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Towards better multi-class parametric-decomposition

approximations for open queueing networks

Ward Whitt
AT&T Bell Laboratories, Murray Hill, NJ 07974-0636, USA

Methods are developed for approximately characterizing the departure process of
each customer class from a multi-class single-server queue with unlimited waiting
space and the first-in-first-out service discipline. The model is ©(GI;/GI)/1 with a
non-Poisson renewal arrival process and a non-exponential service-time distribution
for each class. The methods provide a basis for improving parametric-decomposition
approximations for analyzing non-Markov open queueing networks with multiple
classes. For example, parametric-decomposition approximations are used in the
Queueing Network Analyzer (QNA). The specific approximations here extend ones
developed by Bitran and Tirupati [5]. For example, the effect of class-dependent
service times is considered here. With all procedures proposed here, the approximate
variability parameter of the departure process of each class is a linear function of the
variability parameters of the arrival processes of all the classes served at that queue,
thus ensuring that the final arrival variability parameters in a general open network
can be calculated by solving a system of linear equations.

Keywords: Open queueing networks, multi-class queueing networks, parametric-
decomposition approximations, departure processes, heavy-traffic limit theorems.

Introduction and summary

PARAMETRIC-DECOMPOSITION APPROXIMATIONS

221

A useful way to analyze the steady-state performance of open queueing net-
works with non-Poisson external arrival processes and non-exponential service-time
distributions is the parametric-decomposition approximation method, first pro-
posed by Reiser and Kobayashi [23] and subsequently extended by the author
[32, 24] and many others (see the references). The main idea is to approximately
analyze the individual queues separately after approximately characterizing the arri-
val processes to each queue by a few parameters (usually two, one to represent the
rate and another to represent the variability). The goal is to approximately represent
the network dependence through these arrival-process parameters. After the
congestion in each queue has been described, the total network performance is
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approximated by acting as if all the queues are mutually independent, i.e., the rest of
the approximation is performed as if the steady-state distribution of the numbers of
customers at the queues had a product form.

An attractive alternative to parametric-decomposition approximations are
Brownian models, as in Harrison and Nguyen [13, 14]. Brownian models can
even be used together with parametric-decomposition schemes, as in Dai et al.
[8]. However, here we only consider parametric-decomposition approximations.

1.2 AGGREGATION IN MULTI-CLASS MODELS

The primary purpose of this paper is to present new methodology for extend-
ing the parametric-decomposition approximation method to treat queueing net-
works with several classes of customers. The procedure in [32, 24] already allows
multiple customer classes, but there all the classes are aggregated to form a single
class before the rest of the approximation, in the spirit of the celebrated Kleinrock
independence assumption; p. 50 of [18]. With this procedure, all class identity is not
lost; the expected sojourn time of a customer following a given route is the. sum of
the expected sojourn times at the queues on that route, with the expected service
time components being the original expected service times specified for that particu-
lar customer class; the aggregation only affects the calculation of the expected
delays (before beginning service) at the nodes on the route. Moreover, the aggrega-
tion procedure yields the correct traffic intensities, so that in the delay calculations
the only approximation appears in the variability parameters.

In many cases this aggregation step works quite well, but in some cases it does
not. Difficulties with aggregation in the parametric-decomposition approximations
were noted by Bitran and Tirupati [5] and Fendick et al. [9, 10]. Bitran and Tirupati
point out difficulties with multiple classes and deterministic routing, especially in the
low-variability context common to manufacturing models. Fendick et al. point out
difficulties with multiple classes and highly variable (e.g. batch) arrlval processes
together with class-dependent service times.

Other difficuities with parametric-decomposition approximations are noted
by Suresh and Whitt [29] and Whitt [37]. Suresh and Whitt [29] show how excep-
tional variability (either high or low) in an arrival process to a queue can be reduced
in the departure process in a short time scale when the queue has a moderate traffic
intensity (e.g. p = 0.6) and moderately variable service times (e.g. exponential),
while the exceptional variability in a larger time scale remains. This exceptional
variability in a larger time scale typically has little effect upon congestion in subse-
quent gueues with low-to-moderate traffic intensity, but it typically has a dramatic
effect upon the congestion in a subsequent queue with high traffic intensity. This
phenomenon means that it can be difficult to characterize the variability of an arrival
process by a single variability parameter. For example, the arrival process might have
low variability in a short time scale and high variability in a longer time scale, so that
in a subsequent queue with traffic intensity p congestion would be predicted well by
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havmg an arrival process vanablhty parameter (squared coefficient of variation)
¢Z ~ 0.5 when p = 0.5 and ¢2 ~ 5.0 when p = 0.9. This difficulty is the motivation
for the use of variability functions instead of variability parameters, e.g. the indices
of dispersion in [9, 10] and references there (which we will not discuss further here).

Whitt {37] shows that multi-class queueing networks with class-dependent
service times can exhibit relatively complex behavior. In particular, there can be
unanticipated large fluctuations in the individual queue lengths due to the sudden
movement of blocks of customers with very short service times. This phenomenon
suggests that it may be important to focus on the transient behavior as well as the
steady-state distribution. It remains to determine the implications for steady-state
distributions.

1.3. PARAMETRIC-DECOMPOSITION APPROXIMATIONS WITHOUT
AGGREGATION

The difficulties with- aggregation into a single class suggest the need for
parametric-decomposition procedures without aggregation. What we want is an
extension of the algorithm in [32, 24] that produces arrival process parameters at
each node for each class. (The resulting approximate congestion measures such as
expected delays at each queue might also be class-dependent as in Holtzman [15],
Albin [2] and Fischer and Stanford {11], but we do not focus on that here.) In
fact, such a multi-class extension of the parametric-decomposition approximation
was proposed by Bitran and Tirupati, and it provides dramatic improvements in
accuracy in some cases. Their main contribution is an approximation for the varia-
bility parameter of the departure process for each class from a single-server queue
when the arrival process for each class is characterized by an arrival rate and a varia-
bility parameter. As usual, the variability parameters are squared coefficients of
variation (SCV, variance divided by the square of the mean) in renewal-process
approximations. The Bitran—Tirupati approximation is based on the two-class
case, by aggregating all classes except the one of interest into one. Their approxima-
tion results in a refinement of the splitting step in section 4.4 of [32].

Throughout this paper we consider a single-server queue with unlimited wait-
ing space and the FIFO (first-in-first-out) discipline. (However, the results aIso pro-
vide a basis for treating multi-server queues; see remark 2.5.) Let ¢g and ¢cZ be the
variability parameters of the overall departure process and the departure process for
class 1 alone; let p, be the proportion of all departures that are class 1. If the total
departure process were a renewal process and if each successive departure were
class 1 according to  Bernoulli (mdependent) trials with probability p,, then the
exact relatlon is

o = Plcd"l'l—Pl: ' (1)

45 given in (36) of [32). Formula (1) obviously makes ¢2 close to 1 when p; is small,
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but without Bernoulli routing the actual variability can be quite different. As shown
in [5], deterministic routing can cause the true relation to deviate significantly from
(1). As an improvement, Bitran and Tirupati propose

ch =pici+eh, ‘ (2)

where ¢2 is the squared coefficient of variation of the total number of customers
that arrive during an interarrival time of class I; see (6) of [5]. If the superposition
arrival process of the complement to class 1, henceforth referred to as class 2, is a
Poisson process, then

em={1=p) (o + (1 —p)ea), (3)

where ¢ is the class-1 arrival-process variability parameter; see (7) of [5]. Bitran
and Tirupati also develop numerical procedures (involving iteration) for calculat-
ing approximate values of ¢ when the class-2 arrival process is less variable than
Poisson, i.e., when ¢ < 1. These numerical procedures (INT2 and . INT3 in {5])
are based on the assumption that the class-1-and class-2 arrival processes are
renewal processes with Erlang interarrival-time distributions. When the system is
characterized by low variability, these numerical procedures perform significantly
better than (3), but these procedures are somewhat cumbersome.

