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 UNIFORM CONDITIONAL STOCHASTIC ORDER

 WARD WHITT,* Bell Laboratories

 Abstract

 One probability measure is less than or equal to another in the sense of ucso
 (uniform conditional stochastic order) if a standard form of stochastic order
 holds for each pair of conditional probability measures obtained by conditioning
 on appropriate subsets. ucso can be applied to the comparison of lifetime
 distributions or the comparison of decisions under uncertainty when there may
 be reductions in the set of possible outcomes. When densities or probability
 mass functions exist on the real line, then the main version of ucso is shown to
 be equivalent to the MLR (monotone likelihood ratio) property. ucso is shown to
 be preserved by some standard probability operations and not by others.

 STOCHASTIC ORDER; CONDITIONAL PROBABILITY; MONOTONE LIKELIHOOD RATIO

 1. Motivation and basic properties

 The purpose of this paper is to introduce and investigate an interesting and
 potentially useful concept of stochastic order. Our framework is the set H(S) of

 all probability measures on a sample space S and a set OR of real-valued
 'evaluation' functions on H(S). The set V induces a partial order (reflexive and

 transitive binary relation) on H(S): P,1- P2 if u (P1)<- u(P2) for all u E IV. This
 general framework was used by Goroff and Whitt (1978) in a study of continuity
 properties of admissible sets in stochastic dominance. Usually, u(P) represents
 the expectation with respect to P of a real-valued 'utility' function on S, and we
 use u to represent simultaneously the function on S and the function on II(S):
 u(P) f udP. For example, the set V of real-valued functions on S might
 contain all non-decreasing functions (assuming S is partially ordered), all
 non-decreasing concave functions (assuming S is also convex) or all concave
 functions, cf. Bawa (1975), Brumelle and Vickson (1975), Kamae, Krengel and
 O'Brien (1977), J. Meyer (1977), Chapter XI of P. A. Meyer (1966) and Strassen
 (1965). However, the set V might also contain functions on VT(S) which cannot
 be represented as expectations of real-valued functions on S, e.g., the median
 and the variance.

 Received 27 April 1978; revision received 26 January 1979.
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 Uniform conditional stochastic order 113

 In this paper, we consider a stronger notion of stochastic order, which we call
 uniform conditional stochastic order (ucso). In order to state the definition, let PA

 represent the probability measure in II(S) obtained by conditioning on A, i.e.,
 PA(B) = P(A n B)/P(A) for P(A)> O.

 Definition 1.1. Let 16 be a collection of measurable subsets of S. We say that

 P1 is less than or equal to P2 in H(S) in the sense of ucso with respect to the pair
 (U, 6), denoted by P1<5, WP2, if P1AIVP2A for all A E (C such that P,(A)>O0

 and P2(A)>O0. We write -5, when V is understood to be the set O1t of all
 non-decreasing bounded measurable real-valued functions on S, where S is

 endowed with a partial order -; we write -< when 'C is understood to be {S};
 and we write -, when V = VI and 1' = {S}.

 In this section, we discuss the motivation for ucso and some of its basic
 properties. In Section 2 we see to what extent ucso is preserved under standard
 probability operations. Finally, we present all proofs in Section 3.

 Obviously P-:,V.1S, P2 if P1z,<~~2P2 with OltI C; O2 and 6 C %2, which implies
 that P,-5, P2 whenever P1-SeP2 and S E G . The following elementary example
 illustrates the difference between ,st and S-, for 19 = Y', the set of all measurable
 subsets of S.

 Example 1.1. Let S = {1, 2,3} with the usual ordering. Let P({1}) =
 Pl({2}) = Pl({3}) = and P2({1})= 1, P2({2}) = 1 and P2({3}) = ?. Obviously,

 P--s, P2, but PA ,st P2A for A = {1, 2}. The large mass at 3 in P2 compensates for
 the smaller mass at 2 to get P_-5, P2.

