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STOCHASTIC COMPARISONS FOR NON-MARKOV PROCESSES

WARDWHITT

AT&T Bell Laboratories

A technique is developed for comparing a non-Markov process to a Markov process on a
general state space with many possible stochastic orderings. Two such comparisons with a
common Markov process yield a comparison between two non-Markov processes. The tech-
nique, which is based on stochastic monotonidty of the Markov process, yields stochastic
comparisons of the limiting distributions and the marginal distributions at single time points,
but not the joint distributions. Iliese stochastic comparisons are obtained under the condition
that the one-step transition probabilities (in discrete time) or infinitesimal transition rates (in
continuous time) are appropriately ordered, uniformly in the extra information needed to add
to the state to make the non-Markov process Markov. Hie technique is illustrated by
establishing an inequality in traffic theory concerning the blocking in multi-server service
facilities when each customer requires service from several facilities simultaneously.

1. IntroductMHL It is often of interest to make stochastic comparisons for non-
Markov processes. One way to do this, exploiting established comparison methods for
Markov processes, is to make stochastic comparisons of the transition probabilities (or
transition rates for continuous-time processes) that hold uniformly in the extra
information needed to add to the state to make the non-Markov process Markov. This
technique has been applied to compare semi-Markov processes by Sonderman [15],
genial counting processes by Whitt [17] and generalized birth-and-death processes
(non-Markov jump processes on the int^ers that move up or down one step at a time)
by Smith and Whitt [14].

In aU the applications above, the stochastic order relation has been the standard
stochastic order determined by aU increasing sets, as in Kamae, Krengel and O'Brien
[4], or a stronger form such as the monotone-likelihood-ratio ordering in Theorem 5 of
[14]. However, in many explications, espedaUy when the state space is a product space
such as R", such strong stochastic comparisons do not hold, and we must look for
weaker notions of stochastic order. One way to obtain many difierent stochastic
ordmngs for Markov processes on general state spaces is to exploit stochastic
monotonidty of Markov processes. Stochastic monotonidty for Markov processes was
introduced by Dal^ [3]. Its power for con^aring Markov processes on general state
spaces with many <Mi»ent stochastic orderings is expressed in Kester [6] and §4.2 of
Stoyan [16]. The technique has also been applied to Markovian queueing networks and
studied further by Massey [7-10].

The purpose of this paper is to combine the two techniques above to provide
conditicms for establishing many different stochastic orderings for non-Markov
processes. Our results can be viewed as extensions of the theorems for Markov
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processes on general state spaces in §4.2 of Stoyan [16]. In fact, our results can also be
viewed as appUcations of die theorems in Stoyan [16], as we incUc t̂e in the remarks
after Theorem 1. Furthermore, to a large extent, our results can also be viewed as an
appUcadon of Theorem 3.5 of Massey [10]. (The main results here and in [10] were
obtained concurrendy and independaidy.) However, the point of view here is quite
different, because the process in which we are initiaUy interested is not Markov.

The stcxihasdc comparison method here has the desirable property that both the
theorems here and their appUc:adon to problems of interest (e.g., §7) are established
reladvely easUy, while the problems of interest are often quite difficult otherwise. Since
the theorems are reladvely easy to prove and apply, the primary contribudon is the
formuladon of the theorems and the demonstradon that tiiey indeed have significant
appUcadons. In this regard, Massey deserves crecUt for recognizing the value of this
general stcxihasdc comparison approach for analyzing Markovian queueing networks.

