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STOCHASTIC COMPARISONS FOR NON-MARKOV PROCESSES

WARD WHITT
AT & T Bell Laboratories

A technique is developed for comparing a non-Markov process to a Markov process on a
general state space with many possible stochastic orderings. Two such comparisons with a
common Markov process yield a comparison betweer two non-Markov processes. The tech-
nique, which is based on stochastic monotonicity of the Markov process, yields stochastic
comparisons of the limiting distributions and the marginal distributions at single time points,
but not the joint distributions. These stochastic comparisons are obtained under the condition
that the one-step transition probabilities (in discrete time) or infinitesimal transition rates (in
continuous time) are appropriately ordered, uniformly in the extra information needed to add
to the state to make the non-Markov process Markov. The technique is illustrated by
establishing an inequality in traffic theory concerning the blocking in multi-server service
facilities when each customer requires service from several facilities simultaneously.

1. Introduction. It is often of interest to make stochastic comparisons for non-
Markov processes. One way to do this, exploiting established comparison methods for
Markov processes, is to make stochastic comparisons of the transition probabilities (or
transition rates for continuous-time processes) that hold uniformly in the extra
information needed to add to the state to make the non-Markov process Markov. This
technique has been applied to compare semi-Markov processes by Sonderman [15],
general counting processes by Whitt [17] and generalized birth-and-death processes
(non-Markov jump processes on the integers that move up or down one step at a time)
by Smith and Whitt [14].

In all the applications above, the stochastic order relation has been the standard
stochastic order determined by all increasing sets, as in Kamae, Krengel and O’Brien
[4], or a stronger form such as the monotone-likelihood-ratio ordering in Theorem 5 of
[14]. However, in many applications, especially when the state space is a product space
such as R", such strong stochastic comparisons do not hold, and we must look for
weaker notions of stochastic order. One way to obtain many different stochastic
orderings for Markov processes on general state spaces is to exploit stochastic
monotonicity of Markov processes. Stochastic monotonicity for Markov processes was
introduced by Daley [3]. Its power for comparing Markov processes on general state
spaces with many different stochastic orderings is expressed in Kester [6] and §4.2 of
Stoyan [16]. The technique has also been applied to Markovian queueing networks and
studied further by Massey [7-10].

The purpose of this paper is to combine the two techniques above to provide
conditions for establishing many different stochastic orderings for non-Markov
processes. Our results can be viewed as extensions of the theorems for Markov
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processes on general state spaces in §4.2 of Stoyan [16]. In fact, our results can also be
viewed as applications of the theorems in Stoyan [16], as we indicate in the remarks
after Theorem 1. Furthermore, to a large extent, our results can also be viewed as an
application of Theorem 3.5 of Massey [10]. (The main results here and in [10] were
obtained concurrently and independently.) However, the point of view here is quite
different, because the process in which we are initially interested is not Markov.

The stochastic comparison method here has the desirable property that both the
theorems here and their application to problems of interest (e.g., §7) are established
relatively easily, while the problems of interest are often quite difficult otherwise. Since
the theorems are relatively easy to prove and apply, the primary contribution is the
formulation of the theorems and the demonstration that they indeed have significant
applications. In this regard, Massey deserves credit for recognizing the value of this
general stochastic comparison approach for analyzing Markovian queueing networks.

We discovered this stochastic comparison approach during an investigation of a
specific problem in traffic theory: the problem of blocking when several facilities are
required simultaneously [18]. During the development of a software package in the
Operations Research Department of AT & T Beil Laboratories to assist in the design of
packet-switched communication networks, the need arose to approximately describe
the blocking (percentage of failed attempts) in setting up virtual circuits [12,13].
Analysis of the blocking is difficult because a circuit typically requires the simuitaneous
possession of limited resources associated with several different facilities (transmission
links, memory buffers, etc.). Moreover, there is competition for the resources not only
from demands for circuits on the same path, but also from demands for different
circuits that use only some of the same facilities. Hence, even without waiting or
alternate routing (which were not considered), the blocking is complicated. This
multiple-facility blocking model for communication networks has also been studied by
Burman, Lehoczky and Lim [2] and D. P. Heyman (personal communication). A
special case of this model to represent database locking has also been studied by Mitra
and Weinberger [11].

