
Queueing Systems (2019) 92:47–81
https://doi.org/10.1007/s11134-019-09612-3

Marked point processes in discrete time

Karl Sigman1 ·Ward Whitt1

Received: 24 September 2018 / Revised: 3 April 2019 / Published online: 16 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We develop a general framework for stationary marked point processes in discrete
time. We start with a careful analysis of the sample paths. Our initial representation is
a sequence {(t j , k j ) : j ∈ Z} of times t j ∈ Z and marks k j ∈ K, with batch arrivals
(i.e., t j = t j+1) allowed. We also define alternative interarrival time and sequence
representations and show that the three different representations are topologically
equivalent. Then, we develop discrete analogs of the familiar stationary stochastic
constructs in continuous time: time-stationary and point-stationary random marked
point processes, Palm distributions, inversion formulas and Campbell’s theorem with
an application to the derivation of a periodic-stationary Little’s law. Along the way,
we provide examples to illustrate interesting features of the discrete-time theory.
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1 Introduction

1.1 Motivation

As can be seen from the early work of Palm [22], Khintchine [13] and Loynes [15],
there has long been significant interest in developing a systematic framework for
queueingmodels under general conditions, for example, without the common indepen-
dence orMarkov assumptions. Themain goals have been to understand how to properly
construct steady-state versions of key stochastic processes and to understand the
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resulting relations among different stochastic processes and their characteristics. For
example, we ask: (1) How is the mean waiting time related to the mean queue length?
and (2) When is the system state seen by an arrival distributed the same as the system
state at an arbitrary time?Among the crowning achievements in this area are the conser-
vation laws, such as Little’s law and the Poisson-arrivals-see-time averages (PASTA)
property and various extensions, which answer these questions and related ones.

Such a systematic framework for queueingmodels based on stationarymarked point
processeswas first developed byFranken,König,Arndt andSchmidt [9], drawing upon
early work on stationarymarked point processes byMatthes [17]. This area has further
been developed in many papers and books, including [3,5,12,24].

The purpose of the present paper is to extend this framework to discrete-time queue-
ingmodels. As can be seen from the books [7,25] and the recent papers [1,16,33], there
has been significant interest in discrete-time queues, largely because they are often
regarded as more appropriate to model computer and digital communication systems.
Discrete-time models tend to be more elementary because they usually involve far less
sophisticated measure theory. On the other hand, discrete-time models require addi-
tional care in another way, because multiple events can happen at the same time. Thus,
we need to carefully specify the order in which they occur. The story for a queueing
model can change if the new arrivals occur each time period before all departures are
scheduled for that same time period or after, or in some other way. These issues are
quite familiar to specialists in computer and digital communication systems, because
they affect logical correctness.

In fact, this paper was actually motivated by applications in a different area: health-
care. In particular, this paperwasmotivatedbyWhitt andZhang [31],which established
a periodic Little’s Law for a discrete-time periodic queueing model with batches,
motivated by data analysis of a hospital emergency department in [30]. In [31], a
sample-path version of the periodic Little’s Law was first presented and then was
used (almost surely) to prove a periodic stationary version (Theorem 3 in [31]). We
suspected that such a proof could be provided directly using stationary marked point
process theory, but we did not immediately see an appropriate framework. We then
decided to carefully put together such a framework that lends itself naturally to queue-
ing and related applications; that is what is presented here. Our framework allows us,
in particular, to give a direct proof of the periodic Little’s Law in a periodic stationary
setting using Palm distributions (Proposition 7.5), but we go beyond that initial goal.

For the healthcare application in [30], it is natural to consider a periodic model, for
two reasons. First, the relevant timescale is much longer than in most communication
network examples, because the service times (patient length of stay) are relatively
long, extending over multiple hours and even days. Second, the arrival rate is strongly
time varying over each day, with the arrival rate higher in the middle of the day than
at night. Moreover, the arrival pattern tends to differ significantly over the days of the
week, with a consistent weekly pattern, except for exceptional events such as holidays.
Hence, the model developed in [30] has a periodic arrival rate function with a week
serving as the length of the period. The periodic Little’s law in [31] helped interpret
the queueing model developed in [30]. In particular, it explained why the model fit to
the arrival rate and the patient length of stay predicts the time-varying average number
of patients in the system so accurately.

123

Author's personal copy



Queueing Systems (2019) 92:47–81 49

1.2 Our technical approach and others

Turning to our approach to marked point processes, we first focus on the underlying
sample paths. Our framework is built on a sequence {(t j , k j ) : j ∈ Z} of times t j ∈ Z

and marks k j ∈ K, with batch arrivals allowed. In particular, we allow the times to
satisfy

· · · ≤ t−2 ≤ t−1 ≤ 0 ≤ t0 ≤ t1 ≤ t2 ≤ · · · , (1)

thus allowing batches, as opposed to the simple case in which all the inequalities are
strict, except for 0 ≤ t0.

For continuous time,many books on the subject state early on that they are assuming
throughout that all point processes considered are simple, ruling out multiple events
occurring at the same time. An exception is Brandt, Franken and Lisek [5], which
allows batches and even devotes a chapter to it in the context of queueing models.
In Chapter 7 of [5], they model a batch arrival process as a simple one in which the
times at which the batches arrive forms a simple point process and the batch size and
labeling is placed in a mark. We find that approach less natural. It also fails to produce
an important topological equivalence we obtain for three different representations of
the sample paths; see Proposition 3.1.

Other approaches for batches have been developed; see in particular [18] and [19],
where batch arrival processes are expressed as the superposition of a finite or countably
infinite number of simple point processes and the Rate Conservation Law is used.
However, we did not find these approaches as accessible or intuitive as we thought a
framework should be. There also are scattered papers using batches in special queueing
models and using specialmethods in their analysis, for example, [11], [26], and various
examples in queueing books, for example, pages 68, 267, 281 and 400 (Problem 8–5)
in [32] and Ch. 7 in [5].

In continuous time, most books take the counting measure approach (exceptions
include [5] and [24]), treating a point process as a counting measure N , where N (A)

is the number of points that fall in A for bounded Borel sets A ⊂ R. The main
advantage of the measure approach is that it easily generalizes to allow the time line
R for point location to be replaced by general (non-ordered) spaces. We also consider
this counting measure approach in discrete time. From one point of view, the counting
measure approach is more elementary in discrete time, because it suffices to consider
N (A) for finite sets A. Equivalently, a point process can be defined by a sequence
{xn : n ∈ Z} where xn ∈ N denotes the number of points at time n.

However, allowing for multiple points (xn > 1), we see that we need additional
information about the labeling of the points at time 0 when x0 > 0. In particular, we let
j0 be the number of the x0 points at time 0 with labels at least 2; see Sect. 3.2 for elab-
oration. We actually introduce three alternative representations and show that they are
topologically equivalent (homeomorphic) as Polish topological spaces (metrizable as
complete separable metric spaces); see Proposition 3.1. To the best of our knowledge,
this structure has not been exposed previously.

Finally, wemention that our approach in the present paper for randommarked point
processes is in the spirit of [24], where stationary distributions are viewed as Cesàro
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averages, but here we deal with discrete time and allow batches. (See Remark 4.2 for
further elaboration.)

1.3 Organization

The layout of our paper is as follows: In Sect. 2, we introduce the canonical space of
marked point processes (i.e., the non-random case) and in particular show that it forms
a Polish topological space. In Sect. 3, we introduce the two alternative representations
(interarrival time, counting sequence) and show a homeomorphism between all three.
We include a summary of notation in Sect. 3.5.

In Sect. 4, we introduce our framework for the two forms of stationary stochastic
processes. For this purpose, we start in Sect. 4.1 by introducing two shift operators.We
then define analogs of the two stationary versions in continuous time and show how
to go from one to the other. For that we exploit ergodic theory. To help fix ideas, we
present several examples of point processes (without marks) in Sect. 5. Then in Sect. 6,
we develop the Palm inversion formula and discuss its applications. In Sect. 7,we prove
Campbell’s theorem and a PeriodicCampbell’s Theorem and give applications to Little
laws. In Sect. 8, we briefly discuss the notion of Palm distributions in the non-ergodic
case. Finally, in Sect. 9, we draw conclusions.

2 Marked point processes in discrete time

We start by focusing on the sample paths. We first consider the points alone and then
add in the marks. Afterward, we add in the underlying probability measure to obtain
a random marked point process.

2.1 Point processes in discrete time

WithZ = {· · ·−2,−1, 0, 1, 2, . . .} denoting the integers, a discrete-time point process

(pp) is a sequence of points ψ
def= {t j } = {t j : j ∈ Z} with the points in time t j ∈ Z

satisfying the following two conditions:

C1:
t j → +∞ and t− j → −∞ as j → ∞. (2)

C2: The points are non-decreasing and their labeling satisfies (1) with the proviso that
t0 = 0 if t−1 = 0.

The space of all point processesψ is denoted byM ⊂ Z
Z = ∏∞

j=−∞ Z, a subspace
of the product space. We endow Z with the discrete topology (i.e., all subsets of Z are

open sets) and ZZ with the product topology and associated Borel σ -algebra B
(
Z
Z

)
.

(M is not a closed subset of ZZ.) B(M) = M ∩ B
(
Z
Z

)
are the Borel sets of M.

Conditions C1 and C2 above ensure that there are an infinite number of points lying
in both the positive time axis and the negative time axis, but that only a finite number
of them can fall in any given time n ∈ Z and hence in any given bounded subset of
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time A ⊂ Z. C2 also ensures that batches are allowed, t j = t j+1, that is, one or more
points can occur at any given time n, but also ensures that the labeling of points at
time n = 0 rules out such examples as t−2 = t−1 = 0 < t0 = 1: If there is a batch at
the origin, then it must include the point t0.

Because of the product topology assumed, convergence of a sequence of pps,ψm =
{tm, j } ∈ M, m ≥ 1, to a pp ψ = {t j } ∈ M, as m → ∞, is thus equivalent
to each coordinate converging; limm→∞ tm, j = t j for each j ∈ Z. Because Z is
discrete, however, this is equivalent to the following: For each j ∈ Z, there exists an
m = m j ≥ 1 such that tm, j = t j , m ≥ m j .

2.2 Marked point processes

A marked point process (mpp) is a sequence of pairs, {(t j , k j ) : j ∈ Z}, where
{t j } ∈ M is a point process and {k j } ∈ K

Z, where K is called the mark space
and is assumed a complete separable metric space (CSMS) with corresponding Borel
σ -algebra B(K): Associated with each arrival point t j ∈ Z is a mark k j ∈ K.

We denote the space of all mpps byMK = M×K
Z, a product space. Noting that

a pp is a special case of a mpp whenK is a set of one point {k}, we will still use w.l.o.g.
the notation ψ ∈ MK to denote an mpp.

