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WITH LEVY INPUT
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Abstract

We apply the general theory of stochastic integration to identify a martingale
associated with a Lévy process modified by the addition of a secondary process of
bounded variation on every finite interval. This martingale can be applied to queues
and related stochastic storage models driven by a Lévy process. For example, we
have applied this martingale to derive the (non-product-form) steady-state distribu-
tion of a two-node tandem storage network with Lévy input and deterministic linear
fluid flow out of the nodes.
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STORAGE MODELS

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60J30
SECONDARY 60K25, 60K30

1. Introduction

In Kella and Whitt (1991) we established stochastic decomposition results for the
steady-state distribution of queues with server vacations by characterizing the steady-
state distribution of a Lévy process with secondary jump input. We obtained these
results by identifying an appropriate martingale; see Theorem 3.1 of Kella and Whitt
(1991). In this paper we extend the martingale representation and provide a shorter
proof based on the general theory of stochastic integration, as in Dellacherie and Meyer
(1978), (1982), Jacod and Shiryaev (1987), Lipster and Shiryaev (1986), Métivier
(1982), Protter (1990), Rogers and Williams (1987) and others. This general theory gives
us a convenient way to obtain (local) martingales from initial (local) martingales by
integrating a ‘nice enough’ (predictable) process with respect to it and applying the
generalized It6 and integration-by-parts formulae. The extension involves replacing the
secondary jump input in Kella and Whitt (1991) by a right-continuous process of
bounded variation on every finite interval. This extension was motivated by (and is
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applied to analyze) a tandem fluid network with Lévy input in Kella and Whitt (1992).
In particular, in Kella and Whitt (1992) we apply the martingale derived here to
determine the steady-state distribution of a two-node tandem network (which is not
product-form). We believe that it will have other applications. Another example that
goes beyond Kella and Whitt (1991) is a model of a dam in Section 4(e) here. For
other applications of martingale theory to storage and queueing theory see, among
others, Baccelli and Makowski (1989a, b), Brémaud (1981), Harrison (1985) and
Rosenkrantz (1983).

The rest of this paper is organized as follows. We give background on Lévy processes
in Section 2; we establish the main results in Section 3; and we discuss applications in
Section 4.

2. Background on Lévy processes

In this section we review basic facts about Lévy processes and associated martingales.
For additional background, see Bingham (1975), Breiman (1968), Fristedt (1974), Jacod
and Shiryaev (1987), Prabhu (1980), Protter (1990) and others.

We begin with an underlying filtered probability space (Q, #, P, {# |t = 0}). The
filtration {#, | t Z 0} is an increasing family of o-fields, i.e. it satisfies & C & C & for
all 0 < s <t. We assume that the filtration is standard or satisfies the usual conditions,
i.e. it is right-continuous and augmented. By a Lévy process (understood to be with
respect to {% |t = 0}), we mean a process {X, |t = 0} which is continuous in prob-
ability; with X, =0 and X,,, — X, independent of & and distributed like X; for every
non-negative s, ¢ (stationary independent increments). Without loss of generality
(e.g. see p. 21 of Protter (1990) or Fristedt (1974)) we take the cadlag (right-con-
tinuous left-limit) strong Markov version; hence, from now on whenever the term Lévy
process is mentioned, we mean the cadlag version. Given the centering function
h(x) = sgn(x)(min(| x|, 1)), let 4(-) denote the (unique) associated Lévy measure, i.c.
u(+) is such that

2
w(a)=log E exp(iaX,) = ica — fz-a 24 (expliax) — 1 — iah(x))u(dx),

(— 0,)

W= 0, = DU, o) <0, u(ON=0 and [ xu(dn)<w.

The function y/(-) is called the exponent of the Lévy process and we have E exp(iaX,) =
exp(ty(a)) for all £ = 0.
The following are some known results about Lévy processes:

@) If (X, |t = 0} is a Lévy process with bounded jumps, then E | X;|" < oo for every
nz0.

(ii)) Any Lévy process {X, |t = 0} can be decomposed into two independent Lévy
processes {Y, |t =0} and {Z, |t = 0}, i.e. X, =Y, + Z, for all ¢ = 0, where the former
has bounded jumps and the latter is an independent difference of compound Poisson
processes.