A standard approximation for the blocking in such complex settings is based on
assuming that the facilities are independent: The approximate probability of no
blocking for each customer is thus the product of the probabilities of no blocking in
the required facilities, where the offered load at each facility is the sum of the offered
loads of all classes requiring a server there, and the blocking at each facility is
computed with the classical Erlang loss formula, which is displayed in (11) here. This
approximation has long been regarded as conservative, but there has apparently been
no proof. The methods here enable us to prove that the approximation is indeed an
upper bound. We describe this application in §7. It is also discussed in much greater
detail in [18]. Another contribution in [18] is an improved approximation, called the
reduced-load approximation, which seems very promising.

The rest of this paper is organized as follows. In §2 we specify the stochastic order
relations to be considered, which are defined directly on the space of all probability
measures on the state space rather than via an ordering on the state space itself (as in
[4] and [10]). In §3 we define stochastic monotonicity for Markov processes in the
setting of §2. §4 contains the comparison results for discrete-time processes and §5
contains the corresponding comparison results for continuous-time processes. §6
extends §4 to the situation in which the ordering is only defined for a subset of all
probability measures. Finally, the traffic-theory application is discussed in §7.

2. Integral stochastic order relations. Let S be a general state space and let £(S)
be the space of all probability measures on S. Let < be an order relation on %(S)
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defined by
PP, if Pf<Pf forall feF where 1)

Bf= [P(d5)f(s) @

and # is a class of 2(S)-integrable real-valued functions on S, i.e., that are integrable
with respect to all P € #(S). Often, as in Massey [7-10}, the functions in F# will be
indicator functions of increasing measurable sets 4 in some class &7, so that P, < P,
if P,(A) < P,(A) for all A €o/. However, even if the functions f are indicator
functions, the sets A need not be increasing. Moreover, the functions in % could also
be quite different, e.g., a subset of convex functions to represent a variability ordering.
Further discussions of variability orderings and other interesting classes % is con-
tained in Stoyan [16]. Because of the way the ordering < is defined on #(S) by (1),
we call it an integral stochastic ordering.

In other definitions of stochastic orderings, as in [16], the functions f in & are not
required to be integrable with respect to all P. Then we would specify the order by
having (1) hold for all f such that both integrals are well defined. In our general setting
this convention could lead to difficulties, so we do not adopt it. For example, suppose
that # contains only the two functions f, and f,. Suppose that f, is integrable with
respect to P, but not integrable with respect to P, and P, while f, is integrable with
respect to P, and P, but not integrable with respect to P,. Then P, € P, and P, < P,
by default, but in general we do not have P, < P,, so transitivity would fail.

Obviously, the relation < defined by (1) is reflexive and transitive, but not
necessarily a partial order ‘because the antisymmetric property need not hold: P, < P,
and P, < P, together do not necessarily imply that P, = P,. Of course, the relation <
being a partial order is equivalent to % being a determining class [1], which is not
necessary to assume.

To treat limiting distributions, we will also want the space of all probability
measures 2(S) to be endowed with a definition of convergence = for sequences of
probability measures. Then we assume only that the convergence and the order relation
are compatible in the sense that the order relation is closed: If P,, < P,, for all n and
P, => P, as n — oo for each i, then P, < P,.

It is significant that we have assumed neither an order relation nor a topology for the
underlying space S. Of course, as in Massey [10], S will often be endowed with an
order relation so that & is a family of indicator functions of increasing sets, but this is
not necessary. Also, S will typically be endowed with a topology so that =
corresponds to weak convergence as in [1], but this is not necessary either. So the
present framework is much more general than the theory of stochastic order in Kamae,
Krengel and O’Brien [4], where S is a Polish space (metrizable as a complete separable
metric space) endowed with a closed partial order and & is the set of indicator
functions of all increasing subsets with respect to this order. Of course, in applications
it is rarely a restriction to assume that underlying space § is Polish with a closed
partial order. The most important departure from [4] here is that the order relation on
P(8) need not be determined by the indicator functions of all increasing subsets of S,
so that for any given order relation and topology on § there are many possible order
relations € on #(S).

