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We propose a new estimator of steady-state blocking probabilities for simulations of stochastic loss models that can be much more
efficient than the natural estimator (ratio of losses to arrivals). The proposed estimator is a convex combination of the natural
estimator and an indirect estimator based on the average number of customers in sexvice, obtained from Little’s law (L = AW). Tt
exploits the known offered load (product of the arrival rate and the mean service time). The variance reduction is dramatic when the
blocking probability is high and the service times are highly variable. The advantage of the combination estimator in this regime is
partly due to the indirect estimator, which itself is much more efficient than the natural estimator in this regime, and partly due to
strong correlation (most often negative) between the natural and indirect estimators. In general, when the variances of two
component estimators are very different, the variance reduction from the optimal convex combination is about 1 ~ p?, where p is the
correlation between the component estimators. For loss models, the variances of the natural and indirect estimators are very
different under both light and heavy loads. The combination estimator is effective for estimating multiple blocking probabilities in
loss networks with multiple traffic classes, some of which are in normal loading while others are in light and heavy loading, because

the combination estimator does at least as well as either component estimator, and it provides improvement as well.

his paper proposes a method for reducing variance in

the estimation of blocking probabilities in simulations
of stochastic loss models. A stochastic loss model has one
or more arrival processes, modeled as stochastic processes,
and has the property that not all of these arrivals are
admitted. We are interested in a long-run-average or
steady-state blocking probability, i.e., the long-run propor-
tion of arrivals from one arrival process that are not admit-
ted. The mathematical mode! is quite general: We assume
that admitted arrivals each eventually spend some random
time in service, possibly after waiting, and then depart.
Otherwise, we assume only appropriate long-run averages
exist; see (1)—(5) below. In particular, there are no Markov
or independence assumptions; very general dependence is
allowed among interarrival times and service times.

The allowed model generality means that the model can
be a complex loss network or resource-sharing model, per-
haps with alternative routing, such as a model of a commu-
nication network; see Ross (1995). Simulations of large
complex loss networks can be very time consuming, often
requiring hours or more. Thus, effective variance reduction
methods can be very useful.

We propose an easily implemented estimator for block-
ing probabilities that can be remarkably efficient compared

to the natural estimator (ratio of losses to arrivals). By
“efficient” we mean low variance for given run length or,
equivalently, short run length for given variance. The new
estimator is a convex combination of the natural estimator
and an indirect estimator based on the average number of
customers in service, obtained from Little’s law (L = AW).

It turns out that the improvement over the natural esti-
mator provided by the proposed method is especially dra-
matic when the holding times are highly variable and the
blocking probability is relatively high. This is a practically
important case for communication networks because, first,
multiple services (e.g., voice and computer lines) lead to
highly variable holding times, and second, interest in sys-
tem response to failures leads to considering scenarios
with relatively high blocking probabilities. Of course, the
response to short-lived failures requires transient analysis,
butt since serious link failures in telecommunications net-
works, such as are caused by backhoe accidents, persist for
a substantial time compared to call holding times, there is
serious interest in the steady-state behavior in the pres-
ence of failures. Since continued reliable service is desired,
effort is made to provide satisfactory service even in the
presence of failures. Hénce, simulation experiments are
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frequently conducted to estimate steady-state blocking
probabilities under relatively heavy loads.

The proposed procedure is also effective for complex
loss networks with multiple traffic classes, some of which
are in normal loading while others are in light and heavy
loading. The new combination estimator tends to be close
to the appropriate component estimator, depending on the
loading, and provides improvement as well. The combina-
tion estimator would be useful even if it only selected the
better component estimator, because their efficiency differs
dramatically in light and heavy loading.

There is a substantial literature on variance reduction,
as can be seen from Bratley et al. (1987, Chapters 2 and 8).
Fleming et al. (1995) also treat a class of loss models and
achieve spectacular variance reduction in many cases by
combining control variates and importance sampling.

1. ALTERNATIVE ESTIMATORS

We consider a general system to which arrivals come ac-
cording to some stochastic process {A(f) : ¢ = 0}, i.e., A(?)
records the number of arrivals in the interval [0, ¢]. Some
of these arrivals are admitted to the system, after which
they stay for a random time and then depart; while other
arrivals are blocked and lost. Let {L(z) : + = 0} be the
stochastic process representing losses, i.e., L(¢) is the num-
ber of losses in the interval [0, ¢]. Admitted customers may
initially wait before beginning service, but they eventually
enter service and then depart. Let {S, : » = 1} be the
successive service times of the admitted calls. Let N(¢) and
W(t) represent the number of customers in service and
waiting, respectively, at time f.

We make no detailed stochastic modeling assumptions,
such as independence or Markov assumptions. We assume
only that

tTUA() — A ast— o, 4

L(t)/A(t) >B ast— oo, (2)

S+ +SMYn—=>pn"! asn->x, (3)
!

ﬁ(t)Et‘IJ Nw)du—n ast—o, 4)
0

and

—I/Z(—t)——ao ast —> w, 3)

t

all with probability 1 (w.p.1), where A, B, u~! and # are
positive finite real numbers. Equations (1) and (2) to-
gether imply that L(£)/¢t — AB as £ — « w.p.1 as well. The
limits A, B, w™* and # in (1), (2), (3), and (4) are the
arrival rate, the (long-run-average or steady-state) block-
ing probability, the mean service time and the long-run-
average or steady-state number of customers in service,
respectively. Condition (5) implies that the long-run rate
of customers entering service equals the long-run rate of
admitted customers, A(1 — B). Condition (5) is clearly
satisfied by the classical G/G/s/k model with s servers and

k (finite) extra waiting spaces, but it is also satisfied for
other models. For example, the number of available serv-
ers could be random. There need not even be separate
identifiable servers for each customer. Alternatively, ser-
vice might be completed in several stages at separate
facilities.

The point is that the framework provided by Equations
(1)-(5) is very general, so the proposed estimation proce-
dure is widely applicable. Of course, wide applicability
does not imply that the proposed estimation procedure is
necessarily effective in reducing variance. However, it is
our experience that the method is indeed effective for
many parameter settings in many models.

In this setting our goal is to estimate the blocking prob-
ability B by simulation. The natural estimator is

By(t) = L(1)/A(). (6)

By (2), B is the limit of By(¢) as t — o, so that the natural
estimator is consistent. However, since the natural estima-
tor is the ratio of two random quantities, it is a ratio esti-
mator. Ratio estimators have some complications; e.g., in
general they are biased: If the processes {L{?) : ¢t = 0}
and {4(?) : ¢t = 0} have stationary increments, then EL(t)/
EA(f) = B for each ¢, but in general EBy(1) + B.

An estimator closely related to the natural estimator,
which we call the simple estimator, is

Byt =52, )

where A is the arrival rate in (1). Assuming that the process
{A(#) : t = 0} has stationary increments, A = EA(1).
Assuming that the process {L(¢) : ¢ = 0} has stationary
increments, the simple estimator B(¢) is unbiased for each
t: EB(f) = EL(1))A = B. Thus, the simple estimator
might seem preferable to the natural estimator, but in
Srikant and Whitt (1996) (hereafter referred to as SW) we
showed, through examples and theory (Section 7 of that
paper), that the simple and natural estimators tend to be
nearly identical for large samples (in actual value as well as
in distribution).

In this paper we propose an alternative estimator that in

some circurnstances has significantly lower variance and is
nearly as easy to construct. Our starting point is the indi-
rect estimator
R Ale)
Bin=1--2>, (8)
where o = A/u is the offered Joad and A(f) is as in (4). The
indirect estimator B,(¢) requires that we know the param-
eters A and w %, which is usually the case in simulations.
(There are exceptions. For example, we would not know A
if the arrival process of interest itself comes from overflows
from another system with unknown blocking probability.
This presumes that we are interested in the proportion of
these overflows that are subsequently blocked. We would
not know w1 if the service time included some unknown
random waiting time.)
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The indirect estimator also requires that we record the
statistic A(z), but that is usually not difficult to do. The
indirect estimator is obtained from Little’s law (L = AW);
if A, B, ™! and n are the limits in (1)—(4), then the
relation L = AW applied to the service facility (but not the
waiting room if there is any) yields A(1 — B)p™" = n or,
equivalently, B = 1 — (n/a), from which we obtain (8); see
Whitt (1991, 1992).