14. ENHANCEMENTS IN THE BITRAN-TIRUPATI SCHEME

In [35] we proposed enhancements to the Bitran—Tirupati [5] approximations,
which we present here. (The present paper is an update of [35].) Further contribu-
tions in this direction have been made by Stanford and Fischer {27, 28] and Fischer
and Stanford [11]. Some of the results here have also been exploited in [24].

We contribute to the Bitran—Tirupati approximation scheme by developing a
new approximation for ¢ in (2). In particular, we propose the formula

¢t =(1=p)(prch+ (1 —pi)ck), | (4)

where, as above, ¢2 is the approximating SCV for the superposition of all class j
arrival processes except class 1. Note that (4) reduces to (3) in the special case
¢Z, = 1. Formula (4) provides a simple alternative to the complex Erlang numerical
procedures when ¢2 < 1, for i = 1 and 2. It also applies to the important case when
¢Z > 1fori= 1 or 2, which was not treated in [5]. As with the formulas in [32], for-
mulas (2)-(4) are appealing because they are linear in the arrival and departure
variability parameters, so that the final arrival-process variability parameters for
all the queues in the network can be obtained by simply solving systems of linear
equations.

Just as Bitran and Tirupati obtained (3) in [5], we obtain approximation (4)
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by considering specific renewal processes for which we can calculate ¢Z; (exactly or
approximately). For this purpose, we exploit batch-Poisson (B-P) and batch-
deterministic (B-D) processes with geometric batch sizes; i.e. the interarrival times
of batches is exponential (B-P) or deterministic (B-D) and the size of the batches
is geometric on the positive integers. The geometric batch-size distribution makes
the individual customer interarrival times i.i.d. (independent and identically distrib-
uted). The B-P and B-D processes are convenient because they are two-parameter
renewal processes. There is thus a direct correspondence between these parameters
and the rate and variability parameter used in the apprommanons For any¢2 > 0
(= 1), there is a unique B-D (B-P) process with the given ¢ and arrival rate. We use
B-D as well as B-P to treat the cases with 0 < ¢2 < 1. However, it turns out that
both cases yield the same approximation.

Of course, the proof of the pudding is in the tasting. We show that (4) per-
forms quite well when compared to simulation and the other approximations for
the experiments considered by Bitran and Tirupati [5]. The accuracy in this step
is good, but not phenomenal; it seems to be consistent with the accuracy of other
approximations used in the overall procedure.

The desired approximation for ¢2, is obtained by combining (2) and (4). Note
that the resulting formula

cai =picg +pi(l —p)ekh+ (1 —p)lel (5)

is a convex combmauon The weights py, p;(1 — p;) and (1 — p;)? on the variability
parameters cd, ¢ and ¢ sum to 1. Furthermore, a common approximation for 2
is another convex combinatton

i} = pel + (1 p7)el, ©

where p is the traffic intensity, and ¢ and ¢2 are the variability parameters (squared
coefficients of variation) for the service times and the total arrival process; see (38)
of [32],.(23) of [33] and (2) of [5]. Combining (5) and (6}, we obtain

ch=p’pic? +(1“P ypic2 +pi(1—p)eh + (1 —p)c. (7)

If we continue and approx1mate c; by the asymptouc method, (4.14) of [23] or (1) of
[5], then

2 = p1cs + (L~ pi)ek. (8)
Combining (7) and (8), we obtain the convex combination
ch=p"picl+Q2-p )t —p)ch+[(1—p1)* + (11— p*)pilch.  (9)

When there actually are k classes with approximating arrival SCVs E,fj, we can also
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use the asymptotic method for ¢Z, to obtain

&
Z pj/(l F41 ]cap ‘ (10)
j=2
where p; and ¢ c - are the correspondmg parameters for class j, and
e =p'piel+2-p")py Z PanZj +{(1—p)*+ (1 —p)pflcd. - (1)
j=2 . :

Formula (11) is the natural generalization of the first Bitran—Tirupati procedure
(INT1) based on (2) and (3); their procedure is the same ‘except c for J#1lis
replaced by 1 in (11).

Natural alternatives to (11) are obtained by using different approximations
for the superposition variability parameters ¢2 and ¢2 than (8) and (10). In particu-
lar, the stationary-interval method and various hybrid approximations can be used
instead; see section 4.1 of [31], [1], and section 4.3 of [32]. We examine the simple
altematlve based on (29) and (30) of [32] for the Bitran 'and Tirupati experiments;
ie., ¢2 = = wehy + 1 — w, where c},s is the asymptotic-method approximation and
the welght w comes from (29) of [32]. For these cases, the hybrid using (29) and
(30) of [32] performs better than (11), but both perform quite well. (See section 5.)

1.5. THE LOW-INTENSITY VARIABILITY-PRESERVATION PRIN.CIPLE

From (5) or the subsequent formulas (7), (9) and (11), we can see what the
approximation predlcts in hmltmg cases. As p; — 1, ¢5 — cF as it 0bv1ously
should. As p; — 0, Cd1 — cal The appropriateness of the limit as p; — 0 is less
obvious; but upon reflection it can be seen to be, as Bitran and Tirupati-argue. In
[36] we prove a limit theorem rigorously justifying this limiting behavior: In fact,
we show that under very general conditions the entire class-1 departure process con-
verges in distribution to the class-1 arrival process as p; — 0 (i.e. the finite-
dimensional distributions converge). In fact, with probability one, each sample
path of the class-1 departure process converges to the corresponding sample path
of the class-1 arrival process. (The general idea of the low-intensity: variability-
preservation principle is due to Bitran and Tirupati [5], but the strong forms invol-
ving the distribution of the entire stochastic process and the individual sample paths
appear in {36].)

The analysis in [5, 36] and here thus supports the remarkably simple approximation

¢ ~¢2 for p; small, (12)

which has very significant implicatibns for queueing networks. For an open
queueing network with a very large number ‘of classes, (12) helps provide rapid
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back-of-the-envelope approximations. The associated delays at the queunes should be
calculated using superposition approximations (e.g. [1, 2, 9-11, 15, 32]) though. At
queues to which many classes come, each with relatively small intensity, the delays
for each class would be essentially the same as for Poisson arrivals, but if some class
passes through several queues at which its proportion of the total arrival rate is very
small, and then comes to a queue at which it is the only class or there are only a few
classes, then the variability of the original external arrival process of this class should
play a role; i.e., the appropriate variability parameter for the arrival process of this
class at this last queue would be the variability parameter of the external arrival pro-
cess of this class (just as in [29] discussed in section 1.2).

This important phenomenon arises in many applications. For example, in
packet communication networks where messages are sent over virtual circuits
(fixed routes), packets often enter the network in a highly bursty manner over a rela-
tively slow access line where there is relatively little sharing of facilities. In contrast,
in the network there is substantial sharing because the network switching and trans-
mission are orders of magnitude faster. Finally, the packets emerge from the net-
work and proceed to their destination over another relatively slow access line.
Formula (12) and the discussion above indicate that the high variability should
be substantially dissipated within the network, but should reappear at the destina-
tion. Even though the packets might pass through several queues in the network, the
packet arrival process at the destination (the packet departure process from the net-
work) should be similar to the original packet arrival process at the source. In [36]
this phenomenon is substantiated by a simulation of a packet network model from [9].

