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UNIFORM CONDITIONAL VARIABILITY ORDERING
OF PROBABILITY DISTRIBUTIONS

WARD WHITT,* AT&T Bell Laboratories

Abstract

Variability orderings indicate that one probability distribution is more spread
out or dispersed than another. Here variability orderings are considered that are
preserved under conditioning on a common subset. One density f on the real
line is said to be less than or equal to another, g in uniform conditional
variability order (ucvo) if the ratio f(x)/g(x) is unimodal with the model
yielding a supremum, but f and g are not stochastically ordered. Since the
unimodality is preserved under scalar multiplication, the associated conditional
densities are ordered either by ucvo or by ordinary stochastic order. If f and g
have equal means, then ucvo implies the standard variability ordering deter-
mined by the expectation of all convex functions. The ucvo property often can
be easily checked by seeing if f(x)/g(x) is log-concave. This is illustrated in a
comparison of open and closed queueing network models.

DISPERSION; SPREAD; VARIABILITY; STOCHASTIC COMPARISONS; STOCHASTIC
ORDER; CONDITIONAL PROBABILITIES; UNIFORM CONDITIONAL STOCHASTIC ORDER;
MONOTONE LIKELIHOOD RATIO; LOG-CONCAVITY; RELATIVE LOG-CONCAVITY; NET-
WORKS OF QUEUES; STATIONARY-EXCESS DISTRIBUTION

1. Introduction

Variability orderings compare probability distributions according to their
spread or dispersion; see Bickel and Lehmann (1976), (1979), Birnbaum (1948),
Marshall and Olkin (1979), Oja (1981), Shaked (1980), (1982), (1984), Stoyan
(1983), Yanagimoto and Sibuya (1976), (1980) and references in these sources.
Our point of departure is the ordering X =, Y that holds if

1) Eh(X)= Eh(Y)

for all convex real-valued functions h, which requires that EX = EY. For the
case of unequal means, we also consider the related orderings based on all
non-decreasing convex functions or all non-increasing convex functions. Our
object is to consider stronger variability orderings that are preserved under
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620 WARD WHITT

conditioning and so tend to hold locally. Our analysis of uniform conditional
variability order (ucvo) parallels and extends previous work on uniform condi-
tional stochastic order (ucso) in Keilson and Sumita (1982), Milgrom (1981),
Milgrom and Weber (1982), Simons (1980), Whitt (1980), (1982) and references
cited there.

We begin in Section 2 by giving background on several standard variability
orderings. In Section 3 we introduce our notion ucvo which corresponds to the
ratio of the densities being unimodal, without the densities being stochastically
ordered. By relating ucvo to sign-change orderings (Theorem 1), we obtain a
very simple proof that ucvo implies standard variability orderings involving the
expectation of convex functions.

In Section 4 we discuss a sufficient condition for ucvo, which involves one
distribution being log-concave relative to another, but not stochastically or-
dered. A convenient way to check ucvo is available via what we call the index of
log-concavity. In fact, the index of log-concavity is even useful for identifying
ordinary variability ordering. For a probability mass function f on the integers,
the index of log-concavity is the function

@) r (k)= f(kY/(f(k = 1)f(k +1)).

For a mass function f, its support is supp(f) = {k: f(k) > 0}. One probability mass
function f with support on a connected set of integers is said to be log-concave
relative to another g if supp(f) C supp(g) and r; (k) = r, (k) for all k in supp(f).
Recall that a single mass function f is log-concave if r,(k)=1 for all k; see
Chapter 5 of Keilson (1979) and references there. We exploit the property that
f(k)/g(k) is unimodal if f is log-concave relative to g. We illustrate the ideas in
the following elementary example.

