
1 0.826 0.531 0.484 0.456 E[W ] (UB) 1 0.93 1.53 1.72 1.84
5 0.826 0.531 0.484 0.456 5 0.93 1.53 1.72 1.84

θW (UB) 10 0.826 0.531 0.484 0.456 10 0.93 1.54 1.72 1.84
20 0.814 0.530 0.483 0.456 20 0.89 1.60 1.77 1.88

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

1 0.826 1.21 1.44 1.64 E[W ] (LB) 1 0.860 0.498 0.381 0.305
5 0.827 1.22 1.45 1.66 5 0.856 0.499 0.384 0.309

θW (LB) 10 0.827 1.22 1.45 1.66 10 0.854 0.495 0.386 0.307
20 0.831 1.24 1.49 1.74 20 0.856 0.507 0.399 0.325
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Table 19: The improved LB and UB based on information of H2/E2/1 for ρ = 0.9

c2a = 4, c2s = 0.5, θw = 0.0537, ρ = 0.9

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20
delay rate (UB) 1 0.0537 0.0534 0.0531 0.0529 EW (UB) 1 18.0 18.1 18.2 18.3

5 0.0537 0.0534 0.0531 0.0529 5 18.1 18.2 18.3 18.4
10 0.0537 0.0534 0.0531 0.0529 10 18.1 18.2 18.3 18.4
20 0.0537 0.0534 0.0531 0.0529 20 18.1 18.2 18.3 18.4

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

delay rate (LB) 1 0.0537 0.0539 0.0540 0.0541 EW (LB) 1 18.0 17.9 17.9 17.8
5 0.0537 0.0539 0.0540 0.0541 5 18.0 17.9 17.9 17.8
10 0.0537 0.0539 0.0540 0.0541 10 18.0 17.9 17.9 17.9
20 0.0537 0.0539 0.0540 0.0541 20 18.0 17.9 17.9 17.9

Again, consistent with part (d) of Theorem 3.2 in the main paper, these tables show that the

UB decay rate θW is monotone decreasing in R, while the LB decay rate is monotone increasing.

Recall that we utilize information from the exact queueing models where F and G have unbounded

support, so that we do not expect perfect consistency.

Next, Table 20 presents the extremal decay rates that go with the associated mean values E[W ]

in Table 5 of the main paper. We obtain the rates here by solving the key equation (1.6) of the

main paper for the original E2 and H2 distributions, so there is good numerical precision, but there

is a minor difference from the truncated model, which explains the lack of precise order in a few

cases.
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Table 20: The decay rates for all basic models under ρ = 0.7

E2/H2/1 Rs\Ra 5 10 20 H2/E2/1 Rs\Ra 5 10 20
µs ≤ θW ≤ µa UB 0.150 0.150 0.149 µs ≤ θW ≤ µa UB 0.228 0.217 0.210

LB 0.156 0.156 0.164 LB 0.291 0.307 0.321
Rs\Ra 5 10 20 Rs\Ra 5 10 20

µs ≥ θW ≥ µa UB 0.151 0.150 0.143 µs ≥ θW ≥ µa UB 0.246 0.243 0.242
LB 0.153 0.153 0.150 LB 0.283 0.286 0.288

Rs\Ra 5 10 20 Rs\Ra 5 10 20
µs, µa ≤ θW UB 0.150 0.149 0.149 µs, µa ≤ θW UB 0.246 0.243 0.242

LB 0.156 0.156 0.164 LB 0.283 0.287 0.289
Rs\Ra 5 10 20 Rs\Ra 5 10 20

µs, µa ≥ θW UB 0.151 0.150 0.143 µs, µa ≥ θW UB 0.228 0.218 0.210
LB 0.153 0.154 0.150 LB 0.291 0.306 0.320

E2/E2/1 Rs\Ra 5 10 20 H2/H2/1 Rs\Ra 5 10 20
µs ≤ θW ≤ µa UB 0.842 0.833 0.825 µs ≤ θW ≤ µa UB 0.105 0.104 0.098

LB 0.880 0.889 0.893 LB 0.108 0.108 0.110
Rs\Ra 5 10 20 Rs\Ra 5 10 20

µs ≥ θW ≥ µa UB 0.847 0.841 0.825 µs ≥ θW ≥ µa UB 0.106 0.105 0.103
LB 0.861 0.859 0.842 LB 0.107 0.107 0.108

Rs\Ra 5 10 20 Rs\Ra 5 10 20
µs, µa ≤ θW UB 0.849 0.848 0.848 µs, µa ≤ θW UB 0.106 0.105 0.100

LB 0.866 0.867 0.867 LB 0.107 0.107 0.111
Rs\Ra 5 10 20 Rs\Ra 5 10 20

µs, µa ≥ θW UB 0.839 0.826 0.805 µs, µa ≥ θW UB 0.105 0.104 0.101
LB 0.874 0.880 0.863 LB 0.107 0.108 0.108

Remark 6.1 In general, we cannot claim that the bounds for θW yield bounds for E[W ], so the

connection is heuristic. From equation (3.205) in §II.5.11 of [3], it follows that for the K2/GI/1

model that E[W ] = A + θ−1
W , where A is a constant that depends on the parameters in (1.1) and

F within K2, but not otherwise on G. As a consequence, for fixed F , E[W ] is a strictly decreasing

function of θW for given first two moments.