1.6.  CLASS-DEPENDENT SERVICE TIMES

Motivated by [9] we also want to treat models in which the different classes
can have different service-time distributions, a situation not addressed by Bitran
and Tirupati [5]. As shown in [9], class-dependent service times can cause strong
dependence among successive service times (and thus evidently in the overall depar-
ture process). To appreciate the significance of class-dependent service-time distti-
butions, consider the two-class case in which the class-2 service times are zero.
Obviously the class-1 departure process from this queue is the same as-if class 2
were not present; consequently the approximation for c¢2, should be independent
of p;. Our analysis produces approximations for the general case. It also suggests,
for simple approximations, that the traffic-intensity proportion should often
appear in (1)—(11) instead of the arrival-rate proportion. In fact, both play a role.
To state our proposed approximation to account for class-dependent: service
times, let p; be the contribution to the traffic intensity by class i. Instead of (11)
we propose the approxxmatlon :

Cdl pl csI +p7 Z pj Pj (Caj+c.91)+ (1 —2plp+pl)cal (13)
Cj=2 _ ) . .
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Proper treatment of class-dependent service times is vital for treating manufacturing
models in which some classes are introduced to represent occasional down times of
machines. For such modeis, the approximations here provide significant improve-
ments over [5], just as [5] provides significant improvements over [32].

1.7.  SUPPORTING METHODOLOGY: THE CASE OF A CONTINUQUSLY BUSY
SERVER

In the spirit of [31, 33], we also want to provide a systematic basis for devel-
oping approximations. Thus, we describe asymptotic-method (AM) and stationary-
interval (SI) characterizations that can be the basis for refined hybrid approxima-
tions. To a large extent, this paper can thus be regarded as a multi-class extension
of [33]. We focus solely on departure processes, but the application to queueing net-
works should be clear. '

In our detailed mathematical analysis, we focus on a special limiting case, the
case in which the server is continuously busy. We develop detailed descriptions of
the AM and SI approximations under this condition. The results are thus directly
applicable only to the case p > 1, but more generally they can be exploited to
develop hybrid approximations. The idea is to use convex combinations with
weights on the continuously-busy approximations that approach. 1 as p — 1. It is
significant that the final AM and SI continuously-busy approximations agree,
because our approximating assumptions make the continuously-busy class-1 depar-
ture process a renewal process; see (19) and (28). The SI continuously-busy approxi-
mation also yields an approximation for ¢ in (2) as a special case; we simply set all
the service times equal to 1. Then the class-1 interdeparture time is precisely the
number of customers to arrive during a class-1 interarrival time. Qur generalization
of (3) appears in (31). When the service times are not class-dependent, (31) reduces
to (4); otherwise the arrival rate proportlons in (4) should be replaced by traffic
intensity proportions.

I.8. ' ORGANIZATION OF THE REST OF THIS PAPER

The rest of this paper is organized as follows. In section 2 we develop the AM
approximation under the continuously-busy assumption; the final AM variability
parameter is (19). A fairly general interesting special case appears in (20). In section
3 we develop the SI approximation under the continuously-busy assumption. In
section 3.1 we show how to approximate a general arrival process partially charac-
terized by its arrival rate and variability parameter by a B- D or B-P renewal process.
In section 3.2 (3.3) we calculate the SI approximation for- .c3, under the assumption
that class 2 is a B-P (B-D) renewal process. In section 4 we discuss refined hybrid
procedures. In section 5 we make comparisons with simulation and other approxi-
mations in the case of common service-time distributions using the Bitran—Tirupati
experiments in [5]. There we show that (11) and the variant using (29) and (30) of
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[32] for superposition instead of the AM approximation in (8) and (10) perform
well. Finally, we present our conclusions in section 6.

2. Asymptotic-method approximation with a contimiously busy server

Consider a single-server queue with unlimited waiting room and the FIFO
discipline to which & classes of customers arrive to receive service. Let customers
from class 7 arrive according to an arrival counting process 4;(¢) and have succes-
sive service times v,,, n > 1. Let D,(¢) be the resulting departure counting process for
class i. In this section we develop an asymptotic-method (AM) approximation for
the vector of departure processes [Dy(¢),...,D;(¢)] under the heavy-traffic-type
assumption that the server is continuously busy. In particular; we prove a func-
tional central limit theorem (FCLT) for [D,(?), . .., D (z)] under general FCLT con-
ditions. For the approximations, this means that we express the AM variability
parameter for the departure process of class i, c3;, in terms of the AM variability
parameters of the arrival processes and service times ¢z, ..., o Chisy. .. ,¢&, and
the associated means; see [4, 16, 17, 30, 31, 33] for background.

2.1. A GENERAL FUNCTIONAL CENTRAL LIMIT THEOREM

We work in the setting of [4] and [30], which means weak convergence (con-
vergence in distribution), denoted by =. We consider random elements of
D = D0, 0o), the space of all real-valued functions on [0, co) which are right con-
tinuous with left limits. Let the space D be endowed with the standard Skorohod
(J1) topology and let product spaces D* be endowed with the usual product topol-
ogy. Let C = C[0, o) be the subset of continuous functions in D. Convergence
x, — x in D reduces to uniform convergence on compact subsets when x € C.

We define the following random elements of D:

Ain(8) = 172 [4(nt) = \imi),

[nt]
I;;u(t) =n1 [ Z V=T nt] 77.

o L= |
Dy, (t) = n'2[Dy(nt) - §;m1), - (14).

for 1 <i<kand t> 0. Obviously J; is intended to be the arrival rate and 7; the
mean service.time of class i. Let p; = A;7; be the associated traffic intensity for class
i.Let A= X; +...+ A be the total arrival rate, 7 = X! £%_, A, ; the overall mean
service time and p = p; + ...+ pr = A7 the total traffic infensity, We assume that

- the server is eventually continuously busy, which means that p > 1. Obviously the

overall departure rate must be 7} if the server is always busy. Hence, we should
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have §; = A;/A 7. Our main result in this section is a FCLT for the departure pro-
cesses given a joint FCLT for the arrival processes and service times. The resulting
approximation under the standard independence and moment conditions appears in
(19) below.

THEOREM 1

If [Alm Akm I?' 1 I;.;m] = [’&l:“ . :‘ak: IA/]:'_- ) f}lrc] in Dzk where
P(4;eC) = P(VE C)=1,1<i<k, and p > 1, then '
[“ilm ‘e :‘&km f}im- R I>F—cm D\lm L :ﬁkn]-

~

=5 [Al:"'s-&ka pi,...,l?k.,ﬁl—,...,ﬁk] iIlD3k,

where §; = A /AT and

R 3/2" k .
Df(z)=(1 p) 172 4, () (’;) V,-m—p—i-,a N2 D500) + 1, A, (1),

Proof

Let T'(¢) be the process representing the total work to arrive in the interval
[0, ¢] and let C(¢) be an associated inverse process, defined by '

C(ty=sup{s>0:T(s) <t}

Then D;(t) = A4;,(C(1)), t > 0, by virtue of the continuously-busy assumption. Since
p > 1, the continuously-busy assumption is eventually satisfied, so that the limiting
behavior is unaffected by any initial discrepancy (idleness). (This can be rigorously
justified by theorem 4.1 of [4]; we only consider the continuously busy case.) Define
the following random functions in D:

