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A tandem fluid network with Lévy input
Offer Kella and Ward Whitt

ABSTRACT

We introduce an open network fluid model with stochastic input and
deterministic linear internal flows. In particular, we consider several buffers
with unlimited capacity in series. The input to the first buffer is a non-
decreasing stochastic process with stationary and independent increments.
The content flows forward from buffer to buffer through connecting pipes
at constant deterministic rates. We obtain simple expressions for the mean
content of each buffer and each pipe by exploiting a connection to the
classical single-node storage model with non-decreasing Lévy input and
constant release rate. We obtain the marginal distributions describing the
content of each buffer by exploiting a connection to a linear fluid model with
random disruptions. We apply martingale theory to derive the joint distri-
bution of the content of the first two buffers, which is not of product form.
Finally, we show that the fluid network can be regarded as the limit of a
sequence of conventional queueing networks.

7.1 INTRODUCTION

It is hard to fathom the passage of time. It almost seems like yesterday, but
it was twenty-six years ago at Cornell that the second author took Professor
Prabhu’s course in queueing theory, based on his then recently completed
book (Prabhu, 1965). Surprisingly, Professor Prabhu seems much the same
today as he did then, a dedicated scholar with a quiet dignity. We hope that
Professor Prabhu takes satisfaction from the fact that quite a few of his
former students have continued to work in the same field. We respectfully
dedicate this chapter to him. ,

Two of Professor Prabhu’s favourite topics over the years have been
stochastic storage models and Lévy processes. Indeed, these topics have a
prominent place in his two queueing books (Prabhu, 1965, 1980). It thus
seems appropriate that these two topics should be the focus of the present
paper. Indeed, the purpose of the present paper is to consider a network
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generalization of the classical storage model with nondecreasing Lévy input
and constant release rate; see Chapter 7 of Prabhu (1965) and Chapter 3 of
Prabhu (1980).

The present paper can also be viewed in relation to the closely related
growing literature on deterministic fluid models; e.g., see Newell (1982),
Anick et al. (1982), Mitra (1988), Chen and Mandelbaum (1991) and Chen
and Yao (1992). Since deterministic fluid flow is usually easier to analyze
than a corresponding stochastic process, the deterministic fluid models often
provide ways to effectively analyze complicated congestion systems. As in
Anick et al. (1982), Chen and Yao (1992), and Mitra (1988), a good way to
represent stochastic behaviour occurring in different time scales is to combine
deterministic fluid flow with stochastic features. The deterministic fluid flow
then represents features whose random fluctuations are in a shorter time
scale than the stochastic features of the model. The law of large numbers
helps justify approximating the features whose random fluctuations are in a
shorter time scale by deterministic fluid flow in the larger time scale.

In this paper we introduce and investigate an open network fluid model
with stochastic input that may have useful applications and is relatively easy
to analyse. Since only the input is stochastic, this model is a natural candidate
when the random fluctuations within the network occur in a shorter time
scale than the random fluctuations in the input.

In particular, motivated by the evolution of high-speed communication
networks that will carry diverse traffic, including very long messages such
as long file transfers and video, as well as short signalling messages, we
suggest considering an open network model with non-decreasing Lévy
process input at some of the nodes and deterministic fluid flow within the
network. Such a network storage model can be defined in terms of primitive
data consisting of a vector Lévy input process, a routing matrix, and a
vector of flow rates by applying the multi-dimensional reflection map in
Harrison and Reiman (1981) and Chen and Mandelbaum (1991) (which is’
shown to be Lipschitz continuous on the function space D with the Skorohod
(1956) J, and M, topologies by Chen and Whitt, 1991). We intend to study
this general stochastic network elsewhere. In this paper we only consider the
special case of a tandem fluid network (i.e. n nodes in series). In particular,
here all nodes have unlimited capacity, there is exogenous Lévy process
input only at the first node and there is linear deterministic flow forward
through successive nodes. This model might represent one communication
path through a communication network.