 To see how ucso might be applied, consider the problem of choosing between
 two possible actions. Suppose the set of possible states of the world is a partially
 ordered set (S, -i) and each action determines a probability measure on (S, 5 ).
 The probability measure P, is preferred to the probability measure P2 for all
 possible decision-makers if the expected utility with respect to P1 is greater than

 or equal to the expected utility with respect to P2 for all non-decreasing utility
 functions, i.e., if PE>s, P2. However, suppose additional information becomes
 available which limits the possible states of the world to a subset A in a class %,

 so that the comparison is between PA and P2A* If P?>,P2, then P1 always
 remains preferred to P2A, which is not true for ordinary stochastic order. Thus,
 just as ordinary stochastic order implies preference for all decision-makers with
 non-decreasing utility functions, so ucso implies preference for all reductions of
 the space of possible outcomes in a specified class.

 Another application is to lifetime distributions.
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 114 WARD WHITT

 Example 1.2. Suppose that two items go into operation at the same time
 and we wish to compare their lifetime distributions. If P,< P2 for S = [0, co) and

 = {[t, oo): t _ 0}, then all conditional lifetime distributions are ordered. Re-
 gardless of the age, the first item is more likely to fail first. Obviously, if

 Fj(t)= P({[t, oo)}, then P,-5,P2 if and only if F2(s)F,(t) F,(s)F2(t), O 0 s < t.
 It is also worth mentioning another definition which might be useful in this
 setting. Let Pi,(A)= Pi(t + A I [t, c)) for measurable A C [0, c). Then P-5,P2
 above is equivalent to P,,-s, P2, for all t. A stronger ordering would be P, <,, P2t
 for all s, t -> 0, which says that the first item is more likely to fail first, regardless

 of the ages, even if the ages are different. For example this ordering holds for
 two exponential distributions. Note that the familiar new-better-than-used (NBu)

 property can be expressed as P,, ,, P1o for all t _ 0 and the familiar decreasing
 failure rate (DFR) property can be expressed as P, -<,, P,, for 0 5 s < t, cf. Barlow
 and Proschan (1975).
 The following example illustrates ucso applied to a different context.

 Example 1.3. Let S = (0,oo) and let W be the set of all subintervals of S.
 Consider probability measures with continuous distribution functions F, that
 are strictly increasing on their support. We say that F, is convex with respect to

 F2 and write F<if F if F2(F1(x)) is a convex function on the support of F,; see p.
 106 of Barlow and Proschan (1975). This example illustrates an ordering not
 defined in terms of a set V1 of evaluation functions, but we can still define ucso.

 In ths cae, lt F~-1

 In this case, let F5:<,=F2 mean that F2A~(FlA,(x)) is convex on the support of
 FAI,(x) for all A,,,A2E , where FiA,(x) is the distribution function of the
 probability measure PA,. It is not difficult to see that the ordering <, is strictly
 stronger than the ordering <5. To see this, suppose

 log (1 + x), 0=xx 5 e2- 1
 F,(x) =

 x - e + , e -1 5 x e2 - ,
 and

 ey - 1, O 2 y ,
 F2'(y ) =

 y+ e-2 2, =y l.

 Then F-1(F,(x)) x, 0 5x -e-:5 which is of course convex. However, F-1,(FA A(x)) is concave for A, = [0, e - 1] and A2 = [e - 1, e2- ]. Notice that
 the exponential part of Fi' just compensates for the logarithm part of F1(x),

 which is lost with the conditioning. We now briefly indicate a few positive

 properties. For A, = (a,, b,],
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 Uniform conditional stochastic order 115

 FTA,(y) = FT'([FE(b,)- F,(a,)]y + F, (a1)), 0 5 y _5 1,
 and

 F2A2(FlA,(x)) = F21(c + dFi(x)), al 5 x 5 bi,
 where

 Sa2 b2) = F2(a2)Fl(bl)- F2(b2)F1(a1)
 c = c(a , bi, a2, b2)  F,(bb) - F,(al)

 and

 d = d(a1, bi, a2, b2) = F2(b2)- F2(a2) F1(b1)- F-(ai)

 In order to have F c, c F2, it is thus sufficient to have F'2(c + dF1(x)) convex for
 all c and d such that 0 - c + dF,(x) 5 1. It is easy to see that it is sufficient to
 have F1 convex on its support and F2 concave on its support because the
 convexity is inherited by conditioning to subintervals and F21 is convex
 whenever F2 is concave.