Indirect estimation of queueing quantities by Little’s law
was studied by Law (1975), Carson and Law (1980), and
Glynn and Whitt (1989), but they did not focus on loss
models. SW studied the performance of the estimators
B,(t) and B (f), and showed that B,() tends to be much
more (less) efficient than BN(t) in heavy (light) loading.
The advantage of B,(t) over By(?) in heavy loading is much
more dramatic than the previous results for indirect esti-
mators for delay models; e.g., the variance reduction might
be by a factor of 1000 or more (¢.g., see the case y = +6.0
in Table 1 of SW).

QOur proposed estimator is the combination estimator

Be(t) =pBy() + (1 - p)Bi(1), (9)

where p is appropriately chosen to reduce variance (see
§2). The idea behind the combination estimator in (9) is
the observation that B,(f) is decreasing in A(t), while B B (1)
should tend to be increasing in A(£), so that B,(¢) and By(f)
should be negatively correlated. We prove a supporting
covariance inequality for a class of GI/GI/s/0 models (hav-
ing s servers, no extra waiting room and independent se-
quences of i.i.d. interarrival times and holding times) in §7,
but the ordering is intuitively reasonable in general.

The general idea that variance can be reduced by com-
bining different estimators as in (9) is well known, e.g., see
Bratley et al. (1987, p. 63). However, it was not apparent
that the combination estimator in (9) can provide truly
significant improvement for loss models, as is demon-
strated by our examples in §4. In the best case in our
examples of GI/GI/s/0 models with s = 100, the variance
ratio is Var By(t)/Var B.(t) ~ 1800 (see Table 1). Only
part of this benefit would be achieved by the indirect esti-
mator alone; in this case Var By(£)/Var B,(f) ~ 200. The
variance ratio of 1800 means that the run length for the
combined estimator Bc(t) could be about 1800 times
shorter than the run length for the natural estimator By(?)
in order to produce the same statistical precision. That
variance reduction would reduce a 30-minute run to less
than one second.

We show that the variance reduction provided by the
indirect and combination estimators is even greater when
we add a finite waiting room. If a waiting room of size 100
is added to the GI/GI/s/0 model with s = 100, then the
variance reduction in the best case jumps from 10% to 10°
or more; see §4.4. The advantage of the waiting room
should be evident, because then the mean occupancy 7()
is even less variable. (Recall that 7i(¢) is the average num-
ber of customers in service, not the average number of
customers in the system.)
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However, it turns out that the benefit of the combina-
tion estimator is not uniform in the model parameters,
The combination estimator tends to provide dramatic im-
provement under heavy loads, significant improvement un-
der normal loads, and moderate improvement under light
loads. We show that the performance of the combination
estimator can be explained by the variance ratio > = Var
BAt)/Var By(f) and the correlation p = Corr(B,(t), By(1)).
In §2 we show that, in general, the variance reduction of a
combination estimator is about 1 — p® when the variance
ratio * is either very large or very small. As shown by SW,
the variance ratio #* tends to be very large under light
loads and very small under heavy loads. Loss model exam-
ples show that the correlation p tends to be quite strongly
negative under all loadings, but especially under heavy
loads (e.g., see Table 1).

As shown for indirect estimators such as B,(f) by Glynn
and Whitt (1989), a key ingredient in the proposed estima-
tor Bc(f) is exploiting the known parameters A and w™".
However, there are other ways to take advantage of this
knowledge, in particular, through linear control estimators.
Thus, we also consider lincar control estimators, using es-
timators of the arrival rate and mean service time as con-
trol variables. (Glynn and Whitt 1989 show that from the
perspective of asymptotic efficiency it suffices to consider
linear control estimators in the class of suitably smooth
nonlinear control estimators.) For this purpose, let

A =174, (10)
and
D)
a7l = (1/DE)Y > S;, (11)
i=1

where, as before, S; is the service time of the ith customer
to complete service and D(¢) is the number of departures
(of admitted customers after receiving service) in {0, f].
Linear control estimators can be considered with respect

‘to each of the estimators By(¢), B,(¢), and B.(). One is

Bin® =By + a1(A®) — N + a2 (2760 — p 7Y, (12)

where a; and a, are chosen appropriately. The corre-
sponding linear control estimator constructed from B(r) is
denoted B, ,(t). The grand combination estimator is

Boelt) = Be(t) +by(Alt) = &) + by(p 740 — p
=pBy(®) + (1 = p)B(t) + b1 (A(®) — 1)
+ha(p ) = ph, (13)

where the three-parameters p, by, and b, are chosen
appropriately.

The grand combination estimator BGC(t) in (13) (with
the best parameters) clearly should be most efficient over-
all, and that is our experience. However, we find that the
combination estimator B(t) in' (9) consistently performs
nearly as well as the grand combination estimator Bsc(t) in
(13), so that it should suffice to use the more elementary
combination estimator.

Copyright © 1999. All rights reserved.



512 / SRIKANT AND WHITT

Table 1.

Simulation estimates for the GI/GI/s/0 model with s = 100 and p = 1 using exponential (SCV = 1)

and hyperexponential (SCV = 10) distributions, based on simulation runs for ¢t = 2 X 10° (which

corresponds to an expected number of arrivals equal to 20 X 10°) using 400 batches.

Heavy Loading: » = 140

The ca 1 1 10 10
cases: c2 1 10 1 10
Estimated B,(f) 0.3010 0.3012 0.3468 0.3404
SD B,,(1) 0.00018 0.00052 0.00031 0.00053
Variance ratios

LN 147 41 24.1 30.7

I 114 209 7.7 17.8

LI 230 1606 233 100.8

C 253 1885 23.3 100.8

GC 253 1885 24.1 104.7
Correlation p ~0.710 —0.937 —0.681 —(.847

Normal Loading: A = 100

The c2 1 1 10 10
cases: c? 1 10 1 10
Estimated By(r) 0.0744 0.0751 0.1609 0.1411
SD Bt) 0.00021 0.00043 0.00037 0.00056
Variance ratios

LN 11.5 15.1 6.3 14.7

I 2.5 2.6 1.3 1.9

LI 11.5 21.6 6.5 177

C 12.3 28.4 7.1 20.4

GC 12.3 28.4 7.2 21.4
Correlation p —0.727 —0.878 —0.682 ~0.863

Light Loading: A = 80

The ca 1 1 10 10
cases: c2 1 10 1 10
Estimated B, (?) 0.00394 0.00403 0.0587 0.0402
SD B(f) 0.00046 0.000091 0.00025 0.00037
Variance ratios

LN 1.39 2.2 2.16 3.9

I 0.021 0.015 0.020 022

LI 1.09 0.328 1.99 0.26

C 1.39 2.3 2.12 57

GC 1.39 2.3 2.18 6.0
Correlation p —0.408 —0.695 —0.482 —-0.807

Our examples show that linear control estimators can
also significantly reduce variance. The variance reduction
for estimates of blocking probabilities tends to be greater
than the variance reduction for standard single-server
queues using similar control variates; see Lavenberg et al.
(1982). However, the combination estimator B.(f) consis-
tently does at least as well as, and in some cases does
sAigniﬁcant]yAbetter than, the linear control estimators
By n(t) and B, (r).

It is well known that the blocking probabilities in the
M/GI/s/0 model (with Poisson arrival process) are insensi-
tive to the general holding-time distribution beyond its
mean; e.g., see Wolff (1989, p. 271). However, in SW we
showed that the variances of the estimators By(r) and B,(¢)
do not have this insensitivity property. Indeed, for the
M/G1I/s/0 model these variances tend to be proportional to
1 + ¢2, where ¢? is the squared coefficient of variation
(SCV, variance divided by the square of the mean) of the

holding-time distribution. In contrast, the variance of the
new combination estimator B(z) tends to be nearly insen-
sitive to the holding-time distribution beyond its mean; see
Sections 4.1, 4.2, and 5. This partly explains the effective-
ness of the combination estimator.