From some perspectives, this tandem fluid model is remarkably easy to
analyse, because for each k the total content at the first k nodes (after
adjusting for propagation delay) behaves exactly like the classical single-node
storage model with nondecreasing Lévy process input and constant release
rate. Hence, for each k, the total content of the first k buffers has a generalized
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Pollaczek—Khintchine distribution, so that we are able to provide a simple
expression for the mean content at each node. For any Lévy input process,
this enables us to provide simple necessary and sufficient conditions on the
release rates for the average buffer contents to assume any prescribed vector
of positive values. We also apply the continuous version of L = AW in Rolski
and Stidham (1983) and Glynn and Whitt (1989) to calculate the long-run
sojourn time in the network per particle.

By further analysis, we obtain additional partial characterizations of the
steady-state joint distribution of the contents of the buffers. By relating a
single buffer in the network to a linear fluid model with random disruptions,
which was analysed by Chen and Yao (1992) and Kella and Whitt (1992a),
we determine the marginal distribution of steady-state buffer content for each
buffer. By applying a martingale result from Kella and Whitt (1992b), we
also derive the two-dimensional joint distribution of the content of buffer
j and the total content of the first j — 1 buffers, for 2 <j < n. We thus
determine the full joint distribution in the case n = 2, which is not of product
form. (See Kelly, 1979, and Walrand, 1988, for background on queueing
networks with product-form steady-state distributions.)

The rest of this paper is organized as follows. In Section 7.2 we define the
tandem fluid model with general input and prove that, consistent with
intuition, the total content in the first k nodes has the simple one-dimensional
form. In Section 7.3 we consider the tandem fluid model with non-decreasing
Lévy process input. In Section 7.4 we obtain our partial characterizations
of the joint distribution of the buffer contents. Finally, in Section 7.5 we
show that the tandem fluid model can be represented as the limit of a
sequence of conventional open queueing networks.

72 THE TANDEM FLUID MODEL

Consider n unlimited-capacity buffers in series connected by pipes. Let buffer
Jj be the jth buffer visited. The flow rate (volume/time) through each pipe is
determined by the flow rate of each particle and the cross-sectional area of
the pipe. Let the pipe from buffer j to buffer j + 1 be of length L; with
cross-sectional area A4;. Let the flow rate per particle on the pipe out of
buffer j be r;/A;, so that the fluid can flow out of buffer j at rate r,. Hence,
if at time O the system is empty and a quantity x of fluid is put in buffer 1,
then fluid enters buffer 2 at rate r, beginning at time A4, L, /r,. If no further
input is made to buffer 1, then it becomes empty at time x/r,, and flow into
buffer 2 ceases at time (A,L, + x)/r,. The time lag 1,= A;L;/r; is the
propagation delay associated with the flow from buffer j to buffer j + 1
through the connecting pipe. _

Ifr; <r;,, for some j, then the flow rate out of buffer j + 1 is always greater
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than or equal to the flow rate in, so that the buffer never fills. Hence, it
suffices to assume that r, > r, >--->r,, and we do. In a communication
network application, the flow rates might be the same on every link of the
communication path. Then all buffering occurs at the initial access node,
and our analysis has nothing to contribute. However, it is natural to consider
unequal flow rates on the links.

Let the amount of fluid to arrive at the first buffer in the time interval
[0, t] be X(¢), where X = {X(¢):t = 0} is a real-valued stochastic process
with non-decreasing sample paths that are right-continuous with left limits.
For simplicity, assume that the system is initially empty. Let W(¢) be the
buffer content (or work load) at buffer j at time ¢. Then

Wi(t) = X(@) — it +rd(2) 21
and
Wt+nu+---+5)— W +---+7-y)
=W+t +--+7) 22)
=rlt =L @)=t - L), 2<j<mn,
where
rnl,(®) = — inf {X(s)—rs] 2.3)
Oss%y
and

li=— inf {r_,\[s—L_,]—rs}, 2<j<n. (24

‘O€ssr

Formulas (2.1)-(2.4) can be taken as definitions or derived from other first
principles associated with the one-dimensional reflection map; see p. 4 of
Benes (1963), p. 19 of Harrison (1985) and p. 73 of Prabhu (1980).