We (Uscovered this stochasdc comparison approach during an invesdgadon of a
specific problem in traffic theory: the problem of blocking when several faciUdes are
required simultaneously [18]. During the development of a software package in the
Operadons Research Department of AT & T BeU Laboratories to assist in the design of
packet-switched communicadon networks, the need arose to approximately describe
die blocking (percentage of failed attempts) in setting up virtual circuits [12,13].
Analysis of the bl(x:king is diffiailt because a circuit typicaUy requires the simultaneous
possession of Umited resources ass(xiated with several (Ufferent facnUdes (transmisaon
Unks, memory buffers, etc.). Moreover, there is compeddon for die resources not only
from demands for dicuits on the same path, but also from demands for different
circuits that use only some of the same faciUdes. Hence, even without waiting or
alternate routing (which were not considered), the blocking is compUcated. This
muldple-fadUty blcxddng model for communication networks has also been stucUed by
Burman, Lehoczky and Um [2] and D. P. Heyman (personal communicadon). A
special case of this model to represent database locking has also been studied by Mitra
and Wdnberger [11].

A standard approximadon for the blocking in such complex settings is based on
assuming that the faciUdes are independent: The approximate probabiUty of no
blocking for each custon^ is thus the product of the probabiUdes of no blcx:king in
die required faciUdes, whwe the offered load at each fadUty is the sum of the offered
loads of all classes requiring a server there, and the blocking at each faciUty is
computed with the classical Erlang loss formula, which is ciisplayed in (11) here. This
approximadcm has loa^ berai regarded as conservadve, but there has apparendy been
no proof. TTie methods here enable us to prove that the approximadon is indeed an
upper bound. We d^cribe this jqjpUcadon in §7. It is also discussed in much greatCT
detail in [18]. Another contribudon in [18] is an improvoi approximadon, caUed die
reduced-load approximation, which seems very promising.

The rest of this paper is organized as foUows. In §2 we specify die stochasdc ordo"
relations to be considered, which are defined direcdy on die space of aU probabiUty
measures on the state space rather than via an ordering on the state space itself (as in
[4] and [10]). In §3 we define stociasdc monotonicity for Markov processes in die
setting of §2. §4 contains the ccai:q)arison results for discrete-dme processes and §5
contains the corrraponding comparison results for continuous-dme processes. §6
extends §4 to the situadon in which the ordering is only defined for a subset of aU
probabiUty measures. FinaUy, the traffic-dieory appUcadon is di«;ussed in §7.

Let 5 be a graira^ state q>»» and let2. ^tefndi^odMstkwdoidaliras. Le g q
be tb» span; <rf aU pr<*aWlity n»asur«s cm 5. Let < bean ordei relation on
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defined by

j / fora l l /e i f where (1)

fPjids)f{s) (2)

and . ^ is a class of ^(5)-int^able real-valued functions on S, i.e., that
with respect to all P e ^(S). Often, as in Massey [7-10], the functions in ^ will be
indicator functions of increaang measurable sets A in some class ji/, so that Pi < Pj
if Pi(A) < P2(^) for all A ^ s/. However, even if the functions / are indicator
functions, the sets A need not be increasing. Moreover, the functions in ^ could also
be quite different, e.g., a subset of ccmv»c functions to rq>resent a variabiUty ordering.
Further discussicms of vaiiabiUty orderings and other interesting classes J^ is con-
tained in Stoyan [16]. Because of the way the ordering < is defined on ^(S) by (1),
we call it an inte^al stochastic ordering.

In other definitions of stodiastic o r d m i ^ as in [16], the functions / in .^ are not
required to be integrable with r^pect to all P. Hien we would specify the order by
having (1) hold for all / such that both int^als are well defined. In our general setting
this convention could lead to difficulties, so we do not adopt it. For example, suppose
that ^ contains only the two functions /^ and / j . Suppose that /^ is integrable with
respect to P2 but not integrable with respect to Pj and P3 while /j is integrable with
respect to P^ and P3 but not integrable with respect to Pj. Thai P^ < Pj and Pj < P3
by default, but in general we do not have P^ < P3, so transitivity would fail.

Obviously, the relation < defined by (1) is reflexive and transitive, but not
necessarily a partial ordo: because the antisymmetric property need not hold: Pj ^ P^
and P2 < Pi tog/sthei do not nec^sarily imply that P^ = Pj. Of course, the relation <
being a partial order is equivalent to ^ being a determining class [1], which is not
necessary to assume.