The present setting is closer to Massey {7-10]. The most important departure from
[10] is that the order relation on #(S) need not be determined by a subset of
increasing subsets of S. For example, interesting variability ordering applications are
possible if § is a compact subset of R” and # is a subset of all real-valued convex
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functions on S. However, our motivating application in §7 is actually in the setting
considered by Massey [7-10]. Then S = R" with the usual topology and order relation
on § (x; < x, for x;, = (x,,..., x;,) if x;; < x,; for each j), and F is the set of
indicator functions of all lower sets L(x) = {y € R™: y < x}. Then P, < P, if and
only if Fi(x) < F,(x) for all x, where F, is the cdf of P, This ordering is the weak*
ordering, denoted by (x)*, in Massey [10].

We conclude this section by indicating how a measurable mapping g from one space
S to another S’ may induce order for image measures. Suppose that orderings < on
#(S) and P(S’) are determined by sets of real-valued functions # and %,
respectively. For any probability measure P in #(S), let Pg~! be the image measure
in #(S’) defined as usual by (Pg~1)(4") = P(g~(4") for each measurable subset A’
of S’. The following elementary proposition motivates us to call g isotone with respect
to (S, F) and (S, F) if flfoge F for all f' € F'; see Proposition 2.9 of Massey
(10}

PrOPOSITION 1. Iff'og € F for each f' € F' and if P, < P, in (P(S), F), then
Pig~! < Pyg7t in (P(S), F).

3. Stochastically monotone Markov processes. A key ingredient in our approach
is stochastic monotonicity for Markov processes; see [3], [5~10] and [16]. From §4.2 of
Stoyan [16), it is clear that stochastic monotonicity applies in the general framework of
§2.

Let X = { X(n), n=0,1,...} be a discrete-time Markov process on the state space
§ with stationary transition kernel K(s, A). The process X and its kernel X are said to
be stochastically monotone with respect to (#(S), <) if P,K < P,K whenever P, < P,.
Both the condition and the conclusion involve the same integral stochastic order
relation < on 2(S).

As in §1 of Keilson and Kester [5], it is easy to see that stochastic monotonicity is
preserved under many basic operations.

PROPOSITION 2. Let K, be stochastically monotone Markov transition kernels on S for
each i.

@) If {p;,i> 1) is a probability mass function, then ¥..p K; is a stochastically
monotone Markov transition kernel on S.

(b) The product (iterated operator) K,K,_, --- K, is a stochastically monotone
Markov transition kernel on S for each n.

4. Non-Markov processes. Let X, = { X/(n), n=0,1,...} be discrete-time sto-
chastic processes with values in § for i = 1,2. We assume that X, is Markov with
transition kernel K, but we do not assume that X, is Markov. Our goal is to obtain
stochastic bounds for the general stochastic process X, in terms of the Markov process
X,.

As in [15] or Theorem 5 of [14], we assume that the evolution of X; can be described
by one-step transition probabilities if we include additional information, which is
represented by a discrete-time stochastic process Y; with state space S’. In particular,
we assume that the process (X, ¥;) = {(Xj(n), Y},(n)), n = 0,1,... } is a discrete-time
Markov process with product state space S X S’ and transition kernel K, =
Ky((s,s"), A) for A C S X S Let o: S X S’ — § be the projection map defined by
7((s, 5°)) = s, 50 that #(X,(n), Y;(n)) = X;(n) and Pz~ is the marginal distribution
on S for each probability measure P on S X S’. We assume that the product space
§ X §7 is endowed with the usual product o-field. (If topologies are defined on S and
S’ and S X §’ is endowed with the product topology then S and S’ should be
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separable metric spaces to ensure that the Borel o-field is the product o-field; p. 225 of
Billingsley [1].)

As in [15] or Theorem 5 of [14], we obtain stochastlc comparisons between X;(n)
and X,(n) for all n by having the transition probabilities appropriately ordered on S
for all initial points s € S, uniformly in the extra information s’ € §’. Let P; and P,
be initial probability measures on S X S’ for X, and on § for X,, respectively.