Typical examples for a mark space are K = R
d , or K = N, but one can even

allow K = R
Z, so as to accommodate an entire infinite sequence as a mark. In many

examples, the mark is a way of adding in some further information about the point
it represents. A simple example in a queueing model context : t j denotes the time of
arrival of the j th customer and k j = s j denotes the service time of the customer, or
k j = w j denotes the sojourn time of the customer, or the pair k j = (s j , w j ).

Remark 2.1 Since bothM andKZ are separable, the Borel σ -algebraB(MK ) is equal
to the product of the individual Borel σ -algebras, B(M) × B(KZ).

Remark 2.2 We are using a two-sided framework meaning that we allow an infinite
past {t j : j ≤ 0} in time as well as an infinite future {t j : j ≥ 0} in time. A one-sided
framework refers to the infinite future case only, and it can be considered on its own
if need be.

2.3 Polish space framework

In this section, we provide a deeper analysis of the space M of point processes by
showing that it is a Polish space, i.e., it is metrizable as a complete separable metric
space (CSMS) for some metric. We then obtain as a corollary (Corollary 2.1) that
the space of all marked point processes MK is thus Polish. This then allows one to
apply standardweak convergence/tightness results/techniques to randommarked point
processes when needed, such as use of Prohorov’s Theorem (see, for example, Sect.
11.6 , Theorem 11.6.1, p. 387 in [29] in the general context of stochastic processes).

First observe that Z in the discrete topology (i.e., all subsets are open) is a CSMS
and metrizable with the standard Euclidean metric it inherits as a subspace of R,
|i − j |, i ∈ Z, j ∈ Z. (It is a closed subset of R, and its subspace topology is
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precisely the discrete topology.) Now Z
Z is a closed subset of the CSMS R

Z, hence
is a CSMS. RZ is a CSMS: see, for example, Example 3, Page 265 in [20]. (More
generally, the countable product of Polish spaces is Polish in the product topology.)

We are now ready for

Proposition 2.1 The spaceof point processesM ⊂ Z
Z is aPolish space. (In particular,

it is a Borel measurable subset of ZZ.)

Proof In general, a subspace of a separable metric space is a separable metric space
via using the same metric. Thus,M is a separable metric space. But it is not complete
using the same metric sinceM is not a closed subset of ZZ. Thus, it suffices to prove
that the subsetM is a Gδ subset of ZZ, that is, it is of the formM = ∩∞

i=1Bi , where
each Bi ⊂ Z

Z is an open set. To this end define, for i ≥ 1, subsets Bi ⊂ Z
Z as those

sequences {t j } ∈ Z
Z satisfying

1. t−1 < 0 if t0 > 0.
2. t−i ≤ · · · ≤ t−1 ≤ 0 ≤ t0 ≤ ti ≤ · · · ≤ ti .
3. There exists a j > i and a j ′ < −i such that t j > ti and t− j ′ < t−i .

From Conditions C1 and C2 defining M, it is immediate that M = ∩∞
i=1Bi . We will

now show that each Bi can be expressed as Bi = B+
i ∩B−

i ,where both B+
i and B−

i are
open sets, hence (finite intersection of open sets is always open) confirming that each
Bi is an open set, thus completing the proof. For each subset Bi defined above (i ≥ 1),
we let B+

i be the union (indexed by j ≥ 1) over all subsets S+
i, j ⊂ Z

Z of sequences

satisfying 1. and 2. above together with ti+ j > ti . Each such subset S+
i, j ⊂ Z

Z is
open because it is a finite dimensional subset (all finite dimensional subsets are open;
a consequence of the discrete topolgy). Hence, being the union of open sets, B+

i is
open. Similarly, B−

i is the union over all open sets S−
i, j , which are defined similarly to

S+
i, j except with ti+ j > ti replaced by t−i− j < t−i . 
�
In general, the finite or countable product of Polish spaces is Polish (in the product

topology), and hence, since the mark spaceK is assumed a CSMS,KZ is Polish. From
Proposition 2.1, M is Polish and hence the product of the two, M × K

Z, is Polish
too:

Corollary 2.1 The space of all marked point processes

MK = M × K
Z

is a Polish space in the product topology.

2.4 Randommarked point processes9

In the case of a random mpp, that is, when the points t j and marks k j are random
variables, we will denote it by upper case letters:

� = {(Tj , K j )}. (3)
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A rmpp � has sample paths in MK . We will denote the distribution of such a � by
P(� ∈ ·) defined on all Borel sets E ∈ B(MK ); P(� ∈ MK ) = 1.

3 Two alternative representations

In this section,wefirst introduce an interarrival-time representation and then a counting
sequence representation of a marked point process, again focusing first on the sample
paths. We then show in Proposition 3.1 that the three representations can be regarded
as homeomorphic Polish topological spaces. Before stating that result, we provide a
summary of the notation.

3.1 The interarrival-time representation� for a marked point process

Interarrival times u = {u j } = {u j : j ∈ Z} of a pp ψ ∈ M are defined by

u j
def= t j+1 − t j , j ∈ Z, and thus

t j = t0 + u0 + · · · + u j−1, j ≥ 1, t− j = t0 − (u−1 + · · · + u− j+1), j ≥ 1. (4)

The equality u j = 0 means that both t j and t j+1 occur at the same time (for example,
occur in the same batch).

We call φ = φ(ψ)
def= {t0,u} the interarrival-time representation of a pp ψ ∈ M.

As a consequence of (4), ψ and φ uniquely determine one another. Such φ form a
subspace N ⊂ N × N

Z, the product space. Given any element {t0,u} ∈ N × N
Z, the

only restriction on it so as to uniquely define a pp ψ ∈ M using (4) is that t0 = 0 if
t0 − u−1 = 0, and

∞∑

j=0

u j = ∞,

∞∑

j=1

u− j = ∞.

That iswhat defines the subspaceN .We thus have a bijectivemapping betweenM and
N ;ψ �→ φ. This bijection immediately extends to marked point processes,ψ ∈ MK ,
by adjoining in the marks {k j } ∈ K

Z, yielding the product spaceNK = N ×K
Z; then

φ = φ(ψ)
def= {t0, (u,k)} ∈ NK = N × K

Z.
For random marked point processes �, we will denote the interarrival-time repre-

sentation by � = {T0, (U,K)}.

3.2 The countingmeasure and counting sequence x = {xn} for a point process

Given a pp ψ ∈ M, if A ⊂ Z is a bounded subset, then we let

c(A)
def=

∑

j∈Z
I {t j ∈ A}
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denote the total number of points that fall in A; in particular, we let xn
def= c({n}) and

denote the number of points that fall in time slot n ∈ Z by

xn =
∑

j∈Z
I {t j = n}. (5)

Thus, c(·) defines a measure on the subsets of Z called the counting measure of ψ ,

and the sequence x def= {xn} = {xn : n ∈ Z} ∈ N
Z is called the counting sequence of

ψ . The space of all such counting sequences of pps ψ ∈ M is denoted by X ⊂ N
Z,

a proper subspace of the product space.

Let c(n)
def= x0 + · · · + xn, n ≥ 0, denote the cumulative number of points from

time 0 up to and including time n; {c(n) : n ≥ 0} is called the forward counting
process. In our framework, c(0) = c({0}) = x0 > 0 is possible; the number of points
at the origin can be nonzero. Moreover,

∞∑

n=0

xn = ∞,

∞∑

n=0

x−n = ∞, (6)

since t j → +∞ and t− j → −∞ as j → ∞ as required from C2. When xn > 0, we
say that a batch occurred at time n. When xn ∈ {0, 1}, n ∈ Z, we say that the point
process is simple; at most one arrival can occur at any time n.

We extend our counting measure c(A) for A ⊂ Z to include the marks of a marked
point process so as to be a measure on B(Z × K) via

c(B) =
∑

j∈Z
I {(t j , k j ) ∈ B}, B ∈ B(Z × K).

Themeasure c(B) counts the number of pairs (t j , k j ) that fall in the set B ∈ B(Z×K).
For Borel sets of the form B = A × K , where A ⊂ Z and K ∈ B(K),

c(A × K ) =
∑

t j∈A

I {k j ∈ K },

the number of points in A that have marks falling in K . Then, c(A) = c(A × K)

(K = K (the entire mark space)) gives back the counting measure as before of just
the {t j }.

For a random mpp �, we denote the counting measure by C(·), and the counting
sequence by X = {Xn}.

3.3 A counting sequence representation (x, ĵ0) for point processes

A counting sequence x ∈ X appears at first sight to be an equivalent way of defining a
point process, in the sense that there should be a bijection between the two represen-
tations x = {xn} andψ = {t j }. When x0 = 0, this is true because, from Condition C2,
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the points themselves are then uniquely labeled; t0 > 0 is the first positive point, and
t−1 < 0 is the first negative point; all else then follows. But when x0 > 0, the points are
not uniquely labeled. For example if x0 = 2, we could have t−1 < 0 = t0 = t1 < t2
or t−2 < t−1 = 0 = t0 < t1. Both possibilities satisfy C2. So, whereas the mapping
ψ �−→ x is unique, the inverse mapping is not.

The only problem we have to address then is how to keep track of the labeling of
the points in x0 when it is a batch, x0 > 0, to ensure a unique mapping x �−→ ψ . Once
that labeling is secure, the remaining points from {xn : n 
= 0} are uniquely labeled
by C2. Note that if x0 > 0, then in particular t0 = 0 (because of C2). If x0 = 1, then
we are done, since then t−1 < 0 = t0 < t1 and all else follows from C2. So let us next
consider the case when x0 > 1.

We can write x0 = ı0 + j0, where ı0 denotes the number of points in the batch, if
any, labeled≤ −1, and j0−1 denotes the number of points in the batch, if any, labeled
≥ 1. For example if x0 = 3 and the three points are labeled t−1 = t0 = t1 = 0, then
ı0 = 1 and j0 = 2. If the three points are labeled t−2 = t−1 = t0 = 0, then ı0 = 2 and
j0 = 1. Finally, if the three points are labeled t0 = t1 = t2, then ı0 = 0 and j0 = 3. In
general, j0 ≥ 1 and ı0 ≥ 0. When x0 > 0, we view j0 as the number of points in front
of and including t0 in the batch, and ı0, the number of points behind t0 in the batch.
The idea is to imagine the batch as a bus with labeled seats. If ı0 = b and j0 = a, then
the x0 = b+a points are labeled t−b = t−b+1 = · · · = 0 = t0 = t1 = · · · = ta−1. The
reader will notice the similarity of j0 and ı0 to the forward and backward recurrence
time in (say) renewal theory, but here they do not represent time, they represent batch
sizes/positions.