To treat limiting distributions, we will also want the space of all probabiUty
measures ^(S) to be endowed with a d^nition of convergence =» for sequences of
probabiUty measures. Hien we assume only that the convergence and the order relation
ate compatible in the sense that the order relation is closed: If P^^ < P2n for all n and
P,, =* P, as n -^ 00 for each i, them Pj < Pj.

It is s^nificant that we have assumed ndther an order rdation nor a topolo^ for the
underlyii^ space 5. Of course, as in Massey [10], S will often be endowed with an
ordo- rdation so that . ^ is a family of indicator functions of inareasing sets, but this is
not necessary. Also, S will typically be endowed with a topolc^ so that =>
ccHT^ponds to weak conv»^ence as in [1], but this is not n«;(»sary either. So the
present framework is much more goieral than the theory of stochastic order in Kamae,
Kr«agel aad O'Brien [A\, wh»e 5 is a Polish ^ace (nwtrizable as a complete separable
nitric space) endowed with a cl<»ed partial ordo- and . ^ is the set of indicator
functicms of all incr^ising subsets with r^pect to tUs ordo:. Of cou^e, in applications
it is rardy a restritcti(»i to assuuK that underlying space S is PoUsh with a closed
partial otder. Hie mi(»t important dq>arture fiom [A] here is that the order rdation on
^(S) need not be d^enni i^ by the indicator Amctkms of all increasing subsets of 5,.
so that fcH- any givra otd& rdatkm and tc^jotc^ on S thesx ase maay pebble order
i:dlati<»is < OQ ^ ( S ) .

The p r e ^ t settii^ is closo* to Massey [7-10]. liie nuKt important departure from
[10] is that the order relation <MI ^(S) need not be determined by a subset of

subsets d S. Fot exasE^^ ist^estii^ vaiialHUty o n k t s ^ a|q>lications are
if S is a compact smi^et of R' and ^ is a subs^ cd all ieal-\^tKd a>nvex
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funcdons on S. However, our modvating appUcadon in §7 is actuaUy in the settir^
considered by Massey [7-10]. Then S = R" with the usual topology and order reladon
on S (Xi < Xj for x, = (x,^,..., ;£,„) if x^j < X2j for each / ) , and .^ is the set of
indicator funcdons of aU lower sets L(x) = (y e J?": y < x). Then Fi ^ P2 ^ and
only if Fi(x) < F2(x) for aU x, where JF) is the cdf of Pj. This ordering is the weak*
ordering, denoted by (x)*, in Massey [10].

We conclude this secdon by indicating how a measurable mapping g from one space
5 to another S' may induce order for image measures. Suppose that orderings < on
^ (S ) and ^(S") are determined by sets of real-valued funcdons ^ and y ,
respecdvely. For any probabiUty measure P in ^ (S) , let Pg'^ be the image measure
in ^(SO defined 2& usual by (Pg^^X^O = ^(g~H^')) for each measurable subset A'
of S'. The foUowing elementary proposidon motivates us to caU g isotone with respect
to (5, ^) and (S', .^) if / 'o g e .^ for aU / ' e ^'•, see Proposidon 2.9 of Massey
[10].

PROPOSITION 1. / / / ' o g ^ ^ for each f e ^' and if P^ < P2 in {0>(S),^), then

3. Stodiastically monotmie Maikov jH-ocesses. A key ingrecUent in our approach
is stochasdc monotonicity for Markov prcx^sses; see [3], [5-10] and [16]. From §4.2 of
Stoyan [16], it is clear that stcwhasUc monotonicity applies in the general framework of
§2.

Let X^ { X(n), R = 0,1,...} be a discrete-time Markov process on the state space
5 with stadonary transidon kernel K{s, A). The prcx̂ ess X and its kernel K are said to
be stochastically monotone with respect to (^(5) , <) if PiK < P2K whenever Pj < Pj-
Both the condidon and the conclusion involve the same integral stcx;hasdc order
relation < on ^(S).