From (2.1)-(2.4), we can determine the amount of fluid in each pipe at
any time. Let Y|(t) represent the content of pipe j at time ¢. Then

Yit+nu+---+)=[t+u+---+1)—nrLt +7 +---+ 7))
—[’:’(t"'fl +"'+Tj_1)—Ij(t+tl+"'+Tj_1)]
=rj‘tj—rj[1j(t+‘l’1 +"'+Tj)

_Ij(t+tl+.“+tj—l)]9 l<j<n.
@.5)

As mentioned earlier, it is convenient to focus on the partial sums

Zy=wWO+ -+ W+t +---+75-4), 1<j<N. (26
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A key property is that Z; has the same one-dimensional reflection form
as Z, = W, for all j using r; instead of r,. This may be considered intuitively
obvious, but we give a proof.

Theorem 2.1: For each j,

Zi(t) = X(t) — it + r;1;(2), t=20, 2.7
where
rlj(t)= — inf {X(s) — r;s}, t=0. (2.8)

0ss<t

Proof. Formula (2.7) follows by adding the components in (2.1) and (2.2).
Formula (2.8) is valid for j = 1 by (2.3). The other cases are established by
induction. From (2.4) plus induction,

rili(t)= — inf {rj_,s + inf {X(u) —r_,u} - rjs}, t=0. 29

0ss<t OSuss

First,
inf {X(u) —rj_u} < X(s) —r_s, s=0,
O<Su<s
so that
;@) > — iof {r_;s+ (X(s)—r_;s) —rs} = — inf {X(s)—r;s}.

0<s<e O<s<t

We now show that the outer infimum in (2.9) can only be attained at an s
or left limit s— for which the inner infimum infy¢, <, {X @) —r,_ u} is
attained at s or s—. Suppose that the inner infimum is attained at #*(s) or
u*(s)— with u*(s). < s. Then, since r;_, >,
rioys+ inf {X() —r;_u} — 1)

O<us<s

=r_,;s+ inf {x(u)—r_u}—rs

0<Su<su®(s)

>ru*(s)y+  inf  {X(u) — rj_u} - ru*(s).

0Su<u®(s)
Hence,

® < - inf {X()=rs}

0€s<t

ril;

and the proof is complete. ]
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Remark 2.2: If X(¢) is a pure jump process, then I;(t) depicts the cumulative
time in [0, t] that the first j buffers are simultaneously empty.

In communication networks we are interested in the sojourn time of
messages, i.e. the time from the arrival of the first packet of the message at
the first buffer until the departure of the last packet from the network. In
our model, we represent a message as a batch arrival. It is significant that
the sojourn time of a batch is easily related to the sojourn time of the first
particle in a batch. The following is an elementary consequence of the fluid
flow.

Proposition 3.2: The sojourn time of an arriving batch of size x is equal to
the sojourn time of the first particle in the batch plus x/r,.

73 THE TANDEM FLUID MODEL WITH LEVY INPUT

In order to obtain tractable expressions for the steady-state distribution, we
now assume that the input process X is a non-decreasing Lévy process. (See
Chapter 3 of Prabhu, 1980.) In particular, X is defined on an underlying
probability space (Q, #, P} endowed with a standard filtration {&;: ¢ > 0}.
We assume that X(0) =0, X(¢) is adapted to & and X(u) — X(t) is
independent of ., and distributed as X(u — ¢t) for 0 < t < u, where X(¢) > 0
with probability 1. We assume that X (¢) has Laplace transform

E e~ X0 _ gl t>0, 3.1

where ¢(a) is the characteristic exponent.

Note that (Z,(z),. .., Z,(t)) defined in (2.6) is also adapted to &, for each
t. As an easy consequence of Theorem 4, p. 78, of Prabhu (1980) and Theorem
2.1, we see that under minor regularity conditions Z,(t) has a generalized
Pollaczek~Khintchine distribution for each j. (Also see Gani and Pyke, 1960,
and Chapter 7 of Prabhu, 1965.)