 We now return to the setting with a set 011 of evaluation functions. If the
 sample space S is a subset of the real line and the probability measures have
 densities or probability mass functions, then we shall show that ucso using the set
 Olt1 of all non-decreasing functions is equivalent to the monotone likelihood ratio

 (MLR) property which arises in the study of uniformly most powerful statistical
 tests, cf. p. 208 of Ferguson (1967) and references there, which in turn is
 equivalent to total positivity of order 2 (TP2), cf. Karlin (1968).

 Definition 1.2. P1 is less than or equal to P2 in the sense of MLR, and we write
 P1 5,P2, if P1 and P2 are absolutely continuous with respect to a a-finite measure

 tz on S with Radon-Nikodym derivatives p, and p2 such that there exists B C S
 with P,(S - B)= P2(S - B)= 0 and p2(s)/p1(s) is non-decreasing on B.

 It is well known that MLR is stronger than ordinary stochastic order for
 probability measures on the real line, cf. Lehmann (1955), but we believe the
 relations between MLR and ucso established in Theorems 1.1-1.3 below are new.

 For this discussion, assume S is a separable metric space with associated Borel
 or-field ,9

 Theorem 1.1. Suppose S is totally ordered and P1 and P2 are absolutely
 continuous with respect to a common r-finite measure / on S. If Pir P2, then

 PI?4P2 for cO = .
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 116 WARD WHITT

 Since many parametric families of probability distributions are known to have

 the MLR property (p. 208 of Ferguson (1967)), we have many examples where
 ucso holds. Unfortunately, this characterization does not extend to partially

 ordered subsets. With reasonable regularity conditions, ucso with Y = V1 and
 W = 9' implies MLR, but MLR fails to imply even ordinary stochastic order.

 Example 1.4. Let S = {(0, 1),(1,0),(1, 1)} with the usual ordering in the
 plane; let p,((0, 1)) = 0.3, p,((1, 0)) = 0.4, p,((l, 1)) = 0.3; and let p2((1, 0)) = 0,

 p2((0, 1))= p2((l, 1)) = 0.5. Then p2(s)/p1(s) is increasing, but pi<-s, p2 fails to
 hold: P,(A) - P2(A) for A = {(1, 0), (1, 1)}.
 Before turning to conditions under which ucso implies MLR, it is important to

 note that ucso is very difficult to achieve on non-totally ordered spaces if W is not
 restricted.

 Example 1.5. Suppose S is an n x n integer lattice in the plane, i.e.,
 S = {(i, j): 1 - i - n, 1 - j - n} with the usual ordering in R2. If Pi is the uniform

 probability mass function on S, then to have p1 --p2 forr ( = 9, where pl<,p2 means P-5,,P2 for the measures associated with the mass functions, it is
 necessary and sufficient for a probability mass function p2 to satisfy: (i)

 p2((i,j))= p2((2, 1)) for all (i,j) except (1, 1) and (n, n) and (ii) p2((1,1))<
 p2((2, 1)) p2((n, n)). This is easy to see by considering two point sets
 {(i, j), (k, 1)} with i < k and j > I.

 Example 1.5 suggests that if S is a lattice then c6 might be the set of all
 measurable sublattices or if S = R" then ( might be the set of all possible
 measurable rectangles A x ... x A,, A , R. Even when S C R2 and (C is the
 set of all rectangles, strange behavior can occur: if p, is a probability mass
 function and an atom of mass is moved to a higher point, the new measure need
 not be bigger in the '6-order, as the following example shows.

 Example 1.6. Let S = {(0, 0), (0, 1), (1, 0), (1, 1)}, p,((0, 0)) = pi((0, 1)) = 2,

 p2((0, 0)) = p2((l, 1)) = 1 and (C be the set of rectangles. Then PIj5-p2 does not hold: consider A = {(0, 0), (0, 1)}.

 It is known that (H(S), 5I) is not necessarily a lattice when _5 is a partial

 order on S, even if (S, _ ) is a finite lattice, as the following example illustrates.