THEOREM 1. Let P(S) be endowed with an order relation < determined by a set
of P(S)-integrable functions. If

(i) K, is stochastically monotone,

@) K,((s,s), )n < Ky(s,*) forall (s,s") €S X S, and

(iii) P! < Py,
then (P.K!")w~! < P,K2? for all n.

PrOOF. Letn=1 For fe s,

[Pk w1 f = Pi(Kin™)f = [ [ Pilds, ds)(Kir ™) (s, 8), d5")f(s")

Sx8

< [f Pilds, ds)Kals, ds")f(s") by (i)
< js js (Pa=1)(ds)Ky(s, ds")f(s”) = (P~ 1)(K,f)

< fs fs P(ds)K,(s, ds”)f(s”) = P,K,f by (i) and (iii).

Extend to all » by induction. =

COROLLARY. If conditions (i) and (ii) of Theorem 1 hold, if the partial order is closed
and if (X;(n), Y,(n)) and X,(n) have limiting distributions P* as n —» co for each i,
then P}o~1 < P}.

ProOF. Apply Theorem 1 with P, = P¥ and P, = Pfn~! so that condition (i)
holds. Then P#w~1 < P,K? for all n, so that Pfn~* < P} by closure. =

REMARKS. (1) Let < for random variables represent the order relation applied to
their distributions. Then condition (iii) states that X,(0) < X,(0) and the conclusion
states that X;(n) < X,(n) for all n. Note that the stochastic order obtained is for the
one-dimensional marginal distributions, not the joint distributions involving two or
more values of # simultaneously.

(2) We obtain comparisons between two non-Markov processes by applying Theo-
rem 1 twice with the same stochastically monotone Markov process in the middle.

(3) For two Markov processes on S, Theorem 1 reduces to Theorem 4.2.5a of
Stoyan [16]. In fact, Theorem 1 can also be obtained as an application of Theorem
4.2.5a of [16] if, instead of projecting P, and K, onto § with #, we extended # and
K, to S X §’. This is done by defining an order on #(S X §”) by (1) with the set F of
all real-valued functions f on S X S’ such that f(s, s') = f(s) for all (s,s) € § X §,
for some f € #. Corresponding to K,, we define the Markov transition kernel K, on
S X 8 by R,((s, 5", A X &) = Ky(s, A)1,.(s") for all (s,s) € S X §' and measur-
able subsets 4 C S and A4’ C §’, where 1,.(s) is the indicator function of the set 4
ie, 1,.(s) =1if s’ € 4’ and 0 otherwise. With these definitions, it is not difficult to
formulate a comparison result for the two Markov processes determined by K, and K;
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with state space S X §' that is equivalent to Theorem 1. In this setting we can directly
apply Theorem 4.2.5a of [16].

(4) In the special setting of Massey [7-10] in which the functions in # are indicator
functions of increasing sets, Theorem 1 is also a discrete-time analogue of Theorem 3.5
of Massey [10]. The second half of Theorem 3.1 of [8] and Theorems 5.4, 6.4 and 6.5 of
[9] are applications of Theorem 3.5 of [10]. Massey’s work illustrates that Theorem 1
and the later results can be extended: the function # need not be a projection map.

The integral stochastic ordering < on 2(S) defined by (1) is rather special, being
determined by the linear operation of integration with respect to functions in #. The
following example shows that Theorem 1 is not valid with arbitrary orderings on
#(S), such as are discussed at the beginning of §4.2.1 of [16].

ExaMPLE 1. We show that Theorem 1 here and Theorem 4.2.5a of [16] are not
correct with arbitrary orderings on 2(S), even if both processes are Markov and the
ordering on #(S) is a partial ordering. Let S = {0,1} and let X, be the identity map,
which corresponds to a stochastically monotone Markov process for any ordering on
P(S). Let K(s,{0}) =1 for all s. Let P, < P, mean that either (i) the cardinality of
the support of P, is strictly greater than the cardinality of the support of P, or (ii) that
the cardinality of the supports are equal and P,({0}) > P,({0}). It is easy to see that
€ is a partial order on #(S), K (s, -) < K,(s, -) for all 5, but PK, > PK, for all P
with support S.