Theorem 3.1: (a) If the input process X is a non-decreasing Lévy process
and p = EX(1) <ry, then Z;(t) converges in distribution to a proper limit
Z;(c0) as t = oo for each j and

E e—%2A®) — o —p) for «>0. (32)
ar; — ¢(a)

(b) If, in addition, o? = Var X(1) < oo, then

EZ;(o0) = (33)

20— p)
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Example 3.2: If X is a compound Poisson process with Poisson rate 4 and
iid. random jumps J,,n > 1, having mean m and variance &2, then
o) = A(1 — Y(a)) where Y(@)=E( "), p=EX(1)=Am and ¢*=
Var X(1) = A(6% + m?). Moreover, in this case it is easy to see that
{Zj(0):t =0}, {Var;15(r;2): t > 0} and {r;V; ;,-:(¢): t = O} all have the same
finite-dimensional distributions, where {}; ,(t): ¢t > 0} is the M/G/1 virtual
waiting time process with arrival rate 4 and generic service time J.

We can apply Theorem 3.1 to determine, for any given Lévy process X (¢),
necessary and sufficient conditions on the rates r; for the mean buffer contents
to assume any prescribed values. In particular, there is one and only one
vector of release rates yielding each vector of expected buffer contents.

Corollary 3.3: Under the assumptions of Theorem 3.1,

2 - —
EWj(c0) = —20iz1 =) (4)
2(r; — p)rj-1 — p)
so that EW(e0) = x; > 0 for all j if and only if

0.2

+—2 . i<j<n 3.5
2(x1+"'+xi) J ( )

n=r

Proof. Apply (3.3). | =

We can also apply Theorem 3.1 to determine the average sojourn time in
the entire network, using a continuous version of L = AW, see Rolski and
Stidham (1983) and Glynn and Whitt (1989).

Theorem 3.4: Under the assumptions of Theorem 3.1(b), the average sojourn
time in the network per particle converges almost surely to

n 2
> u+
i=1

[

—_— 3.6
zp(rn '—p) ( )

Proof. We apply Theorem 6 of Glynn and Whitt (1989). In the framework
of Glynn and Whitt (1989), X (¢) plays the role of §,(t) in (3) there. Its inverse
T,(s), defined by

T(s)=inf{t >0:5,() >s}, s3>0, G.7)

gives the time of arrival associated with particle s. (The particles are indexed
by points on the real line.) The long-run average sojourn time is defined as

7= lim —l— f“ w(s) ds, 3.9)

u—~o U Jo

- I or]
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where w(s) is the time spent in the system by particle s; see Sections 1, 1.6
and 4.4 of Glynn and Whitt (1989). The limit in (3.6) is identical to the
long-run average per unit time, defined by
1 X

lim —— w(s) ds. 3.9

-0 X(2) Jo
In order to establish the a.s. limit for the time-average buffer content, we use
regenerative structure. The regenerative cycles will be associated with the
process {(Z,(?),...,Z,(t)):t = 0}. The cycles begin with Z,(0)=---=
Z,(0) = 0. For any x > 0, the cycle ends at time

T,=inf{t >0:x+ X(t) —r,t =0} =inf{t > 0: I,(t) = x}. (3.10)

By p. 79 of Prabhu (1980), ET, = x/(r, — p) < . This, together with
Theorem 3.1(b), implies that the time-average work load in the n buffers
converges a.s. to ¢%/2(r, — p). The corresponding term in (3.6) is obtained
by dividing by p, invoking L = AW. The time spent by each particle in pipe j
is 7;, so that the time average converges with probability 1 trivially. It remains
to verify the extra conditions in Theorem 6 of Glynn and Whitt (1989). First,
t™1X(t) = p as. as t — o0 by the strong law of large numbers, using the
Lévy property and the moment condition E[ X(1)] < r,. Finally, to see that
s~ w(s) = 0 ass. as s = o0, note that the limit of s~ !w(s) as s = o coincides
with the limit w(X (£))/X(¢) as t — 0. Also, w(X(2)) is dominated above by
Y7_, (r;) plus the maximum cycle length of all the cycles up to time ¢,
including the one covering . Let T; be the jth cycle. Since EX(1)? < oo,
ET? < oo; see p. 79 of Prabhu (1980). By Chebyshev, for any ¢ > 0 and n,

E(T})

nZe

P(T, > ng) <

.