 Example 1.7. Let S be as in Example 1.6. Let pi((O, 0)) = pi((O, 1))=

 p2((0, 0)) = p2((1, 0)) = p3((l, 0)) = p3((0, 1)) = p4((0, 0)) = p4((1, 1)) = 2. Then p3
 and p4 are upper bounds for pi and p2, but there is no least upper bound.

 We have yet to determine whether (H(S), _s) is a lattice for appropriate S, _
 and '. However, even when S is the set of positive integers, so that (H(S), -s,) is a lattice, (H(S), ~5,) need not be a lattice.
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 Uniform conditional stochastic order 117

 Example 1.8. Let S be the set of positive integers and let P1({2n})=
 P2({2n - 1})= 2-2n and P,({2n - 1}) = P2({2n}) = 2-'2"-1), * ? 1. Then P1 and P2
 have no common upper bound in (H(S), ,r) because any upper bound P3 must
 have P3({n + 1})/P3({n }) - max P,({n + 1})/P,({n}), P2({n + 1})/P2({n}) 2 for all
 n 1.

 We now return to investigate the relationship between MLR and ucso.

 Theorem 1.2. If S is countable with a partial order, then the following are
 equivalent:

 (i) P1 <-rP2,
 (ii) P,--5P2 for 1 consisting of all ordered two-point subsets, and

 (iii) P1-_ P2 for 1 consisting of all totally ordered subsets.
 To state regularity conditions under which ucso implies MLR on more general

 spaces, let I(A) and D(A) be the increasing and decreasing hull of A in the
 partially ordered space (S, -), defined by

 I(A) = {s E S: s 2 s' for some s'EA}

 and D(A) = {s E S: s s' for some s' EA }.

 Also assume that _5 is a closed partial order, i.e., the graph F = {(s,, s2): sl - s2} is a closed subset of S2 in the product topology. Since the partial order is closed,
 I(K) and D(K) are closed subsets of S for each compact subset K, cf. p. 44 of
 Nachbin (1965). Let

 I(s, e) = {s'E I({s}): d (s, s') - e }

 and D(s, e) = {s' E D({s}): d(s, s')- e },
 where d is the metric on S. Since I({s}) and D({s}) are closed subsets of S, so are
 I(s, e) and D(s, e), which of course implies that they are measurable.

 Theorem 1.3. Suppose P, and P2 are absolutely continuous with respect to a

 tr-finite measure ut on S and there exists a subset B with P1(S - B) =
 P2(S - B) = 0 such that g (I(s, e)) > 0 and u (D(s, e)) > 0 for all e > 0 and s E B.

 Suppose D(s,, e) U I(s, e) E IC for all st - s2 and all e > 0 sufficiently small. If
 either (i) the densities of P, and P2 with respect to ut have continuous versions on

 B or (ii) S is locally compact, then P,-, P2 whenever P:_- P2.

 Remark. The regularity conditions in Theorem 1.3 (ii) are obviously satisfied
 when S is Euclidean space R ", y is Lebesgue measure and 6 contains unions of
 two ordered rectangles.
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 118 WARD WHITT

 2. Preservation theorems

 In this section we determine the extent to which ucso is preserved under
 standard probability operations. Let each space S, be a complete separable

 metric space with associated Borel cr-field 9, and closed partial order _5. Let all
 the functions in Vi be expectations of real-valued functions on the underlying
 space 5#,. First, to consider image measures, let Pv-' be the image measure
 determined by a measurable function v: S, --* S2 and a probability measure P on

 S,, defined by

 (Pv-1) (A) = P(v-1(A)) = P({s, E S,: v(sl) E A }), A E 2.

 Theorem 2.1. Let v: S, $-+ S2 be measurable. If P1-,,~, P2 on S,, vu'(2)C
 (6, and u o v E 0lt, for all u E V12, then Pv-12 ,  P2v-'

 Let partial order be extended to product spaces in the usual way: (so1, s2) =
 (s21, S22) in S, x S2 if s1i - s21 in S, and s12 < S22 in S2. Since each space S, is a
 complete separable metric space with a closed partial order, the same is true for
 S1 x S2. Let P1 x P2 represent the product probability measure on S,~x S2 and let

 , x 62 = {A, x A2: A E ~,, A2E c62}. From the w.p.l.-representation of
 stochastic order, cf. Theorem 1 of Kamae, Krengel and O'Brien (1977), it is
 trivial that P, x P2s,t Q, x Q2 if Pis, Q for i = 1, 2. Here is an extension to
 UCSO.