In our previous paper we developed predictions for the
variance of the estimators By(¢) and B,(f) in the G/G/s/0
model, to be used before any data have been collected. We
have yet to develop such predictions for the new estima-
tors proposed here. We only know that the variance should
be less than the minimum of the variances of B,(f) and
B(#) for the G/G/s/0 model. Hence, the previous predic-
tions can yield upper bounds for G/G/s/0 models.

Our previous paper focused on the computational effort
required to achieve a given statistical precision with the
basic estimators. We remark that the story for loss models
(G/G/s/0) is quite different from the story for delay models
(G/G/sf=); see Whitt (1989). In particular, for loss models
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there is no precipitous rise in required computational ef-
fort as the traffic intensity approaches 1. Indeed, for loss
systems the case in which the traffic intensity is 1 is called
normal loading. Figure 1 of SW shows that the computa-
tional effort to achieve a given statistical precision (using a
criterion of absolute error) increases with the offered load
for the natural estimator. However, Figure 2 of SW shows
that the computational effort decreases with the offered
load for the indirect estimator. Given that we use the bet-
ter of the two basic estimators, noxmal loading (the mid-
dle) requires the most computational effort. It is good,
then, that the combination estimator provides significant
variance reduction there.

The methods here would be broadly applicable to esti-
mate blocking probabilities from real-time measurements
of actual loss systems, provided that we could also estimate
the offered load during the measurement process. Hence,
it is also natural to consider the modified indirect estimator

Byu(t)=1- Z—((% (14)
where
&) = AOp (), (15)

and the associated modified combination estimator By (2),
defined as in (4) with BM(t) in place of B,(t). Unfortu-
nately, however, we found that these modified estimators
do not provide significant improvement. The variance ratio
Var By(t)/Var Byc(?) in our examples was consistently
about 1. Hence we do mnot display results for these
estimators.

Tt is, of ‘course, possible that we could obtain good esti-
mates of A and p~! from previous measurements. In a
network application we might monitor the system and have
available estimates of A~ and p™*. There might then be a
failute event, which would make it desirable to estimate
blocking probabilities. Assuming that the parameters
and p~* are not altered by the failure event, we can use
the previous estimates of A™' and p™" in the combination
estimator to estimate the blocking probability from mea-
surements after the failure event,

We now investigate the general combination variance
reduction approach more carefully.

2. VARIANCE REDUCTION FOR COMBINATION
ESTIMATORS

Part of the benefit of the combination estimator Bo(¢) in
heavy loads comes from the indirect estimator By(r), which
SW have shown to be significantly more efficient than the
natural estimator B,(f) in heavy loads. To understand the
two different contributions to efficiency in heavy loads, it is
useful to represent the variance ratio as the product of two
separate variance ratios, i.e.,

Var E‘C(z‘) _ Var Z:Rc(t) Var 31(t)
Var By(f) Var B,(f) Var Bu(t)

(16)

SRIKANT AND WHITT / 513

It is interesting to see how the variance ratio Var B(t)/
Var B(¢) is affected by the fact that the variance ratio Var’
By(t)/Var By(?) is quite small. In this section we show that
the variance ratio Var B.(f)/Var B,(t) depends on two key
factors: the variance ratio Var B,(t)/Var By(r) and the cor-
relation Corr(B,(2), Bu(6)).

To express the problem generically, let p be an arbitrary
constant, let X and Y be:arbitrary random variables with a
common mean and let

Z =pX + (1 - p)Y. (17)

Let 0% = Var X, 0% = Var Y, r = oyfoy and p = Cov(X,
Y)/oyoy. Clearly, the variance ratio is #* and the correla-
tion is p. By direct calculation,

Vaz=Vp) =ofL + 1-p? + 0 -p8).  (8)

Differentiating, we find that I(p) > 0 for all p, so that the
minimum is found by setting ¥'(p) = 0. The minimum
variance of the combination variable Z is attained at

s JU-p)
1+ 72~ 2pr (19)
and is
. oMl-pY
Pp¥) = 202 P
) = o 20)

Note that in general we can have p* < 0 and p* > 1 in
(19), but if p < 0, then necessarily 0 < p* < 1.

Assume that 0% < 0%, so that 7 < 1. Then we want to
compare Var Z to o%, since it is more efficient (has lower
variance) than Var X. For this purpose, let the combina-
tion variance reduction factor as a function of p be

2
Rp) =CE B a-prepa-p? @

and let ‘the optimal combination variance reduction factor
be

Vet 1-p? 22)

R(p* = .
(P%) a'% 1+r2~2rp

We can use (22) to bound below the possible variance
reduction,

R(p*) ==L > )
(p*) AFnt- 4 (23)
forr < 1.Ifr = 1, then R(p*) = (1 + p)/2, which is only
significant when p is suitably close to its lower limit —1. If
p is indeed close to —1, then the lower bound can be
approximated by

1-p® 1+p
4 2’

which agrees with what is 'achieved whenr = 1.
‘We are especially interested in‘the case of small ». From
(22), we see that

. *) — 2
lim R(p*) = 1~ o, 24
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which is independent of the sign of p. Note that the limit
of R(p*) as r — 0 differs from the lower bound over all »
in (20), which is attained at r = 1, only by a factor of 4. In
the case of small #, the variance reduction in (16) is ap-
proximately the product of 1 — p* and #%. The combination
estimator helps under heavy loads because p is then often
quite close to —1.

We can also to see how p* behaves as r — 0. From (19),
we see that

P

P asr — 0,

so that we have p* =~ —pr for small . More generally, if we
let p/r — ¢ asr — 0, then

R(p) = c?+ 1+ 2¢p, (25)

by (21). We can use (25) to see how errors in p* affect the
variance reduction. An € asymptotic relative error in p*
corresponds to p/r — ¢ asr — Q with ¢ = —p(1 + €). Then

R(p*(1+¢€) =1~ p*+e?p? (26)

so that an e asymptotic relative error in p* yields an abso-
lute loss of variance reduction (increase in R) of €%p?
which is less than €. Hence, for small 7, an € relative error
in p* will have negligible impact if € is suitably small
compared to 1 — p?.

If we do not know p, but we know 7, then we could let
p = r. From (21),

R(r)=1+(1-p)*+2(1-plp
=1+(1-p)2=2(1-p)+2(1 —p)1 +p)
=p*+2(1=p)(1+p)~ri+1-p} @)

which is not too different from 1 — p® when r is sufficiently
small. Indeed, if 7 ~ 1 — p? then the variance reduction
in (16) is approximately #*, i.e., each step then contributes
equally and the overall reduction is the one-step reduction
squared.

3. ESTIMATION PROCEDURES

There are a variety of ways to implement the estimation
procedures presented so far. What is appropriate depends
on the specific model. We now describe what we have
done for the models considered here (in §4). In §3.1 we
discuss the required simulation run lengths and the initial
conditions. In §3.2 we discuss how we estimate variances
and covariances. In $3.3 we discuss how we estimate the
optimal combination parameter p* in (19). Finally, in §3.4
we discuss linear control estimators.

3.1. Run Length and Initial Conditions

We try to avoid most serious statistical problems by having
relatively long runs. For the M/M/s/0 model with s = 100
and service rate 1, we let the measurement interval be 10°.
When the arrival rate is A = 100, this means that the
expected number of arrivals during the run is 10° Since

the steady-state blocking probability is then about 0.07, the
expected number of losses is 7 X 10,

In the M/M/s/0 model and more general GI/M/s/0 model
(with renewal arrival process), losses are regeneration
points, so that segments between successive losses are 1.i.d.
Since B! is one plus the expected number of arrivals
between successive losses, B~* could be estimated in this
framework by the sample mean of 7 X 10* iid. random
variables. We do not actually use this estimation procedure
and we do not restrict attention to GI/M/s/0 models, but
this analysis shows that the sample size is indeed quite
large. We do not discuss the issue of required path length
for loss models at length here, because we already did so
in SW.