5. Continuous-time processes. As in §4.2 of [16] and the other sources, the
comparison results for discrete-time processes extend easily to continuous-time
processes when the continuous-time Markov processes are uniformizable jump
processes. Uniformizable means that the rate of transitions out of any state is
uniformly bounded. As in [15] and p. 69 of [16], the uniformizability assumption can
often be subsequently relaxed.

In this section, let X; = { X,(¢), ¢ > 0} be a continuous-time jump stochastic process
with the same general state space S for i = 1,2. Let X, be a Markov jump process
with exponential holding times in each state having means uniformly bounded away
from zero (the uniformizability), stationary probability transition function K,(¢) and
transition rate function (infinitesimal generator) Q, = 0,(s, 4), i.e,,

Ky(h)(s, 4) = P(X,(1 + h) € A1 X,(2) = s) = hQ5(s, 4) + o(k)  (3)

for s & A where o(h) is a quantity that converges to zero after dividing by 4 for each s
and A4 as h — 0. Let (X, Y;) be a continuous-time Markov jump process with state
space § X S’, exponential holding times having means uniformly bounded away from
zero, probability tramsition function K,;(¢) and transition rate function Q, =
Q:i((s, 5N, A)for AC S XS
The key to applying Theorem 1 is the following representation of K,(¢) due to
uniformization
k(1) = 5 e (i, @

n=1

where K is the nth product of the discrete-time probability transition function
K= (I + }‘_IQi) %)

with 7 the identity map and A sufficiently large so that K, is nonnegative for i =1
and 2. One way to prove (4) and the following Theorem 2 is to simultaneously generate
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potential transitions of both processes with a Poisson process having intensity A and

appropriately select the real transitions of each process by independent thinning with

probabilities determined by Q,; see [15], [17], and references there. If we use the

Poisson process to construct both (X, ¥;) and X, then it suffices to compare the two

discrete-time processes embedded at the epochs of transitions of the Poisson process.

These discrete-time processes have probability. transition functions K, and X,,.
Hence, we have the following result as a direct consequence of Theorem 1.

THEOREM 2. Let P(S) be endowed with an integral order relation < determined by
a set F of P(S)-integrable functions. Let K, be the discrete-time probability transition
functions in (5) obtained under the assumption of uniformizability. If

(i) K,, is stochastically monotone,

(i) Kp((s, ), )nt < Ky(s, ) forall (s,s") € S X S, and

(i) P71 < P,
then P, K,(t) < P,K,(t) for all 1.

ReMARKS. (1) Conditions (i) and (ii) in Theorem 2 are relatively easy to check,
because they involve the intensities Q, instead of the continuous-time probability
transition functions K,(z). For example, from (5) we see that (ii) holds if and only if

Ql((s’ S'), ')W—lf< QZ(S’ ')f (6)

forall s € S, s’ € §' and f € F. If F is the set of indicator functions of sets 4 in &,
then (6) reduces to

0i((s,57), 4 X 8) < Qy(s, 4) (M
forall s §, s’ € §’ and 4 € o, which in turn is equivalent to

Qi((5,5), A X §) < Qy(s,4),  ses,
)
Ql((s’ S’), A° X S’) > Q2(ss Ac)’ s € A,

forallse §, s"€ 8§ and 4 € .

(2) Condition (i) in Theorem 2 is also relatively easy to check, as is illustrated later
in (14) in the proof of Theorem 5.

Stochastic monotonically for continuous-time kernels has several equivalent repre-

sentations if, in addition to (3), we have
Ky(B)(s, ) f = hQy(s, ) f + o(h) 9

for each s € S and f € #. Formula (9) holds for example if (3) holds uniformly in 4.

PROPOSITION 3. If (9) holds, then the following are equivalent:
(1) K,, in (5) is stochastically monotone for all A sufficiently large,
(ii) K,(¢) is stochastically monotone for all t,

(i) P,0,(s, -)f < P,Q,(s, )f for all f € F whenever P, < P,.

