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UNTOLD HORRORS OF THE WAITING ROOM: WHAT
THE EQUILIBRIUM DISTRIBUTION WILL NEVER TELL
ABOUT THE QUEUE-LENGTH PROCESS*

WARD WHITT

This paper cautions against using only the equilibrium distribution to describe the behavior
of a queue. It is suggested that fluctuations in the queue-length process should also be
described, for example, by various first-passage-time distributions. The range of possible
fluctuations associated with a given equilibrium queue-length distribution is described for the
GI/M /1 queue. The theory of complete Tchebycheff systems in Karlin and Studden [11] is
applied to construct appropriate extremal distributions, i.e., interarrival-time distributions
having the given equilibrium queue-length distribution and maximum or minimum values of
fluctuation measures such as the relaxation time.

(QUEUES; STOCHASTIC MODELS; APPLIED PROBABILITY)

1. Introduction

It is common to describe the behavior of a queue by giving the mean equilibrium
queue-length or, equivalently (by Little’s formula, L = AW), the mean equilibrium
delay. The variance and /or various tail probabilities of these equilibrium distributions
are also sometimes given, but not as often as they should be considering that the mean
is a notoriously limited description of an entire probability distribution. The primary
purpose of this paper is to point out that even the entire equilibrium distribution may
not be enough. This is trivially true, of course, if equilibrium is never attained, as is the
case with a nonstationary arrival process. However, even when equilibrium is attained,
in general there can be many stochastic processes having the same equilibrium
distribution. In addition to the equilibrium distribution, it is useful to describe the
fluctuations or transient behavior of the stochastic process. This can be done, for
example, with various first-passage times such as the busy period or with the serial
correlations which are revealingly described through the spectral density. The rate at
which the stochastic process approaches steady-state also can be described by the
relaxation time; see Cohen [4]. The transient behavior is important because it can
contribute to the costs and benefits of operating a system. For example, when buffers
are allocated in real time by a central processor, the equilibrium distribution of buffer
content may be used to determine the required number of buffers, but the fluctuations
will determine the load on the central processor for buffer allocation.

We illustrate the limitations of the equilibrium distribution in a simple context: the
GI/M /1 queue. We assume that the equilibrium queue-length distribution is known,
from which we can determine the traffic intensity and thus the arrival rate and service
rate, up to an arbitrary choice of the measurement (time) scale. From the structure of
the GI/M /1 queue, it is then easy to characterize all renewal arrival processes with
this arrival rate and associated equilibrium queue-length distribution. We obtain an
interesting description of this class of interarrival-time distributions by identifying two
extremal distributions. Roughly speaking, one extremal distribution maximizes long-
run fluctuations and the other maximizes short-run fluctuations. We use these extremal
interarrival-time distributions to describe the range of possible values for several
different fluctuations measures.
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396 WARD WHITT

We obtain the extremal distributions by applying the theory of complete
Tchebycheff systems as described in Karlin and Studden [11]. This theory was applied
to provide bounds for partially specified queueing systems by Rolski [20]-[22], Holtz-
man [8], Eckberg [6], Bergman et al. [1], and Whitt [27], [28].

The problem of finding all arrival processes or all queue-length processes associated
with a given equilibrium distribution is an inverse problem. An introduction to inverse
problems is contained in Keller [16]. The general problem of characterizing the class of
Markov transition matrices with a given equilibrium distribution is treated by Karr
[12]. Other stochastic inverse problems are treated in Karr and Pittenger [14], Karr
[13], and references there. Of course, the special structure of the queue restricts the
range of possible transition kernels for the natural Markov chain associated with the
GI/M /1 queue, namely, the sequence of queue-lengths at arrival epochs. It would be
interesting to compare different stochastic models to see how much each restricts the
inverse map.

Before considering the inverse problem for the GI/ M /1 queue, it is appropriate to
mention the contrasting situation with the M /G /1 queue. Unlike the GI/M /1 queue
and more general models, the equilibrium queue-length and delay distributions of the
M/G/1 queue each completely characterizes the arrival and service processes, of
course again up to a scale factor. Moreover, the first K moments of the equilibrium
delay determine the first £ + 1 moments of the service-time distribution and vice versa.
From the equilibrium distribution it is possible to reconstruct the entire model and
then calculate any desired fluctuations in the queue-length process.