6.5 The Possibility of Using Heavy-Traffic Approximations

Tables 21 and 22 show (contrast) the improved LB and UB for the mean E[W ] starting with the

exact decay rates of the base models and the approximation in (3.5) of the main paper. These show

that we could also work with the HT approximations.
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Table 21: The improved LB and UB for GI/GI/1 Queues under Exact Decay Rates

ρ = 0.5 c2a = c2s = 0.5 ρ = 0.7 c2a = c2s = 0.5 ρ = 0.9 c2a = c2s = 0.5

5 10 20 5 10 20 5 10 20
UB 0.200 0.204 0.222 UB 0.720 0.719 0.734 UB 3.91 3.92 3.89
LB 0.153 0.145 0.143 LB 0.649 0.625 0.642 LB 3.82 3.94 3.92

ρ = 0.5 c2a = c2s = 4 ρ = 0.7 c2a = c2s = 4 ρ = 0.9 c2a = c2s = 4

5 10 20 5 10 20 5 10 20
UB 2.02 1.98 2.21 UB 6.28 6.16 7.23 UB 31.8 31.6 32.2
LB 1.83 1.80 1.75 LB 6.49 6.45 6.42 LB 32.7 32.7 32.4

ρ = 0.5 c2a = 4, c2s = 0.5 ρ = 0.7 c2a = 4, c2s = 0.5 ρ = 0.9 c2a = 4, c2s = 0.5

5 10 20 5 10 20 5 10 20
UB 1.53 1.72 1.88 UB 3.92 4.19 4.34 UB 18.2 18.3 18.4
LB 0.499 0.386 0.325 LB 2.95 2.82 2.69 LB 17.9 17.9 17.9

Table 22: The improved LB and UB for GI/GI/1 Queues under Approximate Decay Rates

ρ = 0.5 c2a = c2s = 0.5 ρ = 0.7 c2a = c2s = 0.5 ρ = 0.9 c2a = c2s = 0.5

5 10 20 5 10 20 5 10 20
UB 0.220 0.238 0.247 UB 0.721 0.720 0.734 UB 3.87 3.93 3.92
LB 0.153 0.145 0.143 LB 0.649 0.625 0.642 LB 3.82 3.94 3.92

ρ = 0.5 c2a = c2s = 4 ρ = 0.7 c2a = c2s = 4 ρ = 0.9 c2a = c2s = 4
5 10 20 5 10 20 5 10 20

UB 2.02 1.98 2.19 UB 6.27 6.15 6.70 UB 31.8 33.0 33.1
LB 1.84 1.80 1.75 LB 6.48 6.45 6.42 LB 32.7 32.5 32.5

ρ = 0.5 c2a = 4, c2s = 0.5 ρ = 0.7 c2a = 4, c2s = 0.5 ρ = 0.9 c2a = 4, c2s = 0.5
5 10 20 5 10 20 5 10 20

UB 1.35 1.62 1.78 UB 3.84 4.11 4.28 UB 18.2 18.3 18.4
LB 0.629 0.494 0.390 LB 3.01 2.88 2.74 LB 17.9 17.9 17.9

7 More on the M/M/K Model

In this section we present results for M/M/1 and M/M/2 complementing Table 4 and 7 of the

main paper. As above in this appendix, we use the parameter pair (Ra, Rs).

7.1 Results for M/M/1

We start by presenting results for the M/M/1 model that complement Table 4 of the main paper.

First, Table 23 shows results for M/M/1 model using case (ii) of (2.14) in Theorem 3.2 in the main

paper.
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Table 23: The Decay Rates and Set-valued Approximations of M/M/1 under Different µa, µs in
case (ii) of of (2.14) in Theorem 3.2

c2a = c2s = 1, θw = 0.4286, ρ = 0.7, E[W (M,M)] = 1.63, µs ≤ θW ≤ µa

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (UB)

1 0.429 0.423 0.419 0.416

E[W ] (UB)

1 1.60 1.56 1.62 1.69
5 0.427 0.421 0.418 0.415 5 1.61 1.59 1.61 1.68
10 0.427 0.421 0.418 0.415 10 1.61 1.61 1.62 1.68
20 0.427 0.421 0.418 0.415 20 1.61 1.58 1.60 1.68

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (LB)

1 0.429 0.433 0.435 0.437

E[W ] (LB)

1 1.60 1.51 1.55 1.57
5 0.430 0.434 0.437 0.438 5 1.61 1.53 1.54 1.56
10 0.430 0.434 0.437 0.439 10 1.61 1.53 1.56 1.56
20 0.436 0.441 0.444 0.446 20 1.68 1.65 1.63 1.61

Next, Table 24 shows results for M/M/1 model using case (i) of (30) in Theorem 6 of the main

paper with µa, µs ≤ θW .