We start each run with an empty system. Since that
initial condition introduces bias, we have a warmup period,
i.e., we wait a fixed time before collecting any data. (The
full run begins after the warmup period.) As shown in §11
of SW, the warmup period for loss models often need not
be extraordinarily long to make the initial bias negligible.
For the M/M/s/0 model, we let the warmup period be 50,
which corresponds to 50 mean service times. This is more
than adequate for the M/M/s/0 model (then about 5 is
adequate), but is appropriate for the more variable hyper-
exponential service times that we also consider in some of
our examples.

We note that finite-capacity models tend to require
shorter warmup periods than infinite-capacity models, be-
cause the maximum number of customers that can be in
the finite-capacity system is constrained. In an infinite-
capacity system a longer time is required to reach levels
that are captured by the tail of the steady-state content
distribution. As indicated in §11 of SW the selection of a
warmup period can be aided by considering the behavior
of associated infinite-server models. In the M/G/eo model
with a holding-time cdf G having mean 1, the time-
dependent number of busy servers starting empty has a
Poisson distribution with mean

EN(t =n<1 - J

where # is the steady-state mean; see Eick et al. (1993, p.
740, Equation (21)). (In (73) of SW, E#(t) should be re-
placed by EN(¢) or (73) should be

<@

G(u) du), (28)

t
EA(t) —n = —’%J H(u) du,

0
where H, is the stationary-excess service-time cdf there.)
Since the Poisson distribution is fully characterized by its
mean, it is reasonable to measure the time to approach
steady state in terms of the time for the mean to approach
within a proportion e of its steady-state mean. From (28),

n—EN()
——=

c, (29)

if and only if
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Jw G(u) du = e. (30)

Equation (30) leads us to choose a warmup period of 5 in
the M/M/s/0 model. (Then the integral reduces to e ~*.)

It is significant that Equation (28) remains valid in the
much more general G/GI/s/0 model, see Massey and Whitt
(1993, Remark 2.3), so that it is reasonable to use (30) for
such more general models. However, the Poisson distribu-
tion property is lost when the arrival process is not re-
quired to be Poisson. Thus the full distribution may not be
close to the steady-state distribution when the means are
close. Nevertheless, (30) scems like a useful practical crite-
1101.

3.2. Estimating Variances and Covariances

To estimate variances and covariances, we use simple
batch means; i.e., we divide the total run (after the war-
mup period) into k& nonoverlappmg batches of equal length
and construct batch means. We typically use £ = 20, Since
the runs are relatively long, there tends to be negligible
correlation between different batches. Since there are
about 10* regeneration points within each run in the GI/M/
5/0 model, it is evident that the batches should be very
nearly independent in those cases.

1t would ‘also be possible to use other procedures, such
as overlapping batch means or weighted batch means; see
Meketon and Schmeiser (1984) and Bischak et al. (1993).
Our variance reduction technique does not require that we
use simple batch means.

Given that we do use simple batch means, we estimate
the covariance Cov(X, Y) for arbitrary random variables X
and Y by

CX,Y)= ~_——1 21 X, - -7, (1)
where (X}, Y;) are the batch means from the ith batch and
(X, Y) are the averages of the batch means. The variance
estimate P(X) is C(X, X). For instance, given a measure-
ment interval [0, 7] (after warmup), X; and Y; might be the
estimators Bx(z) in (6) and B,(f) in (8) constructed over
the subinterval [(i — 1)T/k, iT/k].

If we want the variance and covariance estimates them-
selves to have lower variance, in addition to making longer
runs, we need to let the number of batches grow as we
increase the run length; see Glynn and Whitt (1991). As
described in Glynn and Whitt (1991) the standard devia-
tions of the variance estimators F(By(f)) and F(B(f)) are
about V2/(k —'1) times their means. To derive this rela-
tion, we assume that the usual asymptotic normality for
estimators as the run length grows is valid. If the run is
sufficiently long, then for the estimators By(z) and B,(?)
the batch means will be approximately k 1.i.d. normal ran-
dom variables, each with mean B and variance ko*/T,
where ¢* is the asymptotic variance (o3 or ¢%) and T is the
total run length. Then the sample variance is approxi-
mately distributed as ko®xz_/T(k — 1), where xZ_, is a
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chi-square random variable with £ — 1 degrees of free-
dom. The random variable x7_, has mean & — 1 and
variance 2(k — 1), so that the sample variance has approx-
imate mean ko*/T and approximate variance 2k%c*/T(k —
1). Hence, the standard deviation of the sample variance is
indeed approximately V2/(k — 1) times its mean. For k =
20, the ratio of the standard deviation to the mean is about
1/3. This analysis shows how much statistical precision we
can expect from the variance estimators. Obviously, we can
reduce the standard deviation of the variance estimator if
we increase the number of batches. However, the analysis
only remains correct if the batches remain approximately
independent.

3.3. Estimating p*

In the general setting of (17), we estimate p* by using
formula (19) with the estimates for r and p, i.e.,

PE— p) _
p = 2
Pl o (32)
where
V(Y) &, v)
#2=——= and p=-—"Z—=. (33)
429 V(X)) P(Y)

By the same argument used to establish (19), p is the value
of p minimizing the sample variance

V(P)———Z[PX +(1-p)Yi — X+ A -pDT (34)

k-1,5
Hence, p can also be found by computing I7( p) and search-
ing for the minimum p.

To avoid bias in the step, we should estimate p* using a
separate run, but in fact we do the estimation of p* using
the same run that we estimate B. This procedure clearly
induces some underestimation of the variances. In general,
it is important to-be aware of this possibility, but in our
context we found the-effect to be minor. To reach this
conclusion, we tested the procedure by performing multi-
ple independent replications. We found that the estimates
of p from any of several different runs produced similar
variance reduction, Moreover, the fluctuation in variance
estimates typically- was greater between runs than within
one run over' the various:optimal p values. We will illus-
trate this phenomenon later.

To further support estimating p* within the same run
that we estimate B, 0% and 0%, we show that the procedure
tends to be asymptotically correct as the sample size, say ¢,
increases, provided the number of batches increases with ¢.
Now X and Y in (17) should be replaced by stochastic
processes X(¢) and Y{(f) (e.g., they might be sample
means). In great generality, Var X(¢) — 0 and Var Y(¢) —
0 as ¢ —> oo, but ¢ Var X(¢) — 0%, t Var ¥(¢) — o% and ¢
Cov(X(®), Y(r)) — poxoy as ¢ — », so that Var Y(£)/Var
X(f) — r and Corr(X(¥), Y(t)) —> p as t — ®, Under these
limits, p(f) — p* and R(p(£)} — R(p*) as t — .
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In a specific application we have a fixed small r. By the
analysis in (25)~(27), we need to ensure that the error in pf
is then suitably small compared to r. If r is extraordinarily
small, this step could be difficult, but then o% itself should
be small.

3.4. Linear Control Variates

The standard theory of linear control variates implies that
the optimal value of 4, in the linear control estimator (12)
is

a% = —Cov(By (1), A1)/ Var(A (1)), (35)

and similarly for the others, e.g., see Glynn and Whitt
(1989, p. 96) and references cited there. The variance re-
duction (ratio of new 1o old variance) provided by using
the optimal linear control is 1 — v, where v is the corre-
lation between the original estimator and the control. We
obtain our linear control estimators by estimating &} in
(35) by estimating the quantities in the numerator and
denominator. In the GI/GI/s/0 model the interarrival times
and service times are independent, so that it suffices to
treat the two controls separately.

For the grand combination estimator Bgc(£) in (14), the
variance evidently is not in general a convex function of
the parameters (p, b, by). Hence, we found the optimal
values of »; and b, for each of a set of p-values and then
optimized over p, again all within one run. This was easily
done, requiring negligible computation time, for p values
from 0 to 1 increasing by 0.01.

4. SIMULATION EXPERIMENTS

We will illustrate how the variance reduction procedures
perform by considering several examples.