Example 1. The index of log-concavity for a binomial mass function f with
parameters n and p is easily seen to be r;(k)=(k +1)(n — k +1)/(k(n — k)).
For a Poisson mass function g with parameter A, r, (k)= (k +1)/k. Obviously,
supp(f) Csupp(g) and r; (k)= r, (k) for all k, 0= k = n. Hence, f is less than g in
ucvo provided that f and g are not stochastically ordered, i.e., provided that
g(0)=exp(—A)>f(0)=(1—p)" If np = A, so that f and g have the same mean,
ordinary stochastic order is not possible, so that ucvo holds. ucvo with equal
means also implies f =, g as defined in (1). Moreover, if f, represents the
binomial distribution with parameter n and np = A for all n, then r, (k)=
r...(k), so that f, =, f.., for all n. In other words, we see that {f.} converges
monotonically to g in =, and thus in distribution too (Theorem 7). If np # A, then
orderings involving all non-decreasing convex functions or all non-increasing
convex functions hold. Moreover, because of the stronger ucvo property, the
ordering has strong implications for comparing associated conditional distribu-
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tions, as described in Theorem 2 below. Of course, much is already known about
binomial and Poisson distributions; e.g., Anderson and Samuels (1965). How-
ever, we believe that ucvo and relative log-concavity provide a convenient
characterization of the variability orderings.

Our interest in ucvo and relative log-concavity arose during an investigation
of open and closed models for networks of queues. In Section 5 we describe this
application; additional results relating open and closed networks of queues are
contained in Whitt (1984).

In Section 6 we briefly discuss applications of ucvo to comparisons of
renewal-process stationary-excess distributions, providing some extensions to
Whitt (1985). In Section 7 we discuss additional properties of ucvo. For example,
we show that it is preserved under weak convergence, but not convolution. We
conclude in Section 8 by briefly discussing connections to Birnbaum’s (1948)
early variability ordering and multivariate versions of ucvo.

2. The standard variability orderings

Consider random variables X and Y having absolutely continuous c.d.f.’s F
and G with densities or mass functions f and g. (As usual, the mass functions are
obtained when there is absolute continuity with respect to the counting measure
on the integers.) A common way to compare the variability of F and G is via the
sign changes of g — f or G — F; for recent treatments and references to earlier
work, see Oja (1981), Shaked (1980), (1982), (1984) and Sections 1.3-1.6 of
Stoyan (1983). Basic references are Karlin and Novikoff (1963) and Karlin
(1968).

Let S(h) be the number of sign changes of the function h(t), which can be
properly defined for complicated functions by considering successively finer
finite sets of time points. A natural condition on g — f corresponding to g being
in some sense more variable than f is

3 S(g—f)=2 withsignsequence +, —, +.
Condition (3) implies that
4 S(G-F)=1 withsignsequence +, —.
If EX = EY, then (4) implies that
o) I F(x)dx éf G(x)dx
for all ¢ or, equivalently, (1) holds for all non-increasing convex real-valued

functions h for which the expectations are defined. Similarly, if EX = EY, then
(4) implies that
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(6) [o [1—F(x)]dx§f'm [1-G(x)]dx

for all ¢ or, equivalently, (1) holds for all non-decreasing convex real-valued
functions h for which the expectations are defined.

A case of special interest occurs when EX = EY. Then these comparisons
involve only greater variability, (5) and (6) are equivalent and (1) holds for all
convex functions.

Other variability orderings compare the differences of quantiles. These
orderings are expressed via the inverse F ' of the c.d.f. F, defined by

) F'(t)=inf{x: F(x)>1t}, 0<t<l1.
The distribution F is said to be less dispersed than G, denoted by F =g, G, if
8) F'wW)-F'W=G'(v)-G'(u), O<u<v<l.

It is well known that F =4, G if and only if S(F(-—c)— G)=1for every c and,
in case of equality, the sign sequence is —, +. As a consequence, if X and Y are
distributed according to F and G with F=4,G and EX+c=
EY(EX+c=ZEY), then Eh(X+c)=Eh(Y) for all non-decreasing (non-
increasing) convex functions h. In other words, if X =4, Y, then X =, Y + ¢ for
some constant ¢ or, equivalently, (X — EX) =, (Y — EY). On the other hand, it
is easy to construct examples such that (X — EX)=,(Y — EY) but S(G — F)>
1, so that =, is strictly stronger. The orderings X =4, Y and (X — EX)=.
(Y — EY) are interesting in part because they are location-free.