Ai(nt)
T;'n(t)": n—l/Z Z Vij — Apmint|, Li=Tp+. ...+ Tiny
- S : o y

. 'A - -1 . . .
C () =n~V? C(nr)'—(}k: ,\,-—'r,.) m}, 1>0. o (19)
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As in [9],

[/alm-"ifakm I;im'-'-!ﬁ;cm fwlm T.;m n C ]
=>[/i11"';"§ka IA/i:---:I?ks j\-'1"'::1;0 [ é]

in D***! where

Ti(t) = Bt + 1A (1), T=T+--+7,

k -1 k
= —(Z A T,‘) T(t/z )\i.Ti), t2>0,
i=l1 /. ) ) i=1 .

by theorems 5.1, 4.1 and 7.3 of [30]; see the remark after theorem 5.1 and the
corollary to lemma 7.6. Applying theorem 5.1 of [30] again, we see that
[Diss- -y D] = [Ds, ..., Dy] jointly with all the processes above, where

and

k
D) = Ai(t/ 1) = A/ Ar) D (ViOyt/Ar) 4 13.4,(t/ 3]
2. f

£ ()7 (fi,-(z) — (/A7) Zk: RAOR: rjﬁ,-(r)])

g )3 e E [)\1/2 V(t) + i, (z)]
, ‘J’#I
w1th (equality in distribution, as processes) holdlng by the normalization in (13);
e.g. the limits must satlsfy '1(,22 ‘(1:) 5 O
Remarks

(2.1) A FCLT for the total.departure process D(z) = 1(1.‘)-+ v .+ Dk(t)
with p > 1 was previously established in theorem 4.2 of [16]. ‘

(2.2) Under standard additional independence assumptlons, the hmlt process
[Ay,..., A, ¥i,..., V] is composed of independent Brownian motions (BMs):.
Then the limit in theorem 1 is multivariate BM. If the .limit ' processes
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Ao A W, ... I/,'c in theorem 1 are independent BMs with zero means and vari-
ances a?,.. ,a;‘;, 61 ..., B2, respectively, then [Dy,..., D;]is a BM in C* with zero

means, variances o} and covariances aj, where

0',-2-—"(1 *”') o ()33, ;‘:le\ﬁ, o] (16)

P/ P j=1
J#Ei

and

Aj Ta ( p-) MTied A
2 ] iljy i 2 2
chi=—(1=-2)222% 1 -5 ) 2L L L 22\ 87 + A B7). 17
if ( p) p? p o2 | 03 (A:f3i JB7) (17)

(2.3) We obtain the resulting asymptotic method {AM) approximation for the
departure process from (16) if we work with squared coefficients of variation. Let
the AM parameters be .

ck=M'al, chi= 6 a? and k=18 , (18)
We treat cj; and cj; differently from cg; in (18) because 4;,(t) and D, (¢} are ran-
dom functions associated with counting processes, while ¥}, (¢) is not; see section 2
of [31]. From (16) and (18), we obtain

clz)i = (l - Qi)z Cdi + Qz CS: + Z QJ (pl/pj) (cAj + cS]) (19)
j=1
i

where g; = p;/p and ¢2; and c2; are the AM variability parameters determined by the
FCLT for the arrival and service processes based on (13), (16) and (18). Note that
most of ¢3; in (19) is dimensionless, as it must be. Note that most of the weights in
(19) are functions of q; = p;/p instead of p; = A;/A; i.e. the relative traffic intensities
appear in (19) as well as the relative arrival rates 111 (1)(11). In the special case of
two classes, if r = 0 then g =1 and CI%: = cSl: as it should; if 7, =0, then
¢1=0,g,=1and cD =c + (Pl/Pg) (c2 + 052) If p, and ¢, are both very, small
(a rather pathologlcal case), then c}; is very large. However, this is realistic; then
class 2 must be contributing rare exceptlonally long service times, as in the case
of service interruptions, e.g. machine down times. :

(2.4) A trivial case arises when k& = 1. Then the departure process assuming
the server is continuously busy .is obviously:just the counting process associated
with the service times. From Vi, =¥ plus the corollary on p; 83 of [30], we get
Dy, = Dy where & =1/ and Dy(t) = =17 V(t/'rl) —.-—'r1 V(t) Note that
this is consistent with theorem 1;- then (1= py /p) 0, A /A =1, \= 0 and

J(I)—Oforjyél : .
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(2.5) Theorem 1 extends relatively easily to queues with m parallel servers.
The lumt holds with ¢ replaced by ¢/m in D,, (¢) and D, :(1), so that the AM approxi-
mation ¢3; in (19) is unchanged. The proof of the extended version of theorem 1 is
complicated by the fact that D;(¢) does not coincide exactly with 4;(C(¢/m)) when
m > 1, but the difference is asymptotically negligible. Theorem 4.1 of [4] can be
applied because the normalized difference in the FCLT is dominated by

max sup n1?

1<i<k 1< j<Ay(nr)
0<1<T

sz:

which converges to 0 in probability because 7, = T where P(Te C) = 1; apply the
maximum jump functional with theorem 5.1 of [4].

(2.6) As noted in [31, 33], the AM approximation is asymptotically correct in
heavy traffic, where heavy traffic applies at subsequent queue where the point pro-
cess is the arrival process. In fact, we can simply combine theorem 1 here with
theorem 1 of [17]. In the setting of remark 2.2, this means that if the departure pro-
cess D;(t) serves as the sole arrival process at another queue of the same type (where
the service times are i.i.d. and independent of D;(¢)) with traffic intensity p’, then the
standard heavy-traffic limit holds for this second queue as p' — 1 and the limit
depends on the process D;(t) only through c3; in (19) and its rate via the contribu-
tion to p’. [}

22. A SPECIFIC MULTI-CLASS MODEL WITH BATCH ARRIVALS

We now describe one fairly general special case of the model in section 2.1
" that was considered in [9, 10]. For class i let the service times be i.i.d. with mean
7; and squared coefficient of variation cZ; let arrivals be generated i m ii.d. batches
with batch size having mean m; and squared coefficient of variation cb,, let the arri-
vals within a batch be separated by i.i.d. spacings with mean ¢; and squared coeffi-
cient of variation cx,, let the interval between the last arrival of one batch and the
first arrival of the next batch be the sum of one spacing and an idle time; let the
successive idle times be ii.d. with mean 7; and squared coefficient of variation
cf,,-; and let the service times, batch sizes, spacings and idle times for all the classes
be mutually independent. Let v; = m;§;/(m;£; + n;). The parameter «y; measures the
long-run proportion of time that the arrival process is in a busy state (not an idle
time). The arrival rate for class i is A; = m;/(m;&; + ;) and the traffic intensity is
Pi = Ai T

COROLLARY

It p > 1 for this particular multi-class model, then the condltlons of theorem 1
are satisfied with the limit process [Al, Ak, ¥i,...,V;] being composed of
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independent BMs, so that [151, ...,D¢]isa BM in C* and

CAZI' = )\:1 a? = mi(l - 'Yi) (Cbl + Cy:) + 'Yx an

2 _ 2.2 2
esi =T PP = ¢y

2 _g-1_2 -1 _2
cpi =06; of =pX; o;

=a(l — q;) [m(1 = v:) (e + ¢&) + 77 k] + gP¢

+ Z i (pi/p)) [(my(L =) (e + ep) + e+ e, (20)
J#r
where again g; = p;/p and p; = A;/A.

The key supporting FCLT for 4,(¢) and the formula for ¢2; are established in

[9]. (The heavy traffic limit for the workload (virtual waiting time) and waiting time

processes as p — 1 is also established in [9].) The corollary to theorem 1 expresses

c3; in terms of the 4k variability parameters (csj, ch, o cyj) and the 4k means

(15, my, &, m;), 1 <j < k. Note that the means only affect 3, via the ratios P/,
= m; &;/(m;€; + n;), g: = (p;/p) and the mean batch size m;.