This work is closely related to Whitt [25] in which we described an indirect or
inverse method to approximate an unknown arrival process to a queue by using a
partial characterization of the equilibrium queue-length distribution. The present paper
obviously indicates limitations in that approach. However, if the arrival process is
assumed to satisfy additional regularity conditions, then a much smaller class of arrival
processes is possible. The impact of various additional constraints on the interarrival-
time distribution in a GI/M /1 queue, such as shape constraints (e.g., unimodality and
log-convexity), is studied in Klincewicz and Whitt [18] and Whitt [28]. That work
indicates that if the interarrival-time distribution is not irregular then the range of
fluctuations should be reasonably narrow and such two-moment approximation
schemes should work reasonably well. In §3.8 here we examine the possible arrival
processes and possible fluctuations in the queue length process of a GI/M /1 queue
with hyperexponential interarrival-time distributions and a given equilibrium distribu-
tion. Specifying the equilibrium distribution does not pin down the variance of the
interarrival times, so the range of possible behavior is greater than in Klincewicz and
Whitt [18] where the mean and variance are specified in addition to the shape.

In closing this introduction, it is appropriate to point out that there is considerable
literature bearing on the theme of this paper. There are many descriptions of time-
dependent behavior and many examples showing the limitations of equilibrium distri-
butions. A good illustration is a Jackson network of queues. The equilibrium distribu-
tion of queue lengths has the product form as if the service facilities were independent
and all arrival processes were Poisson processes, but the facilities and the associated
queue length processes are not independent and the arrival processes within the
network are in general not Poisson; see Melamed [19]. This is one way in which the
equilibrium distribution does not capture the time-dependent behavior.

The rest of this paper is organized as follows. In §2, to put our work on the GI/ M /1
queue in perspective, we briefly review the results for finite Markov chains. In §3 we
treat the GI/ M /1 queue. We show that the extremal distributions reveal the range of
possible values for various random quantities describing the fluctuations of the
GI/M/1 queue.
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2. Finite Markov Chains

Consider a discrete-time Markov chain with state space {1,2, ..., n}, transition
matrix P, and unique equilibrium distribution (probability vector) a. To understand
the limitations of equilibrium distributions, we are led to ask: (1) What is the set of all
transition matrices P having a given equilibrium distribution «? and (2) How much
can the transient behavior vary over this class of transition matrices? Karr [12] studied
the first question; we review some of what is known about the second.

2.1.  Decomposability and Periodicity

An instructive example is the uniform equilibrium distribution: a = (1/n,
..., 1/n). It is well known that P has a uniform equilibrium distribution if and only
if P is doubly stochastic, i.e., if all the column sums as well as the row sums are one.
The obvious extreme cases (in their behavior and in the convex set of transition
matrices) are the permutation matrices, having a single entry 1 in every row. The
permutation matrices exhibit two kinds of unusual behavior: decomposability (no
transition away from a subset of states) and periodicity. Neither of these phenomena is
revealed by the equilibrium distribution, which is a serious shortcoming. Even if we
assume that P is indecomposable (ergodic) and aperiodic, which occurs if and only if
P" has no zero entries for some n, there can be bizarre behavior primarily because P
may be nearly decomposable or nearly periodic.

ExaMmpLE 1. Consider the two-state chain with P, = P,; = p, 0 < p < 1. For all p,
(1/2,1/2) is an equilibrium distribution. For p = 0, P is decomposable, i.e., P = I; for
p=1, P is periodic. As p varies from 0 to 1, the correlation between X(n) and
X(n + 1) decreases from 1 to — 1, with the correlation being 0 in the independent case:
p=1/2. For p near 0, P is nearly decomposable and, for p near 1, P is nearly
periodic.

2.2. The Spectral Representation

A convenient representation for the k-step transition matrix P* can be obtained if P
is diagonizable,, i.e., if there exists a complete linearly independent family of left (or
right) eigenvectors x associated with the eigenvalues A of P, satisfying xP = Ax. Then
P can be expressed as P = BAB ~! where A is the diagonal matrix of eigenvalues and
P* = BA*B~!. The multiplicity of the eigenvalue 1 indicates the number of ergodic
subsets; the complex roots of unity indicate the periodic structure; and the eigenvalue
with the largest modulus less than one indicates the rate of convergence. The
time-dependent behavior is relatively easy to describe in this manner when the
eigenvectors and eigenvalues are real-valued, which is always the case for time-
reversible chains; see Keilson [15]. This spectral representation also leads to a spectral
density associated with the autocorrelation of the stationary Markov chain; see
Keilson [15, pp. 34 and 118].

Consider Example 1. The eigenvalues are 1 and 1 — 2p. The spectral representation
yields

Pk = +

= N—
N =
Nl— N
= =

}(1 -2p)%,  k>0.