Yet another ordering for positive random variables X and Y is
log X =4plog Y, which is equivalent to the star-shaped ordering, ie.,
G '(F(x))/x is non-decreasing.

3. Uniform conditional variability ordering

Suppose now that we look at the conditional distributions given that X and Y
belong to a set A, where A is chosen so that P(X € A)>0, P(Y € A)>0 and
the conditional distributions are absolutely continuous with densities or mass
functions

9)  fa()=f(t)P(XEA) and ga(t)=g(t)/P(YEA), tEA.

Let X4 and Y, be the corresponding random variables. It is natural for the set A
to be an interval (continuous or discrete), but it is not necessary. For example, A
might be the set of even integers when f and g have support on the integers.

It is easy to see that in general properties (3)-(6) do not extend to these
conditional distributions. For example, to have (3) extend, we would need to
have S(cg — f) =2 with sign sequence +, —, + for arbitrary positive scalar c.
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Since (3) does not control the local behavior of g and f, S(cg —f) could be
arbitrarily large with (3) holding.

We now introduce conditions implying that (3)-(6) are inherited by the
conditional distributions. We say that f is uniformly conditionally less variable
than g, and write X =,, Y and f =, g, if supp(f) C supp(g), the ratio f(t)/g(t)is
unimodal where the mode is a supremum, but f and g are not stochastically
ordered; i..e., we do not have either F(x)= G(x)for all x or F(x)= G(x) for all
x. Just as the conditioning event A need not be an interval, supp(g) need not be
an interval. We understand unimodality of the function f(t)/g(t) to be for ¢
restricted to supp(g).

It is elementary that the unimodality is preserved under scalar multiplication
of the densities and under restriction to a subset, so that it extends to f4 ()/ga (¢).
It is of course possible for the ratio fa(t)/gs(t) to be monotone, which
corresponds to monotone likelihood ratio order, here denoted by =..; see
Keilson and Sumita (1982), Whitt (1980) and references there. The following
theorem characterizes ucvo in terms of sign changes.

Theorem 1. Assume that supp(f)Csupp(g). f=.g if and only if
S(cf — g) =2 for all positive constants ¢ with equality for ¢ =1 and, in the case
of equality, the sign sequence is —, +, —.

Proof. First, suppose that f =, g. Since f/g is unimodal with the mode
yielding a supremum, so is cf/g for ¢ >0. Hence, S(cf —g)=S([cf/g]-1)=2
and the sign sequence is —, +, — when S(cf — g) =2. It is easy to see that f and
g would be stochastically ordered if S(f — g)<2 so that S(f—g)=2.

Next, suppose that f Z,, g. If S(f—g)<2or if S(f—g)=2 but f — g has the
wrong sign sequence, then the other condition fails too, so it suffices to assume
that S(f — g) =2 with sign sequence —, +, —, but that h = f/g is not unimodal.
Then there are three points t; < t, < t; such that h(t,)> h(t,)< h(t;). Let ¢ be a
constant such that h(t;) < ¢~ <min{h(t,), h(t:)}. Then either S(h —c™')>2 or
S(h — ¢™')=2 with sign sequence +, —, +. However, h —c' has the same
number of sign changes and the same sign sequence as cf — g.

The following theorem summarizes the implications of the =,, order for
stochastic comparisons of the conditional distributions. We omit the elementary
d . . .
proof. Let X = Y mean that X and Y have the same distribution.