By Borel-Cantelli, since

Y. P(T, > ne) < oo,
=1

P(n~'T, > ¢ infinitely often) =0 a.s.,
so that
n 'max{T,,...,T,} »0asn—> 0 as.
Let N(¢) count the number of cycles in [0, t]. By the above

WX@) _ 1 & NO+1 1

X0 \m,-;f’ X0 N+ 12T T}

which converges to 0 as t — c© w.p.l. [ ]
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Corollary 3.5: If, in addition to the assumptions of Theorem 3.4, the Lévy
process X is compound Poisson with jumps having an exponential or a
geometric distribution, then the average sojourn time in the network for the
batches converges almost surely to the quantity in (3.6).

Proof. For the exponential jumps, apply PASTA (Poisson Arrivals See Time
Averages) (see Wolff, 1982, or Melamed and Whitt, 1990), letting ‘time’ be
the particle index, so that the embedded sequence corresponding to the last
particle in a jump is a Poisson process. This argument is the continuous
analogue of the argument in Halfin (1983), who observed that the discrete-
time analogue of PASTA applied with geometrically distributed jumps. See
Whitt (1983) and Makowski et al. (1989) for more on the discrete-time
analogue of PASTA. This argument shows that the average sojourn time of
the last particle in a jump is the same as the average sojourn time of an
arbitrary particle when the jumps have an exponential or a geometric
distribution. |

We can apply L=A4W the other way to determine the long-run time-
average content of the pipes.

Proposition 3.6: Under the assumptions of Theorem 3.4, the long-run
average content of pipe j is p1;.

Proof. Apply L = AW again using the pipe j term 7; in (3.6). ]

74 MORE ABOUT THE STEADY-STATE
DISTRIBUTION

In this section we derive the limiting distributions of Wi(t; +---+ 7, + t)
and (Z;-(t), Wj(r, +---+ 1, + 1)) as t — oo for each j. Without loss of
generality and for the sake of simplified notation, we will assume (in this
section only) that there are no pipes, i.e. the flow from the jth buffer to the
(J + 1)st occurs instantaneously at a rate of r; so that 1y = - - =7, = 0. We
will also assume that the input process to the buffer is compound Poisson
with exponent ¢(a) = (1 — Y(a)) as in Example 3.2. Let W(c0) be a random
variable whose distribution is the limiting distribution of W;(t). Since the
entire process is regenerative, as observed in Section 7.3 (see eqn (3.9)), and
the cycle lengths have a non-arithmetic distribution, the existence of the
limiting distribution is assured.

The important observation is to note that W(t) is increasing at a rate of
r;-y — rywhenever Z;_ () > 0 (equivalently W,_,(t) > 0). Also, if we denote

by Dy, U;;_, the length of the ith interval during which Z;,_, > 0,Z;_, =0,
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respectively, then we see that {(D;;, U;): i > 1} is a sequence of i.i.d. random
vectors. To start a regeneration point, we start observing Wj(-) right after
the first batch arrives, rather than from time zero. This clearly does not
change the limiting distribution and is done in order to readily use available
results. Let u; = EU;, and d; = ED;,. We know from assumptions in previous
sections that ryu; > (r;-, ~ r;)d;. Hence, the process {W;(1): t > 0} coincides
with the content process in the linear fluid-model with random disruptions
introduced by Chen and Yao (1992) and further analysed by Kella and Whitt
(1992a). In Kella and Whitt (1992a) we observed that there is a direct
connection between this process and the work load or virtual waiting time
process in the GI/G/1 queue with (in this case) inter-arrival times r;U; and
service times (r,—, — r;)D;;. More precisely, if we denote by ¥; a random
variable with the steady-state distribution of the work load in the GI/G/1
queue, then (W)(c0)| W;(c0) > 0) has the same distribution as (V}|V; > 0).
For the corresponding GI/G/1 queue, it is well known that

P(I/} > 0) = (rj_l bt rj)dj/rjuj
and it is also easily shown that
P(u/}(w) > 0) = pu}P(I/j > 0) + pdp

where p,; = 1 — py; = u;/(d; + u;). Hence,

P(Wj(0) > 1) =mP(V;> 1), t20, 4.1)
where v
QP20 (8 Y e )y
S P(I/}>0) Uj+dj rj_l—rj ) )