As our general solution to the labeling problem, we thus introduce

ĵ0
def=

{
j0 if x0 > 0,

0 if x0 = 0.
(7)

Then, we can consider a point process ψ ∈ M to be uniquely defined by (x, ĵ0). For
example, if x0 = 2 and j0 = 2, then t−1 < 0 = t0 = t1 < t2 (i.e., ı0 = 0), whereas
if x0 = 2 and j0 = 1, then t−2 < t−1 = 0 = t0 < t1 (i.e., ı0 = 1). We denote by
S ⊂ X × N ⊂ N

Z × N the subspace of all (x, ĵ0) constructed from mpps ψ ∈ M.
For a random point process �, we use the notation (X, Ĵ0) = ({Xn}, Ĵ0), J0, I0

and so on for the counting sequence representation.

Remark 3.1 An important special case of (x, ĵ0) ∈ S is when ĵ0 = x0. This is the case
when if x0 = a > 0, then the points in the batch at time 0 are labeled 0 = t0, . . . , ta−1;
t0 is the first point in the batch, and t−1 < 0.

3.4 Extending the counting sequence representation to includemarks

We now turn to extending the counting sequence representation to include marks and
obtain the subspace SK of such marked representations.

We extend our (x, ĵ0) = ({xn}, ĵ0) ∈ S representation from Sect. 3.3 to
((x,k), ĵ0) = ({(xn, kn)}, ĵ0) ∈ SK by letting kn = (k1(n), . . . , kxn (n)) denote
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the list of associated marks of the xn points (when xn > 0). The labeling of the
marks is automatically determined: if, for example x0 = b + a > 0 with j0 = a
and ı0 = x0 − j0 = b, then the b + a marks are attached to t−b, . . . , t0 . . . , ta−1 via
k−b = k1(0), . . . ka−1 = ka+b(0).

To make kn mathematically rigorous, we introduce a ‘graveyard state’ 	 /∈ K,
to adjoin with the mark space K; K = K ∪ {	}. Letting dK denote the standard
bounded metric ofK under its metric d (i.e., dK (x, y) = min{d(x, y), 1}, x, y ∈ K),
then we extend the metric to K via dK (x, y) = dK (x, y), x, y ∈ K, dK (x,	) =
1, x ∈ K, dK (	,	) = 0. Then, it is immediate thatK is a CSMS. We then redefine

kn
def= (k1(n), . . . , kxn (n),	,	, . . .) ∈ K

N+ , an infinite sequence in the product space
∏∞

i=1 K ,under the product topology, where we define kn = �
def= (	,	, . . .) ∈

K
N+ , if xn = 0. Thus, our space of all marked counting sequence representations,

((x,k), ĵ0) = ({(xn, kn)}, ĵ0), ofmppsψ ∈ MK is a subspaceSK ⊂ (N×K
N+

)Z×N.

In its counting sequence representation, a random marked point process is denoted
by ({(X, K )}, Ĵ0) = ({(Xn,Kn)}, Ĵ0).

3.5 Summary of notation

• M: the space of all point processesψ = {t j } = {t j : j ∈ Z}.MK = M×K
Z: the

space of all marked point processes ψ = {(t j , k j )} with mark spaceK (Sect. 2.2).
• N : the space of all point processes in the interarrival-time representation φ =

{t0,u} = {t0, {u j }} = {t0, {u j : j ∈ Z}}, u j = t j+1 − t j , j ∈ Z. NK is
the space of all marked point processes in the interarrival-time representation;
φ = {t0, (u,k)} (Sect. 3.1).

• S: the space of all point processes in the counting sequence representation (x, ĵ0),
where x = {xn} = {xn : n ∈ Z} ∈ X is the counting sequence; xn = c({n}) is the
number of points that fall in the time slot n ∈ Z. c(·) is the counting measure of a
pp; {c(n) : n ≥ 0} is the forward time counting process, c(n) = x0 + · · · + xn .
SK is the space of all marked point processes in the counting sequence represen-
tation; ((x,k), ĵ0) = ({(xn, kn)}, ĵ0). (Sects. 3.3 and 3.4).

• Random marked point process (rmpp) notation: � = {(Tj , K j )}, � =
{T0, (U,K)} = {T0, {(Uj , K j )}}, (X, Ĵ0) = ({Xn}, Ĵ0), C(·).

• B(T ): Borel σ -algebra of a topological space T .
• P(� ∈ ·), P(� ∈ ·), P(({(X, K )}, Ĵ0) ∈ ·) are the corresponding distributions
of a rmpp, on B(MK ), B(NK ), B(SK ) respectively.

3.6 Topological equivalence of the three representations

Given that we have bijective mappings between MK and NK , and MK and SK ,
and we already have shown that under the product topology, MK is a Polish space
(Corollary 2.1), we can immediately conclude that NK and SK are Polish spaces too
under the induced mapping topologies; all three are topologically equivalent.

This simply follows from the basic fact that if X , τ is a topological space and
f : X −→ Y is a bijectivemapping onto a space Y , then Y , f (τ ) is a topological space
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with topology f (τ )
def= { f (A) : A ∈ τ }. Moreover, if X , τ is Polish under a metric

dX , then Y , f (τ ) is Polish under the metric dY (y1, y2)
def= dX ( f −1(y1), f −1(y2)).

Summarizing:

Proposition 3.1 All three representations for amarked point process,ψ = {(t j , k j )} ∈
MK , φ = {t0, {(u j , k j ) : j ∈ Z}} ∈ NK , ({(xn, kn)}, ĵ0) ∈ SK are topologically
equivalent; MK , NK and SK are homeomorphic Polish spaces.

This allows us to conveniently work with any one of the three representations.

4 Stationary ergodic framework: time and point stationarity

We now introduce discrete-time versions of the usual two forms of stationarity, which
we refer to as point stationarity and time stationarity. We first introduce two shift
operators, which form the basis of our definitions.

4.1 Shift mappings: the point and time shift operators

A point process can be shifted in several ways. One way is to shift to a specific point ti
and relabel that point as t0 = 0 at time n = 0 (the present). All points labeled behind ti
become the past, and all points labeled in front of ti become the future:Given aψ ∈ M,

for each i ∈ Z, we have a mapping θi : M �−→ M, θiψ
def= {ti+ j − ti : j ∈ Z}, with

the points denoted by {t j (i) : j ∈ Z}. For any ψ , θiψ always has a point at the origin;
in particular t0(i) = 0. Note that θi+1 = θ1 ◦ θi , i ≥ 1, so {θi : i ≥ 1} is determined
by just

θ
def= θ1, the point-shift operator. (8)

Note that if t0 = 0, then θ0ψ = ψ , otherwise it moves t0 to the origin. For θiψ ,
all points in the same batch as ti are relabeled as should be. For example if i = 3
and t2 = t3 = t4 = 6 (batch of size three at time n = 6), we have t−1(3) = 0 =
t0(3) = t1(3); the batch has been repositioned to time n = 0. If there is a batch at
time n = 0, for example t−2 = t−1 = t0 = t1, a batch of size four, then for i = 1,
t−3(1) = t−2(1) = t−1(1) = t0(1) = 0; each batch position get shifted back by 1.

This point shift mapping translates immediately to a shift for the interevent-time

representation φ ∈ N in the same way, θi : N �−→ N ; θiφ
def= {0, {u j+i : j ∈

Z}} = {0, {u j (i) : j ∈ Z}} is precisely the interevent-time representation for θiψ .
For this reason, we use the same notation θ = θ1 for the point-shift operator in both
representations.

A second type of shift is with respect to time. Given (x, ĵ0) ∈ S, for each time
m ∈ Z we have a mapping

ζm : S �−→ S, (9)

ζm({xn}, ĵ0) def= ({xm+n}, xm) = ({xn(m)}, x0(m)). ζm moves xm to be the number
of points at time n = 0 and shifts the other xn into the past and future appropriately.
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It also forces t−1 < 0: If x0(m) = xm > 0, then its points (now moved to occur at
time n = 0) are labeled t0, . . . , tx0−1.

As with point shifting, ζm+1 = ζ1 ◦ ζm, m ≥ 1, hence {ζm : m ≥ 1} is determined
by

ζ
def= ζ1, the time-shift operator. (10)

The two operators θ and ζ are fundamental in our use of ergodic theory when we
are dealing with random point processes.

Remark 4.1 When a point process is simple, then only the time shiftmapping is needed,
since then θi = ζti ; shifting to time n = ti is equivalent to shifting to the i th point.

The shift mappings θi and ζm extend immediately to when we have marks; for
i ∈ Z,

θiψ = {(ti+ j − ti , ki+ j ) : j ∈ Z}, (11)

θiφ = {0, {(ui+ j , ki+ j : j ∈ Z)}. (12)

For m ∈ Z,

ζm({(xn, kn : n ∈ Z)}, ĵ0) = ({(xm+n, km+n : n ∈ Z)}, xm). (13)

We retain the notation for the point and time shift operators, θ = θ1, ζ = ζ1.

4.2 The two stationary versions

Here, we focus on random marked point processes under time and point stationarity
and ergodicity. For a background on using ergodic theory in the context of stochastic
processes and point processes, the reader is referred to [6,8,14,24].

Definition 4.1 A randommarked point process� is called time-stationary if its count-
ing sequence representation ({(Xn,Kn)}, Ĵ0) satisfies Ĵ0 = X0 and {(Xn,Kn) : n ∈
Z} is a stationary sequence. Equivalently, using the time-shift mappings:

ζm({(Xn,Kn)}, Ĵ0) = ({(Xm+n,Km+n)}, Xm)

has the same distribution as ({(Xn,Kn)}, Ĵ0) for allm ∈ Z. It is called time-stationary
and ergodic if the sequence {(Xn,Kn)} is also ergodic (with respect to the time-shift
operator: ζ = ζ1).

We will denote a time-stationary marked point process by �∗ = {(T ∗
j , K

∗
j )}, or

{(X∗
n,K

∗
n)}, or � = {T ∗

0 , {U∗
j }}. (Since, under time stationarity, Ĵ ∗

0 = X∗
0 , we express

the counting sequence representation simply as {(X∗
n,K

∗
n)}.)
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The arrival rate of the point process is given by λ = E(C∗(1)) = E(X∗
0) because

of the following (a generalization of the Elementary Renewal Theorem):

Proposition 4.1 If �∗ is time-stationary and ergodic, then

lim
n→∞

C∗(n)

n
= λ

def= E(X∗
0), wp1, (14)

and
lim
n→∞

n

T ∗
n

= λ, wp1. (15)

Proof C∗(n) = ∑n
i=0 X

∗
i , n ≥ 1, so (14) is a direct application of the strong law of

large numbers for stationary ergodic sequences derived fromBirkoff’s ergodic theorem
applied to the stationary ergodic sequence {X∗

n}. Deriving (15): Observe that

C∗(T ∗
n − 1) ≤ n ≤ C∗(T ∗

n )

because C∗(T ∗
n ) includes all the points in the batch of T ∗

n , not just those in the batch
that are labeled ≤ n, and C∗(T ∗

n − 1) does not contain any points from the batch
containing T ∗

n . Dividing by T ∗
n and using (14) on both the upper and lower bound

yields the result since T ∗
n is a subsequence of n as T ∗

n → ∞ and n → ∞ wp1. 
�
Definition 4.2 Amarked point process� is called point stationary if θi� = {(Ti+ j −
Ti , Ki+ j ) : j ∈ Z} has the same distribution as � for all i ∈ Z. This means that if we
relabel point Ti as the origin, while retaining its mark Ki , the resulting point process
has the same distribution regardless of which i we choose.� is called point stationary
and ergodic if the sequence is also ergodic (with respect to the point-shift operator:
θ = θ1).