3. Stationary-interval approximation with a continuously busy server

We now determine the squared coefficient of variation of a stationary interval
between departures in the departure process for one class assuming that the server is
continuously busy. For this result, the model assumptions are much stronger than in
section 2, but the exact results for these special cases can provide the basis for quite
general approximations, as we indicated in section 1. We call the resulting squared
coefficient of variation ¢ the stationary-interval (SI) variability parameter for the
limiting case of a continuously busy server.

As in [5], we only consider the two-class case. When there are more than two
classes, we assume that all classes but the one of interest are aggregated into one. We
assume that customers in the class of interest arrive in a batch-renewal process:
Successive batches are i. 1 d. with the batch sizes having mean m; and squared
coefficient of vananon c2i; successive interarrival tll'l’lCS of batches are also i.i.d.,
having mean X1! and squared coefficient of variation &3. (The overall arrival rate
is A\; = A;m; and the overall arrival variability parameter is ¢2. In general, ¢ is
not uniquely defined, but it is if the batch sizes have a geometric distribution,
because that makes the arrival process a renewal process; see section 3.1.) The ser-
vice times of class 1 are i.i.d. with mean 7; and squared coefficient of variation cA.
The other class is assumed to be either a batch-Poisson {B-P) process or a batch-
deterministic (B-D) process. Successive batches are i.i.d. with the batch sizes having
mean m, and squared coefficient of variation ¢2; successive interarrival times of
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batches are also 1.1.d. being exponentially distributed with mean X3! and squared
coefficient 1 in the B-P case, and being constant with mean X;‘ and squared coeffi-
cient of variation 0 in the B-D case (The overall class-2 arrival rate and varlablllty
parameter are A, = A, m, and ¢5. When the batch-size distribution is geometric, ¢k
is well defined, but otherwise not.) The class-2 service times are 1.i.d. with mean
and squared coefficient of variation ¢5. All the batch sizes, interarrival times and
service times are assumed to be mutually independent.

In section 3.1 we indicate how to approximate a general arrival process par-
tially specified by its arrival rate and variability parameter by these special batch
processes. Then in sections 3.2 and 3.3 we calculate the SI variability parameter
for the class-1 departure process, assuming that the class-2 arrlval process is one
of these special batch processes. :

3.1. APPROXI_MATING GENERAL PROCESSES BY THESE SPECIAL BATCH
PROCESSES '

The arnval process for the second class is quite special, being B- P or B-D, but
we can treat more general processes for the second class by first approximating them
by one of our special processes. Such approximations can be done in many ways; we
suggest obtaining a specific approximation by working with geometric batch-size
distributions. Let the batch size B be distributed as

PB=k)=(1-p)p*", k=12,.... (21)

The batch-size distribution thus has mean m; = 1/(1 — p) and squared coefficient of
variation p = (m, — 1)/m,. The geometric distribution is particularly useful
because the associated B-P and B-D processes are then two-parameter renewal pro-
cesses. The two parameters are the mean batch size m, (or, equivalently, p in (21))
and the mean of the interarrival time of batches X;'. In each case, the overall arrival
rate for the process is A, = A,m,. For the B-P process, the squared coefficient of
variation of an interarrival time is ¢ = 2m, — 1, which can assume any value
greater than or equal to 1. For the B-D process, the squared coefficient of variation
of an interarrival time is ¢ = m, — 1, which can assume any value greater than or
equal to 0.

Hence, glven a general class-2 arrival process partially characterized by rate
A, and variability ¢2, we can approximate it by a renewal process with these same
parameters. For any cio, We can use a B-D renewal process by setting A, = Aoy
and (m, — 1) = ¢, ie.

my=ch+1 and S5 =Xo/my=Ny/(ch+1). (22)

For any bf,_ >1, we can use a B-P renewal process by setting A, = szz and
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(2m, — 1) = ¢k, ie.
my=(ch+1)/2 and X =Xy/my =2X/(ch +1). (23)

We recommend using a B-D process for ¢2, < 1 and a batch-Poisson process for
¢ > 1, but a full process is not needed in sections 3.2 and 3.3.

3.2. WHEN THE SECOND CLASS IS BATCH-POISSON

In this section we assume that the class-2 arrival process is B-P. We determine

the squared coefficient of variation of a stationary interval between successive class-
1 departures, assuming that the server is continuously busy.
' Given that the server is continuously busy, a stationary interval between
departures of class-1 customers, say D, is one class-1 service time plis the sum
of the class-2 service times of all class-2 customers to arrive during a class-1 inter-
arrival time. As in [5], the Poisson property associated with the class-2 B-P process
makes this class-1 interdeparture time well defined and relatively easy to'analyze.
Since the class-1 process is batch renewal, the class-1 interarrival time is of length
"0 with probability (m; — 1)/m; and of positive length (having mean )\1 and
squared coefﬁment of variation &2) with probability 1 /ml Since ¢}, +1=
E(D})/(ED,)?, we obtain the desired variability parameter ¢, from the ﬁ:st two
moments of D;.

THEOREM 2

If the server is continuously busy and the class-2 arnval process is B-P, then
the first two moments of D, are

E(D,) = 7-1+’\2m”2 £ (24)

A my A

and

21 Mmooty Aomncl Tl
E(Dlz)=(6521+1)712+ : 1A2 ¥ 2+ 2 A2 52 T2
- Alml )\lml o
+ Sam(ch + )7 + Xom5 (82 + 1) 77

/\lml /_\Zml

L e
2 (e + LT 21D gy + 1)+ 2 (62 +1),  (29)

Pl P17 P1
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so that

ch = gited + (1= q)2(p1/p2) e+ ma(ch + V)] + (1 — q)[my (83 + 1) ~ 1),
' (26)

where g, = p,/p and p; = A/ as before.
Proof

Let U; be a class-1 batch interarrival time, v; a class-1 service time,
{v3, : n > 1} a sequence of i.i.d. service times for class 2, {Bsn : n > 1} a sequence
of i.i.d. batch sizes for class-2, and {N(z) : ¢t > 0} a Poisson process with rate Aa.
With probability (m; — 1)/m,, D = v; with probability 1/m;, Dy = v, + '2 2 Vo
where Ny = V() By,. Hence,

E(N;) = M (EUY) (EBy) = Aymy/ A,
Var(N,) = E[N(U;)] Var (By) + Var[N(U,) (EBy)?

ﬁ_l_)\zcal m2 = Al +1) _i_)\zczal m2,
' Al A

¢ 2 2
_ AacCpamy
AN A

M

(Z V2t) (EN) Var (vy)) + Var (Np) (Evy )

=')\2m2c.9227-22+ XZ(C1322+1)+X%E:?1 r2m?
A M X33 ’
E(D) =1 +):2m2T2/X1m1,

27 b 5t
E(Dz);le(cszl+1)+ zxmz‘fz’l'l_l_ 2M32C52T)

17 A my

+ )\2(01;2'*"1)_'_)\2(%1"1' 1) 2m?.
)\]ml )\ 11

Remarks

(3.1) If the class-1 arrival process is characterized by the general parameters
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A and ¢Z, then we can obtain ¢2, from (26) by letting m; = 1 and replacing &2 by
2
c;i- Then

el =qlci +(1—g) 2 (pi/pa) e +ma(ch + D]+ (1 —q)?cd.  (27)

Furthermore, if the batch-size distribution for class-2 is geometric as in (21), then
¢ty = (my — 1)/my and ¢ = 2m; — 1 = my(cf, + 1), so that (27) becomes

6‘31 = 9126’s21 +(1- 611)2(91/}92) [0322 +Ca22] +(1- ql)zcazl- (28)

Note that (28) is consistent with the AM approximation in (19) in the two-class case.
This occurs because all the approximations now make the class-1 departure process
assuming that the server is continuously busy a renewal process. (This is not difficuit
to prove using the lack of memory property associated with the Poisson process and
the geometric distribution.)