The associated autocorrelation function of the stationary version of the chain is p, =
(1 —2p)*, k > 0. The approach to steady-state is described by |1 — 2p|, which is very
slow when p is near O or 1, i.e., in the nearly decomposable and nearly periodic cases.
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2.3. The Fundamental Matrix

A natural way to look at the time-dependent behavior of a chain with transition
matrix P and equilibrium distribution « is to compare the time-dependent behavior
with some convenient reference chain which also has equilibrium distribution «. The
independent case provides such a convenient reference chain; it has transition matrix
- A with each row of 4 being a. For each pair of states (i, j), we can compare the
expected number of visits in k steps to j starting in i using P and A. For P this
expected value is 3% _ 1P;". For 4, this expected value is ka;. Obviously both expected
values diverge to infinity as k—> oo, but it turns out that the difference always
converges to a finite limit. In matrix form, this limit is Z — 4 where Z is the
fundamental matrix introduced by Kemeny and Snell [17, p. 75]:

oo
Z=(I-P+4)'=3 (P-4~
k=0

The fundamental matrix Z is the basis for simple formulas for the mean and the
variance of the first passage times; see §§4.4 and 4.5 of Kemeny and Snell. The mean
time to return to state j from state j is 1/a;. Since it depends only on the equilibrium
distribution, it does not help describe the time-dependent behavior. However, the

variance of the return time to j, T, is
Var(T;) = (2Z;~ o = 1)/ .

In Example 1,

1,1 1_1

z=| 2 ¥ 2 ) Var(T,)) = Var(T,) = 2 — 2.
11 1,1 )4
2 4 2 4

Note that the return time variance is near 0 in the nearly periodic case (p near 1) and
near oo in the nearly decomposable case (p near 0). In the independent case (p = 1/2)
this variance is 2.

The moment formulas for the first passage times from i to j, i # j, are also available.
In fact, from all the mean first passage times it is possible to reconstruct the transition
matrix P; Theorem 4.4.12(c) of Kemeny and Snell. A useful summary description of
the time-dependent behavior is the mean first passage time to j starting from equilib-
rium, which equals Z; / o;. In Example 1, this equilibrium mean first passage time is
2Z;=1+ 1/2p, which cannot be too small, but can be arbitrarily large as p ap-
proaches 0. The average mean first passage time to j starting in equilibrium, weighting
j by a;, which is just 2;; \Z ., the trace of Z, is another possible summary measure; see
Corollary 4.3.6 of Kemeny and Snell.

3. The GI/M/1 Queue

Consider a GI/ M /1 queue characterized by a nonlattice interarrival-time cdf F and
mean service time p~'. Let A~! be the mean of F and let ¢ be its Laplace—Stieltjes
transform, i.e.,

(5) =f0°°e_”dF(x), 5> 0. (1)

Given y, the equilibrium behavior of this system depends on the interarrival-time cdf F
through two real parameters. The first is the mean A~! or, equivalently, the traffic
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intensity p = A/p, which we assume is less than one; the second is the root ¢, with
0 < o < 1, of the equation

s = (1 = ). ©)
The equilibrium distribution of the continuous-time queue-length process Q(¢) is well
defined (since F is nonlattice) and has the distribution

1—p,

PO=0= 1 1" it

k=0, 3
k 1, ()

A%

with mean EQ = p(1 — 0)~ ! and variance Var Q = p(1 — p + o)(1 — 0)~%; Cohen [4,
§11.3]. From the equilibrium distribution of the discrete-time process { Q, } obtained by
looking at Q(¢) at arrival epochs, we would obtain the root o but not p. Given only o,
much more extreme time-dependent behavior is possible; given ¢ and u, A could still
vary over a wide range.

Assume that the equilibrium distribution (3) is known, from which we extract p and
0. Suppose u is given, by fixing the measurement scale. Then the cdf F is partially
characterized by knowing its mean A ~! and the root o of (2).

3.1.  Extremal Two-Point Distributions

We now define two special interarrival-time distributions having mean A~! and
satisfying (2) with given o. These are two-point distributions that tend to exhibit
extreme fluctuation behavior.

Let & = (m;s,,0;b) be the set of all cdf’s on [0,b], b < o0, having mean m,
and the transform #(s) assuming the value 8 at s = 5,. We now define a partial order
relation on the set % . This partial order relation is apparently not standard, but it
arises naturally in the theory of complete Tchebycheff systems. Let ¢, be the transform
associated with F;.

DerFINITION 1. F, </F, in ¥ (m,;s,,0;b) if ¢,(s) < ¢,(s) for s < s, and ,(s)
> ¢,(s) for s > s,.

The theory of complete Tchebycheff systems yields extremal cdf’s in the space
(7, <o)

DEFINITION 2. (LOWER BOUND). Let F; be the cdf of the two-point distribution
with mass m,/x on x and mass 1 — (m,/x) on 0, where x is the unique positive root to
the equation x = m [l — e~ *°]/(1 — 6).