Proposition 4.2 A marked point process is point stationary if and only if P(T0 =
1) and the interarrival time/mark sequence {(Un, Kn) : n ∈ Z} is stationary. A
marked point process is point-stationary and ergodic if and only if P(T0 = 1) and
the interarrival time/mark sequence {(Un, Kn) : n ∈ Z} is stationary and ergodic.
(Recall that the same shift operator θ = θ1 is used for both representations.)

Proof Because of the relationship (4) between interarrival times and points, the first
result is immediate. The ergodicity equivalence is easily seen as follows: Ergodicity
of � is equivalent to

lim
n→∞

1

n

n∑

i=1

f (θi�) = E( f (�)), wp1, (16)

for all nonnegative measurable functions f on MK . Ergodicity of � is equivalent to
(16) with f replaced by all nonnegative measurable functions g on NK . But there is
a one-to-one correspondence between nonnegative measurable functions on NK and
nonnegative measurable functions on MK : If g = g(φ) is a nonnegative measurable
function on NK , then since the mapping φ = φ(ψ) is a homeomorphism (recall
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Proposition 3.1), we have that g(θiφ) = g(φ(θiψ)) = f (θiψ), where f (ψ) =
(g ◦ φ)(ψ) is a nonnegative measurable function on MK . The equivalence goes the
other way in the same manner. Thus, ergodicity is equivalent between the two. 
�

4.3 From time stationarity to point stationarity

Wenext showhow to construct an associated point-stationary and ergodic point process
associated with any given time-stationary and ergodic point process. Consistent with
standard usage, it is called the Palm version.

Definition 4.3 Given a random marked point process �, define (when it exists) a
distribution P(�0 ∈ ·) via

P(�0 ∈ ·) = lim
m→∞

1

m

m∑

i=1

P(θi� ∈ ·), (17)

by which we mean that the convergence holds for all Borel sets B ∈ B(MK ) and
defines a probability distribution on B(MK ).

Theorem 4.1 Given a time-stationary and ergodic marked point process �∗, with
0 < λ = E(X∗

0) < ∞ (the arrival rate), the distribution given in (17) exists, is called
the Palm distribution of �∗, and is also given by

P(�0 ∈ ·) = lim
m→∞

1

m

m∑

i=1

I {θi�∗ ∈ ·}, wp1, (18)

and has representation

P(�0 ∈ ·) = λ−1E
[X

∗
0−1∑

i=0

I {θi�∗ ∈ ·}
]
, (19)

where
∑X∗

0−1
i=0 is defined to be 0 if X∗

0 = 0. A marked point process �0 distributed as
the Palm distribution is point stationary and is called a Palm version of�∗. It satisfies
P(T 0

0 = 0) = 1, and the interarrival time/mark sequence {(U 0
n , K 0

n ) : n ∈ Z} is a
stationary and ergodic sequence.

Proof Taking expected values in (18) yields (17) by the bounded convergence theorem,
so we will prove that (18) leads to (19). We will prove that by justifying rewriting the
limit in (18) using the counting process {C∗(n)} in lieu of m,

P(�0 ∈ ·) = lim
n→∞

1

C∗(n)

C∗(n)−1∑

i=0

I {θi�∗ ∈ ·} = lim
n→∞

( n

C∗(n)

) 1

n

C∗(n)−1∑

i=0

I {θi�∗ ∈ ·}.

(20)
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From Proposition 4.1 and its proof, we have

( T ∗
m − 1

m

) 1

T ∗
m − 1

C∗(T ∗
m−1)∑

i=0

I {θi�∗ ∈ ·} ≤ 1

m

m∑

i=0

I {θi�∗ ∈ ·} ≤
( T ∗

m

m

) 1

T ∗
m

C∗(T ∗
m )∑

i=0

I {θi�∗ ∈ ·},

(21)

and limn→∞ n
C∗(n)

= λ−1, and limm→∞ T ∗
m
m = λ−1 , wp1. Thus, we see that it suffices

to prove that wp1,

lim
n→∞

1

n

C∗(n)−1∑

i=0

I {θi�∗ ∈ ·} = E
[X

∗
0−1∑

i=0

I {θi�∗ ∈ ·}
]
, (22)

because if (22) does hold, then it must hold along any subsequence of n → ∞
including the subsequence Tm as m → ∞; that is what we can then use in (21) (both
the upper and lower bounds must have the same limit). We now establish (22). Recall
that C∗(n) = X∗

0 + · · · + X∗
n , so that

C∗(n)−1∑

i=0

I {θi�∗ ∈ ·} =
n∑

i=0

Y j ,

where

Y0 =
X∗
0−1∑

i=0

I {θi�∗ ∈ ·},

and

Y j =
X∗
0+···+X∗

j−1
∑

i=X∗
0+···+X∗

j−1

I {θi�∗ ∈ ·}, j ≥ 1.

But {Y j : j ≥ 0} forms a stationary ergodic sequence (see, for example, [24] Proposi-
tion 2.12 on Page 44 ), and so from Birkhoff’s ergodic theorem limn→∞ 1

n

∑n
i=0 Y j =

E(Y0), wp1; (22) is established. (That the right-hand side of (19) defines a prob-
ability distribution is easily verified; the monotone convergence theorem handles
countably infinite additivity.) That �0 must be point stationary (i.e., θ�0 has the
same distribution as �0) follows since P(θ1�

0 ∈ ·) is equivalent to replacing �∗
by θ1�

∗ before taking the limit in (17) which would become P(θ1�
0 ∈ ·) =

limm→∞ 1
m

∑m
i=0 P(θ1+i�

∗ ∈ ·),which of course has the same limit since the differ-
ence is asymptotically negligible to (17) in the limit. Ergodicity is proved as follows:
Suppose that B ∈ B(MK ) is an invariant event; i.e., θ−1B = B, hence θ−1

i B =
B, i ≥ 1. Then, from (18), we have P(�0 ∈ B) = limm→∞ 1

m

∑m
i=1 I {θi�∗ ∈ B}

= I {�∗ ∈ B}, wp1, which implies that P(�0 ∈ B) ∈ {0, 1}; ergodicity. 
�
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4.4 Important consequences of Theorem 4.1

Because
∑X∗

0−1
i=0 is defined to be 0 if X∗

0 = 0, we can rewrite (19) as

P(�0 ∈ ·) = λ−1E
[X

∗
0−1∑

i=0

I {θi�∗ ∈ · ; X∗
0 > 0}

]
. (23)

When �∗ is simple, X∗
0 ∈ {0, 1}, and thus {X∗

0 > 0} = {X∗
0 = 1} = {T ∗

0 = 1}.
Therefore, λ = E(X∗

0) = P(X∗
0 > 0) = P(T ∗

0 = 0), and the summation inside (23)
reduces to

I {θ0�∗ ∈ · ; T ∗
0 = 0} = I {�∗ ∈ · ; T ∗

0 = 0}.

Hence, (23) collapses into

λ−1P(�∗ ∈ · ; T ∗
0 = 0) = λ−1P(�∗ ∈ · | T ∗

0 = 0)P(T ∗
0 = 0) = P(�∗ ∈ · | T ∗

0 = 0).

Summarizing:

Corollary 4.1 If a time-stationary ergodic marked point process �∗ is simple, then

P(�0 ∈ ·) = P(�∗ ∈ · | T ∗
0 = 0);

i.e., the Palm distribution is the conditional distribution of �∗ given there is a point
at the origin.

More generally (simple or not), let B∗
0

def= (X∗
0 | X∗

0 > 0), denoting a true (time-
stationary) batch size in lieu of X∗

0:

P(B∗
0 = k) = P(X∗

0 = k)

P(X∗
0 > 0)

, k ≥ 1, (24)

E(B∗
0 ) = E(X∗

0)

P(X∗
0 > 0)

= λ

P(X∗
0 > 0)

. (25)

The following then is immediate from Theorem 4.1:

Corollary 4.2 For a time-stationary ergodic point process �∗

P(�0 ∈ ·) = {E(B∗
0 )}−1E

[B
∗
0−1∑

i=0

I {θi�∗ ∈ · }
]
. (26)

The above generalization of Corollary 4.1 says that to obtain the Palm distribution
when there are batches, you first condition on there being a batch at the origin (i.e.,
X∗
0 > 0) and then average over all X∗

0 shifts θi�
∗, 0 ≤ i ≤ X∗

0 − 1.
Theorem 4.1 generalizes in a standard way to nonnegative functions:
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Proposition 4.3 For any nonnegative measurable function f ,

E( f (�0)) = lim
m→∞

1

m

m∑

i=1

f (θi�
∗), wp1, (27)

and has representation

E( f (�0)) = λ−1E
[X

∗
0−1∑

i=0

f (θi�
∗)

]
= {E(B∗

0 )}−1E
[B

∗
0−1∑

i=0

f (θi�
∗)

]
. (28)

As an immediate consequence of Proposition 4.3, with the function f (ψ) = U0,
we get wp1,

E(U 0
0 ) = lim

n→∞
1

n

n−1∑

j=0

U∗
j = lim

n→∞
T ∗
n

n
= λ−1,

where we are using Proposition 4.1 for the last equality. We include this and more in
the following:

Proposition 4.4 The Palm version �0 of a stationary ergodic marked point process
�∗ with λ = E(X∗

0) satisfies
1

E(U0
0 )

= λ, and

lim
n→∞

T 0
n

n
= E(U 0

0 ) = λ−1, lim
n→∞

C0(n)

n
= λ wp1.

Proof We already proved the first assertion. Because {U 0
j } is stationary and ergodic

and T 0
n = ∑n−1

j=0U
0
j , n ≥ 1, the second assertion follows directly by the strong law

of large numbers for stationary and ergodic sequences via Birkoff’s ergodic theorem,
with the = λ−1 part coming from the first assertion. The third assertion is based on
the following inequality:

T 0
C0(n)−1 ≤ n ≤ T 0

C0(n)
,

which implies that

T 0
C0(n)−1

C0(n)
≤ n

C0(n)
≤

T 0
C0(n)

C0(n)
.