Theorem 2. 1If X =,,Y, then for each subset A in the support of Y one and
only one of the following holds:

(i) f/g is constant on A, so that X, S Ya;
(ii) f/g is increasing on A, so that X, =, Ya;
(iii) f/g is decreasing on A, so that X, =, Ya;
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(iv) f/g is unimodal on A but not monotone, and S(gs — f4) =1 with sign
sequence +, —, so that X, =, Ya;

(v) f/g is unimodal on A but not monotone, and S(g. —fa)=1 with sign
sequence —, +, so that X, =, Y4 ;

(vi) f/g is unimodal on A but not monotone, and S(g. — f1) =2 with sign
sequence +, —, +, so that X, =., Ya.

Of course, only Cases (i)-(iii) are possible in Theorem 2 if A falls entirely on
one side of the mode of f/g. Only Case (vi) corresponds to our intuitive idea of
how we would like ucvo to behave, i.e., to preserve variability ordering, but of
course the other cases cannot be ruled out. It is often easy to check if Case (vi)
prevails. Suppose that the subset A has minimal and maximal elements a, and
a,. Given that X =, Y, we simply need to have

f(a)/P(X € A)<g(a)/P(Y EA)
for i=1,2.

Corollary 1. Suppose that X =, Y.
@) If E(X|XE€A)<E(Y|YEA), then
E(h(X)|X€A)=E(h(Y)| YEA)
for all non-decreasing convex h.
(b) If E(X|XEA)=E(Y|YEA), then
E(h(X)|XEA)=E(h(Y)|YEA)
for all non-increasing convex h.
© If E(X|XEA)=E(Y|YEA), then
E(h(X)|XEA)=Eh(Y)|YEA)
for all convex h.

Remark. Theorem 2 and Corollary 1 remain valid if we condition on X € A
and Y € B where A C B. Then the support of X, is contained in the support of
Ys.

It is significant that ucvo is not a transitive order. As we show below, it is
possible to have f =.. g and g =, h, but not f =, h. (However, transitivity does
hold for the relative log-concavity in Section 4.)

Example 2. Letf, g and h be probability mass functions on {0, 1, 2, 3, 4} with
fO)=f1)=f(2)=0.19, f3)=0.3 and f(4)=0.13; g(k)=0.2 for all k; and
h(0)=h(2)=h(3)=021, h(1)=0.1 and h(4)=0.27. It is easy to see that f =.. g
and g =,, h,butnot f=,. h. Here S(g —f)=2,S(h—g)=2and S(h—f)=4.
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In Section 2 we observed that the ordering =, in (8) is stronger than =, in (1).
We now show that the orderings =4, and =,, are not comparable.

Example 3. First to show that =,, does not imply =, let f and g be
densities with support on [0, 1], defined by

f)=13<2/3=g(), 0=t=1/3,
(10) f(t)=2>4/3=g(), 1/3<t=2/3,
f(t)y=2/3<1=g(1), 2B3<t=1.

Obviously, f(t)/g(t) is unimodal with S(f — g) =2, so that f =,, g The c.df.’s F
and G associated with f and g have inverses F~' and G~' defined by (7). These
inverses F~' and G™' in turn are absolutely continuous with densities, say, ™'
and g~'. Clearly, (8) holds if and only if f'(t)=<g'(¢) for all . However, the
ratio f~'(t)/g”'(t) assumes the values 2, 1/3, 2/3, 1/2, and 3/2 over successive
subintervals of [0, 1]. Since we do not have f~'(t) = g () for all £, we do not have
F =4, G. Also note that f~'/g™' is not unimodal.

To show that =, does not imply =,,, we can use the same example with a
slight modification if we change the roles of (f,g) and (f ', g™"). In particular,
instead of (10) above, let

fl()=13<23=g7'(t), 0=t=1/3,
(11) Fl=1<43=g@), 13<t=2/3,
fl)=23<1=g7"'@), 213<t<1,

so that the pair (f~', g ') is the same as (f, g) in (10), except f'(t) = 1 instead of 2
for 1/3 <t =2/3. The functions f~' and g~' in (11) determine F~' and G~' by
integration and then F and G by inversion. Since F~'(1) = 2/3, the support of F
is now [0,2/3]. From (11) it is clear that (8) holds. However, f(¢)/g(t) assumes the
values 2, 2/3, 4/3, 2 and 0 over successive subintervals of [0,1], so that
S(f—g)=3. In this case S(F—G)=0, i.e., F(t)= G(¢) for all ¢.