(UPPER BOUND, b < o0). Let F;, be the cdf of the two-point distribution with mass
p=(b—m)/(b— x)on x and mass 1 — p on b, where x is the unique root to the
equation pe ™+ (1 — p)e o = 4.

(UPPER BOUND, b = o0). Let FU be the cdf of the one-point distribution with unit
mass on (—log8)/s,.

From (5) and (15) of Eckberg [6], we obtain the following result.

THEOREM 1. (i) For b < o, F, and F, belong to ¥ and F, <.F <.Fy for all
Fes. . .
(ii) For b = o0, F, belongs to ¥ (but not Fy) and F, < ,F <,F, for all F € & .

By constructing other complete Tchebycheff systems, we also have
THEOREM 2. For all F € % (with b < oo for the second inequality),
Px*dF, (x) < [ “x*dF(x) < [ “x*dF, 4
JTxtdE(x) < [“x*dF(x) < [ Tx*dFy(x) 4
for all k > 2.
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ReMARKS. (i) Theorem 2 might lead one to conjecture a stronger stochastic
ordering, namely,

s ar ) < [T g(x)aF(x) < [ g(x)dFy () ©)

for all F €. and all nondecreasing convex real-valued functions g on [0, 5], see
Whitt [24] and references there; but to see that (5) fails note that (5) would also hold
for all convex functions since the means are equal, but this is not possible here because
$..(5) > (s) > 9y(s) for s > s,

(if) As b — oo, the lower bound remains unchanged while the upper bound converges
to ﬁU. This limit is not in & (m,;s,,0; ) because the small mass at b has dis-
appeared, causing the mean to cease being m;,.

(iii) The lower bound (possibly also the upper bound) is not quite proper for the
queue because it is a lattice distribution, but a minor perturbation would make it
nonlattice.

3.2. Extremal GI/M /1 Queues

Associated with the extremal distributions F, and F, are GI/M/1 queueing
systems. When the interarrival-time distribution is F, , the queueisa D" /M /1 system,
i.e., there are geometrically-distributed batch arrivals at fixed intervals. When the
interarrival-time distribution is Fy,, the queue alternates between two regimes. For a
geometrically-distributed number of interarrival times, it behaves like a D/M/1
system; then there is an interval of length 5 in which there are no arrivals at all.
Intuitively, it is clear that F; causes greater short-run fluctuations (probability of many
arrivals in a short interval), whereas F;, causes greater long-run fluctuations.

ExampPLE 2. In order to dramatize the range of fluctuations in GI/M /1 systems
with a common equilibrium distribution, we consider a specific example. To have a
basis for comparison, we start with the first prototype interarrival-time distribution
used in Klincewicz and Whitt [18]. This distribution is a mixture of two geometric
distributions on the nonnegative integers, truncated at 20, chosen to have mean m, =2
and squared coefficient of variation ¢? =2 (variance = 8). We let p=0.9 (p=5/9).
In this case, the root is 6 = 0.93238. We use the prototype distribution to generate a
reasonable root 0. We shall not restrict attention to distributions on the integers or
require that 20 be the upper bound of the support. In fact, we shall let the upper
bound be b =100. Hence, we consider the class of all interarrival times in
F (my; w(l — o), 0;b), here being ¥ (2;0.03757,0.93238; 100).

For these parameter values, F, has mass 0.35 on 5.715 and mass 0.65 on 0. The first
three moments of F; are: m;, =2, m;, = 11.43, and m,;, = 65.33; the variance and
squared coefficient of variation are thus o7 = 7.43 and ¢} = 1.86. The geometrically
distributed batch of arrivals in the DV /M /1 system has mean 2.86 and variance 2.45.

For these parameter values, F;, has mass 0.998113 on 1.8147 and mass 0.001887 on
100. The first three moments of F,, are: my, = 2, my, = 22.16, and m ;= 1893; the
variance and squared coefficient of variation are thus o7 = 18.16 and ¢}, = 4.54. The
geometrically-distributed D/M /1 “on” phase has mean 529. The parameters of the
D/M/1 system are p =0.9919 and o = 0.9838. (The overall p and ¢ are unchanged;
these larger values are obtained using the conditional interarrival-time distribution
given that the larger value in the two-point distribution does not occur. In other words,
this is the deterministic interarrival-time distribution obtained by conditioning on
being in an “on” phase.) The mean equilibrium queue length of the D/ M /1 regime is
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thus p/(1 — o) = 61.3. Of course, equilibrium is usually not attained even in the
approximately 500 interarrival times, but this gives some idea of the fluctuations. Note
that the average “on” phase of 529 arrivals is of length 960 time units, about 10 times
the deterministic “off” phase of length 100.

The limiting upper bound cdf F;, has unit mass on 1.8637. The resulting D/M /1
queue has traffic intensity p = 0.9658.