Letting n → ∞ while using our second assertion then yields that both the upper and
lower bounds converge wp1 to λ−1 completing the result. 
�

We now move on to deriving the probability distribution of X0
0 = I 00 + J 00 , which

we know satisfies P(X0
0 > 0) = 1 since, by the definition of the Palm distribution,

P(T 0
0 = 0) = 1; there is a batch at the origin. Recalling that B∗

0 = (X∗
0 | X∗

0 > 0)
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in (24) denotes a time-stationary batch size, the distribution of X0
0 is the distribution

of the batch size containing a randomly chosen point (over all points). As might be
suspected, it has the stationary spread distribution of B0

0 due to the inspection paradox
(applied to batches) that a randomly chosen point is more likely to fall in a larger than
usual batch because larger batches cover more points;

P(X0
0 = k) = lim

n→∞
1

n

n∑

j=0

I {Tj is in a batch of size k}, k ≥ 1.

Proposition 4.5 The Palm version �0 of a stationary ergodic marked point process
�∗ satisfies

P(X0
0 = k) = kP(B∗

0 = k)

E(B∗
0 )

, P(J 00 = k) = P(B∗
0 ≥ k)

E(B∗
0 )

, k ≥ 1.

P(I 00 = l, J 00 = k) = P(B∗
0 = l + k)

E(B∗
0 )

, l ≥ 0, k ≥ 1.

Proof We use Proposition 4.3, with the functions f1(�) = I {X0 = k}, f2(�) =
I {J0 = k} and f3(�) = I {I0 = l, J0 = k}. In these cases, we use E( f (�0)) =
{E(B∗

0 )}−1E
[∑B∗

0−1
i=0 f (θi�∗)

]
.Noting that f1(θi�∗) = I {B∗

0 = k}, 0 ≤ i ≤ B∗
0−1

(shifting within a batch keeps the same batch),

E( f1(�
0)) = {E(B∗

0 )}−1E
[B

∗
0−1∑

j=0

I {B∗
0 = k}

]
= {E(B∗

0 )}−1E
[k−1∑

i=0

I {B∗
0 = k}

]

= {E(B∗
0 )}−1kP(B∗

0 = k).

For dealing with f3, let g(�∗) = (I ∗
0 , J ∗

0 ). The labeling of the points of B∗
0 is

t0, . . . , B∗
0 − 1, so g(θi�∗) = (i, B∗

0 − i), 0 ≤ i ≤ B∗
0 − 1. Thus, the equality

f3(θi�∗) = 1 can only hold for at most one value of i and does so if and only if
B∗
0 = l + k (in which case it happens for i = l). Thus

E( f3(�
0)) = {E(B∗

0 )}−1E
[B

∗
0−1∑

i=0

I {(i, B∗
0 − i) = (l, k)}

]

= {E(B∗
0 )}−1E[I {B∗

0 = l + k}]
= {E(B∗

0 )}−1P(B∗
0 = l + k).

Similarly, for f2, the equality f2(θi�∗) = I {B∗
0 − i = k} = 1 can only hold for

at most one value of i within 0 ≤ i ≤ B∗
0 − 1, and does so if and only if B∗

0 ≥ k.
Thus
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E( f2(�
0)) = {E(B∗

0 )}−1E
[B

∗
0−1∑

i=0

I {B∗
0 − i = k}

]
= {E(B∗

0 )}−1E[I {B∗
0 ≥ k}]

= {E(B∗
0 )}−1P(B∗

0 ≥ k).


�
Next, we present a useful more general rewrite of (19). For any time subset A ⊂ Z,

let |A| = ∑
n∈Z I {n ∈ A}, the analog of the Lebesgue measure in continuous time.

Proposition 4.6 For any 0 < |A| < ∞,

P(�0 ∈ ·) =
E

[∑
T ∗
j ∈A I {θ j�

∗ ∈ ·}
]

λ|A| , i .e., (29)

the Palm distribution is the expected value over all the point shifts of points in any A
(0 < |A| < ∞) of �∗ divided by the expected number of points in A.

Proof Because 0 < λ = E(X∗
0) < ∞, note that (19) can be rewritten as

P(ψ0 ∈ ·) =
E

[∑
T ∗
j ∈{0} I {θ j�

∗ ∈ ·}
]

E(X∗
0)

. (30)

Since {X∗
n} is a stationary sequence, however, we can, for any n ∈ Z, also rewrite the

above as

P(ψ0 ∈ ·) =
E

[∑
T ∗
j ∈{n} I {θ j�

∗ ∈ ·}
]

E(X∗
n)

. (31)

For any 0 < |A| < ∞, we have thatC∗(A) = ∑
n∈A X∗

n and hence E(C∗(A)) = λ|A|.
Thus (29) follows from (31). 
�

We can use (29) to derive

Proposition 4.7 Given a time-stationary and ergodic marked point process �∗,

E(C∗(A × K)) = λ|A|P(K 0
0 ∈ K), (32)

for all bounded A ⊂ Z, and measurable K ⊂ K.

Proof From (29) and Proposition 4.3 using f (ψ) = I {k0 ∈ K), we have

P(K 0
0 ∈ K) =

E
[∑

T ∗
j ∈A I {K ∗

j ∈ K}
]

λ|A| = E(C∗(A × K ))

λ|A| ; (33)

(32) follows. 
�
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Remark 4.2 We use Cesàro convergence [as in (17)] because the convergence holds by
Birkoff’s ergodic theorem without any further conditions, and sample-path averages
converge with probability one as well. If, however, one wants to consider the more
general situation of the convergence in distribution of a sequence rmpps �n to a rmpp
�, as n → ∞, other modes of convergence might be desired and be more useful, such
as weak convergence, and would be analogous to the weak convergence of stochastic
processes as in [29] where notions of tightness and compactness play a fundamental
role. In general, weak convergence and even stronger modes of convergence such as
total variation convergence require much stricter conditions on the process even if the
process is iid or regenerative (for example, conditions such as non-lattice, aperiodic,
spread-out, etc.); see Chapter VII in [2] for some examples.

Remark 4.3 While {X∗
n} forms a stationary sequence (by definition), the same is not

generally so for {X0
n}. Recall, for example, that P(X0

0 > 0) = 1, while the same need
not be so for the other X0

n, n 
= 0.

5 Examples of stationarymarked point processes

We will illustrate examples of �∗ and �0 by representing {X∗
n : n ∈ Z} as

{X∗
n} = {. . . , X∗−2, X

∗−1, X
∗
0, X

∗
1, X

∗
2 . . .},

and {X0
n} as

{X0
n} = {. . . , X0−2, X

0−1, X
0
0, X

0
1, X

0
2 . . .}.

We will give examples when there are no marks involved. Unlike continuous time,
�∗ can have points at the origin and this can allow for some interesting examples.
Recall that since Ĵ ∗

0 = X∗
0 by the definition of time stationarity, �∗ is completely

determined by {X∗
n}. But in general,�0 is not completely determined by {X0

n} because
P(X0

0 > 0) = 1 and X0
0 gets split into X0

0 = I 00 + J 00 . So we additionally need to
determine J 00 .

1. Deterministic case (a) Here, we consider at first the case when {X∗
n} =

{. . . , 1, 1, 1, . . .}. Then, it is immediate that �∗ = �0 because

{X0
n} = {. . . , 1, 1, 1, . . .}

as well, and J ∗
0 = J 00 = 1. This, it turns out, is the only example that can exist

in which both the time- and point-stationary versions are identical. To see this,
we know that since always P(X0

0 > 0) = 1, it would have to hold too that
P(X∗

0 > 0) = 1. But if X∗
0 > 0, then its points are always labeled t0, . . . , tX∗

0−1,

but when X0
0 > 0 it splits X0 into I0 and J0 with the I0 points having negative

labels and the J0 points have labels≥ 0.Whenever P(X0
0 ≥ 2) > 0, it follows that

P(I 00 = 1, J 00 = X0
0 − 1) > 0, hence ruling out the condition P(J 00 = X0

0) = 1
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as would be required since Ĵ ∗
0 = X∗

0 by definition. Our next example illustrates
this difference with yet another deterministic case.

2. Deterministic case (b) Here, we consider the case

{X∗
n} = {. . . , 2, 2, 2, . . .}.

It is immediate that

{X0
n} = {X∗

n} = {. . . , 2, 2, 2, . . .},

because no matter what shift θi�
∗ we use, the batch size covering any point is

still of size 2. But �0 is not the same as �∗: half of the shifts θi�
∗ split the

batch of size two at the origin into T ∗
0 (i) = T1(i) = 0 and half split it into

T ∗−1(i) = T0(i) = 0. We have P(J 00 = 1) = P(J 00 = 2) = 1/2. So while �∗ is
deterministic, �0 is not.

3. iid case

{X∗
n} = {. . . , X∗−2, X

∗−1, X
∗
0, X

∗
1, X

∗
2 . . .},

where {X∗
n : n ∈ Z} is any iid sequence of nonnegative rvswith 0 < E(X∗

0) < ∞.
Then

{X0
n} = {. . . , X∗−2, X

∗−1, X
0
0, X

∗
1, X

∗
2 . . .},

where X0
0 and J 00 , independent of the iid {X0

n : n 
= 0}, are distributed as in
Proposition 4.5 by jointly constructing a copy of (I 00 , J 00 ) and using X0

0 = I 00 +J 00 .
4. Bernoulli(p) iid case Here, we consider a simple point process (i.e., only at most

one arrival in any given time slot) that is a very special but important example in
applications of the above Example 3 iid case because it serves as the discrete-time
analog of a Poisson process. We take {X∗

n} as iid with a Bernoulli(p) distribution,
0 < p < 1. λ = p = E(X∗

0). Since {X∗
n} is iid and the point process is

simple, we can use Corollary 4.1 which instructs us to place a point at the origin
(P(X0

0 = 1) = 1) to get {X0
n}; P(T 0

0 = 0) = 1:

{X0
n} = {. . . , X∗−2, X

∗−1, 1, X
∗
1, X

∗
2 . . .},

and of course J 00 = X0
0 = 1. Notice that P(T ∗

0 = 0) = P(X∗
0 = 1) = p.

The interarrival times {U 0
n } are iid with a geometric distribution with success

probability p.
5. Markov chain case We start with an irreducible positive recurrent discrete-time,

discrete state space Markov chain {Xn : n ≥ 0} on the nonnegative integers, and
with transition matrix P = (Pi, j ) and stationary distribution π = {π j : j ≥ 0}.
We assume that 0 < Eπ (X0) < ∞; π has finite and nonzero mean. By starting
off the chain with X0 distributed as π , we can obtain a 1-sided stationary version
{X∗

n : n ≥ 0}. At this point, we have two ways to obtain a two-sided version: One
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is to use Kolmogorov’s extension theorem which assures the existence of such an
extension for any 1-sided stationary sequence. The other is to recall that since the
chain is positive recurrent with stationary distribution π , we can explicitly give
the transition matrix for its time reversal as

P(r)
i, j = P(X∗−1 = j | X∗

0 = i) = π j

πi
Pi, j , i, j ≥ 0.