 Theorem 2.2. If P, <, Q, in fl(S,) for i = 1, 2, then P1 x P2-5,x2 Q, x Q Q2 in
 H(S1 x S2)-

 It is also easy to see that the ordering -, extends to products, i.e.,
 (P1 X P2) r(Ql X Q2) on S1 X 2 if PIr Q1 and P2<r Q2, but the following
 example illustrates that the ordering 5, for 6 = Y does not extend to products.

 At the same time, this example shows that _5 is not preserved by convolutions.

 Example 2.1. Let S1 = S2 = {0, 1, 4}, PI({0})= 0.7, P,({1}) = 0.1,
 P,({4}) = 0.2, P2({0}) = 0.4, P2({1}) = 0.2 and P2({4}) = 0.4. Obviously P :! P2, so
 that PI5,P2 for 6 = f. However, (P1 x P1)A5s, (P2x P2)A fails for A =
 {(0, 4), (1, 4), (1, 0), (4, 0)}:

 (P1 x P,)A ({(4, 0)}) = 14/37 > 16/48 = (P2 x P2)A ({(4, 0)}).

 By Theorem 2.2, (P, x P,)A, (P2 x P2)A, for A, = {(0, 4), (1, 4)} and A2=
 {(1, 0), (4, 0)}. However, as we saw above, (P, x P),,, UAs, (P2 x P2)AUA2, fails.

 Finally, -, and -< are not preserved by convolutions, denoted by *. It is easy to
 see that both P, * Pr P2 * P2 and P1 * P2=,P2 * P2 fail here. Moreover, all these
 counterexamples persist if P, and P2 are modified to have support {0, 1, 2, 3, 4};
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 Uniform conditional stochastic order 119

 make the following modifications: P1({0}) = 0.7 - 2e, P1((2) = P({3}) = e,
 P2({0()) = 0.4 - 4e, P2({2}) = P2({(3) = 2e for sufficiently small E.
 In order to state another positive result for product measures, let

 111x 612 = {u: S1 x S2-- R I U(Si, S2) = U1(Sl)U2(S2), U1-E .1, u2 E 2}

 90112 = u: S1 x S2-- R I U = ajij for some k, aj > 0, iij  x 2 ,

 V12 = {u: S1 x S2- R u(s, s2) = lim u(S1, s2), u+l1 > un in U12}.

 Theorem 2.3. (a) If Pj:,,., ,Q on Si for i = 1,2, then
 (P1 X P2):5 112, xq2 (Q 1 XQ2)

 on S, x S2.
 (b) If, in addition, the functions in O1 and 9/2 are non-negative, then

 (P1x P2,? 1* X (01x 0?2
 Just as with convolutions, ucso is not preserved under two-sided mixtures.

 Example 2.2. Let S = {1, 2, 3, 4}, P1({1}) = P1({2}) = P2({3}) = P2({4})= 1,
 Q1({1}) = Q2({3}) = 1 and Q1({2}) = Q2({4}) = 3. Then P, .rQ, for i = 1,2, but
 (1)P + (1)P2 r(1)Q1 + (1)Q2 fails to hold.

 However, there is a positive result.

 Theorem 2.4. If P1 ! .!:, Q and P2_ ,, Q, then

 aPm + (1 - a)P2 '4I, W Q
 for all a, 0 a -< 1.

 Corollary. If P-<Q,,, Qj for i = 1, 2 and j = 1, 2, then

 oaP1 + (1- a)P2-,?03Q1 + (1- P)Q2

 for all at and g, 05 a- 1, 0_ p _- 1.
 By Proposition 3 of Kamae, Krengel and O'Brien (1977), -, is a closed partial

 order. We now give conditions under which the same is true for --,VW. Recall that a measurable subset A of S is a P-continuity set if P(8A) = 0, where dA is the
 boundary of A, i.e., the closure minus the interior. Here we do not require that
 the functions in Ot be expectations of real-valued functions on S.