4.1. The GI/Gl/s/0 Model

We first consider the standard s-server loss model having
no extra waiting space and iid. service times that are
independent of i.i.d. interarrival times. We first let s = 100
and p = 1. We consider three values of A: A = 140 (heavy
loading), A = 100 (normal loading), and A = 80 (light
loading). We do simulation experiments for these three
cases using exponential (M) and hyperexponential (H,,
mixture of two exponentials) distributions for the interar-
rival times and service times. The exponential distribution
has squared coefficient of variation (SCV, variance divided
by the square of the mean) 1, while the H, distribution we
consider has SCV 10. We let ¢? and ¢? denote the SCV of
the interarrival times and service times, respectively.

Our H, distribution has “balanced means,” i.e., it has
density

flx) =prie™* + (1 = plhse ™ x =0, (36)

with pA;! = (1 — p)A; L. The other two parameters are
determined by the mean m and the SCV ¢ In particular,

p=[1+V(c*= i+ DV2, (37)
and

pAT = (1 =p)Ast =m/2. (38)

The H, distribution is a natural highly variable distribution
to consider for service times because it represents the mix-
ture of two exponential distributions with different means.
Such mixtures naturally arise when the customers being
considered actually represent the combination of two or
more different classes with different characteristics. Hyper-
exponential distributions also are natural to consider for
arrival processes too, because they are equivalent to on/off
arrival processes, i.e., a Markov modulated Poisson pro-
cess with a two-state environment: There is an exponential
holding time in each environment state; in one environ-
ment state there are no arrivals, while in the other envi-
ronment state arrivals occur according to a Poisson
process.

For these particular models it is not difficult to calculate
the blocking probability analytically. First, for the M/GI/s/0
model, the blocking probability can be calculated easily
from Erlang’s formula. Second, for the H./M/s/0 model
and H,/H,/s/0 model, the blocking probability can be cal-
culated exactly by using continuous-time Markov chains.
For s = 100, the number of states needed for the H,/H,/
5/0 model is of order 10, which is manageable. However, it
is clear that the variance reduction behavior will be similar
for other distributions for which it is not possible to com-
pute the blacking probability analytically. We use the ana-
Iytic results for Poisson arrivals to help validate our results.

In this example, we let each simulation run length be
200,000 time units, which corresponds to an expected num-
ber of arrivals equal to 200,000 A, (2 X 107 when A = 100).
We use 400 batches and delete an initial period of length
50 to allow the system to approach steady state.

Simulation results are displayed in Table 1. In each case
we display the natural estimate B,(z) and its estimated
standard deviation SD By(t). We also display the esti-
mated variance ratios Var By(t)/Var B(f) for several alter-
native estimators B(¢). In our simulation experiments we
actually considered combination and linear control estima-
tors based on B,(f) as well as I?N(t), but as in our previous
paper we found that B’S(t) and By() tend to be inter-
changeable, so we report results only for Byf{t).

As in SW, we find that the performance of the estima-
tors in GI/GI/s/0 model depends on the loading. Roughly
speaking, the loading can be regarded as light, normal or
heavy when a <5 — Wa s —2Vasass+2Va, or
a > 5 + 2Va. A starting point is the result from our
previous paper that B,(z) is much more efficient than B,(t)
in heavy loading, much less efficient in light loading, and
about equally efficient in normal loading.

Here are the conclusions we draw from Table 1. First,
the efficiency of the grand combination estimator E’GC(Z)
and the combination estimator B(f) in (9) are essentially
the same. Thus, we conclude that the combination estima-
tor already includes the benefits from using controls A and
p~ L. In every case, the combination estimator is at Jeast as
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Table 2.  Variance ratios for the M/M/s/0 model with p = 1 as a function of X and s.
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Heavy Loading

The A=20 A =140 A =1200
case: s=10 s = 100 s = 1000
Bn(®) 0.5375 0.3010 0.1719
SD Buf(t) 0.000424 0.00106 0.00118
Variance ratios

LN 16.0 9 4

I 19.9 183 4

LI 453 412 1539

C 483 484 2049

GC 48.3 504 2049

Normal Loading

The A=10 A =100 A = 1000
case: s=10 s =100 s = 1000
BN(T) 02144 0.0751 0.02338
SD By(2) 0.000636 0.00186 0.000984
Variance ratios

LN 53 19.9 10.2

1 25 33 3.0

LI 6.6 233 13.6

C 7.6 271 17.1

GC 7.6 329 18.1

Light Loading

The A=35 A=80 A =930
case: s =10 s =100 s = 1000
Bp{1) 0.01817 0.00394 0.001276
SD B (1) 0.000226 0.000221 0.000251
Variance ratios

LN 1.13 1.9 1.7

I 0.016 0.035 0.027

Li 0.93 0.28 0.14

C 1.13 1.9 2.0

GC 1.13 2.1 2.0

The simulation run length is 10%/s with 20 batches in each case (cotresponding to an expected number of artivals equal to ()\/s)ios).

efficient as all the other estimators. For each other estima-
tor, there is some case in which the combination estimator
is substantially better.

As indicated earlier, the variance reduction is dramatic
in heavy loading. This is partly because of the advantage of
the indirect estimator, but the combination feature also
contributes significantly. The variance reduction provided
by the combination feature is also substantial in normal
loading. In normal loading the combination improves the
indirect estimator more than the indirect estimator im-
proves the natural estimator (but much of the gain would
be captured by the indirect estimator plus a linear control).
The variance reduction tends to increase as the service
time gets more variable. The effect of arrival process vari-
ability is less clear.

The linear control estimators B, (f) and By ,(¢) consis-
tently offer improvement over the basic estimators B, (t)
and B/(t), respectively. In heavy loading, B, ,(t) is nearly as
good as Bc(t) while in light loading B, \(t) is nearly as
good as Bc(t) In normal loading Bc(z) seems to be slightly
better than By n(f) and By ,(f), with By ,{¢) being slightly

better than B, \(f). A key point is that everything is not
captured by the linear controls: The differences between
the natural and indirect estimators are not removed by
simply using linear controls.

In Table 2 we give variance ratios for the M/M/s/0 model
with i = 1 as a function of A and 5. The intent here is to
show the impact of system size as well as loading. With one
exception (normal loading A = 100 to 1000), large s means
larger variance ratios, but the loading is clearly a more
important factor, If we hold the blocking probability fixed,
then size becomes a clearer factor; then larger size consis-
tently yields larger variance ratios.

To validate our results, we performed independent rep-
lications. Table 3 displays the sample means and sample
standard deviations of key quantities for four:cases in Ta-
ble 1 based on 20 independent replications or runs each of
length ¢ = 10* using 20 batches. (Thus the total simulation
time and the length of each batch is the same.) In each
case, the sample mean is the average of the 20 numbers
obtained from the 20 runs, while the sample standard de-
viation is the estimated standard deviation of the quantity
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Table 3.  Sample means and standard deviations of estimates for the M/GI/s/0 model with s = 100 and w = 1
based on 20 independent replications of runs each with 10 arrivals and 20 batches.
M service H, service
A =100 A =140 A =100 A= 140

By (t) mean 0.07588 0.30110 0.07563 0.30088
5 0.00085 0.00115 0.00189 0.00196
B(r) mean 0.07572 0.30126 0.07568 0.30125

A 0.00027 0.000061 0.00039 0.000060
SD B, (f) mean 0.00086 0.00106 0.00199 0.00208
SD 0.00012 0.00017 0.00031 0.00031
SD B(f) mean 0.00023 0.000057 0.00036 0.000054
SD 0.00007 0.000008 0.000053 0.000006
p mean 0.363 0.0624 0.377 0.0645
SD 0.039 0.0090 0.025 0.0049
# mean 0.626 0.088 0.628 0.0743
SD 0.095 0.0128 0.063 0.0053
p mean —-0.697 -0.728 —0.876 —0.917
SD 0.108 0.120 0.053 0.041
R mean 0.227 0.404 0.299 0.362
SD 0.078 0.153 0.068 0.082
Var. Red mean 132 410.0 33.0 ' 1634.0
SD 5.89 134.0 14.0 904.0
min 5.6 1200 14.8 521.0
max 20.0 618.0 69.6 4896.0

from a single run (not the estimated standard deviation of
the sample mean, which would be smaller). Thus, the stan-
dard deviation estimates show the variability of the esti-
mates from each run.