Thus, starting with {X∗
n : n ≥ 0}, and using X∗

0 , we then can continue backwards

in time to construct {X∗
n : n < 0} by using P(r) = (P(r)

i, j ). This yields

{X∗
n} = {. . . , X∗−2, X

∗−1, X
∗
0, X

∗
1, X

∗
2 . . .}.

Then

{X0
n} = {. . . , X0−2, X

0−1, X
0
0, X

0
1, X

0
2 . . .},

where X0
0 and J 00 are distributed jointly as in Proposition 4.5, and {X0

n : n ≥ 0} is
constructed sequentially using P = (Pi, j ), and {X0

n : n < 0} uses P(r) = (P(r)
i, j ),

both sides starting with X0
0.

6. Cyclic deterministic example Starting with {Xn} = {. . . , 1, 0, 2, 1, 0, 2, 1,
0, 2, . . .}, we have cycles of the form {1, 0, 2} repeating forever. This is actu-
ally a very special case of a Markov chain; P1,0 = P0,2 = P2,1 = 1, but its
analysis here yields nice intuition. The time-stationary version is a 1/3 mixture:
P(X∗

0 = i) = 1/3, i ∈ {1, 0, 2} which then determines the entire sequence. The
idea is that 1/3 of all time begins with an Xn of size 1, 2, or 3 within a cycle.

{X∗
n} =

⎧
⎪⎨

⎪⎩

{. . . , 1, 0, 2, 1 = X∗
0 , 0, 2, 1, 0, 2, . . .} wp 1/3,

{. . . , 0, 2, 1, 0 = X∗
0 , 2, 1, 0, 2, . . .} wp 1/3,

{. . . , 2, 1, 0, 2 = X∗
0 , 1, 0, 2, . . .} wp 1/3.

Note that λ = (1/3)(1 + 0 + 2) = 1.
To determine {X0

n}, we first need only consider lining up the Xn > 0 (the batches)
to obtain {. . . , 1, 2, 1, 2, . . .} and randomly select a point over all batches. 2/3 of
the points sit in an Xn = 2 and 1/3 sit in an Xn = 1. Thus we obtain

{X0
n} =

{
{. . . , 2, 1, 0, 2 = X0

0 , 1, 0, 2, . . .} wp 2/3,

{. . . , 1, 0, 2, 1 = X0
0 , 0, 2, 1, 0, 2, . . .} wp 1/3.

Given the 2/3 case, P((I 00 , J 00 ) = (0, 2)) = 1/2, P((I 00 , J 00 ) = (1, 1)) = 1/2,
while given the 1/3 case P((I 00 , J 00 ) = (0, 1)) = 1. Thus, �0 is completely
determined by the 1/3 mixture of P(X0

0 = 2, J 00 = 2) = P(X0
0 = 2, J 00 =

1) = 1/3, P(X0
0 = 1, J 00 = 1) = 1/3.

This illustrates that for a cyclic deterministic point process, �0 is completely
determined by the pair (X0

0, J
0
0 ).
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7. Regenerative process case Suppose that {Xn} is a positive recurrent regen-
erative process. Example 6 above is a very special case of this, and so is
Example 5 (a Markov chain regenerates each time it visits a given fixed
state i .) We allow general iid cycles of nonnegative random variables, C0 =
{{X0, X1, . . . , Xτ1−1}, τ1}, C1 = {{Xτ1, Xτ1+1, . . . , Xτ1+τ2−1}, τ2} and so on,
where {τm : m ≥ 1} forms a discrete-time renewal process with 0 < E(τ1) < ∞.
We attach another iid such sequence identically distributed of cycles from time
past, {Cm : m ≤ −1}, yielding iid cycles {Cm : m ∈ Z} and hence our two-sided
{Xn}. From the Renewal Reward Theorem, the arrival rate is given by

λ = lim
n→∞

1

n

n∑

m=1

Xm =
E

[∑τ1−1
m=0 Xm

]

E(τ1)
, wp1,

and we assume that 0 < λ < ∞.
A time-stationary version {X∗

n} is given by standard regenerative process theory
in which the initial cycle C∗

0 is a delayed cycle different in distribution from the
original C0. It contains some Xn with n ≤ 0 and some Xn with n > 0. It is a cycle
that covers a randomly selected Xn way out in the future which is then labeled
as X∗

0 . From the inspection paradox applied to the cycle lengths, the cycle length
τ ∗
0 of C∗

0 has the spread distribution of τ1:

P(τ ∗
0 = k) = kP(τ1 = k)

E(τ1)
, k ≥ 1.

Regenerative processes X = {Xn : n ∈ Z} are ergodic with respect to the shift
operator θ = θ1,

θmX = {Xm+n : n ∈ Z} = {Xn(m) : n ∈ Z}, m ∈ Z.

Letting C0(m) = C0(θmX) denote the initial cycle of θmX, the cycle containing
X0(m), we have

P(C∗
0 ∈ ·) = lim

n→∞
1

n

n∑

m=1

I {C0(m) ∈ ·} =
E

[∑τ1−1
m=0 I {C0(m) ∈ ·}

]

E(τ1)
, wp1.

Thus, starting with the iid cycles {Cm : m ∈ Z} and independently replacing C0
with a copy of C∗

0 yields time-stationary {X∗
n}, i.e.,

{X∗
n} = {· · · C−2, C−1, C∗

0 , C1, C2 · · · }.

Similarly, to obtain {X0
n}, we need to derive the appropriate initial delay cycle C00 ,

independent of the iid others, {Cm : m 
= 0}, to obtain the desired

{X0
n} = {· · · C−2, C−1, C00 , C1, C2 · · · }.
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Thus, C00 represents a cycle that covers a randomly selected point t j way out in
the future.

6 Palm inversion and its applications

Wenow show how to construct an associated time-stationary and ergodic point process
associatedwith any given point-stationary and ergodic point process.We then illustrate
by considering the examples in Sect. 5.

6.1 The Palm inversion formula

Recalling the time-shift operator ζ , from (9), one can retrieve back time-stationary
ergodic �∗ from point-stationary ergodic �0 via time averaging (versus point aver-
aging). Because the interarrival times {U 0

j } form a stationary ergodic sequence, the
inversion just says that the time average is the expected value over a “cycle” (interar-
rival time) divided by an expected cycle length E(U 0

0 ) = λ−1, just as in the famous
renewal reward theorem in the iid case.

Theorem 6.1 (Palm inversion formula)

P(�∗ ∈ ·) = lim
n→∞

1

n

n∑

m=1

P(ζm�0 ∈ ·) = λE
[U

0
0−1∑

m=0

I {ζm�0 ∈ ·}I {U 0
0 ≥ 1}

]
,

(34)

P(�∗ ∈ ·) = lim
n→∞

1

n

n∑

m=1

I {ζm�0 ∈ ·}, wp1. (35)

Proof We use the counting sequence representation (X0
n,K

0
n) for �0. (Since ζm maps

Ĵ 00 to X0
m for all m, by definition, we need not include it; there are no labeling issues

of the points once �0 is shifted in time by ζm .) As used in the proof of Proposition 4.4
we have the inequality

T 0
C0(n)−1 ≤ n ≤ T 0

C0(n)
,

which yields

1

n

T 0
C0(n)−1∑

m=0

I {ζm�0 ∈ ·} ≤ 1

n

n∑

m=0

I {ζm�0 ∈ ·} ≤ 1

n

T 0
C0(n)∑

m=0

I {ζm�0 ∈ ·}. (36)

We will now show that the right-hand-side of (36) (hence the left-hand side too)
converges wp1 to the right-hand side of (34). For then this proves that the right-hand-
side of (35) converges to the right-hand-side of (36); taking expected values in (35)
using the bounded convergence theorem then finishes the result. To this end, recalling
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that T 0
n = ∑n−1

i=0 U
0
i , n ≥ 1, we can rewrite a sum over time as a sum over stationary

ergodic “cycle lengths” U 0
i :

T 0
n −1∑

m=0

I {ζm�0 ∈ ·} =
n−1∑

i=0

Yi , where Yi =
T 0
i+1−1
∑

m=T 0
i

I {ζm�0 ∈ ·}I {U 0
i ≥ 1}, i ≥ 0.

Since �0 is point-stationary and ergodic with respect to the point shifts θi , i ≥ 1,
the {Yi : i ≥ 0} form a stationary ergodic sequence. Thus, from Birkoff’s ergodic
theorem,

lim
n→∞

1

n

T 0
n −1∑

m=0

I {ζm�0 ∈ ·} = lim
n→∞

1

n

n−1∑

i=0

Yi (37)

= E(Y0) (38)

= E
[U

0
0−1∑

m=0

I {ζn�0 ∈ ·}I {U 0
0 ≥ 1}

]
, wp1. (39)

The limit in (37) must hold over any subsequence of T 0
n such as TC0(n), this is, we can

replace n by C0(n); this is what we now use on the right-hand-side of (36):

lim
n→∞

1

n

T 0
C0(n)∑

m=0

I {ζm�0 ∈ ·} = lim
n→∞

(C0(n)

n

) 1

C0(n)

T 0
C0(n)∑

m=0

I {ζm�0 ∈ ·} (40)

= λE
[U

0
0−1∑

m=0

I {ζn�0 ∈ ·}I {U 0
0 ≥ 1}

]
,wp1, (41)

where we use the fact that C0(n)
n → λ , wp1, from Proposition 4.4. 
�

6.2 Applications of the Palm inversion formula

Here, we give several examples illustrating how the Palm inversion formula works.
We revisit examples from Sect. 5.

1. We consider the cyclic deterministic Example 6 in Sect. 5, with cycles {1, 0, 2}.
We have

{X0
n} =

{
{. . . , 2, 1, 0, 2 = X0

0 , 1, 0, 2, . . .} wp 2/3,

{. . . , 1, 0, 2, 1 = X0
0 , 0, 2, 1, 0, 2, . . .} wp 1/3.