4. Relative log-concavity

A convenient sufficient condition for f/g to be unimodal is for f/g to be
log-concave; see Chapter 5 of Keilson (1979). For the discussion of log-
concavity, we assume that the supports of f and g are subintervals of the real line
(or connected sets of integers in the case of mass functions). A density f is
log-concave if

(12) fAx+(A=2y)=f(x)'f(y)™, 0=ar=1,

for all x and y in the domain or, equivalently, if
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(13) f(y2=x2) f(ys = X)) Z f(y> = x1) f(y1 — x2)

for x, < x, and y, < y,. A probability mass function f is log-concave if r;(k)=1
for r; in (2). We say that one density or mass function f is log-concave relative to
another g, and write f = g, if f/g is log-concave. This holds for densities if the
support of f is a subset of the support of g and r;(x1, X2, y1, y2) = r; (x1, X2, Y1, ¥2)
for all x, < x, and y, < y,, where r; is the index of log-concavity, defined by

‘“’ o) = O

For probability mass functions, f is log-concave relative to g if the support of f is
a subset of the support of g and r; (k) = r, (k) for all k, where r; is defined in (2).

The key fact is that f <,, g when f =g and S(f — g) =2. It is also significant
that, unlike =.,, =, is transitive.

Note that a density on [0,%) is log-concave if and only if it is log-concave
relative to an exponential density. Similarly, a probability mass function on the
non-negative integers is log-concave if and only if it is log-concave relative to a
geometric distribution. For intervals [a,b] or connected sets of integers
{k,k+1,: -, k +m}, the reference distribution is uniform. Hence, we have the
following relationship among classes of distributions:

exponential on [0, ®),

geometric on {k: k =0},

uniform on [a, b] or on
{k,k+1,--- k +m}

Moreover, log-concavity is preserved under convolution and log-convexity by
mixtures; see Keilson (1979).

log-concave =, =, log-convex.

Example 4. If f is the normal density with mean p and variance o, then its
index of log-concavity is

(X, X, y1, y2) = exp(—{(y2 =2 = p )y + (= xi—p) = (2= x, —p)
— (1~ x— p)}207).
If g is normally distributed with the same mean and a larger variance, then f/g is
log-concave and S(f—g)=2, so that f=,, g

Example 5. We consider three mass functions with finite support. The
hypergeometric mass function

as) = (W)(%) /(M ™)

has support on the set of integers between (K — N»)" and min{N;, K}. It has
index of concavity
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(k+ D(Ni—k+D)(N,—K+k+1)(K—k+1)
k(N:—k)(N.— K + k)(K — k)
for (K — N,)" < k <min{N,, K}.
The binomial mass function with parameters N; and p has support on the set
of integers {0,1,---, N5} and has index of log-concavity

_(k+D(N;—k+1) _
The uniform mass function on {0,1,---,Ng has index of log-concavity
rr(k)=1. With N, = N;= N,, we have

(16) r (k)=

(18) hypergeometric =, binomial =, uniform.

Example 6. We now consider several mass functions with support on the
non-negative integers. The Poisson mass function has index of log-concavity
(k + 1)/k; the negative binomial (k +1)(N + k —1)/k(N + k); and the geometric
1. Any mixture of geometrics is log-convex, so has index of log-concavity
r;(k)=1. Hence, we have

binomial =,. Poisson =,. negative binomial =,. geometric

19) . .
=, mixture of geometrics.

A sufficient condition for f/g to be log-concave is for f/g to be concave. This is

illustrated in the following example involving mixtures from exponential
families, which is taken from Shaked (1980).