As in §1 of Kdlson and Kester [5], it is easy to see that stochasdc monotonicity is
preserved under many basic operations.

PROPOSITION 2. Let Kj be stochastically monotone Markov transition kernels on Sfor
each i.

(a) / / {pj, j > 1} is a probability mass function, then LjP,Kj is a stochastically
monotone Markov transition kernel on S.

(b) The product (iterated operator) K„K„_l •• • K^ is a stochastically monotone
Markxw transition kernel on S for each n.

4. N<m-Mukov iptKesses. hex Xj= [ Xj(n), R = 0,1,...} be discrete-dme sto-
chastic processes with valu^ in S for i = 1,2. We assume that X2 is Maricov with
transition kernel K2, but we do not assume that X^ is Markov. Our goal is to obtain
stochastic bounds for the general stcx;hastic process X^^ in terms of the Markov prcx%ss
X2.

As in [15] or Thecwem 5 of [14], we assume that the evolution of JTi can be described
by c»ie-s^ tranidticm probabiUties if we include additional information, which is
represents by a discrete-time stochastic process Yi with state space S'. In particular,
we assume that the proc«ss(Jfi, Y^) s {(Xi(n), Yi,(n)), n == 0,1,...} is a discrete-tinw
Maikov process with product state space S x S' and transition kernel K^ s
K.^({s, s% A) lor A Q S X S'. Ua n: SXS' -^ Sheibe projection m ^ d^ned by
T((s, sO) - i , so that ^(Xiin), Yi(n)) = Xi(n) and Pv'^ is die marginal distributicm
Ml S fc» tsmh probabiBty UKasure P on S X S'. We assunre that the product space
SXS'h mdawed mth the usual pnxbict 0-field. (If tcqxdc^^ sie d^ned cm S and
S' and S X S' is endowed widi the product tiapo\o& diai S and S' ^boiiU be
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separable metric spaces to ensure that the Borel 0-field is the product 0-field; p. 225 of
BiUiagsley [1].)

As in [15] or Theorem 5 of [14], we obtain stochastic comparisons between Xi(n)
and X2(n) for all M by having the transition probabiUties appropriately ordered on S
for all initial points .s e S, uniformly in the extra information s' e S'. Let Pj and P2
be initial probabiUty measures on S x S' for X^ and on S for X2, respectively.

THEOREM 1. Let ^(S) be endowed with an order relation < determined by a set ^
of ^(Syintegrable functions. If

(i) K2 is stochastically monotone,
(ii) Ki((s, s'), OTT-I < K2(s, ) for all (s, s") G S X S', and
(iii) Pi?r-i < P2,

then (PiK^)ir-^ < PiJiTz" for all n.

PROOF. Let W = 1. For / e .F,

[ (PiJf i )^-i ] /=Pi( i : i^-^)/=/ / P,{ds,ds'){K^'n-%{s,s'),ds")f{s")
•'s-'sxs'

Pi{ds,ds')K2{s,ds")f{s") by(ii)

by (i) and (iii).

Extend to all n by induction. •

COROLLARY. Ifamditions (i) and (ii) of Theorem 1 hold, if the partial order is closed
and if (Xi(n), Yi(n)) and X2(n) have limiting distributions Pf as n -* ao for each i,
then P > - ^ < P}.

PROOF. Apply Theorem 1 with P^ = Pf and P2 = Pfir~^ so that condition (iii)
holds. Then Pfv~^ < PjA Î for all H, so that Pfir~^ < Pj* by closure. •

REMARKS. (1) Let < for random variables represent the order relation appUed to
their distributions. Then ccmdition (iii) states that .ifi(O) < ^2(0) and the conclusion
states that Xi(n) < ^2(11) for all n. Note that the stochastic order obtained is for the
one-dimensional mai^inal distributions, not the jc^nt distributions involving two or
more values of n simultanecmsly.