 Theorem 2.5. Assume:

 (i) the functions in 91 are continuous on II(S) and

 (ii) for each A E C6; there is a sequence {Ak, k _ 1} of subsets of S such that
 Ak E c6 and Ak is a P1-continuity set for i = 1, 2 for each k and f 1- Ak = A.
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 120 WARD WHITT

 If P1,-SeP2,, for all n, P,, : P, and P2,, :> P2, then P1,5,?*P2.
 Condition (i) of Theorem 2.5 is satisfied if the functions in V/ are expectations
 of bounded continuous functions on S, cf. Billingsley (1968). In general,
 condition (i) does not hold in the setting of Kamae, Krengel and O'Brien (1977),
 i.e., for stochastic order on a complete separable metric space with a closed
 partial order, but under an extra condition stochastic order is determined by
 bounded continuous increasing functions.

 Definition 2.1. An order topological space (S, -) is normally ordered if for
 each two disjoint closed subsets F, and F2 such that F1 is decreasing (x 5 y and

 yE F1 implies x E F,) and F2 is increasing, there exists a continuous non-
 decreasing real-valued function f such that f(s) = 0 on F,, f(s) = 1 on F2 and

 0 5 f(s) _ 1 for all s E S, cf. p. 28 of Nachbin (1965).

 Theorem 2.6. Suppose (S, _) is normally ordered. If ffdP, 5 ffdP2 for all
 continuous bounded non-decreasing real-valued functions, then Pli-s, P2.

 Every compact ordered space is normally ordered, p. 48 of Nachbin (1965).
 Also, it is easy to see that Euclidean space R" with the usual ordering is
 normally ordered.

 Corollary. If S = R" and C ={X = , [ai, b]: a, -5 bi, 1- i 5 n}, then -, is a
 closed partial order.

 3. Proofs

 Proof of Theorem 1.1. To see that MLR implies ucso for V = C, and = 9,
 suppose there is a subset B meeting the stipulated conditions with p2(S)/p((S)
 non-decreasing on B. For any A E with P,(A) > 0 and P2(A) > 0, pz2(S)/p(s)
 is non-decreasing on A n B. Note that PiA (S) = pi(s)/Pi(A) are
 Radon-Nikodym derivatives of PiA with respect to t on A. Since p2(S)/p1(S) is

 non-decreasing on B, p2A(S)/pIA (S) is non-decreasing on A B. Choose s, in

 the closure of A such that p2A (So)/PIA (So) P 1 P2A (S2)/pA (S2) for all So - S1 S2 with so, s2E A fB. Such an s, must exist in order for PIA and P2A to be

 probability measures. For any s2 _ S1,

 f2PIA (S)/L(ds)= f2 pIAs(S)[p2Ap(S)/pIA(S)](ds) = p2A (S)(ds),
 and, for any So 5 si,

 fr PA(S)l(ds)? plA(S)[p2A(S)/plA(S)]y (ds)= p2A(s)fL(ds),
 which implies that P,A s, P2A.
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 Uniform conditional stochastic order 121

 Proof of Theorem 1.2. The argument in the proof of Theorem 1.1 shows that
 (i) > (iii) and the implication (iii) > (ii) is trivial. Hence, it remains to show that

 (ii) :> (i). Let A be any two-point subset {sl, S2} Of S such that sl < s2, P,(A) > 0
 and P2(A) > 0. Obviously, P, and P2 are absolutely continuous with respect to

 the counting measure on S so that P1 and P2 have Radon-Nikodym derivatives,

 namely, the probability mass functions pi and p2. Since PIA s , P2A, P2A (S)/p IA (S)
 is non-decreasing on A. This in turn implies that p2(s)/p1(s) is non-decreasing on

 A. Since this holds for all such two-point sets, p2(s)/pl(s) is non-decreasing on
 the union of the supports of P, and P2.