Example 7. Consider the density f(x, 8)=exp(¥(8)x + x(6)) which de-
pends on the parameter 0. Let g, (x) be the mixture of f(x, 8) with respect to a
probability distribution & on the parameter space. It is elementary that f(x, 8) is
convex in x. Since

Q) g 0)= [ expll¥())— 9@ +x()- x(Odu(o),

g. (x)/f(x, 0) is also convex in x for any 6. Hence, f(x, 6)/g. (x) is concave and
thus log-concave. Shaked (1980) notes that g.(x) is often approximated by
f(x,60) where 6 is the expected value of w, and indicates that f(x, 8) is less
variable than g, when they have the same mean. We have seen that
f(-,0)=,.g. or there is stochastic order for all & and 6. See Shaked (1980) for a
variety of applications.

5. Comparing open and closed networks of queues

The concept of relative log-concavity introduced in Section 4 is very useful to
compare open and closed models for networks of queues. In this section we
briefly describe the main results; more discussion appears in Whitt (1984).
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We consider the standard Markovian Jackson open network of first-
come—first-served service centers with one customer class, as described in
Jackson (1963), Kelly (1979) and Sauer and Chandy (1981). There are n service
centers and a single external Poisson arrival process with rate A. Each arrival
goes initially to service center i with probability r,, independent of the history of
the system. Each customer completing service at service center i goes im-
mediately to service center j with probability g;, independent of the history of
the system. The customer departs from the network with probability 1 — /-, g;.
The service rate at service center i is w;(k) when there are k customers at
service center i. We assume that u; (k) is non-decreasing in k. The special case in
which w; (k)= min{ku;, su:} corresponds to the standard service center with s
servers workingin parallel, each with exponential service times havingmean w ;.

We assume that the system is stable; i.e., there exists a proper equilibrium
distribution for the number of customers at each service center. Let N7 denote
the number of customers at node i in equilibrium. An important property of this
open Jackson network is that the distribution of the vector (N7, - -, N3) has
independent marginals (is of product form), i.e.,

1) P«N‘:,---,N:)=(k1,~--,kn))=ﬂ P(N? = k).

Moreover, the distribution of N7 is the distribution of a birth-and-death process
on the non-negative integers with constant birth rate A; and death rates w, (k),
where A; is the solution of the basic system of traffic rate equations

(22) A,’ = )U‘, + 2 q,','/\,.
=

The related Jackson closed model is obtained by eliminating the external
arrival process and the possibility of departures (2], g; = 1 for all i) and having
a fixed number K of customers in the network. It is significant that the
equilibrium distribution for this closed model can be conveniently expressed in
terms of an associated open model. Any service center in the closed model is
selected and its arrivals are made to leave the network and are replaced by an
external Poisson arrival process with rate A sufficiently small to ensure stability.
(Otherwise, the rate A is unspecified.) Even though the original arrival process to
the designated service center in the closed network is typically not a Poisson
process, it turns out that the equilibrium distribution of the number of customers
at each service center in the closed model is just the conditional distribution
associated with the equilibrium distribution for the open model in (21) given that
the total number of customers in the open network is K. (This is well known.)
Let N be the equilibrium number of customers at service center i in the closed
model. Then the basic relation between the equilibrium distributions in the open
and closed models is
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(23) P(Ni=ki, - No,=k,)=P(Ni=ky,---,N.=k,)/P(N7+---+ N,=K)
where k;+---+k, =K.

The equilibrium distribution for the closed model in (23) tends to be much
harder to compute than (21) because of the normalization by the conditioning. In
Whitt (1984) we propose approximating the distribution of (N7, - - -, N3) by the
distribution of (N7, - - -, N3) for the associated open model, under the condition
that E(N7+ - - -+ N7)= K. To understand how this fixed-population-mean (Fpm)
method works, it is useful to make stochastic comparisons between the open and
closed models. The key result establishes that N7 is log-concave relative to N7
for each i for any stable external arrival rate in the open model.

Theorem 3. The distributions of N7 and N; are both log-concave and
i =1 NY for each i.