(2) We obtain comparisons betwerai two non-Maricov processes by applying Theo-
rem 1 twice with the same stochastically monotone Markov prcx»ss in the middle.

(3) For two Markov processes <m S, Theorem 1 reduces to Theoron 4.2.5a of
Stoyan [16]. In fact, TluicHrem 1 can also be obtained as an application of Hieorem
4.2Ja of [16] if, imtead of pro^ectm% Pj and Ki crato S with ir, we extmded ^ and
K2toSX S'. TMs is dcHie by defining an cader <HI ̂ (S X S') by (1) with the set # of
all real-^ued functic»is ftmSxS' sudi that f(s, s') =>= f(s) for all (s, s') e: S X S',
fcH- staoe / e #". dstespoa&ig to K2, we define the Maricov transition kmid K2 on
S X S' by i^2((5, s'), AXA')~ K2{s, i4)l^.(s') for aU (s, s') e S X S' and measur-
able sut^els A Q S and A' Q S', where 1^>(5') is tltt is&^caUx ftinction (rf the set A',
Le., l^'is') X* 1 if 5' e .4' and 0 otherwise. With ihese ^finitioos, it is iu>t difitoilt to

a Gompadsfm nsult fco' the two Markov {socesses detrasuned by Ki and K2
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with State space S X S' that is equivalent to Theorem 1. In this setting we can direcdy
apply TTieorem 4.2.5a of [16].

(4) In the spedal setting of Massey [7-10] in which the fimctions in .^ are indicator
ftmctions of increasing sets, Tlieorem 1 is also a discrete-time analogue of Theorem 3.S
of Massey [10]. The second half of TTieorem 3.1 of [8] and Theorems 5.4, 6.4 and 6.5 of
[9] are applications of Theorem 3.5 of [10]. Masse/s work iUustrates that Theorem 1
and the later results can be extended: the ftmction n need not be a projection map.

The integral stochastic ordering < on ^{S) defined by (1) is rather spedal, being
determined by the linear operation of integration with respect to fimctions in .^. The
following example shows that Theorem 1 is not valid with arbitrary orderings on
^{S), such as are discussed at the beginning of §4.2.1 of [16].

EXAMPLE 1. We show that Theorem 1 here and Theorem 4.2.5a of [16] are not
correct with arbitrary orderings on ^{S), even if both processes are Markov and the
ordering on ^ ( 5 ) is a partial ordering. Let S = {0,1} and let K2 be the identity map,
whidi corresponds to a stochasticaUy monotone Markov process for any ordering on
^(S) . Let Ki{s, {0}) = 1 for aU s. Let Pj < P2 mean that dther (i) the cardinality of
the support of Pj is strictly greater than the cardinality of the support of P2 or (ii) that
the cardinality of the supports are equal and Pi({0}) > PjClO})- ^̂  is easy to see that
< is a partial order on ^{S), K^{s, ) < Â jĈ . •) for aU s, but PK^ > PK2 for aU P
with support S.

5. Omtiiiiioiis-tiine {Mticesses. As in §4.2 of [16] and the other sources, the
comparison results for discrete-time processes extend easUy to continuous-time
processes when the continuous-time Markov processes are uniformizable jump
processes. Uniformizable means that the rate of transitions out of any state is
uniformly bounded. As in [15] and p. 69 of [16], the uniformizability assumption can
often be subsequently relaxed.

In this section, let A!, = { Xf{t), f > 0} be a continuous-time jump stochastic process
with the same general state space S for / = 1,2. Let X2 be a Markov jump process
with exponential holding times in each state having means uniformly bounded away
from zero (the uniformizability), stationary probability transition function K2{t) and
transition rate function (infinitesimal generator) Q2 = (22('̂ > ̂ )> ^•^••>

, A) = P{X2{t + A) e ^1^^2(0 = s) = hQ2{s, A) + o{h) (3)

fors^A where o{h)isa quantity that converges to zero after dividing by h for each s
and v4 as A -» 0. Let {X^, Y^) be a continuous-time Markov jump process with state
space 5 X S', e;q>onential holding times having means uniformly bounded away from
zero, probability transition function ^^1(0 aĴ d transition rate function Q^ =
Qi{{s, s'), A)torAQSx S'.