Of course, we have chosen % so that GI/M/1 queues with F,, F,, and F, as
interarrival-time cdf’s all have the same equilibrium distribution, namely, that deter-
mined by p = 0.9 and ¢ = 0.93238. In particular, EQ = 13.3. Note that the equilibrium
mean in the D/ M /1 “on” phase associated with F, is 4.6 times this overall equilib-
rium mean. This can be somewhat misleading, however, since equilibrium is usually
not attained in an on-phase. The equilibrium during an on-phase does help describe
what is going on though if properly interpreted, because the number of customers
served during an on-phase is geometric with a large mean and a very large variance.
Hence, most on-phases will be relatively short or only moderately long, e.g., 500
customers, leading to congestion no greater than described by the overall equilibrium
distribution. (This can be verified by using the heavy-traffic approximation for the
time-dependent distribution with p = 1; see Whitt [23].) However, there will also be
occasional very long on-phases when many customers experience unusual congestion.
This unusual congestion is precisely the on-phase equilibrium distribution described
above.

To see how different F;, and Fy, are, it is instructive (and easy) to look at typical
sample paths of the renewal arrival processes associated with F, and F;,. For GI/M /1
queues with the service rate fixed, a description of the time-dependent behavior of the
arrival process is similar to a description of the time-dependent behavior of the
queue-length process. (The queue-length process will be somewhat smoother due to the
exponential service times.) Good summary descriptions of these different arrival
processes are provided by the number of arrivals in an interval of length ¢ for various
values of t. The distributions of these numbers are given in Table 1 for ¢ = 10, 100,
1,000, and 10,000. For F,, the number of arrivals in [0,¢] is just the sum of
1+ [¢/5.715] iid geometric random variables, where [x] is the integer part of x; for
t > 100, this is approximately normally distributed by the central limit theorem. For
Fy, the number of arrivals is deterministic except for off-phases. For example, for
t =10, there are 1+ [¢/1.8147] = 6 possible arrivals. There are no off-phases with
probability (0.998113)° = 0.9887. If an off-phase is initiated, it is of length 100 and so
extends to the end of the interval.

Notice that for ¢ = 10, the number associated with F, is much more variable than
the number associated with F,,, but this is reversed for ¢ = 10,000. Notice that the
distribution of the number associated with F, rapidly becomes ‘“regular,” ie., it
approaches the normal distribution, being very close for ¢ = 100, but the distribution
of the number associated with F, is not yet close at ¢ = 1000.

To compare the different arrival processes, it is also instructive to remove the
waiting room and compute the blocking probabilities. This will obviously favor the
process with the least short-run fluctuations, which is the arrival process associated
with the upper bound Fj,. Recall that the blocking probability in a GI/M /1 loss
system is just ¢(p), which is also known as the peakedness; see Eckberg [6] and
references there. As an immediate consequence of Theorem 1, we have ¢, (1) > ¢( )
> ¢y(p) > ¢p(p) for all F €5 (my; p(l — 0),0;b). For Example 2, ¢, (u)= 0.66,
¢y () =036, and ¢;(pm)=0.35. Even the equilibrium blocking probability of the
D/M/1 “on” phase associated with F,, is only 0.365. Obviously F;, and F, are
dramatically different in this view.
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TABLE 1

Approximate Probability Distribution of the Number of Arrivals in an Interval Beginning
at an Arrival Epoch: Comparing F; and Fy, for Various Interval Lengths

Length Distribution of Number Distribution of Number
of Interval of Arrivals based on F, of Arrivals Based on Fy,
10 2 w.p.0.123 6 w.p. 0.9887
3 w.p.0.159 I,...,5w.p.~0.002 each
4 w.p. 0.155
5 w.p. 0.134
> 6 w.p. 0.429

(mean 5.72, variance
4.90; obtained by

convoluting two geo-
metric distributions)

100 ~normal (51.5, 44.1) 56 w.p. 0.8996
12, ..., 55 w.p.~ 0.002 each

1,000 ~ normal (501, 429) 552 w.p. 0.353
496 w.p. 0.367
440 w.p. 0.150
others w. total p. 0.130

10,000 ~ normal (5,000, 4,288) ~ normal (5,000, 22,700)

Notes:

(1) In normal (a, b), a is the mean and b is the variance.
(2) w.p. means “with probability.”

(3) ~ means “approximately equal to.”