Proof. The same argument applies to all service centers, so let i =1. Apply
(23) to obtain

P(Ni=k+1) _P(Ni=k+1)P(N3+---+No=K—k—1)

CH  ThNi=k) T PINi=KP(NST—+No=K—k)

Since N7 has the distribution of a birth-and-death process with non-increasing
birth rates and non-decreasing death rates, the mass function P(N§ = k) is
log-concave; Example 5.7F in Keilson (1979). Since log-concavity is preserved
under convolution, the mass function P(N3+ - - -+ N, = k) is also log-concave.
Since the right side of (24) is the product of two ratios, both decreasing in k,
P(N: = k) is log-concave. Moreover,

P(Ni=k+1)P(N7=k)/P(Ni=k)P(Ni=k +1)
is decreasing in k, so that Ni=, N7.

Corollary 2. 1f EN? = ENj, then Eh(N?)= Eh(N:) for all non-decreasing
concave real-valued functions h.

Proof. Apply Corollary 1.

Now consider the special case in which each service center has several
exponential servers, so that u; (k) = min{ku,, siy; }. Then the utilization at service
center i, denoted by u? and u; for the open and closed models, is the expected
number of busy servers there in equilibrium, i.e.,

(25) u; =E(min{N?{,s;}) and ui= E(min{N;,s]}).

The following result shows that the FPM method always produces lower bounds
on the utilizations in the closed model.

Theorem 4. If E(N7+---+N3)=Ni+---+ N;=K, then u} = u$forall i.
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Proof. The condition on the total population implies that EN? = ENj; for
some i. Since u? and u; are realized as the same non-decreasing concave function
h of NYand N, respectlvely, as given in (25), u? = u; by Corollary 2. Finally, it is
well known that u?/uj = u;/u; for all i and j because n — 1 of the two systems of
n traffic rate equations are identical.

Remarks. (1) For the case of single-server and infinite-server service centers
only, Theorem 4 was first proved directly by Zahorjan (1983).

(2) As indicated in Section 4 of Whitt (1984), Theorems 3 and 4 extend to
multiple customer classes.

6. Renewal-process stationary-excess distributions

For any density f with c.d.f. F and mean u, the associated renewal-process
stationary-excess distribution has density s(f) = (1— F(t))/u, t 0. Stochastic
comparisons involving f and s(f) are discussed in Whitt (1985). An elementary
comparison result (Theorem 3.3 there) is

(26) F=,G ifandonlyif s(F)=,s(G).

The concept of ucvo provides some elementary extensions.

Theorem 5. (a)If f =., g, then s(f)/s(g) is unimodal, and s(f) — s(g) has the
sign sequence —, +, — if S(s(f)—s(g))=2.

(b) f/(us(f))is the failure rate function, so that f/s(f) is unimodal, monotone,
etc. if and only if the failure rate is.

Proof. (a) By Theorem 1, S(af —bg)=2 for all positive a and b. Let
F(t)=1- F(t). After integrating, S (aF bG) =2, with the same sign sequence
in case of equality. Since s(f)(t) = F(¢)/u(f), S(cs(f)— s(g)) =2 for all positive
¢, which implies that s(f)/s(g) is unimodal, by Theorem 1 again. (b) The failure
rate is defined as f(t)/F(t).

Corollary 3. 1If the failure rate, say p, associated with a density f on [0, ) is
unimodal and S(up —1)=2 with sign sequence —, +, — (+, —, +), then

=ws(f) (f Zw s()).
Proof. Apply Theorem 5(b).

7. Additional properties

It is easy to see that X =4, aX for a > 1. This ordering holds in ucvo for
certain densities, but not all densities.