In our case, D; is distributed as the busy period in an M/G/1 queue with
arrival rate 4 and service times with Laplace-Stieltjes transform (LST)
Y(a/r;_ ), since Z;_ (t)/r;~, is the virtual waiting time process of a standard
M/G/1 queue. This means that the LST of D;;, denoted by d () is the minimal
positive root of the functional equation

dj(@) = y[(a + A — Ady(@)/r;-,]. 4.3)

Consequently, d; = m/(r;-, — Am), where m = —y/(0). As mentioned before,
U;, has an exponential distribution with parameter 1. This implies that the
distribution of ¥ is determined by the Pollaczek—Khintchine formula for an
M/G/1 queue with arrival rate A/r; and service times with LST d (-3 — 1)),
Summarizing, we have the following result.

Theorem 4.1: If the external input to the first buffer is compound Poisson
with exponent A(1 —y(«x)) as in Example 3.2, with m= —'(0) and
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py=imir; <1, then

FE()=P(Wj(o)st)=1—m; +m; i:o (1 = p))p  H¥(1)

=1-p;+5; Y. (1= p)pi ' HF (D),
i=1

13
where

Tj—1 — rlﬁj= Fi-1— P p]_(rj-l —rj)ﬁj
s =-J=1 i
Ti-a =0 Tp-177j Ti=1 = 7iP;

m; =

and H¥* is the ith fold convolution of H; with LST

1-— 3,((rj_1 — 1))

a(ry-y — rpd;

’;J(a) =

b

where d (o) is the minimal positive root of the equation
dj(@) = ¥l(x + 4~ 2d,(@)/r;-1]

and d; = m/(r;~, — Am).

(44)

(4.5)

(4.6)

“.7
|

From Theorem 4.1 we can calculate the moments of Wj(c0). Combining
the variance of W;(co) with the variance of Z;(c0), we can calculate the
covariance between Z;_,(o0) and W(c0). We find that the correlation
between Z;_;(c0) and W;(o0), denoted cor(Z;.. (), W;(0)), can assume

any value in the interval (0, l/ﬁ).

Corollary 4.2: Under the assumptions of Theorem 4.1,

J

and

Var Z;() + 2EZ;_,(00)EZ;(c0)

Var W;(w0) = 11:}

with n; in (4.5), EZ;(c0) and EZ;_,(c0) in (3.3), so that

p EJ2]2+‘ p EJ?
rn—p2EJ]| r—p3EJS

Var Z;(0) = [

4.8)

4.9)

(4.10)
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and

Z,_ i )W(w))-lf P
cortZ;-le) Witeo) = o @ ST+ @ = De = 1)

1 | c? 1
<= £ —, 4.11
2Vc?—1 \/5 ¢ )

where p = (r; — p)/(rj-, — p) €(0, 1) and
¢ =2+ [(rj-, — pP)AAEJ*Y/[3(ETH)*] € (2, 0),

so that cor(Z;_ (c0), W;(o0)) can assume any value in the interval (0, 1 /ﬁ).
||

With the aid of Theorem 4.1 we are now ready to obtain the limiting
distribution of the pair (Z;_,(t), W(t)), whose existence is assured from
regenerative process theory.

Theorem 4.3: With the notation and assumptions of Theorem 4.1, let

(Z;_ (o), Wj(c0)) denote a pair of random variables having the limiting

distribution of (Z;_ ,(t), Wj(t)), for 2 <j < n. Then

(@ = B)(rj—y — r)E e7PVA) + (r; — Am)ar
ri— o — (rj—l - "j)ﬁ - A1 — ()

where the distributions of W;(c0) (from which the LST is immediate) is given

in Theorem 4.1.