398 OFFER KELLA AND WARD WHITT

(iii) Any Lévy process {X, | ¢ = 0} can be decomposed into an independent sum of a
Brownian motion (possibly with drift) and another Lévy process (this is not saying
much). When the Lévy measure satisfies the condition j[_ L] | x | u(dx) < o, this second
process can be taken to be a difference of driftless subordinators (non-decreasing pure-
jump Lévy processes).

@iv) If u(( — o0, 0)) = 0, then the Lévy process has no negative jumps. In this case
the Laplace-Stieltjes transform exists and is given by FE exp(— aX,)=exp(tp())
where

2
p(a)=log Eexp(—aX))= —ca+ %a2+ fo (exp(— ax) — 1 + ah(x))u(dx).
(0,0)

In this case ¢(-) is called the exponent as well and it is easy to check that ¢(0) = 0 and
@(+)is convex. If {X, | ¢ = 0} is not a subordinator then P(X, <0) > 0, so that ¢(a) =~
as a— oo. Whenever EX, <0, ¢(-) is strictly increasing on [0, o).

It is easy to check that exp[iaX, — w(a)t] and, for the case of no negative jumps,
exp[ — aX, — p(a)t] are martingales. Often these are referred to as Wald martingales.
For a Lévy process with no negative jumps and EX; <0, we let ¢ ~!(-) be the inverse
function of the (Laplace-Stieltjes) exponent ¢(-), then exp[ — ¢~ !(B)X, —Bt] is a
martingale for every > 0. Denote by 7% =inf{t | X, = — a}. Then Doob’s optional
sampling theorem implies that for every : >0, E exp(— ¢ ~'(8)Xge,, — B(T® A 1)) = 1.
The strong law of large numbers implies that

X,

1 »
—==3Y Xk —Xi—)—EX, as.asn—oo.
n Nk=1

Since EX, <0, X, — — o a.s. as n — oo, which implies that P(7* < o) = 1. Also note
that
exp(— ¢ ~'(B)Xrer, — B(T? A1) = exp(p~'(B)a)

for every t>0. Hence, by the bounded convergence theorem and the fact that

X« = —a, we obtain the well-known result that the Laplace-Stieltjes transform of
T° is given by
(0)) Eexp(— pT*) = exp(— ¢~ '(B)a);

see Bingham (1975) for a proof using the Wiener-Hopf factorization. By differentiation,
(1) implies that

a a

a — =1y, = =
@ ET*=a(p™ YO = o =—p

(Although it is tempting to use the martingale X, — tEX, to obtain Equation (2), it is
not clear how to justify EX;,,—~ EX« = — a without adding unnecessary extra con-
ditions.)
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If we take any non-negative random variable U which is independent of the Lévy
process and define TV = inf{¢ | X, = — U}, then by conditioning and unconditioning
we obtain

EU

—_ ATV = — - U _
Eexp(—pTY)=Eexp(—¢~'(B)U), ET"=— EX.

Note that for the M/G/1 queue, if Uis distributed as a service time, then T is the busy
period; moreover if the arrival rate is A, then ¢(a) =a— A(1 — E exp(— aU)).
(See Prabhu (1980) for the ‘Lévy’ approach to treating the M/G/1 queue, and see
Rosenkrantz (1983) and Baccelli and Makowski (1989a,b) for related martingale

arguments.)

3. The main results

Here we identify a useful martingale and exhibit some of the consequences. First, for
an adapted cadlag process {Y, |t =0}, let AY, =Y, — Y,_ where Y,_ =lim,,, Y,, with
the convention that AY, = Y,. Also we use the notation (recalling that a cadlag process
can have only countably many points of discontinuity), ¥f =Y, — 2y, <, AY,, ie.
{Y7 |t = 0} is a continuous adapted process with ¥ = 0 and is of bounded variation on
finite intervals.

Theorem 1. Let {X,|t =0} be a Lévy process with (Fourier-Stieltjes) exponent
w(-), let {Y, |t =0} be an adapted cadlag process of bounded variation on finite
intervals, and let Z, = X, + Y,. Then

M,=y(e) fo ' exp(iaZ,)ds + expliaYy) — expliaZ)) + ia fo ‘expliaZ )dY ¢

3 + X exp(iaZ)(1 — exp(— iaAY,))

0<sst

is a local martingale. If, in addition, the expected variation of {Y7 |¢ =0} and the
expected number of jumps of {Y,|t= 0} are finite on every finite interval, then
{M, |t = 0} is in fact a martingale.