If the class-1 and class-2 service times also have a common distribution, then
(28) becomes

ch=qe+a(l —q)eh+(1—q)’ch, (29)
which agrees with (5) because then p; = ¢; and ¢Z = ¢2.
(3.2) We obtain the desired formula for ¢?; in (2) directly from (27) by setting
m=mn=1and ¢} = ¢ =0 (because all service times are identically 1). The gen-
eral formula is

ch=q(l—aq)malch + )]+ 1 —q)*ch. (30)

With geometric batch sizes for class 2, we apply (28) to obtain

031=¢1’1(1—9'1)C’azz+(1—41)26‘a21= (31)

which reduces to (4) because p; = ¢,. Obviously (28) and (19) provide a simple
modification to treat different service-time distributions. It seems intuitively reason-
able that we should weight ¢ more compared to ¢t asty /7 increases. (Recall that

(1 —g)*(pi/p2) = (1 — @) (12/71).) O

3.3, WHEN THE SECOND PROCESS IS BATCH-DETERMINISTIC

The general approximation formulas in (28) and (31) are easy to apply for all
values of ¢2,, but the B-P model of section 3.2 only applies to the case ¢2, > 1. To
treat lower class-2 variability we consider the B-D process in this section. However,
it turns out that the analysis here supports simply using (28) and (31) for all ¢, > 0.
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Given that the class 1 and 2 arrival processes are independent and stationary
versions, the arrival point of an arbitrary class-1 batch is uniformly distributed over
the deterministic interval between the arrival points of class-2 batches. Using this
property, we can calculate the first two moments E(D,) and E(D?) exactly, given
the distribution of Uj, the class-1 batch interarrival time. Thus, given X; and &2,
we can fit a distribution to them, as in section 3 of [31], and then calculate E(D,)
and E(D}).

Instead, here we propose a simple approximation: We approximate the num-
ber of class-2 batches to arrive dunng U, by X, U;. In particular, we use A, EU; =
X2/A; asits mean and A3 (22, + 1)/A7 asits second moment. Of course, the approxi-
mate mean is exact, but the approximate second moment is not. With the notation
in theorem 2 and its proof, under this approximating assumption wé obtain

E(Np) = Sama/Ay,

Syl mr2 NeEi+1) A
Var(N,) =22222 2(c}2+ )—A—z m2
_ -chbzzm% AZCalmZ
3 2
& om
EZsz— 2A2T2’
i=1 1

Ny
Var (Z V2i) = E(Nz) Var (VZI) + Var (Nz) (Ev21)2
i=l1

2 2 T¢ 2 :
Azmzcz’fz + A26b2+A2ca1 2.2
3 2 | 2 ™2,
¥ SV

so that

XI my T + /’\\2 Mo T _ -[l . (32)

E{(D)= ,
( l) )\lm] ' )\1 7 '

25 Somyed | X A3(E4 +1
E(Dl)—ﬁ (CJI+1)+ 2:1127'2’1’1_’_ 2"32%2’1'2 + AZCbZ+ 2( 1 ). 2m2
A;ml /\lml )\Iml )\ 174

'2
= Cs2 (ot pa) p2 2[0 +m2€b2]+ m1(0a1+1)
. N .‘:‘pl .pI p
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and
ch =greh +(1—q)*(p/p) ek +mych) + (1 —q) 2 [m (4 + 1) =1)], (33)

where g, = py /p.
If, as in remark 3.1, the class-1 arrival process is characterized by general

parameters A; and ¢/, then we can let m; = 1 and replace &2 by ¢2 in (33). Fuﬂ:her-
more, if the class-2 batch-size dlstnbutlon is geometric as in (21), then ¢3 =
(my — 1)/my and ¢ = my — 1 = mycly, so that (33) agrees with (28). Thus, (19),
(28) and (33) all support the same approximation.

4. Hybrid approximations

We now illustrate how the results for the continuously-busy limiting case in
sections 2 and 3 can be used to construct heuristic hybrid approximations to cover
the usual cases in which the queue is not continuously busy. Paralleling [1], the idea
is to consider convex combinations that are consistent with established results in
various limiting cases.

4.1. A DIRECT TWO-CLASS HYBRID APPROXIMATION

Let ¢7; (p) represent the approxunate class-1 departure variability parameter
as a function of the traffic intensity p; let ¢J; be the continuously-busy approxnna-
tion in (28). (It helps that the two-class AM and SI approximations for ¢7; in (19),
(28) and (33) agree.) A natural hybrid approximation based on the two-class case is

631(,0) = 92031 + (1 — PZ)Cazl
=p*lgtch + (1 — q)2(p/pa) [ + chl + (1 — q) 2] + (1 —-pP) ek
= ek + o2 (pi/p2) ek + eh]+ (1 — 200+ pP) e, (34)

where c2 and ¢2, are aggregate variability parameters for all other classes when
k > 2. Formula (34) was chosen because 1t satisfies certam limiting consistency con-
ditions. Forall p,as ¢; — 0, p; — 0 and cdl(p) — ¢2, which is consistent with [36].
Forall p,as g; — 1, p; — pand e ( p) 1 p) the one-class SI approximation in
(6). Forallg;,as p — 1, p; — ¢; and ¢2,(p) — c2, in (19), (28) and (33), as it should
because the server approaches being continuously busy. Finally, for all qp,asp— 0,
¢2(p) — ¢2, which can be shown to. be the appropriate pure light-traffic
approximation. _

42. A MULTI-CLASS HYBRID APPROXIMATION

When there are more than two classes, (34) involves aggregating all classes
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except the first in order to determine 7, c¢3 and c2. Instead of doing this aggrega-
tion, we can use (19). Then (34) becomes (13).

4.3, COMMON SERVICE-TIME DISTRIBUTIONS

In the special case of common service-time distributions, 7, =7 = 7 and
cfl = cfz = cs2 so that (34) becomes

chi(p)=pilp—p)eh+(1—2pp+pf)ch - (39
and (13) becomes
2 2 5 2y .2
cq(p)=ppres +p1 Y prés+ (1= 2p1p+ pi)cdr- (36)
j=2

Moreover, (36) coincides with (35) when we use the asymptotic method (10) to
approximate the aggregate vanablhty parametér ¢ in (35) in terms of the indivi-
dual vanablhty parameters ca , 2 <j< k. Even with non-identical service-time -
distributions, (35) and (36) remain candidate approximations, using (7) and (8) of
[32] to determine 2. Of course, it remains to determine ¢, when class-2 is an aggre-
gate of other classes. The AM approxnnat:lon is (10); the other natural simple alter-
native is the QNA hybrid ¢2, = wely + 1 — w where ¢y is (10) and the welght w
comes from (29) and (30) of [32]. Formulas (13) and (35) coincide if ¢ is the
AM approximation in (10).

