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Motivated by queues with service interruptions, we consider an infinite-capacity storage model with a two-state random
environment. The environment alternates between “up” and “down” states. In the down state, the content increases
according to one stochastic process; in the up state, the content decreases according 1o another stochastic process. We
describe the steady-state behavior of this system under assumptions on the component stochastic elements. For the
special case of deterministic linear flow during the up and down states, we show that the steady-state content is directly
related to the steady-state workload or virtual waiting time in an associated G/G/1 queue, thus supplementing the results
of D. P. Gaver, Jr., and R. G. Miller, Jr. (1962), R. G. Miller, Jr. (1963) and H. Chen and D. D. Yao (1992).

Gaver and Miller (1962), Miller (1963), and Chen
and Yao (1992) studied a stochastic storage
model that we believe is especially promising for oper-
ations research applications. The model is an infinite-
capacity linear fluid model in a random environment,
which can serve as an approximation for a G/G/1
queue when the major source of variability is the
availability of the server rather than the interarrival
times and service times. In particular, the environ-
ment is viewed as a regenerative stochastic process,
with downtimes D; having a niéan 4 and uptimes
Uy having a mean u, where the sequence of random
vectors {(Dy, Uw): k = 1} is i.i.d. (but the joint distri-
bution of (D,, U}) is general). During the downtimes,
there is deterministic, linear net flow into the buffer
at rate x; during uptimes, there is deterministic linear
flow out of the buffer at rate 4 — A whenever the
buffer is not empty (¢ > A). (Think of an arrival rate
X and a service rate x.) We require that Ad < (z — ANu
to have long-run stability. Chen and Yao show that
this fluid model is a good approximation for a D/Dy/1
gueue in a random environment when the interarrival
and service times are relatively short compared to the
up and downtimes,

Chen and Yao obtained a relatively complicated
description of the steady-state buffer content in terms
of an associated G/G/1 queue having service times
ADy and interarrival times (i — M) Uy. Our first purpose
is to supplement this analysis by showing that the

steady-state buffer content, say Z, is in fact directly
related to the steady-state workload (or virtual waiting
time) in this G/G/1 queue, say V. In particular, we
show that (Z|Z > ) is distributed exacily as
(V| ¥ > 0), and thé distribution of V has a relatively
simple form despite the allowed dependence between
service and interarrival times. We also determine
P(Z > 0), which typically does not coincide with
P(V > 0). Explicit formulas for the distribution of Z
when U, and D, are independent and one of them has
an exponential distribution are then immediate (cor-
responding to the classical M/G/1 and GI/M/I
models). Consequently, this stochastic storage model
is remarkably tractable; hence, its appeal.

Our second purpose was to consider more general
models in the same spirit, in part, to better understand
why the relationship above holds. Our first idea was
to replace the deterministic linear flows by determin-
istic nonlinear flows, and indeed much of the analysis
can be carried through for this case, provided that the
flow is nondecreasing during the down periods and
nonincreasing during the up periods. This covers the
interesting case in which the up and down intervals
are composed of subintervals with different linear rates
on each subinterval.

Our next idea was to consider stochastic flows dur-
ing the up and down periods, and this is the model
we investigate first here. We define the general model
in Section 1. We discuss the connection to the
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associated single-server queue in Section 2; this con-
nection depends on the monotonicity of the sample
paths of the two flow processes. The monotonicity is
very natural during the down periods, but not so
natural during the up periods, except in the case of
the fluid model. However, the monotonicity during
the up periods may sometimes be a reasonable approx-
imation, which is worth considering because the analy-
sis simplifies considerably.

In Section 3 we see what happens when the flow
out is linear and deterministic. In this case, we show
that the content process restricted to up periods coin-
cides with a time-scaled version of the workload pro-
cess in a single-server queue. (This is a partial expla-
nation for the characterization of the full steady-state
content Z for the fluid model.)

We first make stochastic assumptions in Section 4.
In particular, we assume that the sequence of down
and uptimes and associated flow processes is i.id.
{The flow processes themselves are still general at first.)
In Section 4 we characterize the steady-state behavior
under successively stronger assumptions. In Section 5
we treat the linear fluid model of Gaver and Miller
(1962), Miller (1963), and Chen and Yao (1992).
Finally, in Section 6 we consider the extension arising
when the down interval is composed of random sub-
intervals with associated linear deterministic flow
rates.

Before proceeding, we mention that we apply our
results for the linear fluid model in Kella and Whitt
(1992) to analyze the distributions of successive buffer
contents in a tandem fuid network with stochastic
input (in particular, nondecreasing .Lévy process
input). Perhaps the main contribution of Kella and
Whitt is to determine the nonproduct-form steady-
state. distribution for the case of two tandem buffers.
It turns out that, without any disruptions, the content
of each buffer can be viewed as the linear fluid model
in a random environment considered here. That appli-
cation was our initial motivation for this work.