Proof. Consider the (complex-valued) martingale N, = exp(iaX, — w(a)t) and the
process B, = exp(iaY, + w(a)t). Applying the integration-by-parts formula (see Protter
(1990), p. 60, Corollary 2) to the real and imaginary parts gives

N,B,=NoBo+f N, _dB,+ [ B_dN,+ ¥ ANAB,.
0,] ©,1)

0<sst

(The rightmost expression on the right side is valid since the real and imaginary parts of
{B,|t =0} are of bounded variation on bounded intervals.) Since | o ANdB, =
Zo<ss: AN,AB,, we have that

@) [ B an,= f N.dB, + NoBy — N,B,
0,¢] (4]
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(note N,, rather than N, _, on the right side). Since {N, |t = 0} is a martingale, the left
and, hence, the right side of Equation (4) is a local martingale (apply Theorem 29 of
Protter (1990), p. 142, to the real and imaginary parts separately). It suffices to identify
the right side of Equation (4) with M, (Equation (3)). This is done by observing (again,
treating the real and imaginary parts separately) that, for 0 <s =1¢,

(5) dB, = y(a)B,ds + iaB,dY¢ + B,(1 — exp( — iaAY))).

(Note that the differential in (5) is of the Lebesgue-Stieltjes type and is defined path by
path.) If, on every finite interval, {Y¢ |z =0} has finite expected variation and
{Y, |t 2 0} has finite expected number of jumps, then E sup,<;,<, | M, | < o for every
finite . Hence, by dominated convergence (e.g. Protter (1990), p. 35, Theorem 47), M, is
a martingale.

Remark. As pointed out by a referee, it is also possible to obtain this result using the
theory of semimartingale exponential characteristics (see Jacod and Shiryaev (1987),
Lipster and Shiryaev (1986), Métivier (1982) and more). For those who are familiar with
this theory, it should be noted that the local martingale in Equation (3) is not quite the
exponential local martingale associated with the predictable characteristic of Z =
X + Y. The reason is that the rightmost term is an expression involving the random
measure associated with the jumps of the process, rather than its predictable com-
pensator.

The following is the ‘Laplace-Stieltjes’ version of Theorem 1. Since the derivation is
identical, we state it without proof.

Theorem 2. Let {X,|t=0} be a Lévy process with no negative jumps with
(Laplace-Stieltjes) exponent ¢(-); let {Y, |t =0} be an adapted cadlag process of
bounded variation on finite intervals, and let Z, = X, + Y,. Then

M, = p(a) J: exp(—aZ,)ds +exp(—aYy) —exp(—aZ)—a folexp( —aZ)dY¢

+ ¥ exp(—aZ)(1 —exp(aAY)))

0<s=t

is a local martingale. If, in addition, the expected variation of {¥? |t =0} and the
expected number of jumps of {Y,|z =0} are finite on every finite interval and
{Z, | t = 0} is a non-negative process (alternatively, bounded below), then {M, |t =0}is
in fact a martingale.

Remark. It should be observed that the assumption in Theorem 2 that {Z, | ¢ = 0} is
a non-negative process implies that

(6) Z,—AY. z2Z —AZ =Z,_=0.

The first inequality in (6) holds because {Z, | ¢ = 0} has no negative jumps.
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4. Applications

In this section we give a few examples of some known results which are simple
consequences of Theorems 1 and 2.

(a) Consider a generalization of the virtual waiting time in an M/G/1 queue, which is
a reflected Lévy process with no negative jumps. More precisely, if {X, |t =0} is a
Lévy process with no negative jumps and /, = —inf{X, |0 <s <t}, then Z, = X, + I,
is our reflected Lévy process. If we let T? =inf{t|X,= —na} for some a>0
and N? =sup{n|T¢? <t}, then {N?|t=0} is a renewal counting process, so that
EN? <o for every t =0 (e.g. pp. 181-182 of Karlin and Taylor (1975)). Since
I, = a(N? + 1), EI, < o0. Since the points of increase of /, are contained in the (random)
set {t|Z,=0} and {Z, |t =0} is a non-negative process, we have from Theorem 2
(Ye=Y =) that

t
M, = ¢p(a) f exp(—aZ)ds + 1 —exp(—aZ,) — al,
0

is a martingale. For the case EX, <0, the process {Z, | t = 0} is regenerative when T?is a
regeneration epoch. Unless X, is non-random, the distribution of 7¢ is non-arithmetic (as
may be verified directly from its characteristic function which may be obtained through
analytic continuation of Equation (1)). Applying Doob’s optional sampling theorem to
the bounded stopping times min(7%, ¢), letting ¢t — oo and applying monotone and
bounded convergence theorems, we immediately obtain that

ap’(0)
9(a)