We will show how the inversion formula yields P(X∗
0 = 1) = P(X∗

0 = 0) =
P(X∗

0 = 2) = 1/3, hence giving us {X∗
n}.
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Since λ = E(X∗
0) = 1 we must compute, for i ∈ {0, 1, 2},

P(X∗
0 = i) = E

[U
0
0−1∑

m=0

I {X0
m = i}I {U 0

0 ≥ 1}
]
. (42)

Recalling that P(X0
0 = 2, J 00 = 2) = P(X0

0 = 2, J 00 = 1) = 1/3, P(X0
0 =

1, J 00 = 1) = P(X0
0 = 1) = 1/3, we see that {U 0

0 ≥ 1} can happen only in two
(disjoint) ways:

(a) {X0
0 = 2, J 00 = 1} = {X0

0 = 2, U 0
0 = T 0

1 = 1}, in which case U 0
0 − 1 = 0

and thus only m = 0 is counted in (42), yielding

P(X∗
0 = i) = P(X0

0 = i, X0
0 = 2, J 00 = 1),

or
(b) {X0

0 = 1, J 00 = 1} = {X0
0 = 1, U 0

0 = T 0
1 = 2} in which case U 0

0 − 1 = 1
and thus m = 0 and m = 1 are counted in (42), yielding

P(X∗
0 = i) = P(X0

0 = i, X0
0 = 1, J 00 = 1) + P(X0

1 = i, X0
0 = 1, J 00 = 1).

For i = 2, only (a) above yields a nonzero probability, P(X∗
0 = 2) = P(X0

0 =
2, J 00 = 1) = 1/3. For i = 1, or i = 0, only (b) above yields a nonzero probability
each using only one of the sum, P(X∗

0 = 0) = P(X0
1 = 0, X0

0 = 1, J 00 = 1) =
P(X0

0 = 1) = 1/3,
P(X∗

0 = 1) = P(X0
0 = 1, X0

0 = 1, J 00 = 1) = P(X0
0 = 1) = 1/3.

2. Our second example: the iid case, Example 3 in Sect. 5.

{X∗
n} = {. . . , X∗−2, X

∗−1, X
∗
0, X

∗
1, X

∗
2 . . .},

where {X∗
n : n ∈ Z} is any iid sequence of nonnegative rvswith 0 < E(X∗

0) < ∞.
Then

{X0
n} = {. . . , X∗−2, X

∗−1, X
0
0, X

∗
1, X

∗
2 . . .},

where X0
0 and J 00 , independent of the iid {X0

n : n 
= 0}, are distributed as in
Proposition 4.5 by jointly constructing a copy of (I 00 , J 00 ) and using X0

0 = I 00 +J 00 .

Recalling B∗
0

def= (X∗
0 | X∗

0 > 0), denoting a true (time-stationary) batch size,

P(B∗
0 = i) = P(X∗

0 = i)

P(X∗
0 > 0)

, i ≥ 1, (43)

and

E(B∗
0 ) = E(X∗

0)

P(X∗
0 > 0)

= λ

P(X∗
0 > 0)

. (44)
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We deduce that

P(X∗
0 = i) = λP(B∗

0 = i)

E(B∗
0 )

, i ≥ 1. (45)

We will prove that the Palm inversion formula yields (45) for i ≥ 1 and yields
P(X∗

0 = 0) = P(X∗
0 = 0) too, thus showing how the Palm inversion formula

indeed retrieves �∗ from �0.
We will use the Palm inversion formula via

P(X∗
0 = i) = λE

[U
0
0 −1∑

m=0

I {X0
m = i}I {U 0

0 ≥ 1}
]

= λ

∞∑

l=1

E
[ l−1∑

m=0

I {X0
m = i}I {U 0

0 = l}
]
.

(46)
As seen in our previous example, {U 0

0 ≥ 1} = {J 00 = 1}; the interarrival time
U 0
0 = T 0

1 is positive only if T 0
0 = 0 is the last point in the batch X0

0 at the origin.
Note that if U 0

0 = l ≥ 2, then X0
m = 0, 1 ≤ m ≤ l − 1. Thus, for l ≥ 1 and any

i ≥ 1,

[ l−1∑

m=0

I {X0
m = i}I {U 0

0 = l}
]

= I {X0
0 = i, U 0

0 = l},

which implies from (46) that

λE
[U

0
0−1∑

m=0

I {X0
m = i}I {U 0

0 ≥ 1}
]

= λ

∞∑

l=1

P(X0
0 = i, U 0

0 = l). (47)

Note that for l ≥ 2, i ≥ 1,

{X0
0 = i, U 0

0 = l} = {(I 00 = i − 1, J 00 = 1), X0
1 = 0, . . . , X0

l−1 = 0, X0
l > 0}.

For l = 1, i ≥ 1,

{X0
0 = i, U 0

0 = 1} = {I 00 = i − 1, J 00 = 1, X0
1 > 0}.

Thus by the iid {X0
n : n ≥ 1} all distributed as X∗

0 , and, independently, the biased
X0
0, we have

P(X0
0 = i, U 0

0 = l) = P(B∗
0 = i)

E(B∗
0 )

P(X∗
0 = 0)l−1P(X∗

0 > 0), l ≥ 1, i ≥ 1,

where we are using from Proposition 4.5,

P(I 00 = l, J 00 = k) = P(B∗
0 = l + k)

E(B∗
0 )

, l ≥ 0, k ≥ 1.
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Thus, from (47), we have

P(X∗
0 = i) = λP(B∗

0 = i)

E(B∗
0 )

, i ≥ 1,

which indeed is correct from (45) above.
For i = 0, we again use (46) and simply observe that since P(X0

0 = 0) = 0 and
P(X0

m = 0) = P(X∗
0 = 0), m ≥ 1, and X0

m is independent ofU 0
0 = T 0

1 , m ≥ 1,
we have

P(X0
m = 0, U 0

0 = l) = P(X∗
0 = 0)P(U 0

0 = l), l ≥ 1, m ≥ 1

and hence (46) reduces to (m = 0 can’t be counted since P(X0
0 = 0) = 0, so

l = 0 takes care of that)

P(X∗
0 = 0) = λP(X∗

0 = 0)
∞∑

l=0

l P(U 0
0 = l) = λP(X∗

0 = 0)E(U 0
0 )

= P(X∗
0 = 0),

where we are using the fact that E(U 0
0 ) = λ−1 from Proposition 4.4.

3. Markov chain Example 5 in Sect. 5.
We will need the transition matrix P = (Pi, j ), i, j ≥ 0, and follow along in the
spirit of our previous example, replacing step by step independence with step by
step conditional independence (i.e., the Markov property). For i ≥ 1 and l = 1,

P(X0
0 = i, U 0

0 = 1) = P(B∗
0 = i)

E(B∗
0 )

(1 − Pi,0).

For i ≥ 1 and l ≥ 2,

P(X0
0 = i, U 0

0 = l) = P(B∗
0 = i)

E(B∗
0 )

Pi,0P
l−2
0,0 (1 − P0,0),

∞∑

l=2

Pl−2
0,0 (1 − P0,0) = 1.

Thus, the final answer summed up from l = 1 to ∞ is

P(B∗
0 = i)

E(B∗
0 )

(1 − Pi,0) + P(B∗
0 = i)

E(B∗
0 )

Pi,0 = P(B∗
0 = i)

E(B∗
0 )

.

Thus, multiplying by λ gets us back to P(X∗
0 = i) just as for the iid case via the

use of (45).
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For the P(X∗
0 = 0) computation, we will join in {X0

0 = i} for i ≥ 1 and then
sum up over i ≥ 1 at the end. Recalling that X∗

0 has the stationary distribution
satisfying π = π P , we have that

πi = λP(B∗
0 = i)

E(B∗
0 )

, i ≥ 1.

We now want to retrieve π0 = P(X∗
0 = 0). For any 1 ≤ m ≤ l − 1, and i ≥ 1,

l ≥ 2,

P(X0
m = 0, X0

0 = i, U0
0 = l) = P(X0

0 = i, U0
0 = l) = P(B∗

0 = i)

E(B∗
0 )

Pi,0P
l−2
0,0 (1 − P0,0).

Thus, summing up to l − 1 yields

P(B∗
0 = i)

E(B∗
0 )

Pi,0(l − 1)Pl−2
0,0 (1 − P0,0).

Summing up (l − 1)Pl−2
0,0 (1− P0,0) over l then yields the mean of the geometric

distribution, (1 − P0,0)−1. Thus, the Palm inversion formula yields

P(X∗
0 = 0, X0

0 = i) = λ
P(B∗

0 = i)

E(B∗
0 )

Pi,0(1 − P0,0)
−1 = πi Pi,0(1 − P0,0)

−1, i ≥ 1. (48)

But, from π = π P , we have

π0 =
∞∑

i=0

πi Pi,0, hence
∞∑

i=1

πi Pi,0 = π0 − π0P0,0 = π0(1 − P0,0).

Thus, summing up (48) over i ≥ 1 yields P(X∗
0 = 0) = π0 as was to be shown.

7 Campbell’s Theorem

Campbell’s Theorem extends rather obvious relations for product sets to arbitrary
sets using the monotone class theorem in measure/integration theory. Applications to
queueing theory such as Little’s Law become direct applications. We cover that here,
starting with the most general form, and then moving on to cover cases when the
marked point process is endowed with some form of stationarity.

For any nonnegative measurable function f = f (n, k), f : Z × K −→ R+, and
any marked point process ψ , define

ψ( f ) =
∞∑

j=−∞
f (t j , k j ).
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Proposition 7.1 (Campbell’s Theorem, general case) If � is a random marked point
process, then for any nonnegative measurable function f = f (n, k),

E(�( f )) =
∫

Z×K

f (b)v(db),

where v is the intensity measure, v(B) = E(C(B)), B ∈ B(Z × K).

Proof Let B ∈ B(Z×K), and let f (n, k) = I {(n, k) ∈ B}. Then�( f ) = C(B), and

E(C(B)) = v(B) =
∫

B
v(db) =

∫

Z×K

f (b)v(db).

So the result holds for simple functions of the form f (n, k) = ∑l
i=1 ai I {(n, k) ∈ Bi },

where the Bi are disjoint Borel sets, and the ai ≥ 0. Then, from standard integration
theory, we can construct a monotone increasing sequence fm of such simple functions
such that fm → f point-wise asm → ∞ and use themonotone convergence theorem.


�

When the marked point process is time-stationary, we get a much stronger result:

Proposition 7.2 (Campbell’s Theorem, stationary case) If�∗ is a time-stationary and
ergodic marked point process, then for any nonnegative measurable function f =
f (n, k),

E(�∗( f )) = λE
[ ∞∑

n=−∞
f (n, K 0

0 )
]

= λ

∞∑

n=−∞
E( f (n, K 0

0 )).

Proof That the last equality holds is standard since f is assumed nonnegative, so
Fubini’s theorem (in the special form of Tonelli’s Theorem) can be used. So we need
to prove the first equality. For any indicator function of the form f (n, k) = I {n ∈
A, k ∈ K}, with |A| < ∞ we have E(�∗( f )) = E(C∗(A ×K)) = λ|A|P(K 0

0 ∈ K)

from Proposition 4.7. Also, it is immediate that for an f of this kind

λE
[ ∞∑

n=−∞
f (n, K 0

0 )
]

= λE
( ∑

n∈A

I {K 0
0 ∈ K}

)
= λ|A|P(K 0

0 ∈ K).