3.3.  The Busy Period

Let B be the cdf of the busy period in a GI/M /1 queue, i.e., the first-passage time
from state i to state i for any i > 0, beginning just before an arrival. Let ¢5(s) be the
Laplace-Stieltjes transform of B in (1). From Cohen [4, p. 226],

-7
s)= ———m———, > 0, 6
¢5(%) pls+1—n ’ ©

where n = n(s) is the unique root with 0 < n(s) < 1 of the equation
n=¢(s + p(l = m)), (™)

with ¢ being the transform (1) of the interarrival time cdf F. By differentiating (6), we
obtain the first two moments of B:

mgy=1/p(1-0) and (8)
m32=2(p,_l -n'(p(l- 0)))/u(1 - o)% )

The variance can be expressed as
o5 =[1=p¢'(n(1 =) ]/[1+pe'(n(1 = 0)) [ w(1 = 0)" (10)

Note that the mean my, is fixed for a given equilibrium distribution, just as with the
return time in §2.3.

Let B, and By, be the busy-period cdf’s associated with F, and F,,. We can apply
Theorem 1 to obtain the following comparison result.
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THEOREM 3. Let all interarrival times be in & (my; p(l — 6), o; b). Then
(1) ®p, (5) < d5(s5) < ¢5,(5)s s> 0, and
(ii) o5, < 03 < 03 < o5, =(1+7v)/(1—v)p*(1 - o),

where y = —o(logo)/(1 — o).

Proor. From (7), first note that n(s) < o for all s > 0 and then note that n,(s)
> n,(s) for each s if F| <, F, in %, from which (i) follows easily from (6). Finally, (ii)
follows from (10) and Theorem 1 because ¢|(u(l — 0)) > ¢5(u(l — o)) if F, <, F, in
F . It is easy to see the upper bound is attained at F; as b— .

Consider Example 2. There my, = 26.6. Here are the key transform derivatives and
the variances:

op(p(l—0))=—16138,  oF =12,99,
oy (p(l—o0))=—1.6963, o5 =23,89, (11)
op(p(l —0))= —17370, o5, =39,783.

To see the range of possibilities, note that o3 /op = 1.84 and o3,/ 05, = 3.06. To put
these values in perspective, for an M/M /1 queue with p = 0.93238, the mean and
variance of the busy period are 1/u(1 — p)=26.6 and (1 + p)/p*(1 — p)* = 20,250
respectively.

3.4. A Step in the Embedded Random Walk

The discrete-time sequence of queue-lengths just prior to arrivals in a GI/M /1
queue is a random walk with an impenetrable barrier at zero. One way to describe the
fluctuations is to describe the distribution of the individual steps. The step is of course
just one minus the number of potential services generated by a Poisson process with
rate y in an interarrival time. It obviously suffices to focus on the number of potential
services in an interarrival time, which is just the cdf D with transform

¢p(s) =d(u(l —e™)). (12)

It is easy to check that
mp,=p~ ' and mp, = p’m, + pm,. (13)
Moreover, it follows immediately from Theorem 1 that D € ¥ (p~!; —logo,0; )

if D is associated with F € F (m,; p(l — 06),0; ). Hence, if F, < F, in & (m;
p(1 — 6),0;b), then D, <, D, in ¥ {p~!, —logo,a; ) for cdf’s D, associated with F;.
Hence,

D, <:D<.Dy (14)

for all F € & (my; p(1 — 0),0;b) if D, D, and D, are associated with F, F, and F,
respectively. Note, however, that the upper bound Dy, is not the upper bound over all
cdf’s in .7 (p~!, —loga,0; o) because only step cdf’s D associated with interarrival-
time cdf’s F are considered.

In Example 2, 67, = 3.01 and o}, = 6.22. Of course, 67, — 00 as b—> co.

3.5. Covariance Structure

Let Q, be the queue length just prior to the kth arrival, with a superscript L or U to
denote the interarrival-time cdf’s F; and F;,. We first describe the one-step correlation
Cor( Qy, Q1) in light and heavy traffic. We assume the queue is in equilibrium.
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As p—0, the root o of (2) converges to F(0), the probability mass at 0. With the
moment formulas of Cohen [4, p. 210], it is then easy to show that Cor( Q., Qs .1)
converges to F(0) as p—0. Since F, attaches the maximum mass to 0 among all
interarrival-time cdf’s if &, F, yields the maximum one-step correlation as p— 0. Of
course, (CorQY, 0. )—>0 as p—>0.

On the other hand, 6 > 1 and Cor( Q,, Q. ;)1 as p—>1 for all interarrival-time
distributions. We conjecture that F, maximizes and F,, minimizes the one-step
correlation for all values of p, but we have not proved it. We also conjecture that F,
minimizes and F;, maximizes the m-step correlations for very large m. These conjec-
tures are supported but not established by §3.4. It is known that Cor( Qy, Q. ,.) is
decreasing in m for all F; see Bergmann and Stoyan [2] and references there.