For additional background on fluid models, see
Keilson and Rao (1970), Meyer, Rothkopf and Smith
(1979, 1983), Newell (1982), Mitra (1988), Chen and
Mandelbaum (1991), and references in these sources.
For additional background on queues with service
interruptions (or server vacations), see Doshi (1986,
1990).

1. THE GENERAL MODEL

There are four elements in the general model:
two sequences of strictly positive random variables,

{Di: k= 1} and {U: k = 1}, and two sequences of
continuous-time real-valued stochastic processes,
{{Ru(t): t = 0} k = 1} and {{Sk(t): t = O}: k = 1},
having right-continuous sample paths with left limits.
We think of D, and U, as successive down and
uptimes. The storage content grows according to
{Ru(2): t = 0} during the kth downtime and decreases
according to {Si(?): £ = 0} during the kth uptime.
In particular, let

Te=D\+Ui+... + D+ U, k=1, N

with T, = 0; i.e., T is the kth environment cycle time.
We assume that the first downtime begins at time
t = 0. Then the net input process {¥(2): ¢ = 0} can be
defined by

Y(2)

W)+ Rt —T), Th st < Tp + Dy
= Y(Tk_) + Rk+l(Dk+l'_) - Sk+|(t - Tk =
= D), T + Dy <6< T (2)

for k = 0 with Y(0—) = 0, where X(t-) = limyo X(f —
s). Then the content process {Z(¢): ¢ = 0} is obtained
by applying the reflection map to the net input pro-
cess, i.e.,

Z(t) = Y(t) — min{0, inf{¥(s): 0 < 5 < 1}},
t=0; (3)

see p. 19 of Harrison (1985). (Hence, Z(0) = [R(0)]*,
where [x]* = max{x, 0}.) '

We will also consider content processes {Z,(f):
t = 0} and {Z,(¢): t = 0O} restricted to up and down
intervals, respectively; e.g., Z.(t) represents Z(s),
where s is the time when the cumulative uptime first
reaches . For this puirpose, define an environment
state indicator process by

_ 1, Ti+ Dy st < T
I(t) - {0, Te=st< T+ Dk+1 (4)

for k = 0. Processes depicting the cumulative up and
downtimes during the interval [0, :] can then be
defined by

G = j{; I ds, t=0, (5)
and
City =t - Ct), t=0. (6)

Now define inverse processes by

Ciiy=1inf{s = 0: C(s) > 1}, £=0, (7




—

assuming that C, () — o as ¢ — o, and similarly for
C7'(£). Then let

Z() = Z(C.'@), t=0, (3)
and
ZAty = Z(C3'(t)), t=0. &)

Note that (7)-(8) makes Z (U} = Z(D; + U, + D;) as
opposed to Z{D, + U).

2. AN ASSOCIATED SINGLE-SERVER QUEUE

Under an extra assumption on the basic stochastic
processes {Ri(2): ¢ = 0] and |Si(?): ¢ = 0}, we can relate
our model to an associated single-server queue with
unlimited waiting space and the first-in, first-out dis-
cipline. In the queueing model, let a Oth customer
arrive at an empty system at time ¢ = 0. Moreover, let
the service time of customer k£ — 1 be R(D—) and let
the interarrival time between customers k — 1 and k
be S (U,—). Let { W, k = 0} be the associated sequence
of waiting times, defined as usual by

Wi= Wi + R(Dy=) — S{UA)", k=1, (10)
where W, = 0. ey
Theorem 1. If the sample paths of {R.(t): k = 0} and

{Su(t): t = 0} are nondecreasing for all k with proba-
bility 1 (w.p.1)

Z(Tk—) =W, k=0, wp.l.

Proof. Under the monotonicity assumptions, we can
represent the content process by

Z(1)

Z(T—) + Rea(t — Ti), Te £ 1 < Ty + Dy
=1[Z(T—) + Rest{Drar—) — Sii{t — T
— D), T+ D st < Tk_+1 (11)

for k = 0 with Z(0-) = 0. (This can be established
from (2) and (3) by induction on &.)

Our main results are connections between the con-
tent processes {Z(¢): £ = 0} and {Z.(¢): t = 0} and the
workload (or virtual waiting time) process of this
single-server queue. The workload () depicts the
remaining service time of all customers in the system
at time ¢, i.e.,

1403
N +
= [WNU) + Rvpet{Dmvgyer—) — £ + Z Sl Uk—):l ,
k=1

t=0, (i2)
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where

k
N(i) = max{k =0 E S(U=-) = t}, t=0. (13)

3. LINEAR DECLINE

A second nice connection to the single-server queue
occurs when we assume that the process {S.(¢): ¢ = 0}
is deterministic and linear, i.e.,

S{)=st, t=0. (14)

Theorem 2. If, in addition fo the monotonicity
assumptions of Theorem 1, (14) holds; then

Z)=V(st), t=0,

where {V(t): t = 0} is the workload process of the
single-server queue in (12).