PrOOF. (i) implies (ii) by (4) and Proposition 2. If (ii) holds and P; < P,, then
Px(Kz(h)(s’ ) - I)f< Pz(Kz(h)(S, ) - I)f+ (sz‘ P1f)- (10)

When we divide by 4 in (10) and let 2 — 0, we obtain (iii). If (iii) holds and P, € P»
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then
PKo (s, )f = Py(I + A70,(s,-))f = Pif + AP Q5 (s, ) f
S Pf + NP 0,(s, ) f = Py (1 + A710,(s, ) f = PKu(s,-)f. m

When (iii) of Proposition 3 holds, we say that Q, is stochastically monotone
(although it is not an operator on #(S)). The following elementary proposition is
often convenient for establishing stochastic monotonicity. It shows that it is possible to
consider different transitions separately. This approach has been exploited by Massey;
see Theorem 4.1 of [10].

PROPOSITION 4. Let Q and Q,, i > 1, be transition rate functions of continuous-time
jump processes on S. If

(1) Q is uniformizable,

(ii) Q, is stochastically montone for each, and

(i) Q =X,0;,
then Q is stochastically monotone.

REMARKS. (1) Massey has observed that in Proposition 4 it suffices for Q to be the
generator of a contraction semigroup which is the strong operator limit of uniformiz-

able monotone generators.
(2) Theorem 2 obviously has a corollary paralleling the corollary to Theorem 1.

6. A subset of probability measures. In this section we extend Theorem 1 to the
situation in which the integral order relation < is only defined on a subset £,(S) of
#(S). This may help because now the functions in # only need to be integrable with
respect to all P in the subset #(S). For the Markov transition kernel K, to be
stochastically monotone we now require that PK, € #(S) for all P € #(S) in
addition to P,K, < P,K, for all P, and P, in #(S) with P, < P,.

THEOREM 3. Let the subset P(S) of P(S) be endowed with an integral order
relation < determined by a set F of P(S)-integrable real-valued functions. If

(1) K, is stochastically monotone,

(i) (P,K,)7~ € P(S) whenever Pin~! € Z,(S),

(iii) (P,K,)7" ! < (Pyw~Y)K, for all P, € (S X §') with Pyn~! € P(S),

(iv) Prl e P(S), P,e P(S) and Pm~! < P,,
then (P, KM~ € #(S), P,K; € P(S) and (P,K)n~! < P,K; for all n.

RemMark. A sufficient condition for (iii) is condition (ii) of Theorem 1.

Proor. Apply induction. The result is trivially true for n = 0 by (iv). Suppose the
result has been established for » and consider n + 1. By induction, (P, K7~ ! € £(S)
and P,K} € #(S). For fe F,

(P&t n~t] f = (PET)(Kym ) f
< (PK7)n (K, f) by (ii) and (i)
< (PK])(Kyf) = (P,KI™)S
by (i) and the induction assumption. ®
7. A traffic theory application. In this section we describe the traffic-theory

application mentioned in the introduction. This application is investigated rather
extensively in [18], so we will be brief here.
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The problem is to describe the blocking when service is required from several
facilities simultaneously. The model has » multi-server service facilities without extra
waiting room and ¢ customer classes. Service facility i has s, servers. Customers from
class j arrive according to a Poisson process with rate A; and immediately request
service from one server at each facility in a subset 4; of the n service facilities. If all
servers are busy in any of the required facilities, the request is blocked (lost without
generating retrials). Otherwise, service begins immediately in all the required facilities.
All servers working on a given customer from class j start and free up together. The
service time for class j at all facilities has a general distribution with finite mean p !,
We assume that the ¢ arrival processes and all the service times are mutually
independent.

Let b(A) be the probability that all servers are busy in at least one facility in subset
A (at an arbitrary time in steady state). Thus b(i) = b({i}) is the probability that all
servers are busy at facility i. Since Poisson arrivals see time averages [19], b(4)) is also
the blocking probability for class j.