Theorem 6. Suppose a>1. If X has a density f such that f(e') is log-
concave for ¢t >0 and f(—e') is log-concave for ¢ <0, then the ratio fox (¢)/fx(t)
is non-decreasing away from the origin, so that X =, aX.
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Proof. Since f.x(t)=f(t/a)/a, it suffices to prove that f(t/a)/f(t) is non-
decreasing away from the origin or, equivalently,

f(t/a) _f(t/a)
(0 < (i) o<t<t,

which is equivalent to

g(logt,—loga)g(logt:)

g(logt,)g(logt,—loga) ™
for g(t) = f(e'). This corresponds to (11) with y, =logt, x, =loga, y: =logt
and X1 = O.

Remark. For X with support in (0,%), the condition in Theorem 6 corre-
sponds to log X having a log-concave density.

The following relates convergence in distribution to ucvo. We omit the
elementary proof.

Thegrem 7. Let f, g and f., g.,n =1, be probability mass functions with
support on the non-negative integers. Then

(@) f.(k)—>f(k) as n—» for all k (weak convergence) if and only if
f(0)—=£(0), fo ()= f(1) and r, (k)= r;(k), k=1.

(b) If f. =.. g. forall n, f. (k)— f(k) and g. (k)— g(k) as n — « for all k, then
f=swg

We have the following result about mixtures.

Theorem 8. 1If f=,. g then f=,pf+(1-p)g=.g 0<p<Ll.

Proof. Consider the first inequality. Since
[pf + (= p)glf =p +(1~-p)(&/f)

unimodality is preserved. Moreover,
S(pf +(1-p)gl-H=S{A-p)g-(1-p)f)=SEg -1

If f and g are mass functions with supp(f) = {k, k + 1} C supp(g), then f <., g
provided that f and g are not stochastically ordered. A sufficient condition for f
and g not to be stochastically ordered is for supp(g) to contain at least one point
less than k and one point greater than k +1. This case is convenient for
constructing counterexamples. For example, f=..g, f=.h and g=,h to-
gether do not imply that pf+(1—p)g <. h. They also do not imply that
f*g=wh, f*h=,h=*h or fxh=, g=*h, where * denotes convolution.

The following example shows that the =,, and =,. orderings are not preserved
‘under convolutions, even for distributions with common support.
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Example 8. We need not have f * h =, g * h (* denoting convolution) when
f=.g even when f, g and h are symmetric and log-concave with common
support (so that fxh and g=*h are log-concave) and f=.g=.h (so that
f=.g=.h). To see this, let

fO=f@=01, f(1)=08;

g(0)=g()=02, g(1)=0.;

h(0)=h(2)=03, h(1)=04.
Then (f * h) has masses 0.03, 0.28, 0.38, 0.28, 0.03 on {0, 1,2, 3,4} while (g * h)
has masses 0.06, 0.26, 0.36, 0.26, 0.06. Hence 5., (1) =6.871 >3.12 =r,.,. (1) as

required, but r;., (2) = 1.84 <1.92 = r,.,,(2). Moreover, the ratio (f * h)/(g * h) is
not unimodal.

8. Concluding remarks

Birnbaum (1948) suggested a variability ordering in which X is said to be less
variable (or more peaked) about x than Y about y if

27) [ X=—x|=.|Y—-y]|

where =, is the usual stochastic order. Paralleling ucso, it is natural to define
stronger variability orderings by replacing =, in (27) by the monotone likelihood
ratio ordering =,.. If X and Y have distributions that are symmetric about a
common point, then X =,, Y corresponds exactly to (27) with =, replaced by
<

A natural multivariate generalization of ucvo for random vectors (X1, - - -, X,,)
and (Y, -+, Y,) is to require that there exists x = (x," -, x,) such that

@8) [(Xi—x), (X —x) | XZx]=n[(Yi—x), (Yo —x)

Y zx]

after making any of the 2" possible coordinate sign changes about the new origin
x, where now =,, is the multivariate monotone likelihood ratio ordering discussed
in Karlin and Rinott (1980) and Whitt (1982) and references there. Of course, for
n =1, (28) is equivalent to ucvo.

However, a major difficulty in the multivariate case is that there seems to be
no natural extension of Section 2, so that we do not automatically get (1) for a
large class of functions h on R" from (28).
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