A useful summary measure of dependence is the sum S = 3,_,Cor( Q,, Q). Itis
related to the cumulative process {S%=" Q,, n > 1} associated with the stationary
process { Q,, n > 0} by

n
. - 1 —
Jim n Varké:1 Q.= SVar Q,.

This asymptotic average variance is also the normalizing constant in the central limit
theorem, i.e.,

[ 2 0 — nEQ,}/[nSVar(Ql)]l/2=>N(O,1),
k=1

where = denotes convergence in distribution and N(a,b) is the normal distribution
with mean ¢ and variance b; see Iglehart [9] and Billingsley [3, p. 174].

The sum S has been calculated by Daley [5]. From the discussion above, it follows
that S is maximized by F, for very small values of p. In fact,

lim S(p) = 1 + i kF(0)*=1+ (1 — F(0))™2
p=> k=1

In Example 2, this limit is 9.16 for F, and 1 for Fy,.
Daley has also given an expansion for S(p) as p—1 that shows it is maximized
by Fy:

lim (1 — p)’S(p) = 1 + m,/2m?,
p—1

where m; is the ith moment of F. Recall that m, is fixed but m, > m, > m,, for all
F € % . In Example 2, m;, = 11.43 and my,, = 22.16.

3.6. The Relaxation Time

The rate at which the queue-length process approaches equilibrium can be described
by the relaxation time; see Cohen [4, pp. 181 and 589]. For GI/G /1 systems, if Q(¢) is
the queue-length at time 7 with any given initial conditions, then P(Q(¢) > 0) and
EQ(¢) differ from their limits by constant multiples (which depend on the initial
conditions) of a term ¢~%/%~™ (under minor regularity conditions). The crucial
exponential decay rate n is found by solving the equation

Y(E)d(s —§ =1, (15)

where Y(s) is the Laplace—Stieltjes transform of the service-time cdf; here y(s) =
p/(p + s). The parameter — 7 is the unique value of s such that the two real roots £(s)
of (15) coincide. The reciprocal 7! is the relaxation time.
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THEOREM 4. For interarrival times in & (my; p(l — o0),0;b),
' <n<mgl (16)

Proor. From Cohen [4, p. 590], we obtain 5 by solving
log ¥(£) = log(1/¢(s — §)) = —log(¢(s — §)) (17)

and the corresponding equation after taking derivatives of both sides of (17) with
respect to &, i.e.,

¥(s)  #(—b
) - =9 (%)

for (s,£€); then n = —s. As noted by Cohen, log¥(£) is decreasing and convex and
—log(e(s — £)) is decreasing and concave within the relevant interval. It is thus easy to
see that a solution (s, £) always satisfies £ < s < 0; see Figure 1.

Let ¢ correspond to F in % . By Definition 1, ¢, (s) < ¢(s) < ¢y (s) for 0 < s < s
= (1l — o). Consequently,

—logoy (s —§) < —logd(s — &) < —logo, (s — §)

for 0 < s — £ < p(l — o). Hence, it suffices to show that the solution (s,,&,) to (17)
and (18) for ¢, satisfies s, — &, < p(l — o0). See Figure 1. In other words, as s is
increased form — oo, the curve —loge, (s — &) will hit the curve log ¥(§) before the
curves —logep(s —§) and —logo (s —§) for £ < s — u(l — o). Hence, if the curve
~log ¢y, (s — §) hits the curve log ¥(§) first as s increases at (s,§,) with &, > s, —
p(1 — o), then necessarily s; < s < s,,, which is equivalent to (16).

LoG ¥(&)

- LOG Py (s-€)

—LOG ¢|_(S—€)

FIGURE 1. The Relaxation-Time Equations: Displaying the Solution for n,, = |5,
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We now show that s;, — &, < p(l — 0). We solve (17) and (18) with log ¥ (%) =
log p—log(p + &) and —logo, (s — &) = (s — &)z for z = —(logo)/u(1 — o); see Defi-
nition 2. From (17), we have

log p — log(p + &) = (s — §)z. (19)
After taking derivative in (19) with respect to £, we have —(p +§)~!'= —z or
E=z""—p (20)

Putting (20) into (19), we obtain

log p — log(z™")
§= " .

s —

Hence, it suffices to show that
log p+logz < p(l —o0)z or
log p + log(—logo) —log u — log(1 — 0) < —logo or
o~ < el=9/0
which is easily seen to hold for 0 < o < 1 (compare the derivatives).
3.7. Maximum Queue Length

Extreme values are a natural way to describe sample path variation. Let M(s,?)
=max{ Q(u):s <u< s+ ¢t} for 5,1 >0. As t > 00, M(s,t)—> oo even though p < 1.
There are extreme value limit theorems showing that M(s, ) grows like log ¢ as t > oo;
see Cohen [4, p. 615], Heyde [7], Iglehart [10] and references there. What is important
here is that the constants in the limits depend on the queue-length process only
through the equilibrium distribution. For regenerative processes, therefore, the ex-
tremes over very long time intervals only describe the tails of the equilibrium
distribution.