Proof. Both processes have jumps up of Risi{ D)
at times U, + . .. + U, and otherwise decrease linearly
at rate s, with a reflecting barrier at the origin.

4. STEADY STATE

We now investigate the steady-state behavior of our -
model under stochastic assumptions. In particular, we
assume the following.

Main Independence Assumption. {(D., U., {Ri(t):
t =0}, {Su(t): t = 0}) k= 1} is an i.i.d. sequence with
E[D)=d <, E[U]] =u <o, E[R|(D—}] <o and
0 < E[S(U )] < oo,

Let = denote convergence in distribution. Let
G/G/1 denote the single-server queueing model in
which the sequence of ordered pairs of interarrival
times and service times is stationary (without any
independence assumed). Let GI/G/1 denote the spe-

" cial case in which all the random variables are inde-

pendent. We will typically be concerned with G/G/1
with extra independence, but not GI/G/1. As a con-
sequence of Theorem 1, we have another theorem:.

Theorem 3. Under the Main Independence Assump-
tion and the monotonicity assumptions of Theorem 1,
there exists a proper random variable Z, such that

Z(T—)=2Z, ask—

if and only if p = E[R(D\-)/E[S(U,—)] < 1. More-
over, Z, is distributed as the steady-state waiting time
in a G/G/1 queue with (possibly dependent) service
time R,(D,—) and interarrival time S{(U,—).
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Proof. Apply the results for the GI/G/] queue, e.g.,
Propositions I.I and 1.2 on p. 181 of Asmussen
(1987). The GI/G/1 theory applies because

{RU(D—) — S{Ui—): k= 1} is i.id.

Using the regenerative structure of the environ-
ment, we can also establish limits for the continuous-
time process. For any nonnegative random variable X
with a finite mean, let X* be a random variable with
the stationary-excess {or equilibrium residual life) dis-
tribution associated with the distribution of X; i.e.,

PX* < x) = E%on P(X > 5) ds. (15)

Let £ denote equality in distribution.

Remark 1. Below we want to consider R,(D¥). When
{R{2): ¢t = 0} and D, are independent, the intended
meaning is clear, but in general they are dependent.
Let R,(D¥) have the distribution

P(R,(DF) > x)

1 b
=D, E J; LR,y €t

P(Rl(t) >x, D >1) dt

w

1 P(R()>x|Dy > OP(D,>1t) dt

" ED, Jo
= J(; P(R(t) > x| D, > t) dP(D¥ < 1).

Theorem 4. In addition to the assumptions of
Theorem 3 with p < |, suppose that D\, U, and
D, + U, have nonlattice distributions. Then

a. Zy(t) = ZsZ Z, + R(D¥),
b. Z{t)= Z, and,
c. [2(0), I =[Z, I ast — o,

where Z, is from Theorem 3, R\(D?) is independent of
Ze, Zs2(Z|1=0), Z,=(Z|I=1),

P(Z>z)
e ¥ Pz D+ PZ> 6
u+d W BTy d Tk
and
PU=1)=1-P(J=0)=—2
- T T u+ d

Proof. Apply basic regenerative process theory as on

pp. 125-127 of Asmussen. See Green (1982) for an
explicit treatment of the subintervals.

Remark 2. The independence in the Main Independ-
ence Assumption can be relaxed; see Wolff (1988).
Also Dy + U, is automatically noniattice if in addition
D, and U, are independent. .

Theorem 5. If, in addition to the assumptions of
Theorem 4,

Uy, Di, Rt t =0} and [5:0) t = 0}
are mutually independent, then
Z, < {Z. + R(D\—) — SU—Y)]*

with the component random variables being

independent.

Proof. This is a standard result for the GI/G/1 queue;
see p. 189 of Asmussen.

We can obtain a useful further characterization of
Z, under the linearity condition (14}.

Theorem 6. If (14) holds in addition to the assump-
tions of Theorem 4, then Z, is distributed as the steady-
state workload in the associated G/G/1 queue; i.e.,

P(Z,>0) = p= E[R(D-))/su (17)
and

P(Z,>x|2Z,>0)=P(Z,+ R(D\—) > z)

where R\(D,—)* is independent of Z..

Proof. Apply Theorem 3.5, p. 189, of Asmussen and
Theorem 2 here, noting that the standard GI/G/!
argument holds if the service and waiting times of
customer k are independent. Alternatively, apply
(4.5.1) and (4.5.7) of Franken et al. (1981).

From Theorems 4 and 6, we obtain a nice charac-
terization of Z in terms of R,(D¥) and R,(D~)*.