Ee~Z;- 1(00) + W y(0)) _

, (4.12)

Proof. For this prbof, without loss of generality, we may assume that n = j,
and we do. We begin by défining

M) = [ = - = 1)B — M1 = ¥(@)] f e g
()

t

+ | —e~@Zj-1+BW ) _ ':i-l(a — ﬁ)f e AW ) dlj—l(s) - B’:ilj(t)9
o

4.13)

and noting that Theorem 2 of Kella and Whitt (1992b) implies that
{M,|t = 0} is a zero-mean martingale. Let T, be as in equation (3.9). Applying
Doob’s optional stopping theorem to the martingale {M,|¢ > 0}, with respect
to the bounded stopping time T, A t = min(T,, 1), gives EM7_,, = 0. Before
proceeding we first make the observations that Z;_(T,) = W(T,) =0,
that dI;_,(s) = liz,_ (-0 ds, that (by definition) rJ;(T,) = x and that
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ET, = x/(r; — 4m). Since all of the components of M, are either monotone or
bounded functions of ¢, then by monotone and bounded convergence, applied
to each component separately, we obtain

EM;_ = lim EM;_,,=0. 4.149)

| Sadl- ]

Upon dividing by ET, and rearranging terms, we obtain

TX
[y = (-1 = 1) = AL = Y(@)] o= E f e~ T+ IW 9 g
ET, o

1 T s
=r-(a—f) ET Ej e PNy, =0y 95 + B(r; — Am).  (4.15)
x [4]

Equation (4.15), together with regenerative process theory and the fact that
P[Z;_,(0) =0] =1 - Am/r;_,, gives

E e~ (@Zs- 1)+ BW i)
_ (@ = B)r-1 — Am)E[e P74\ Z;_ (c0) = 0] + (1; — Am)B
r-1a— (-, —r)f — A1 — (o)) )
Finally the proof is complete if we observe that
(1,1 — Am)E[e™#75)|Z,_,(c0) = 0]
= (rj-y —Ee V42 ¢ (1, — Im), (417)

(4.16)

as can be seen by setting o = 0 in eqn (4.16). |

7.5 CONVERGENCE OF QUEUEING NETWORKS

In this final section we indicate how our network fluid model can be
represented as the limit of a sequence of conventional queueing network
models. We choose a limiting regime that seems relevant for high-speed
communication networks. In particular, we let the conventional networks
have batch Poisson arrival processes with the batch sizes growing and the
service times decreasing. This is intended to represent longer messages being
transported at higher speeds. We could also consider a more elaborate limit
in which the individual arrivals (packets) in a batch (message) are separated
by small spaces instead of arriving at one instant, but such that the spacing
between arrivals within a batch is asymptotically negligible in the limit, but
we do not treat this modification (see Remark 5.3 below).

We define a sequence of conventional models indexed by k. For each k,
let there be 2n — 1 queues with unlimited capacity in series, with the
odd-numbered queues having one server and the even-numbered queues
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having infinitely many servers. The even-numbered queues are pure-delay
nodes intended to represent the connecting pipes. For simplicity, we specify
the service times for all the models and all the queues with a single sequence
of non-negative random variables (v,,: m > 1}. The service time of customer
m at queue (2j — 1) of model k is v, /r;k; the service time of customer m at
queue 2j of model k is 7;. (The service time of customer m is determined by
the service requirement v,, (e.g. packet length) and the service rate prevailing
at the node. We think of the service rate in model k being proportional to
k but the lengths of the pipes (distances between nodes) being proportional
to k too, so that the time spent in the pipe does not change with k.)

Let the arrival processes be determined by a Poisson counting process
{A(2): t = 0} with rate 1 and an i.i.d. sequence of batch sizes {B,: i > 1} with
EB, = mand Var B, = ¢* < c0. In model k, let the arrival process be a batch
Poisson process with Poisson counting process A(t), independent of k, and
let the ith batch be kB,.

Let X, (¢) represent a scaled total input of service requirement to the kth
model in [0, t]; i.e. let

A(t)
0= J t=0, .0

i=1

where A(t) is a Poisson counting process having rate o,

m=k3(

JH = Z (V,,,/k), i? 1, (5.2)

m=kS;-1+1
and
S1=Bl+"'+Bh i?l- (5.3)