First, in these cases the exact blocking probabilities can
be computed from Erlang’s blocking formula. The exact
blocking probabilities are B = 0.07570 for A = 100 and
B = (.30124 for A = 140. From Table 3 we see that there
is no discernible bias in the estimators By(f) and B.(2).
The standard deviations of the estimators By(f) and B,(t)
are also consistent with the predictions in SW, which justi-
fies our choice of run length. Note that the standard devi-
ation of the blocking probability is about 1% of the
estimated value, whereas the standard deviations of the
standard deviation estimates are larger (relatively); e.g.,
for the natural estimator they are about 15%. Similarly,
the standard deviations of the estimates p, #, g, and R are
also larger.

The main conclusions about variance reduction can be
validated by comparing the sample means of the estimated
standard deviations (of B,(¢) and B.(t)) to the sample
standard deviations of the estimated means. Table 3 shows
that these are close. The sample means of the estimated
standard deviation of B.(f) are consistently slightly less
than the sample standard deviation of the estimated mean
of B(t), revealing the underestimation of variance that
occurs due to estimating p* in the same run. Table 3 shows
that the average predicted variance reductions in the four
cases were 13, 410, 33 and 1634, respectively. After squar-
ing the ratios of the displayed standard deviations, we see
that the corresponding ratios of the sample variances of
the means are 10, 367, 23, and 1067, respectively. Thus, the
predicted variance reduction from the output of one run is
slightly optimistic, but clearly genuine.

To gain further insight into the effect of estimating the
optimal weight p* from the same run in which we estimate
By(t) and B,(t), we plot in Figure 1 the variance Vip)asa
function of p for 5 different replications of the M/H,/s/0
heavy-loading (A = 140} example from Tables 1 and 2.
The example shows that the estimate § from any one run
would yield similar predicted variance reduction in any
other run. Figure 1 is consistent with the slight underesti-
mation of variance observed in Table 3.

A major conclusion of our previous paper was that, un-
like the blocking probabilities themselves, the statistical
precision of the basic estimators By(r) and B,(r) in the

Figure 1.  Variance V(p) is a function of p in five inde-
pendent replications of the M/H,/s/0 example
with A = 140, p = 1, and s = 100. Each
‘replication was of length 10* (about 1.4 x 10°
arrivals).

3000 T T 0 T T T ¥ T T
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Variance Reduction
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Table 4.  Average standard deviation estimates for
four estimators in the M/GI/s/0 model for
two different holding-time distributions
with s = 100, & = 1 and three values of
A A =140, A = 100 and A = 80, based
on 10 independent replications, each of
length 10,000 time units

Holding-Time

Variability

Loading Estimator ¢z =01 ¢z = 10.0
Heavy A = 140 N 0.000583 0.002009
I 0.000054 0.000140
C 0.000040 0.000048
GC 0.000040 0.000047
Normal A = 100 N 0.000691 0.001929
I 0.000459 0.001225
C 0.000289 0.000330
GC 0.000228 0.000321
Light A = 80 N 0.000190 0.000364
I 0.001030 (.003340
C . 0.000165 0.000230
GC 0.000161 0.000223

M/G/s/0 model strongly depends on the holding-time dis-
tribution beyond its mean. However, we observed a near
insensitivity to the holding-time distribution (beyond the
mean) in the standard deviations of the estimators B(r)
and B(r) in the M/GI/s/0 model. In §5 we show that the
insensitivity is asymptotically correct as A — o, From sta-
tistical analysis of the simulation results, we are able to
conclude, with very high probability, that in general full
insensitivity does not hold for the standard deviations of
the estimators Bc(f) and Bg(f), but it is a close
approximation.

To illustrate, in Table 4 we display the sample means of
four estimators-based on 10 runs of length 10,000 each for
the M/GI/s/0 model with two holding-time distributions.
The first holding time distribution is Erlang (E;,) with
¢? = 0.1, while the other is H, with ¢ = 10.0. As before,
we consider heavy loading, normal loading and light load-
ing; i.e., we consider s = 100, 4 = 1 and three values of A:
A = 140, A = 100, and A = 80. The estimated standard
deviations are quite close for B(t) and B;c(£), but not for
the other two estimators.

4.2. Loss Networks

To show that the estimation procedures also apply to more
elaborate loss networks, as in Ross (1995), we also consid-
ered three-link triangle networks. Direct traffic is offered
to each link, but if these requests are blocked, then they
can be routed on the other links if there is space. We
assume that each request uses one circuit, with alternate
routed traffic requiring one circuit on both of the other
two links. Alternate routed calls hold the circuits on both
links for the duration of the call. Both circuits become free
when the call is complete.
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We also allow trunk reservation on each link. A trunk
reservation parameter fr; on link i means that alternate
routed traffic is only accepted on that link if there are at
least tr, free circuits on that link, There must be sufficient
free capacity on both links in order for a candidate alter-
nate routed call to be admitted.

We consider examples with independent Poisson call
arrival processes and exponential call holding times. For
this continuous-time Markov chain model, we used uni-
formization to construct an associated discrete-time
Markov chain with the same steady-state probabilities; e.g.,
see Keilson (1979). To simulate the full process, we would
have to include i.i.d. exponential times between transitions
(real or fictitious), but since we only wanted to estimate
steady-state quantities, we directly simulated the discrete-
time Markov chain. (This step itself serves to reduce vari-
ance; see Fox and Glynn 1986.)

In the specific examples we now discuss, the three links
all have capacity 100 and trunk reservation parameter tr,
and the holding times all have mean 1. The model is thus
specified by the three arrival rates X; and the common
trunk reservation parameter tr,

We apply the estimation procedures to estimate the
blocking probabilities of each class and the overall (total)
blocking probability. The results for six cases are displayed
in Table 5. These results were obtained from single runs
with 107 arrivals after a warmup period of 10° arrivals.
Since the simulation is in discrete time, the integral in (4)
is replaced by a sum.

In the first two cases the arrival rate is 140 on each link,
with the common trunk reservation parameter being 5 in
the first case and 0 in the second. If the trunk reservation
parameter is high enough, then the example becomes like
three separate links in heavy loading. However, the first
example with # = 5 differs noticeably from the M/M/s/0
heavy-loading cases in Tables 1-3. The combination esti-
mator yields significant variance reduction when tr = 5,
but not as great as for only one link.
~ However, there is a dramatic change when # = 0. Evi-
dently, the alternate routed calls make the occupancy lev-
els for the individual classes much more variable, so that
the indirect estimator becomes less efficient. The combina-
tion estimator does no worse than the natural estimator,
but it only provides significant improvement for the overall
blocking probability. This case also shows that the correla-
tiont p can be positive. (Positivity was confirmed by inde-
pendent replications.)
~ The third case in Table 5 is a balanced network with
normal loading. In this case, the trunk resetvation param-
eter r = 5 is sufficiently small that the model is very
different from three separate links. Nevertheless, the com-
bination estimator reduces variance by factors of about 4
and 13 for the individual classes and the total network. In
this case the variance reduction is primarily due to the
combination procedure (R < 7).
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Table 5.  Simulation results for six examples of three-link triangle networks with alternate routing.
Trk. Res. 5 0 5 5 5 10
A,
1 140.0 140.0 100 130.0 200.0 140.0
2 140.0 140.0 100 90.0 40.0 80.0
3 140.0 140.0 100 110.0 40.0 120.0
NG
1 0.3019 0.3893 0.0764 0.2308 0.2553 0.2959
2 0.3022 0.3892 0.0758 0.0420 0.00145 0.00475
3 0.3029 0.3892 0.0767 0.1509 0.00146 0.1998
total 0.3023 0.3893 0.0763 0.1527 0.1827 0.1935
SD B,(1)
1 ¢.00050 0.00047 0.00042 0.00044 0.00049 0.00038
2 0.00043 0.00036 0.00043 0.00030 0.000038 0.00016
3 0.00053 0.00041 0.00044 0.00043 0.000040 0.00062
total 0.00025 0.00028 0.00030 0.00028 0.00036 0.00029
;
1 0.185 0.861 0.947 0.526 0.237 0.284
2 0.195 1.540 0.895 1.606 20.38 5.464
3 0.161 0.924 0.926 0.700 26.26 0.266
total 0.130 0.315 0.543 0.490 0.288 0.727
p
1 -0.276 0.458 —0.530 ~0.205 0.373 —0.505
2 —-0.531 0.588 —0.493 -0.551 0.064 —0.466
3 —0.407 0.316 —0.554 —0.373 —0.221 -0.501
total —0.644 0.536 —0.695 —0.442 —0.203 -0.035
R
1 0.813 0.829 0.248 0.641 0.979 0.545
2 0.577 0419 0.282 0.130 0.0024 0.022
3 0.721 0.709 0.241 0.428 0.0013 0.560
total 0.493 0.936 0.252 0.481 0.799 0.632
P*
1 0.075 0.364 0.482 0.258 -0.037 0.164
2 0.113 0.939 0.463 0.648 1.0007 0.901
3 0.079 0.442 0.475 0373 0.9903 0.153
total 0.085 0.092 0.077 0.273 0.118 0.351
Overall variance reduction factor
1 36.0 1.6 4.5 5.6 182 227
2 45.6 1.0 4.4 3.0 1.0 1.5
3 53.6 1.6 4.8 4.8 1.1 252
total 120.0 10.8 135 8.7 151 3.0