Let B(s, a) be the classical Erlang blocking formula associated with the M /G /s /loss
service system with s servers and offered load a, defined by

B(s,a) = (a'/s1) | 3 (at/kt), (1)

k=0

where, as usual, the offered load « is the arrival rate multiplied by the expected service
time. Let C; be the set of all classes that request service from facility i, i.e.,

C={jiedq}. (12)
Let &, the offered load at facility i (not counting blocking elsewhere), defined by
&i = Z aj’ (13)
JjE€G

where @, = A /p; is the offered load of class j to the system as a whole.

In [18] we have applied the theory in the previous sections to show that a standard
approximation for the blocking probability b(A4), which has long been regarded as
conservative, is indeed an upper bound.

THEOREM 4.  For each subset A, b(A4) <1 —-1I1,c ,1 — B(s,, &))).

To prove Theorem 4, we compare a continuous-time non-Markov process X; to a
continuous-time Markov process X, using Theorem 2. First, however, we simplify the
model. In Theorem 4 and Corollary 4.2 of [18] it is shown that the model possesses an
insensitivity property: The stationary distribution of the number of customers of each
class in service depends on the service-time distributions only through their means, and
it depends on the arrival rates A; and service rates u, for each class only through their
ratios a; = A ;/p;. (Also see Burman et al. [2] for the insensitivity result.) So henceforth
we assume all service-time distributions are exponentially distributed with mean one.

The non-Markov process here is X; = {(X;,(¢),..., X;,(2)), t = 0} where X,,(t)
represents the number of busy servers at the facility i at time ¢. The additional
information is contained in the stochastic process ¥; = {(¥y,(¢),..., Y; (1), ? >0}
where Y, (1) is the number of class j customers in service at time 7. Obviously, 1; 152
Markov process, so that (X;, Y;) is a Markov process too. The state spaces S and §
for X, and Y, are finite. :

The Markov process to which we will compare X, is X, = {(Xu(?), .-, X2a(0)
t > 0} where X,,(f) represents the number of busy servers in a standard M/M/s,/1055
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system and the marginal processes are mutually independent. We have proved Theo-
rem 4 by establishing the following more general stochastic comparison. Only the
comparison of the stationary distributions, part (b) below, is discussed in [18]. Let X
have the stationary distribution on § of X; for i =1,2. (For i = 1, existence and
uniqueness follows from Theorem 4 of [18}.)

THEOREM 5. (a) If P(X,(0) < k) > P(X,(0) < k) for all k = (ky,..., k,), then
P(X,(t) <K) > P(X,(t)<k) forall k andt.
(b) For any n-tuple k = (k,, ..., k,), P(X} <k)> P(X? <k).

OUTLINE OF THE PROOF AND DIsCUSSION. We apply Theorem 2 using the partial
order on #(S) generated by the class # of indicator functions of sets in the class .o
of all lower subsets of S; ie, A€o if 4 = KesS kg k} for some k € S, with
the usual partial order relation on R”". This is the weak* order, denoted by ¢ - }*, in
Massey (10]. It is well known that these lower sets are a determining class for #(R"),
so that this order relation is a partial order. It is also well known that this partial order
is strictly weaker than the standard stochastic order in [4]. Moreover, Example 6 of [18]
shows that the extension of Theorem 5(b) to stochastic order based on all increasing
sets is not true, so that there is indeed a need for a different approach,

Since § is finite, weak convergence of probability measures is equivalent to conver-
gence for all subsets. Hence, the partial order relation is closed, and part (b) follows
from part (a). (A direct proof of (b) is given in [18).)

Finally, it is relatively easy to verify conditions (i) and (i) of Theorem 2. For
example,

PKu({K: K <k}) = ZpiiP({k': k'skzte))= (1 - Zp,.t)P({k': K <k})

(14)

where e, is an n-tuple of all 0’s except a 1 in the ith place and p* is a probability.
(The permissible values of e, depend on k.) From (14), it is immediate that K 22 1S
Stochastically monotone with respect to the lower-set ordering. Condition (ii) is easily
established by verifying (8); see [18] for more details. By Proposition 4, it suffices to
consider the transitions due to arrivals and departures separately. =
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