The Irey to applyii^ Theorem 1 is the foUowing representation of Ki{t) due to
unifonnizaticHi

M f ^K,,)", (4)
B — 1

whwe KP}^ is the nth product of the discrete-time probability transition function

itib / the i^aitity map and X suffickntly large so that Kjx is nonnegative for / = 1
aod 2. OTC way to prove (4) and the fonowii^ Tlieorem 2 is to simultaneously gmerate
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potential transitions of both processes with a Poisson process having intoisity X and
appropriately select the real transitions of each process by independent thinning with
probabilities determined by Qj-, see [15], [17], and references there. If we use the
Poisson process to construct both {Xi, Yj) and ATj, thai it suffices to compare the two
discrete-time processes embedded at the q>ochs of transitions of the Pcnsson proems.
Th^ie disc:rete-time prcx:esses have probability, transition functions Ki^ and K2\.

Henc%, we have the following r^uit as a direct consequence of Theorem 1.

THEOREM 2. Let ^{S) be endowed with an integral order relation < determined by
a set y of ^(Syintegrable functions. Let K^^ be the discrete-time probability transition
functions in (5) obtained under the assumption of uniformizability. If

(i) K2\ is stochastically monotone,
(ii) Ki^{(s, s% •)Tr-' < K2xis, ) for all (s, s')eSxS',and
(iii) P^iT-^ < Pj,

then PiKiit) < ^2^2(0 for all t.

REMARKS. (1) Conditions (i) and (ii) in Theorem 2 are relatively easy to check,
because they involve the intensities Qi instead of the continuous-time probability
transition functions Kf^t). For example, from (5) we see that (ii) holds if and only if

2(s,)f (6)

for all s € S, s' e S' and / e .^. If .F is the set of indicator functions of sets Ains^,
then (6) reduces to

Q,{(s,s'),AxS')^Q2is,A) (7)

for all s G S, s' G S' and A ssf, which in turn is equivalent to

Qiiis, s'), AXS')^ Q2{s, A), s e A\
(8)

for all 5 e S, s' e S' and A e s/.
(2) Condition (i) in Theorem 2 is also relatively easy to check, as is illustrated later

in (14) in the prcxtf of llieorem 5.
Stochastic monotonically for continuous-time kernels has several equivalent repre-

sentations if, in addition to (3), we have

(9)

for each 5 s 5 and / e .F. Formula (9) lMdds for exanq)le if (3) holds uniformly in A.

PROPOSITION 3. / / (9) holds, then the following are equivalent:
(i) K2X in (5) is stochastically mtmotone for all X sufficiently large,
(ii) K2{t) is stochastically monotone fo' all t,
(iii) PiQ2{s, ) / < P2Q2{s, •)ffor aUfeJf whenever P^ K P2.

PROOF, (i) implies (ii) by (4) and Proposition 2. If (ii) holds and Pi < P2, then

, •) - l)f^P2{K2{h){s, •) - I)f+ {PJ- PJ). (10)

Whoi ytie divide by A in (10) and Id A -»0, we c^tam (iii). If (iii) h o ^ a ^ Px < ^v
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then

PiKixis, •)f'Pi{l + X-^Q2is, . ) ) / = Pif+X-'PiQ2is, •)f

< P2/+ X-iP2e2(*. ) / = P2{l + ^-^Q2(S,

When (iii) of Proposition 3 holds, we say that Q2 is stochastically monotone
(although it is not an curator on ^(S)). Hie following elementary proposition is
often convenient for establishing stochastic monotonicity. It shows that it is possible to
consider different transitions separately. This ^proach has been exploited by Massey;
see Hieorem 4.1 of [10].