The capacity of each link is 100 and all mean service times are 1. All runs have 107 arrivals with 400 batches after a warmup of 10° arrivals.

The remaining three cases in Table 5 are unbalanced
networks.- For these cases, the advantage of the combina-
tion estimator fluctuates widely. Moreover, it is difficult to
predict in advance whether the indirect or natural estima-
tor is better. These examples show that the combination
estimator can be good even if it just automatically selects
the better of these two basic estimators. Of course, it does
this and somewhat better still.

4.3. Finite Waiting Rooms

Our final example involves the addition of a finite waiting
room. The addition of a finite waiting room clearly has neg-
ligible effect in light loading, but it can have a dramatic im-
pact under heavy loading. To illustrate, we first consider the
M/M/sfk model with s = 100, & = 100, and A = 140. This is
the same heavy-loading example considered in Table 1-3,
except that we have added a waiting room of size 100. The
waiting room slightly reduces the blocking probability from
0.3012 to 0.2857, but it has an enormous impact on the vari-

ance reduction. Because the number of busy servers remains
at 100 much more frequently, the variance of the indirect
estimator drops dramatically. In several independent runs of
length 10° the estimated standard deviation of the indirect
estimator was 3 X 107° while the estimated standard devia-
tion of the estimated natural estimator was 1.2 X 107>, This
is a variance reduction of 1.6 X 10°. In this example, there
was not much for the combination estimator to add. It
yielded essentially the same estimated mean and standard
deviation, and p = —0.054. The corresponding example with
hyperexponential service times having cZ = 10 yielded a vari-
ance reduction for the indirect and combination estimators of
1.6 X 10° In this case the combination estimator itself pro-
vided slight further improvement; the estimated correlation
was p = —0.192.

With a finite waiting room, the indirect estimator can be
much better than the natural estimator even with only a
single server. To illustrate, we consider an M/M/1/k model
with p = 1.0 and k = 100. Based on runs of length 107,
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the variance reductions for the indirect and combination
estimators were both 7.8 X 10* when A = 2.0 and were
17.6 and 25.8, respectively, when A = 1.1,

5. HEAVY LOADING ASYMPTOTICS

We know that the indirect estimator becomes much more
efficient than the natural estimator in heavy loading. The
examples have shown that the combination estimator can
contribute even more variance reduction in heavy loading.
Since 7 is small in heavy loading, (24) in Section 2 implies
that the additional variance reduction provided by the
combination estimator is then approximately (1 — p*)7 %,
where p is the correlation between the basic estimators
B\(¢) and B,(r). A natural question, then, is: What is the
correlation p?

In this section we identify the limit of p as A — ». We
first show that, in the general G/G/s/0 model, the correla-
tion between the indirect estimator and another estimator
approaches —1 as A — c. This other estimator is the time
congestion estimator

i
BT(I) =¢! J 1{N(u)=s} du. (39
0 .

The time-congestion estimator was considered in SW, where
it was found to behave similarly to the natural and simple
estimators. Since the time-congestion estimator is similar to
the natural estimator, the simple analysis in this case supports
our intuition in the actual case of interest (with By(z)).

When the arrival rate becomes very large, the system is
nearly full all the time. There tends to be only one free
server for a‘short time after each service completion.
Therefore,

By —1-10 .y 6D B0

(40)
Hence we have established our first result.

THEOREM 1. In the G/G/sf0 model,

Br(t) =

We now study p (for the natural estimator) in the G/G/
5/0 model'with ' = 1. We assume that the arrival process
is an ergodic stationary point process independent of the
service times, which form a stationary sequence. We let A
— oo by scaling the interarrival times. We assume that the
service times satisfy a functional central limit 'theorem
(FCLT), e.g., see Billingsley (1968) and Whitt (1980). Let =
denote convergence in distribution and let Lx| be the greatest
integer less than or equal to x. Then the assumed FCLT is

hm Corr(B I(t),

Laz)
n -W( > 8- nt) SN2 W) asn— e, “n
i=1

where {W(7) : ¢t = 0} is a standard (drift 0, variance 1)
Brownian motion or Wiener process, This condition is sat-
isfied in the GI case provided that the:service-time cdf has
finite variance, in which case c2 is the SCV.

SRIKANT AND WHITT [/ 521

As A — o, the system alternates between s servers busy
and (s — 1) servers busy. After each service completion,
there is a brief idle period until the next arrival. As A — o,
this idle period tends to have the stationary-excess distri-
bution of the interarrival-time distribution. To obtain a
meaningful statement, we should consider the system as
A — o with time rescaled so that the arrival rate is 1.
Then, if F, is the interarrival-time cdf with mean 1, then
the idle time cdf approaches

Fae(t)=j [1—-F,(u)]du, t=0, (42)

which has mean m,/2, second moment m4/3 and, thus,
SCV
dm

el = %—22 -1, (43)
where m;, is the kth moment of F,, with m, = 1. This
occurs as A — %, because there .are then many arrivals
between each service completion. This makes the epoch of
a service completion fall at an arbitrary time in the station-
ary point process.

We also assume. that successive idle times become i.i.d.
as A —> o, which will occur if the arrival process is only
weakly dependent. In the following result, we assume the
technical regularity condition of uniform integrability; see
Billingsley. (1968, p. 32). The proof and some other asymp-
totic results of interest appear in an appendix (available
from Operations Research Online; see the Appendix note
for the URL).

THEOREM 2. In the G/G/s/0 model, assuming uniform in-
tegrability of Bx(t) and B¥(?),

c?

2 (44)

lim lim Corr(B (1), B1()) = — :
lim. lim orr(B n(?), B;()) Ty el

It is interesting to see how the limit in (44) behaves in
special cases. For'an M arrival process ¢Z, = ¢2 = 1; the
minimum value of c2, is 1/3 for a D arrival process. For the
M/G/s/0 examples in Table 1, ¢Z = 1 and ¢Z = 10, so that
p = =1/V2 =~ =0.707 and ~V10/11 ~ ~0.953, respec-
tively.: These limiting formulas agree remarkably well with
the estimates p = —0.710 and p = —0.937 in the heavy
loading -cases-of Table 1. Formula (44) seems to provide
useful rough “approximations even outside the heavy-
loading regime; as shown by the normal and light loading
cases in Table 1.

Tt is significant that Theorem 2-is consistent with the
approximate inscnsitivity we observed in Section 4.1 for
the combination ‘estimator in the M/G/s/0 model. Combin-
ing (17) of SW with (44) above, we obtain

(1-pB) e
(1-pf) 2

c2
~ | — 8 2 2
"’( 2 2)(ca+cs)>
Cae T Cs

fien Var B (t; G/G/[s/0)
a2 Var Bo(t; MIM/s/0)
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where u and A are fixed. In the case of M arrivals, ¢2, =
¢z = 1, so that the ratio becomes 1, showing asymptotic
insensitivity in the M/G/s/0 model.