 Proof of Theorem 1.3. (i) For any s E B,

 p(s) Plim~P(I(s, )) _ limP (D(s, E))
 6-- u (I(s, e)) e-.o (D(s, E ))

 Now suppose s, < s2 for s1, S2 8 B. Since PIA-, Ps2A, for each e >0, where
 A, = D(sl, e) U (S2, e),

 P1(I(s2, e)) P2 (I(S2, E))
 P,(D(s, e )) P2(D(sl, E))

 for each e > 0. Hence, we can let e --0 to obtain p1(s2)/p,(s1)_5 p2(s2)/l2(S,), which establishes MLR.

 (ii) Now suppose p, and p2 are not continuous, but that S is locally compact.

 Then, by Urysohn's lemma, there exist sequences {p,.} and {p2.} of continuous
 densities such that

 f 1p.(s)-pi(s)l (ds)-. and I p2.(s)f-p2(s)lp (ds)-- O,
 cf. p. 242 of Halmos (1950). Covergence in L' obviously implies convergence in
 measure, which in turn implies that there are subsequences {Pl., } and {p2, } with

 common index set which converge almost everywhere [4j ] to p, and p2, cf. pp. 89,
 93 of Halmos (1950). Since the preceding argument applies in the subsequence,

 p2(s)/p,(s) is non-decreasing on a set whose complement has zero L -measure.

 Proof of Theorem 2.1. Apply a change of variables and the stated conditions.

 Proof of Theorem 2.2. First note that P1A, x P2a2 = (PI x P2)AtxA2. Then
 (P, x P2)AxA st (Qi X Q2)AxA2 if PIAst OQ1A1 and P2A,,, Q2A2,. Finally, (P, x
 P2)(A, xA2)>O0 if and only if P1(A)>O0 and P2(A2)>O, so that

 (P1 x P2)_<,x~ (Q1 x Q2) as claimed.
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 Proof of Theorem 2.3. (a) For any u E U12 and A, x A2E ( x (X2,

 =f u(s, s2)d(Oi x 02)AxA2-

 (b) Apply the monotone convergence theorem with Part (a).

 Proof of Theorem 2.4. For any A E '1 and u E V,

 a f udPi + (1- a)f udP2 ud([aP, + (1- a)P2A)A d 1 A

 s u(p aP,(A)+ (1 - a)P2(A)
 So(A)-'l udO = udOa.

 Proof of Theorem 2.5. By assumption, u (P,,Ak) u(P2nAk) for all n, k and u.
 Use (i) and (ii) to take limits, first on n and then on k.

 Proof of Theorem 2.6. Let G be an open increasing set. Thus, the comple-
 ment G' is closed and decreasing. Since S is a complete separable metric space,
 every probability measure on S is tight (Theorem 1.4 of Billingsley (1968)).
 Hence, for e > 0 given, there exists a compact subset K of G such that
 P,(G) 5 P,(K) + e. Since K C G and G is increasing, the increasing hull of K,
 denoted by I(K), is a subset of G. Moreover, I(K) is increasing and closed (p. 44
 of Nachbin (1965)). Since G' and I(K) are disjoint closed sets, one decreasing
 and the other increasing, there exists a continuous non-decreasing real-valued

 function f which is 0 on G' and 1 on I(K) such that Of_-f(s)_5 1 for s ES.
 Therefore,

 P,(G) s PI(K) + e 5 PI(I(K)) + e

 Sf fdP,+ E f fdP2+ e5 P2(G)+ e.

 Since G and e were arbitrary, P,(G) - P2(G) for all open increasing G. By
 Theorem 1 of Kamae, Krengel and O'Brien (1977), P1_s1 P2.

 Proof of corollary. By Theorem 2.6, -<% order is determined by continuous
 bounded functions on $, so that Condition (i) of Theorem 2.5 is satisfied.
 Condition (ii) of Theorem 2.5 is also satisfied because a product of intervals is
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 either a P,-continuity set for i = 1,2 or the decreasing limit of products of
 intervals, all of which are P,-continuity sets for i = 1, 2. To see this, note that a

 product of intervals X l,[a5, b,] necessarily is a P-continuity set if the ith
 one-dimensional marginal of P attaches no atoms of mass to the points ai and bi,
 1 5 i 5 n.
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