PROPOSITION 4. Let Q cmd Qi, i ^ 1, be transition rate Junctions of continuous-time
jump processes on S. If

(1) Q is uniformizable,
(U) Qi is stochastically montone for each, and
(iii) Q = ZjQj,

then Q is stochastically monotone.

REMARKS. (1) Massey has observed that in Proposition 4 it suffices for Q to be the
generator of a contraction semigroup which is the strong operator limit of uniformiz-
able monotone generators.

(2) Theorem 2 obviously has a corollary paraUeling the corollary to Hieorem 1.

6. A swdbset of jHttbabiUty measures. In this section we extend Theorem 1 to the
situation in which the integral order relation < is only defined on a subset ^^(S) of
^(S). This may help because now the functions in ^ only need to be integrable with
respect to aU P in the subset ^,(5). For the Markov transition kernel K2 to be
stochastically monotone we now require that PA:2 e ^ ^ 5 ) for aU P e ^,(S) in
addition to P1K2 < P2K2 for all Pj and P2 in 0>,(S) with Pj < P2.

THEOREM 3. Let the subset ^ , (5) of ^(S) be endowed with an integral order
relation < determined by a set ^ of ^^(S)-integrable real-valued functions. If

(i) K2 is stochastically monotone,
(ii) (PiKi)'n-^ e ^,(S) whenever Pyir'^ e 0>,(S),
(iii) (PiKi)ir-^ < (^1^)^ :2 for all P^ e ^(S X S') with P^-n'^ e ^,(S),
(iv) P^r-i e ^,(5), P2 e »s(S) and P^ir'^ < P2,

then (PiK^)iT-^ e ^,(S), P2K; e ^,(5) and (PiK^)^-^ < P2A'2" for all n.

REMARK. A sufficient condition for (iii) is condition (ii) of Theorem 1.
PROOF. Apply induction. The result is trivially true for « = 0 by (iv). Suppose the

result has been establidied for n and consider « + 1. By induction, (PiK^)w~^ e ^(S)
and P2KS e ^,(S). For / e .F,

by (ii) and (iii)

by (i) and tbe kidw t̂icm ^sunq>ti<»i. •

7. A tiiAc tiheMy qtpHcatikm. In this section we describe the ttaffic-theory
m^itkHied in the introduction. Hiis appUcation is iav^tipit^ rather

m [IS], so we will be brief here.
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The problem is to describe the blocking when service is required from several
facnlities simultaneously. Hie model has n multi-server service facilities without extra
waiting toom and c customer classes. Service facility i has £, servers. Customers from
class / arrive according to a Poisson process with rate X̂  and immediatdy request
servic:e from one server at each facility in a subset Aj of the n service facilities. If all
serves are busy in any of the required facnlities, the request is blcx;ked (lost without
generating retrials). Otiberwise, service begins immediately in all the required facilities.
All servers working on a given customer from class j start and free up together. The
service time for class j at all facilities has a general distribution with finite mean fi~\
We assume that the c arrival processes and all the service times are mutually
independent.

Let b(A) be the probability that all servers are busy in at least one facility in subset
A (at an arbitrary time in steady state). Thus b(i) = b({i}) is the probability that all
servers are busy at facility i. Sinĉ e Poisson arrivals see time averages [19], b{Aj) is also
the blocking probability for class j .

Let B(s, a) he the classical Erlang blocking formula asscxiated with the M/G/s/loss
service system with s servers and offered load a, defined by

(11)

where, as usual, the offered load a is the arrival rate multiplied by the expected service
time. Let C, be the set of all classes that request service from facility i, i.e.,

q={j:iGAj}. (12)

Let &j the offered load at facility i (not counting blocking elsewhere), defined by

fi,= I « y . (13)

where Oy = ^j/iij is the offered load of class j to the system as a whole.
In [18] we have applied the theory in the previous sections to show that a standard

approximation for the blcx;king probability biA), which has long been regarded as
conservative, is indeed an upper bound.