6. THE IMPORTANCE OF KNOWING A AND p

The estimators B,(r), B.(t), and B.(f) all take advantage
of our knowledge of A and u. To apply these estimators to
real-time system measurements instead of simulations, we
would like to achieve similar variance reduction using esti-
mates of A and u, (i.e., via the modified indirect estimator
By(f) in (14) and the associated modified combination
estimator B,,-(?)). Unfortunately, however, the good per-
formance of the indirect and combination estimators evi-
dently depends on knowing A and w. This is essentially the
same conclusion reached in Glynn and Whitt (1989) about
indirect estimation via L = AW.

It is important to note that some attempts to achieve
effective variance reduction when we do not know A and
are mere iltusions. In order to estimate the final variances
of our estimators, we consistently work with batch means.

“Thus the modified indirect estimator B,,(¢) in (14) is ob-
tained by taking estimates of #;(f) and &;(#) within each
batch and then forming the average of the ratios n ™! 2%,
(A(8)/é&,(r)). Instead, we could determine the overall aver-
age a(t) for the entire run and use that in each batch with
the batch means of AJf), i.e., n™' 2P, A{{)/&(). This
alternative approach yields spectacular improvement in
the direct sample estimates of the estimator variance in
heavy loading, but the observed gain is not genuine. The
actual estimates produced by this new version of the mod-
ified estimator B,(f) turn out to be very similar to the
estimates from the previous modified estimator. The puta-
tive decrease in sample variance occurs because we have
ignored the strong positive correlation between batches
caused by vsing the common factor &(¢) in each batch. The
lack of variance reduction is confirmed when we estimate
the variance by performing independent replications.

To illustrate, we give an example. Consider the M/M/s/0
model with A = 140, s = 100 and w = 1, as in Tables 1-3.
Since we are in heavy loading, we know that B,(t) will have
lower variance than B,(¢), and we would like to achieve
this gain with B,,(¢). In a run of length 10,000, we obtain
estimates By(f) = 0.3020, SD(By(t)) = 0.000993, while
SD(B/(f)) = 0.000073. The two modified estimators
yielded estimates 0.301992 and 0.302004, and sample stan-
dard deviations 0.000994 and 0.000073. So at first glance, it
looks as if we have succeeded with the modified estirator
using the &(¢) for the entire run. However, multiple inde-
pendent replications show that the real standard deviation
for both modified estimators is actually about SD(B())—
just as is the case for By(?).

The situation is different for the natural estimator B(f)
in (6). If we know A, then we are able to use the simple
estimator By(¢) in (7) instead of the natural estimator.
However, we have found that the role of known A and w is
very different in these cases. On the one hand, in our

previous paper we found that the estimators Bg(f) and
By(f) are almost identical (both in actual value and in
variance), so that they can be used interchangeably with
negligible difference. On the other hand, B,(r) and B,,(t)
turn out to be very different, so that B,,(t) fails to capture
the advantage of B,(f) in heavy loading. Similarly, B,,(?)
fails to capture the advantages of B.(?).

There is a basis for understanding why these estimators
perform as they do in the theory of indirect estimation in
Glynn and Whitt (1989, §§1 and 8). There, generic estima-
tors that do not use known parameters are called direct
estimators, while the corresponding ones that do are called
indirect estimators. The relation between the efficiencies of
these estimators is characterized in Glynn and Whitt
(1989, theorem 9). In the (online) appendix we apply this
theorem to explain the consequences of estimating A and
& in these two settings.

7. CORRELATION INEQUALITIES

In §5 we identified the limiting correlation between By (?)
and B(¢) as the load increases. In this section we establish
qualitative results for all loadings. We provide theoretical
evidence showing that the estimators By(f), A(f), —B,(?)
and A(f) are indeed all positively correlated in a large class
of loss models (for any loading), which is consistent with
intuition. (Unfortunately we are unable to treat 7(¢).) In
order to avoid having to treat ratios of random variables,
we consider the estimator Bg(#) = L(2)/At in (7) instead of
B(t). As indicated earlier, By(f) and B,(f) are very similar.

The specific class of models we consider here we denote
by DFR/IFR/s/0; it is the special case of the general GI/GI/
5/0 model in which the interarrival-time distribution is
DFR (has decreasing failure rate) and the service-time
distribution is IFR (has increasing failure rate). If F(¢) is
the cumulative distribution function with density f(¢), then
the failure rate is

r(t) = f(O)/(1 — F(1)). (45)

The DFR (IFR) property means that #(#) is a decreasing
(increasing) function; see Barlow and Proschan (1975).
The DFR class includes the hyperexponential (H,, mixture of
k exponentials) distribution, while the IFR class includes the
Erlang (E,, convolution of & identical exponentials) distribu-
tion. Both include the exponential distribution, so that the
M/M/s/0 (Erlang) model is covered. However, the exam- -
ples with H, service times in Section 3 are not included.
Here is our main correlation inequality result.

THEOREM 3; In the DFR/IFR/s/0 model, the estimators
B(?), A(t), A(t), and —B(t) are all positively correlated.

We prove Theorem 3 by representing the DFR/IFR/s/0
model as a limit of discrete-time models, and by establishing
a related result for discrete-time models. Theorem 1 of Whitt
(1980) can serve as the connecting continuity theorem. Re-
lated continuity results appear in Kalashnikov and Rachev
(1990). The proof of Theorem 3 appears in the appendix.
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8. SUMMARY

In this paper we have proposed a new estimator for loss
models, a combination of the natural and indirect estima-
tors in (6) and (8). In this combination the simple estima-
tor in (7) can be substituted for the natural estimator,
yielding very similar performance. The combination is a
convex combination as in (9) in which the optimal weight
p* depends on the variances and covariance of the two
component estimators, as described in (19). We have esti-
mated p* using batch means from one run, as indicated in
(32). We showed that using the same run causes minor
underestimation of variances (see Table 3). This underes-
timation could be avoided, if deemed important, by esti-
mating p* in a separate pilot run.

In our previous paper we showed that the indirect esti-
mator is much more (less) efficient than the natural and
simple estimators in heavy (light) loading. Here we ob-
served that this same property holds, with even more dif-
ference in heavy loading, when there is a finite waiting room,

In §2 we analyzed the benefit of a combination estima-
tor in general, showing that the variance reduction factor is
about (1 — p?)~" when the two variances are very unequal.
Examples in §4 and theoretical results in §5 and the appendix
show that p tends to be quite strongly negative, especially
under heavy loading, so that the combination estimator pro-
vides significant variance reduction over the indirect estima-
tor. In §5 we proved for the G/G/s/0 model that the
correlation approaches —VeZ/(c? + ¢2,) as the arrival rate
increases, where ¢ and ¢Z, are given in (41) and (43).

Even in normal loading, the combination estimator can
yield variance reduction because the two component esti-
mators tend to be negatively correlated. In §7 we estab-
lished correlation inequalities for a large class of models to
provide theoretical support for this conclusion. These ana-
Iytical results do not nearly apply to all models for which
the estimation procedure can be applied, but they serve as
useful theoretical reference points. The examples in §4
show that the correlation is usually negative. (The bal-
anced heavily loaded network without trunk reservation in
§4.2 is a counterexample to a more general result)

Finally, in §6 we showed that the variance reduction
achieved by the indirect and combination estimators de-
pends upon knowing the parameters A and w. Thus the
variance reduction technique tends not to be directly ap-
plicable to system measurements in which A and u need to
be estimated. Qverall, the paper contlnues the longstand-
ing tradition in the simulation 11t_erature of showing that,
with some thought, simulations can be conducted more
efficiently and effectively. ‘

APPENDIX

The appendix:can be found at the Operations Research
Home Page:

http://grace. wharton.upenn.edu/~harker/opsresearch. html
in the Online Collection.
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