44. EXTENSION OF THE BITRAN—TIRUPATI APPROXIMATION

Another candidate approximaﬁon is obtained from (2), i.e. (6) of [5], using (6)
and (31). Let
ch(p)=mei(p)+en
=ploel +(1-p")ei]+ch |
= P_le‘Csz + 2 (1-p")ed +q(l—q)e + (1 —q1) - (37)

“(Note that p, and ¢, both appear in (37).) Formula (37) behaves the same as (34) if

py—0and g, — 0 or if p; — 1'and ¢q; — 1, but behaves differently as p — 0 and
p — 1. However, qualitatively (37) and (34) are quite similar. Note that {(37) could
be modified using (19), just as (34) was converted to (13).
-With common semce—tlme dlStI‘IbllthIlS (37) reduces to (7). If, in addition,
we express ¢ in terms of ¢Z and ¢ using the AM approximation in (8), i.e.
= g ek + (1- ql)c,,z, then (37) and (7) become (9) as noted in section 1.
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4.5. THE CASE OF ZERO SERVICE TIMES

Another consistency condition to consider involves what happens as the
mean service time for one class goes to zero. If m» — O with A, fixed, then for
class-1 it is as if class-2 were not present. Consistent with this exact theoretical refer-
ence point, (34) approaches (6) for class-1 alone. However, (37) fails to satisfy this
condition; it is smaller by the factor p;, which could be arbitrarily small. Similarly,
we can consider what happens when 7, — 0 with A; fixed, but the exact behavior
is more complicated; (34) approaches ¢2 + p2(p1/p2){(c2 + ¢3), while (7) is
unchanged, except ¢ changes as 7; — 0, i.e. ¢ — pa(ck +1) — 1. Hence, (34)
captures, at least qualitatively, the real explosion in variability that occurs as
71 — 0 and p; — 1, while (7) and (37) do not. Thus, (34) is our proposed two-class
procedure and (13) is our proposed full muiti-class approximation.

46. SUMMARY
A summary of the candidate approximations for ¢2, discussed here appears in

table 1. There are three procedures that work with all & classes and five procedures
that work with only 2 classes (the class of interest plus the rest aggregated). The two

Table 1
A summary of candidate approximations for ¢J;, the class-1 departure-process variability parameter.

k-class methods

{1 extension of INTI in [5] using (4) instead of (3), ignores
class-dependent service times
(13) based on (19) and (34), addresses class-dependent service
? times
(36) with ¢2 via [32] based on (19) and (34), but ignoring class-dependent service
times

2-class methods

(1) withe: =1 INTI from [5], ignores class-dependent service times

(7) with ¢2, ¢2, ¢ calculated via [32]  extension of INTI in [5] using (4) instead of (3) and QNA
superposition approximation instead of (8) and (10)

(34) with ¢ and ¢l via [32) based on (28), addresses class-dependent service times

(35)with ¢2 and c; via[32] - - -based on (28) and (34), but ignores class-dependent service
times . .

(37) with ¢2, and ¢3 via [32] based on (2), (6) and (31), only partially addresses class-

dependent service times via ¢ in (31)
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Erlang-based two-class procedures INT2 and INT3 from [5] are not included in this
list. All procedures in table 1 have ¢, a linear function of the arrival variability
parameters cfj, so that for an open network of queues the net arrival-process para-
meters can be obtained by solving a system of linear equations. Moreover, it is easy
to see that this system of equations always has a unique solution.

5. The Bitran—Tirupati experiments with common service-time distributions

In this section we compare our approximations for ¢Z, {p) with the approxi-
mations and simulation results of Bitran and Tirupati [5]. Throughout this section,
we follow [5] and assume that all classes have a common service-time distribution.
Our leading candidates are (35) and (36) which are special cases of (34) and (13).
(These are our first choices because they satisfy all the consistency conditions.)
Our third candidate is (7) which coincides with (37), and is based on (2), (4), (6)
and (31). Our fourth candidate is (11).

Variants of candidate approximations (35) and (D) are obtained depending on
how we approximate the variability parameters ¢ and c,,g for the respectlve super-
position arrival processes. The AM approximations for ¢ and Caz are given in (8)
and (10). (It was already noted that the AM approximation converts (7) into (11).)
The QNA hybrid is the convex combination wcZy + 1 — w where ¢y is the AM
approximation and the weight w comes from (29) and (30) of {32]. An SI approxima-
tion and other hybnds are discussed in {1] and {31].. We only consider the QNA
hybrid approximation for superposition processes here {(and the AM via (11))

The first experiments from [5] that we consider involve two or more i.i.d. arri-
val processes. Consequently; ¢2 is the same for all classes. In thlS case (but not more
generally), (11) and (36) coincide, both reducing to

i (p) = prpect + (1—pyp)ck. B (38)

There thus remain three new candidate approximations: (7), (11) and (35).
Approximations (7) and (35) involve applying the superposition approximations
in [32] to c,,2 and c¢2,, and c2,, respectively. The QNA hybnd approximations for

,,22 and 02 do not agree. Since the component streams are i.i.d., the effectlve num-
ber of streams v in'(30) of [32] is just the actual number of streams. For ¢2,, this is
obviously one less than for ¢2. Following [5], we consider the cases v = 2,3,5 and
10. For treating ¢, we thus need to consider 1, 2, 4 and 9. The resulting welghts
w for {29) of [32] and approxnnate variability parameters for the six cases 1nvolv1ng
cZ =0. 500, 0.333, 0.250 and p = 0.6, 0.9 are given in table 2. As can be seen from
table 2, the QNA hybrid" recogmzes the tendency for superpos1t10n processes to con-
verge to Poisson processes as the number of streams increases: ¢2 and ca2 increase
toward 1 as v increases. The 11m1t1ng case in which ¢ is replaced by 1 was used as

Bitran and Tirupati to obtain 3).
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Table 2
Approximate variability parameters for superposition arrival processes via QNA: wc}M + 1 — wwith
the weight w coming from (29) and (30) of [32].

p=09 p=056

Number Single-stream ¢ Single-stream ¢

of streams Weight - Weight —

v w 0.500 0.333 0250 w 0.500 0.333 0.250
1 1.000 0.500 0.333 0.250 1.000 0.500 0.333 0.250
2 0.962 0.519 0.359 0279 0.610 0.695 0.593 0.543
3 0.926 0.537 0.382 0.306 0.439 0.781 0.707 0.671
4 0.893 0.554 0.405 0.330 0.342 0829 0772 0.744
5 0.862 0.569 0.425 0.354 0.281 0.860 0.813 0.789
9 0.758 0.621 0.494 0.431 0.163 0.919 0.891 0.878

10 0.735 0.632 0.510 0.449 0.148 0.926 0.901 0.889

Table 3

Approximate single-class departure-process variability parameters ¢}, for one multl—class gqueue with
mdependent and identically distributed component streams and service times: the case of p=0. 9 and
¢ =0.333 (cf. table 1 of [5]) '

, Variability parameter ¢}y
Aggregate parameters

from QNA [32] New
Number of One :
component  arrival Arrival hybrids (11), (36) QNA hybrids From Bitrar-Tirupati [5]
streams stream —————— Departures and - ‘
(products) ¢} &5 el el (38) (7) (3% INTI INT3 Simulation
v=2 0500 0.500 0.519 0369 - 0433  0.434 0433 0.559 0460 0.475
(p,=05) 0333 0333 0359 0.338 10333 0336 0333 0.502 0.369 0.373
0.250 0250 0279 0323 0.284  0.287 0.284 0474 0.323 0.328
v=73 0.500 0.519 0.537 0372 0455 0461 0458 0.568 0.469 0.486
(p1=0333) 0333 0359 0382 0342 00333 0342 0338 0484 0351 0.37
0250 0279 0306  0.328 0.273  0.282 0.278 0.442 0.290 0.303.
v=35 0.500 0.554 0569 0378 0473 0484 0480 0.553 0.496 0.522
(7 =02) . 0333 0405 0425 0351 0333 0348 0.343 0.440 0.340 0.361
‘ 0250 0330 0354 0337 0264 0280 0274 0.394 0.270 0.287
v=10 0500 0.621 0.632 0390 . 0.487 0.500 0.495 0.532 0.488 0.515
(;r=01) 0333 0494 0510 0367 0.333  0.351 0345 0.393 0.334 0.355

0250 0.431 0449 0355 0.257 0277 0270 0324 0259 0279 °
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Table 4

Approximate single-ciass departure-process variability parameters c2; for one multi-class queue with
independent and identically distributed component streams and service times: the case of p = 0.6 and
e} =0.333 (cf. table 3 of [5]).