(note that ¢’(0) = — EX,). Hence the Laplace-Stieltjes transform of the limiting (and
stationary) distribution is given by the above generalized Pollaczek-Khinchine formula
(for the non-random case this result is a triviality). A special case is, of course, the M/G/1
queue with arrival rate 4, service times S; distributed as S and p = AES; then ¢(a) =
a—A(l — Eexp(—aS)) and ¢’(0) =1 —p.

1
ET*

Te
E f exp(— aZ,)ds =
0

(b) Part (a) can be modified to cover the case in which the process does not start at 0. If
we let IV =max(l, — U,0) and ZV = U + X, + IV = X, + max(l,, U) where U = 0 and
is independent of {X, | ¢ = 0} (alternatively, U € %), then

M, =¢(a) fo "exp(— (@Z{ + BI))ds + exp(— aU) — exp(— («Z + BI))

— — BRIV
—(@+p) 1 exp; BI’)

is a martingale. Applying expected values one obtains a (deterministic) integral equa-
tion, which upon inversion gives
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E exp(— (aZ? + BIY))

Eexp(—aU) — (a+ B) fo " exp( — p(a)s)d (

1 — Eexp(— ﬂl,”))
B

exp( — p(a)t) ’

which immediately leads to the results on pp. 76-77 of Prabhu (1980). (There the proof
is restricted to the case in which I, has a density, which is the case if there is no Brownian
component and j'(o'“ xu(dx) < oo, a restriction which we do not make.)

(c) Let T, be a strictly increasing sequence of stopping times with T,=0and T, =~ «
with probability 1. Let U, be %, - measurable (knowledge of U, is determined only by the
information gathered up to the stopping time T,). Let N, = sup{n | T,, < t}. Finally, let
Y,==¥,U,and Z, = X, + Y,. Then (Y, |t 2 0} is adapted, of bounded variation on
every finite interval, and Y =0 for all £ = 0. If EN, < oo, then by Theorem 1 (and a
trivial manipulation),

t Nl
M, =y(a) f exp(iaZ,)ds + 1 —exp(iaZ,)— ¥ (exp(i(Z1,— U,)) — expliaZr,))
0 n=0
is a martingale. This was demonstrated directly, without the use of stochastic calculus, in
Kella and Whitt (1991). This martingale was used to characterize the steady-state
distribution of {Z, | ¢ = 0}.

(d) In addition to the setup in (c), assume that {X, | =0} has no negative jumps,
U,z0forall n=0 and Z, = X, + Y, + L,, where L, = max( — infy<,<,(X; + Y), 0).
Since L, = I, (where I, is defined in part (a)), EL, < co. If in addition we assume once
again that EN, < o for all ¢ = 0, we have that

t
M, = ¢(a) f exp(—aZ)ds + 1 —exp(—aZ) —aL,
0
Nl
- 20 (exp( — «(Zy, — U,)) — exp(— aZy,))
n=
is a martingale. This case was also treated in Kella and Whitt (1991) directly.

(e) The following is a dam model. Let X, be a subordinator (non-decreasing Lévy
process), r(+) a non-negative function and Z, = Z, + X, — j; r(Z,)ds, where Z,E %, If
E sup{r(Z;,) | 0=s=t}<ooforeveryt =0 (e.g. r(-) is bounded), then

M, = p(a) L "exp(— aZ,)ds + exp( — aZg) — exp( — aZ)
+a J: r(Z,)exp( — aZ,)ds

is a martingale. Note that in this case it is more natural to take @(-) = — ¢(-) as the
exponent, rather than ¢(-) itself. For example, one consequence is that if the (Markov)
process is stationary, then taking expected values immediately gives
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@) ?(a)E exp( — aZ) = aEr(Z)exp(— aZ)

where Z has the stationary distribution. In fact, Equation (7) characterizes the stationary
distribution if it exists (see for example Equations (3.7) and (3.8) on p. 291 of Asmussen
(1987) and discussion there).
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