What we want now is for (J;,, . . ., J,) to converge w.p.1 to (B,Ev,, ..., B.Ev,)
for each i as k — o0. Then {X,(2): t = 0} converges to {X(¢): t > 0} uniformly
on compact time intervals (u.o.c.) with probability 1, where X is a compound
Poisson process with an iid. jump sequence {B;Ev,:i > 1}. Of course, a
sufficient condition on the service times is for them to be i.i.d. with Ev, < co.
Let () be the sum of all service times of customers currently in queue
(2j — 1) at time ¢, let I,,(t) be the cumulative idle time in queue (2j — 1) in
the interval [0, t], and let X;;(t) represent the sum of all service times of all
customers in queue 2j at time ¢, all for model k. For any k, W;,(t), I,(t), and
Y,;(t) do not quite satisfy the relations in Section 7.2 because here the
customers flow discretely instead of continuously as a fluid. However,
because of the scaling of the service times, the vector of these processes
converges uniformly on compact time intervals w.p.1 to the vector process

n@,..., @, L@, ..., L®), (1),..., 1,_,(0)]



126 A TANDEM FLUID NETWORK WITH LEVY INPUT

associated with the fluid model in Section 7.2, determined by the limiting
compound Poisson process X and the parameters r; and T;.
Summarizing, we have the following result.

Theorem 5.1;: If (J,, ..., ;) = (ByEv,,..., B;Ev,) w.p.l as k — oo for every
i, then )

{X (t):t =0} » {X(1):t =0} woc w.p.lask—-o
and

{(W (1), I;(0), Ty, L <j<n)t = 0} -
{(W(0), i), Y;(1), 1 < j < n):t =0}

uo.c. w.p.l ask — oo,

where the limit is associated with the tandem fluid model associated with the
compound Poisson process {X(z): t > 0}.

Proof. If the kth queueing model acted as a fluid model with continuous
linear flow out of each buffer, then the convergence would be a simple
consequence of the continuity of the multidimensional reflection map in the
topology of uniform convergence on finite time intervals (Harrison and
Reiman, 1981; Chen and Mandelbaum, 1991; Chen and Whitt, 1991), which
in the special case of a tandem network is easy to establish directly from the
continuity of the one-dimensional reflection map. Hence, it suffices to show
that the kth queueing model in which customers are treated discretely gets
arbitrarily close to the kth queueing model treated as a fluid model as k — o0.
For each k, the two models under consideration have the same external
arrival process and service requirements, but for the queueing model the
flow involves discrete customers rather than fluid. The two models get
suitably close because the service times are being divided by k as k — oo.

In particular, with k fixed, the two models under consideration have the
same arrival process at the first queue. It is easy to see that the last particle
of each customer starts and completes service at the first queue at the same
time in both models. Hence, the maximum difference in the work loads over
all times in the interval [0, t] is bounded above by the maximum service
time of all the arrivals in [0, t], say m,(t). Let X,;(r) and X,;(t) represent
the total input of service requirement to buffer j in time interval [0, t] for
the fluid and discrete models, respectively. By above, X,,(t) = X,,(¢) for all
t >0 and

X,,(5) = X3,(5) = X,5(s) — my(2), 0<s<t.
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By induction,

j~=1

X,;05) 2 X3;(9) 2 Xy(5) — Z my(t), 0<s<t,

i=1

for each j > 1, where m;(t) is the maximum service time of all customers at
buffer i among all arrivals to buffer 1 in [0, ¢]. It suffices to show that
my;(t) = 0 w.p.1 as k — oo for each i, where my(t) is m,(¢) in model k, but
this follows from the assumed convergence (J,,...,Jy) = (B Evy,..., BEv;)
with probability 1. (Note that max{v;: 1 < i < mk)/k — O with probability 1
as k = co whenever k™' Y 7%, v, > cw.p.l as k- w.) n

Remark 5.2: Our special construction has enabled us to obtain w.p.1 con-
vergence in Theorem 5.1. If we only assumed that, for each k, {A4,(t): t > 0}
is a stochastic counting process that converges in distribution as k — oo to
the Poisson process {A(t):t =0} in D[O0, o) with Skorohod’s (1956) J,
topology, then the conclusion of Theorem 5.1 would be convergence
in distribution in D{0, co) with Skorohod’s (1956) J, topology.

Remark 5.3: If we introduce spacing between the arrivals within a batch that
is asymptotically negligible, then we would need to use convergence in
Skorohod’s (1956) M, topology on the function space D(0, c0) as in Chen
and Whitt (1991).
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