Variability parameter c

New

Number of One Aggregate _
component arrival  departure  (11), (36) QNA hybrids  From Bitran-Tirupati [5]
streams stream  from [32] and

(products) el c? (38) ) (35) INT1 INT3 Simulation
y=2 0.500  0.452 0.470 0.476 0470 0.595 0498 0.500
(pr=0.5) 0.333  0.350 0333 - 0342 0333 0499 0369 0.371
\ 0250  0.299 0.266 0275 0266 0453 0304 0.303
v=3 0.500  0.464 0.480 0.492 0496 0.591 0493 0.507
{(pp=0333) 0333 0364 0.333 0.349  0.353 0481 0351 0.377
0.250 0316 0.260 0278  0.283 0427 0277 0.287
p=>5 0.500  0.484 0.488 0.506 0.507 0.568 0493 0.510
(pr =0.2) 0.333  0.392 0.333 0357 0.358 044 0340 0.360
0.250  0.347 0.256 0.282 0287 0376 0262 0276
v=10 0.500 = 0.524 0.494 0.513  0.508 0.539 0495 0.507
(pr=0.1) 0.333  0.446 0.333 0359 0352 0393 0334 0.354
0.250  0.407 0.253 0282 0283 032 0255 0274

The three approximations for ¢2; (), (38) and the QNA hybrids plus (7) and
(35), are compared to simulation and the Bitran—Tirupati approximations (INT1
and INT3 from [5]) in tables 3 and 4. All these approximations perform reasonably
well (much better than a direct application of {32], as shown in [5]). The most ele-
mentary approximations are (38) and INT1; (38) is better for small numbers v of
component arrival processes, but INT1 improves as v increases, reflecting the con-
vergence to Poisson. The two QNA hybrids perform essentially the same, both being
somewhat better than (38) and INTI. The performance of the QNA hybrids is
roughly comparable to INT3; however, the QNA hybrids may be preferred because
they are more elementary and generalize to other cases.

It is of course of interest to see how these departure-process approximations
perform when the departure process serves as an arrival process to a subsequent
queue. Even a perfect match of cJ; (p) with 51mulat10n does not guarantee good
congestion approximations because the parameter cJ; (p) only partlally charac-
terizes the departure process. Moreover, the departure process is typically not
renewal. However, experience indicates that good congestion approximations
usually require c2;(p) to be close to the actual value [33], so that the comparisons
in tables 3 and 4 are meaningful. To illustrate how the approximations apply to
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the congestion measures, we consider one case from [5], let the number of arrival
processes be 5, ¢2 = ¢ = 0.333, and p = 0.6 (the eighth row of table 4). Let the
departure process of each class be routed to a separate single-server queue with
iid. Erlang service times (cZ = 0.333) and traffic intensity 0.8. The observed simu-
lation average number of customers in one of these queues was 1.79. Using the
approximation (45) and (47) of [32] the approximate values by (7), (35), (38),
INT3 and INT1 are, respectively 1.78, 1.78, 1.75, 1.77 and 1.96. In contrast, simple
M/M/1 and M/G/1 approximations are 4.00 and 2.93, respectively. .

We also consider a second experiment from [5]. There are two arrival pro-
cesses with the arrival-rate proportion p; = Ay /A = j/10,1 < j < 9. Let all the arri-
val and service variability parameters be 0.333 and let p = 0.6. Since there are only
two streams, ¢, does not require aggregation and (35) coincides with (38). More-
over, since ¢ = c2 = ¢ = 0.333, by these methods ¢, (p) = 0.333 for all p and
p1. However, for the QNA hybrid based on (7), ¢2 must be calculated. Since the
streams have unequal intensity (except in the case p; = 0.5), the equivalent number
of streams v from (30) of [32] is less than two. The calculations for the QNA approx-
imation of ¢2 appear in table 5 together with the various approximations for c2 (o).
The approximations perform reasonably well, but are not exceptionally accurate,
having relative errors of about 5-20%. As noted in [5], these approximations evi-
dently perform better as the number of component streams increases (unlike (1)
when there is deterministic routing).

Table 5

Comparison of approximations for the single-class departure process variability parameter: the case of
two component arrival processes with proportions p, and (1 - p,), ¢ = el =c¢? =0.333, and
p = 0.6. {cf. table 7 of [5]). SR

From [32]

: Aggregate : :
Equivalent variability =~ New : From Bitran-Tirupati [5}
number of Hybrid  parameters : -
streams weight - (11, (35) ' Simulation ‘

n v W 2 ¢ - (36)and(38) ()  (Edang)’ INT3 INTI
01 122 0.876 0.416 0386  0.333 : 0.339 0.351 - 0.335 0.393
02 147 0.769 0487 0432 0333 = 0.353 0.352 0.340. 0439
03 172 0685 0543 0468 0333 0374 0362 0346 0473
04 1.92 " 0.629 0.581 0492  0.333 0.397 0358 0.356 0.493
0.5 2.00 0:610 0.593 0.500 * .0.333 0417 0372 . 0.370 - 0:500
06 192 0.629 0.581 0.492.: 0333 ¢ 0428 0381 0383 0.493
0.7 172 0.685 0.543 0468 0333 . - - 0428 :0.401 0,394 0473
08 147 0.769 0487 0432 0.333 0412 0.398 0.397 :0.440

0.9 122 0876 0416 038 0333 0381 0.403 0383 0.393




W. Whitt| Multi-class parametric-decomposition approximations 247

0. Conclusions

In sections 2 and 3 we presented theoretical results characterizing the depar-
ture processes of individual customer classes from multi-class queues under the
assumption that the server is continuously busy. As noted in remark 2.5, the AM
result also applies to multi-server queues. Obviously, these results can be used to
describe the queue in the special limiting case, in which the server is almost always
continuously busy, but they also can be used to develop hybrid approximations for
more general cases. In section 4 we proposed relatively simple hybrid approxima-
tions based on our theoretical results, especially (13) and (34), and in section 5 we
showed that these hybrid approximations perform reasonably well when compared
to simulations. Overall we have established a basis for improvements in the
parametric-decomposition method for approximating open queueing networks. It
remains to refine the approximations and do more extensive experiments. This is
intended for a future paper. Experiments are especially needed in the case of
class-dependent service times. One such experiment is described in section 3 of [36].

The approximations developed here and in [5] offer significant improvements
over the random splitting formula (1) when the routing is deterministic. Conversely,
when the routing is primarily random, (1) and [32] are preferred. Of course, in many
realistic networks both random routing and deterministic routing are present, so
that it is appropriate to account for both kinds of routing in the network analy-
sis. A hybrid routing approximation has been implemented in [24]. Further work
in this direction seems worthwhile.
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