THEOREM 4. For each subset A, b(A) < 1 - n , e^ ( l - S(5,, a,)).

To prove Theorem 4, we conq>are a continuous-time non-Markov prcx«ss Xy to a
continuous-time Markov prcx^ss X2 using Theorem 2. First, however, we simplify the
model. In Theorem 4 and Corollary 4.2 of [18] it is shown that the model possesses an
insensitivity property: The stationary distribution of the number of customers of each
class in service depends on the servic:e-time distributions only through their means, and
it depends on the arrival rates X̂  and service rat^ Hj for ^ d i class only through their
ratios Uj = Xj/Hj. (Also see Burman et al. [2] for the insensitivity r^ult.)i So henceforth
we assiune aU service-time distributions are exponentially distributed wiih mean one.

The non-Markov process here is X^^ {(Xii(t),..., X^„(t)), t > 0} where Ji,(O
represents t l^ number of busy servers at the facality / at time t. Hie additional
information is cxmtained iQ the stochastic process Yi ^ {(Yii(t),...,Yic(t))>t^^)
where YyO) is the number of class / custcaners in sovice at thsa t. Obviously, 1̂  is ^
Markov process, so that {X^, Yi) is a Markov process too. The state spacK S and S'
for Xi and Yi aie fimte.

TTie Markov proems to vMdi we will compare Xi is Xj a {{X-nit),.. •, ̂ ini^)^'
t > 0} where X2i(t) represoits the number of b u ^ serveirs in a standard M/M/Si/\os&
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system and the niaiginal processes are mutuaUy independent. We have proved Theo-
rem 4 by estabhshing the following more general stochastic comparison. Only the
comparison of the stationary distributions, part (b) below, is discussed in fl81 Let X*
have the stationary distribution on S of Xj for , = 1,2. (For i = 1, existence and
umqueness follows from Theorem 4 of [18].)

i (2(t) < k) for all k and t.
(b) For any n-tuple k = (k^,..., k„), P(X*^k)> P(X^ < k).

OF THE PROOF AND DISCUSSION. We apply Theorem 2 using the partial
on ^(S) generated by the class ^ of indicator functions of sets in the c L s j ^

of aU lower subsets of S; i.e., AEsfifA = {k'G S: k' < k) for some k e S, with
the usual partial order relation on R". This is the weak* order, denoted by < • >* in
Massey [10]. It is weU known that these lower sets are a determining class for ^(R")
so that this order relation is a partial order. It is also weU known that this partial order
IS stncUy weaker than the standard stochastic order in [4]. Moreover, Example 6 of [18]
shows that the extension of Hieorem 5(b) to stochastic order based on all increasing
sets IS not true, so that there is indeed a need for a different approach.

Since S is finite, weak convergence of probabiUty measures is equivalent to conver-
gence for aU subsets. Hence, the partial order relation is closed, and part (b) follows
from part (a). (A direct proof of (b) is given in [18].)

Finally, it is relatively easy to verify conditions (i) and (ii) of Hieorem 2 For
example.

P^2x({k': k' < k}) = LpMi^': k' < k ± e,}) = (l - tp.^)pi{k': k' ^ k}}

(14)

where e, is an n-tuple of all O's except a 1 in the ith place and /»± is a probabiUty.
(The permissible values of e, depend on k.) From (14), it is immediate that Â JA is
stochastically monotone with respect to the lower-set ordering. Condition (ii) is easily
estabUshed by verifying (8); see [18] for more details. By Proposition 4, it suffices to
consider the transitions due to arrivals and departures separately. •

^aients. My work on the traffic-theory appUcation was motivated first
by discussions with D. D. Sheng and then again by discussions with D. P. Heyman.
Shei^ and D. R. Smith obtained a weaker bound on the blocking probabiUty b(A) in
the case of two fadUties by different methods; see the appendix of [12]. I am also
grateful to W. A. Massey for a preUminary version of [10] and his comments on this
work.
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