So the result holds for such indicator functions. Thus, it is immediate that the result
will hold more generally for simple functions of the form f (n, k) = ∑l

i=1 ai fi (n, k),
where fi (n, k) = I {n ∈ Ai , k ∈ Ki }, the ai ≥ 0 are constants, and the l pairs
(Ai ,Ki ) are disjoint. Then, we can approximate a general f (such as f (n, k) =
I {(n, k) ∈ B}, B ∈ B(Z × K)) point-wise by a monotone increasing sequence of
such nonnegative simple functions fm → f as m → ∞ and use the monotone
convergence theorem. 
�
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A classic example utilizing Campbell’s Theorem is a proof of Little’s Law (l = λw)
in a stationary ergodic setting. In this case �∗ = {(T ∗

j ,W
∗
j )}, where T ∗

j is the j th

customer’s arrival time into a queueing system and W ∗
j ∈ R+ (the j th mark) denotes

their sojourn time (total time spent in the system), and we are assuming the existence
of such a time-stationary version. The Palm version �0 = {(T 0

j ,W
0
j )} represents

stationarity from the view of arriving customers. It is important to understand that the
existence of stationary versions depends highly on the queueing model in question,
and proving the existence of such stationarity is not trivial in general. A time-stationary
version of L(n), the number of customers in the system at time n ∈ Z, is given by

L∗(n) =
∑

T ∗
j ≤n

I {W ∗
j > n − T ∗

j }, n ∈ Z; in particular L∗(0) =
∑

T ∗
j ≤0

I {W ∗
j > |T ∗

j |}.

Since it is time-stationary, we can and will focus on L∗(0).
In continuous time and under the assumption of non-batches, this kind of proof

using Campbell’s Theorem can be found in Franken et al [9]. See also [3] and [24]
for various continuous-time queueing applications of stationary marked point process
theory. Perhaps what is new below is that we are allowing batches and are in discrete
time:

Proposition 7.3 (Little’s Law) Suppose for a queueing system that there exists a time-
stationary ergodic version �∗ = {(T ∗

j ,W
∗
j ) : j ∈ Z}. (We are assuming as always

that 0 < λ = E(X∗
0) < ∞.) If E(W 0

0 ) < ∞, then E(L∗(0)) < ∞ and E(L∗(0)) =
λE(W 0

0 ).

Proof Defining a Borel set B = {(n, w) ∈ Z × R+ : n ≤ 0, w > |n|} and
f (n, w) = I {(n, w) ∈ B},we see that L∗(0) = �∗( f ).ApplyingCampbell’s theorem
yields

E(L∗(0)) = λ
∑

n≤0

P(W 0
0 > |n|) = λ

∞∑

n=0

P(W 0
0 > n) = λE(W 0

0 ).


�
We now move on to a form of Campbell’s Theorem that is between the above two

cases: the case of a periodic stationary marked point process. Here is the setup: A
marked point process � with representation {(Xn,Kn)} : n ∈ Z} has the property
that, for a fixed integer d ≥ 2 (the period),

�∗
l

def= {(Xmd+l ,Kmd+l) : m ∈ Z} (49)

forms a time-stationary marked point process for each 0 ≤ l ≤ d − 1. Cm def=
{(Xmd+l ,Kmd+l) : 0 ≤ l ≤ d − 1}, m ∈ Z, is called the mth cycle and it is assumed
that {Cm : m ∈ Z} forms a stationary and ergodic sequence. In particular, each cycle
has the same distribution as the initial one C0 = {(Xl ,Kl) : 0 ≤ l ≤ d − 1}. The
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marked point process will be referred to as a periodic stationary ergodic marked point
process. (If d = 1, then we are back to a time-stationary and ergodic point process,
and would denote it by �∗.)

We let �0
l denote a Palm version of �∗

l and, to simplify notation, we let P0
l and E0

l
denote the distribution and expected value under the distribution of�0

l .We define λl =
E(Xl), and we assume that 0 < λl < ∞, 0 ≤ l ≤ d − 1. Because of the periodicity,

λn = E(Xn) = λl , P0
n

def= P0
l , and E0

n = E0
l if n ∈ {md+ l : m ∈ Z}, 0 ≤ l ≤ d−1.

In what follows, � denotes a periodic stationary ergodic point process. (It is not time-
stationary; hence, we do not denote it by �∗ as in Proposition 7.2; it is each �∗

l as
defined in (49) that is time-stationary.)

Proposition 7.4 (Campbell’s Theorem, periodic stationary case) If � is a periodic
stationary ergodic marked point process with period d, then for any nonnegative
measurable function f = f (n, k),

E(�( f )) =
∞∑

n=−∞
λn E

0
n( f (n, K0)).

Proof Recall from Proposition 4.7 and from the proof of the stationary case of Camp-
bell’s Theorem, that for each 0 ≤ l ≤ d − 1, E(�∗

l ( f )) = λl |A|P0
l (K0 ∈ K), for any

f of the form f (n, k) = I {n ∈ A, k ∈ K}, with |A| < ∞. For any subset A ⊆ Z, let
Al = A ∩ {md + l : m ∈ Z}, 0 ≤ l ≤ d − 1. The Al are disjoint and A = ∪d−1

l=0 Al .
For any A ⊆ Z and any measurable K ⊆ K, it thus follows that for f of the form
f (n, k) = I {n ∈ A, k ∈ K}, with |A| < ∞,

E(�( f )) =
d−1∑

l=0

λl |Al |P0
l (K0 ∈ K) =

∞∑

n=−∞
λn E

0
n( f (n, K0)).

The proof is then completed by moving on to simple functions and the monotone
convergence theorem as in the proof of Campbell’s Theorem, the stationary case. 
�

As an application of Proposition 7.4, we now will directly derive the stochastic
discrete-time periodic Little’s Law of Whitt and Zhang in [31], Theorem 3. They first
derive a sample-path periodic Little’s Law (Theorem 1) and then give a stochastic
version (Theorem 3) by using the sample-path version (almost surely). In continuous
time, there is a general stochastic version of the periodic Little’s law for the case when
the arrival process is simple (no batches) and has a periodic rate, such as Theorem 4
in [31], which utilizes methods from [23] which dealt with special models with iid
service times and a periodic non-stationary Poisson arrival process; Palm distributions
are used.

As our primitive, we start with a periodic stationary marked point process � with
representation {(Xn,Kn)} : n ∈ Z}, with period d, in which the Kn are a list of the
sojourn times {Wj } of the Xn customer arrivals at time n. Using the Palm distribution
P0
l , P

0
l (W0 ∈ ·), denotes the stationary distribution for the sojourn time over all

customers who arrive in a time slot l. (Under P0
l ,W0 is the sojourn time of a randomly
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chosen customer from a batch in a time slot l.) If d = 1, then it would simply be
the stationary distribution of the sojourn time over all customers, and we could use
Proposition 7.3. But we want to handle the case when d ≥ 2.

The quantity λ(c)
def= ∑d−1

l=0 λs is the total arrival rate per cycle.We assume for each
l that P0

l (W0 ∈ ·) defines a proper distribution and has finite and nonzero first moment,

0 < E0
l (W0) < ∞. (This also ensures that E0(W0)

def= ∑d−1
l=0

λl
λc
E0
l (W0) < ∞; it is

the average sojourn time over all customers.) For each 0 ≤ l ≤ d−1, the total number
of customers in the system at time l is given by

Ll =
l∑

j=−∞
I {Tj ≤ l, Wj > l − Tj } = �( fl),

where fl(n, w) = I {n ≤ l, w > l − n}, n ∈ Z.

Proposition 7.5 (Periodic Little’s Law) Assuming a periodic stationary (and ergodic)
marked point process for the queueing model, it holds for each 0 ≤ l ≤ d − 1 that

E(Ll) =
l∑

n=−∞
λn P

0
n (W0 > l − n) < ∞.

Proof Direct application of Proposition 7.4 as in the proof of Proposition 7.3 using the
function fl(n, w) = I {n ≤ l, w > l − n}, n ∈ Z. Finiteness follows since, for any
n ∈ Z, there are bounds λn ≤ λ(c) and P0

n (W0 > l−n) ≤ M(|n|) = ∑d−1
l=0 P0

l (W0 >

|n|). But

0∑

n=−∞
M(|n|) =

d−1∑

l=0

E0
l (W0) < ∞,

because we assumed that E0
l (W0) < ∞ for all 0 ≤ l ≤ d − 1. 
�

Remark 7.1 Inherent in our queueing applications (Little’s Law, Periodic Little’s Law)
is the assumption that within any time slot, arrivals that occur are counted before any
departures occur and that the number of customers in the system is counted after the
arrivals but before the departures. This is due to the discrete-time framework here;
in continuous time, the set of times at which an arrival and departure both occur
simultaneously forms a set of Lebesgue measure 0, and hence has no effect on such
results.

Remark 7.2 Analogous to what we did above for l = λw, one can also derive a
stationary version of H = λG and a periodic stationary version of H = λG in
discrete time. In fact, H = λG can be considered equivalent to Campbell’s Theorem;
in continuous time, see, for example, Page 155 in [24], and [28].
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8 Non-ergodicity

If a time-stationary marked point process �∗ is not ergodic, then the point-stationary
distribution defined in (4.3) still exists, but it is no longer the same (in general) as

the point-stationary distribution defined by the right-hand-side of (19), where λ
def=

E(X∗
0) = {EQ(U0)}−1 and is called the Palm distribution of �∗ in the literature.

For details, the reader can consult [24], where this issue is carefully dealt with in
continuous time, and would easily follow in discrete time.

9 Conclusions

We have obtained the natural discrete-time analog of the well-known continuous-time
stationary framework for queueing models in Sects. 2, 6 and 7. To those familiar
with the continuous-time literature, this will be as expected. Nevertheless, we have
exposed subtle complications in carrying out this construction, which others surely
have encountered when they considered this issue. To a large extent, these issues are
successfully addressed here in Sects. 2 and 3 by paying careful attention to the deter-
ministic spaces of sample paths in our three topologically equivalent representations.
This extra care will be familiar to those who have already worked with discrete-time
queueing models. These subtle complications can perhaps best be appreciated by con-
sidering concrete examples, as provided here in Sects. 5 and 6.2.

There are many directions for future research. For example, it would be worthwhile
to carefully expose stochastic process limits of discrete-time stationary marked point
processes. There are two interesting cases: (1) where the limit process is a discrete-
time stochastic process and (2) where it is a continuous-time stochastic process. It
is also natural to consider discrete-time stationary marked point processes on more
general spaces than the real line.
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