However, if we look at the maximum over n busy cycles, i.e., M(s,C, + - - - + C,)
where C; is the ith busy cycle, then the variation in the busy period (§3.3) causes the
time-dependent behavior to matter; Cohen [4, p. 617]: As k> o,

(—logo)M(s,C + - - - + C,) — log(ny)

fails to converge in distribution as n = co, but the distributions have proper upper and
lower bounds as n—> oo, with y = ud'(u(l — 06)) + 1. As shown in the proof of
Theorem 3, v, <y <y, for all F € % . The derivatives are given for Example 2
in (11).

More striking differences in extreme values are seen if we fix ¢ in M(s,?) and
consider M (s, 1) = max{M(u,£):0 < u < s}. For any fixed #, M, (s,1)> o0 as s > 0,
but M (s, )= 1 + [t/ x], where x is the root in Definition 2 and [x] is the integer part
of x. This is another way to look at Table 1.

3.8. Hyperexponential Interarrival-Time Distributions

It is interesting to see what happens if, in addition to fixing the parameters ¢ and p
in the GI/M/1 queue, we stipulate that the interarrival-time distribution is
hyperexponential, i.e., the mixture of two exponential distributions, having density

h(x)=gqh\e ™ + (1 —q)e™™, x>0, (21)

for 0< g <1and A; > A > A, > 0. This distribution is often used in approximations;
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see Whitt [25], [26] and references there. Since this distribution is unimodal with a
mode at 0 and has a log-convex density, this distributional assumption is very strong
and can be expected to strongly restrict the possible fluctuation behavior.

Knowledge of p,s and a service rate p gives us A and the constraints

1
}\—1 }\2 X and (22)

R U ).
p(l=0)+A;  p(l—0)+A,

(23)

Since we have three parameters and two constraints, we have a one-parameter family
of hyperexponential distributions. The distributions with g near 0 and 1 obviously
indicate the range of possible fluctuations.

As ¢—>0, A\; > and A,—>A. The extremal arrival process is approximately a
Poisson process at rate A with geometrically distributed batches of size only rarely
more than one. This is the analog of F,; instead of D"/M /1 queue, we obtain an
M" /M /1 queue which is essentially the same as an M /M /1 queue with intensity p.

On the other hand, as ¢g—>1, A, > po and A,—>0. The extremal arrival process
alternates between two regimes; for a large geometrically distributed number of
customers there is an “on” phase during which the arrival process is a Poisson process
at rate po; and there is a rare exponentially distributed “off” phase during which there
are no arrivals at all. This is the analog of F,; instead of a D/M /1 queue during the
“on” phase, we obtain an M/M/1 queue with intensity o. Since ¢ >p for
hyperexponential distributions, the equilibrium mean queue length during the “on”
phase associated with g—1 is strictly greater than the equilibrium mean associated
with ¢ —0.

It is not difficult to show that the distributions associated with extremal g are
actually extremal in the ordering <,. As in Whitt [28], we can apply the theory of
complete Tchebycheff systems to the mixing distributions to obtain

THEOREM 5. The mixture of two exponential distributions with A, = b and q small
(A, = a and q large) determined by (22) and (23) is minimal (maximal) in the ordering
<1 among all mixtures of exponential distributions with parameters \, in the interval [a, b]
having a given mean and root o.

ExampLE 3. As in Example 2, consider arrival processes partially specified by
having mean m, = 2, traffic intensity p = 0.9 (p = 5/9) and the key root o = 0.93238.
However, here restrict attention to mixtures of exponential distributions. Suppose the
exponential parameter A is restricted to the interval [0.01,100], so that exponential
distributions with mean A ~! ranging from 0.01 to 100 are allowed in the mixtures. Of
course, the actual distributions are unbounded above so this case is not directly
comparable to Example 2.

With these parameter values, the lower bound cdf has g = 0.99275, A, = 0.778 and
A, =0.01; the variance of the associated busy period is 3493 and the blocking
probability of the associated GI/M /1 loss system if ¢(u) = 0.579. The upper bound
cdf has ¢ =0.01735, A, = 100 and A, = 0.4914; the variance of the associated busy
period is 33,685 and the blocking probability of the associated GI/M /1 loss system is
¢( ) = 0.478. To put the busy period variances in perspective, the corresponding busy
period variances for M /M /1 queue with p = 0.9 and 0.93238 are 6150 and 20,250,
respectively.

IThe author is grateful to Shlomo Halfin, Moshe Segal, and the referees for their helpful suggestions.
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