Corollary 1. Under the assumptions of Theorem 6,

U

P(Z>z)=u+d

pP(Z. + Ri(Dr—)* > 2)

d *
+ mP(ZE + R(DY) > z)

Jor p in (17), with R{(D\—Y* and R(DY) independent
of Z..

.................



Corollary 2. Under the assumptions of Theorem 6,

E{R(D—)
2E[R(D9)]”

It is natural to develop approximations for E[Z,]
and E[Z] by exploiting approximations for E[Z.];
e.g.,

E[Z,] = pEIZ.] +

_p(c + & — 2¢2)
B[z = RS SS,

where + = ER\(D,—), while ¢Z and ¢2 are the squared
coefficients of variation (variance divided by the
square of the mean) of R,(D,—) and sU\, respectively,
while

_ Cov(Ru(Dy—), sUi)
~ E[R(D\-)E[sU’

see Fendick and Whitt (1989). (The squared -coeffi-
cients of variation of sU, and U, coincide. Thus, (18)
is exact when U, is independent of D, and U, has an
exponential distribution.) Alternatively, we can use
refinements; e.g., see Whitt (1989), Fendick and Whitt
(1989) and the references cited there.

(18)

Cas (19)

5. THE LINEAR FLUID MODEL WITH RANDOM
DISRUPTIONS

If, in addition to (14), we assume that
Rity=rt, t=0, 20

with s > 0 and r > 0, then we obtain the linear fluid
model with random disruptions considered by Gaver
and Miller (1962), Miller (1963), and Chen and Yao
(1992). For this special case, they established Theorem
3 and obtained an expression for the Laplace trans-
form for the steady-state content Z. However, from
the analysis above, we obtain a much more elementary
expression for the distribution of Z. We apply the
following elementary lemma. (We omit the proof.)

Lemma 1. Under (20),
R(DY) = rD* £ (+D))* = R(D,—)*.

Theorem 7. Suppose that (14) and (20) hold in addi-
tion to the assumptions of Theorem 4. Then (Z,| Z, >
0) and (Z| Z > 0) are both distributed the same as
(V| V = 0), where V is the steady-state workload in a
G/G/1 queue with (possibly dependent) service times
rD,. and interarrival times sUy; i.e.,

P(Z.>2|Z.>0)=P(Z>z|Z>0)
= P(Z. + rD¥ > z),

r
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where DF is independent of Z.. Moreover,
P(Z,>0)=P(V>0)=p=rd/su
Corollary 3. Under the assumptions of Theorem 7,

P(Z>2z)

U s+ r
(P

- ( u )(S J; r)pp(zc +DF>2z), z=0,

u+d

where V is the steady-state workload in the G/G/1
queue with (possibly dependent) service times rD; and
interarrival times sU,.

Using (18) with the corollary to Theorem 7, we
obtain the approximation (which is exact when I/ and
D are independent and U/ has an exponential distri-
bution):

()]

| ( e, 2+( lcé;)Zc%m) p(Cf); 1))rd, 1)

where ¢ and ¢} are the squared coefficiemts of varia-
tion of D, and U}; and cip = cov(U, D)/E[U]E[D];
(see (1)-(5) of Whitt 1989). From p = rd/su, we can
rewrite (21) as

E[Z] ~ (a-i—p)

a+1

(ﬂ@+¢—k%)m@+n

T 5 )su (22)

where a = d/u. For d/_u and r/s fixed, ¢ and p are
fixed, so the E[Z] is approximately directly propor-
tional to s and .

6. ANOTHER SPECIAL CASE: DOWN
SUBINTERVALS

Another special case of Section 4 occurs when the
downtime D, is composed of # random subintervals,
ie, Dy = Dy + ... + Dy, with E[Dy] = d;, and
{Ri(t): t = O} can be represented as {Ry(t): t = 0}
during down subinterval i. In addition, suppose that
Rui(t) = rit, t = 0, where r; >  for each / and (14)
holds. Moreover, suppose that Dy, . .., D, are inde-
pendent with nonlattice distributions. Then we can
focus on the processes { Z;(t): ¢ = 0} restricted to the

R e TR e e = T S A T TR
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ith down subinterval. Instead of Theorem 4a, we have
p i-1
Zd,'(f) = Lu=7Z,+ E i}'DU + r,'.Df,-,
=1
I1<i<n (23)
where Z,, D)y, ..., D, and D¥; are mutually inde-
pendent. Moreover,

R(D\=)=nDy+ ...+ 1D, (24)

so that R,(D,—)* is determined by (15) and (24).
Finally, P(Z > z) is given by (16) with

n i—1
P(Zs>2z)= ), (%)P(Ze + X Dy + D% > Z),
=1

=1
z=0, (25
and P(Z, > z) as in Theorem 6, using (24).

Remark 3. The analysis is much more difficult when
the up interval is divided into subintervals.
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