Table 24: The Decay Rates and Set-valued Approximations of M/M/1 under Different µa, µs in
case (i) of of (2.14) in Theorem 3.2

c2a = c2s = 1, θw = 0.4286, ρ = 0.7,E[W (M,M)] = 1.63

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (FL, GU )

1 0.429 0.427 0.427 0.427

UB

1 1.67 1.67 1.68 1.67
5 0.427 0.426 0.425 0.425 5 1.66 1.67 1.68 1.68
10 0.427 0.426 0.425 0.425 10 1.66 1.67 1.68 1.68
20 0.427 0.425 0.425 0.425 20 1.66 1.67 1.67 1.67

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (FU , GL)

1 0.429 0.430 0.431 0.431

LB

1 1.66 1.65 1.65 1.65
5 0.430 0.432 0.432 0.432 5 1.66 1.65 1.65 1.65
10 0.430 0.432 0.432 0.432 10 1.66 1.65 1.65 1.65
20 0.437 0.439 0.439 0.439 20 1.55 1.56 1.56 1.56

Table 25 shows results for M/M/1 model using case (iii) of of (2.14) in Theorem 3.2 in the main

paper with µa, µs ≥ θW .
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Table 25: The Decay Rates and Set-valued Approximations of M/M/1 under Different µa, µs in
case (iii) of (2.14) in Theorem 3.2

c2a = c2s = 1, θw = 0.4286, ρ = 0.7,E[W (M,M)] = 1.63

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (FU , GL)

1 0.429 0.423 0.419 0.416

UB

1 1.67 1.71 1.72 1.73
5 0.422 0.417 0.413 0.411 5 1.68 1.71 1.72 1.71
10 0.422 0.417 0.413 0.411 10 1.68 1.71 1.72 1.71
20 0.422 0.417 0.413 0.411 20 1.68 1.71 1.72 1.71

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (FL, GU )

1 0.429 0.433 0.435 0.437

LB

1 1.67 1.65 1.63 1.62
5 0.429 0.433 0.435 0.437 5 1.67 1.65 1.64 1.62
10 0.429 0.433 0.435 0.437 10 1.67 1.65 1.64 1.62
20 0.429 0.433 0.435 0.437 20 1.67 1.65 1.63 1.62

7.2 Corresponding Results for M/M/2

Tables 26 and 27 present corresponding results for the M/M/2 model in cases (ii) and (iii) of (2.14)

in Theorem 3.2 of the main paper.

Table 26: The Set-valued Approximations for M/M/2 in case (ii): µs ≤ θW ≤ µa

c2a = c2s = 1, θw = 0.4286, ρ = 0.7, E[W (M,M)] = 1.35, µs ≤ θW ≤ µa

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (UB)

1 0.429 0.424 0.420 0.417

E[W ] (UB)

1 1.31 1.34 1.40 1.42
5 0.428 0.422 0.418 0.416 5 1.30 1.34 1.39 1.42
10 0.427 0.421 0.418 0.415 10 1.30 1.34 1.39 1.41
20 0.427 0.421 0.418 0.415 20 1.30 1.34 1.39 1.41

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (LB)

1 0.426 0.430 0.432 0.434

E[W ] (LB)

1 1.33 1.32 1.33 1.34
5 0.430 0.434 0.436 0.438 5 1.34 1.30 1.31 1.33
10 0.430 0.434 0.437 0.438 10 1.34 1.30 1.31 1.32
20 0.430 0.434 0.437 0.439 20 1.34 1.30 1.31 1.33
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Table 27: The improved LB and UB based on information of M/M/2 (µa, µs ≥ θW )

c2a = c2s = 1, θw = 0.4286, ρ = 0.7

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (FU , GL)

1 0.426 0.420 0.417 0.414

UB

1 1.40 1.40 1.39 1.37
5 0.422 0.417 0.413 0.411 5 1.40 1.41 1.38 1.34
10 0.422 0.417 0.413 0.411 10 1.41 1.41 1.38 1.34
20 0.422 0.417 0.413 0.411 20 1.40 1.40 1.38 1.34

Rs\Ra 1 5 10 20 Rs\Ra 1 5 10 20

θW (FL, GU )

1 0.429 0.432 0.434 0.437

LB

1 1.35 1.32 1.27 1.25
5 0.429 0.433 0.435 0.437 5 1.35 1.32 1.29 1.26
10 0.429 0.433 0.435 0.437 10 1.36 1.31 1.28 1.26
20 0.429 0.433 0.435 0.437 20 1.36 1.31 1.29 1.26

Tables 26 and 27 show that the method for producing approximate intervals of likely values for

the mean E[W ] remains effective for K = 2.
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