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Abstract

We study the convergence of finite-capacity open queueing systems to their infinite-capac-
ity counterparts as the capacity increases. Convergence of the transient behavior is easily
established in great generality provided that the finite-capacity system can be identified with
the infinite-capacity system up to the first time that the capacity is exceeded. Convergence of
steady-state distributions is more difficult; it is established here for the GI/GI/c/n model
with ¢ servers, n — ¢ extra waiting spaces and the first-come first-served discipline, in which
all arrivals finding the waiting room full are lost without affecting future arrivals, via
stochastic dominance and regenerative structure.

Keywords: Queuneing theory, limit theorems, approximation, truncation, finite waiting rooms,
regenerative processes, stochastic comparisons.

1. Introduction

Consider an open queueing system with capacity #. When » is very large, we
expect that the standard descriptive stochastic processes, such as the number of
customers in the system at time ¢ for 7> 0, and their limiting steady-state
distributions are very close to their counterparts in the same system with infinite
capacity. Indeed, for simple models such as the M/M/c/n queue (¢ servers and
n—c extra waiting spaces) for which the steady-state distributions can be
displayed explicitly, convergence of the steady-state distributions as r» — oo is
easily verified (provided that the infinite-capacity model is stable). We establish
convergence results here that do not depend on explicit expressions for the
quantities of interest. We also give examples to show that some care is needed.
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In section 2 we establish very strong convergence {total variation) in great
generality for the stochastic processes representing the transient behavior, pro-
vided that we can represent the finite-capacity system up to the first time that the
capacity would be exceeded in terms of the infinite-capacity system. The real
difficuity is obtaining convergence of the limiting steady-state distributions. In
section 3 we show how the limits for the transient behavior in section 2 can be
applied in the presence of regenerative structure to obtain convergence of the
steady-state distributions. The results in section 3 also are very general, but it is
necessary to control the behavior of the regeneration cycles in the n-capacity
systems given that the capacity limit is exceeded. For the special case of
single-facility loss systems, we provide a stochastic bound in section 4 that can be
used to provide this control. Finally, in section 5 we combine the results of the
previous sections to establish limits for the steady-state distributions of
GL/Gl/c/n loss systems as n — 0.

There is considerable related literature. The limits here express a form of
model stability, continuity or robustness; see chapter 3 of Franken, Konig, Arndt
and Schmidt [6], chapter 8 of Stoyan [15], chapter 4 of Borovkov [3], Brandt and
Lisek [4], Kalashnikov and Rachev [9], Rachev [13] and Karr [10). Perhaps more
closely related is the literature about approximating countable-state Markov
chains by finite-state Markov chains; see Wolf [19], Gibson and Seneta {7] and
references cited there. In that context, the desired conclusion is that the steady-
state distributions in the finite-state chains converge to the steady-state distribu-
tion of the infinite-state chain as the size of the state space grows. The classical
paper by Ledermann and Reuter [12] established limits of this kmd for ‘birth-
and-death processes.

2. Convergence of trausient behavior

Let the stochastic process [ X, Y 1= {[ X (), Y.(¢)]: = 0} describe an open
queueing system with infinite capacity. (In this section the queueing system can
be very general, e.g., a multi-class open queueing network. Indeed, we need not
even have a queueing system.) The random variable X_(¢) typically represents
the number of customers in the system at time ¢, and ‘the random variable Y_(¢)
typically represents other aspects of interest at time #, such as residual interarrival
ftmes and service times. The random variable ¥ (¢) might contain supplementary
variables to makes [ X, Y] a Markov process, but nced not. We assume’ that
X, (1) is real-valued and [X_(¢), Y,,(2)] takes. values in a complete ‘separable
metric space S, endowed with the Borel o-field, (which usuvally would be .
Euclidean space, but need not be) and that the sample paths of [ X, Y] are
RCLL (right-continuous with left limits), so that [ X, ¥,,] can be regarded as a
random element of the function space D[0, c0); see Ch 3 of Bﬂlmgsley [2], Sec 2
of Whitt [17] and Ch. 3 of Ethier and Kurtz [5]. :
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Our most important assumption concerns the way the finite-capacity systems
are related to the infinite-capacity system. We assume that the system with
capacity n can be constructed in terms of the infinite-capacity system up to the
first time that the capacity exceeds n. Let 7, be the first passage time defined by

T,=inf{t>0: X (t)>n}, n>1. (2.1)

REPRESENTATION ASSUMPTION

We assume that [ X, Y, ] is defined on the same probability space as [ X_, ¥ ]
and that { X, (1), Y, ()] =[X(2), Y ()] for 0 <t < T,.

So far, we have said nothing about [ X (¢), Y, (¢)] for ¢ > T,. However, the
Representation Assumption already implies that the transient behavior of [ X, 1, ]
converges to the transient behavior of [ X, Y] in a very strong sense. The RCLL
property implies that for each positive ¢

sup { X (s}} <0 w.p.l, (2.2)
Oss<r
p. 110 of Billingsley [2] and p. 70 of Whitt {17], which in turn guarantees that
lim 7, =00 w.p.l. (2.3)

The Representation Assumption implies that
P([X,(s), Y.(s)] = [ X (s), Yo(s)], 0<5<0) > P(T, > 1) (2.4)

for all positive n and ¢. Properties (2.3) and (2.4) imply convergence in total
variation for the probability distributions provided we restrict attention to
bounded time intervals. Let «, be the projection map from the function space
DJ0, o) onto D[0, #] defined by 7 (x)(s)=x(s5), 0 <s <t Then

nlingouwt[ n? ],n]_ﬂ.r[ oc? oo] ”
= lim sup|P(#[X,, Y] €4)—P(7[X,, Y] €4)|=0, (2.5)
n—ee 4 :

where A is a measurable subset of the function space D0, ¢]. The total variation
norm ||-|| in (2.5) applies to the probability measures induced by the random
elements #[X,, ¥.] and 7[X_, Y] on D[0, ¢]. An elementary consequence of
(2.5) is the correspondmg lnmt for the one-dimensional marginals, i.€.,

Jim N X, (2), Y,()] = [X.(2), Y (]I
= lim sup| P([X,(1), Y,(1)] € 4) - P([X(0), Yoo(8)] €4) 1 =0,
| (2:6)
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where now A4 is a measurable subset of S. Another elementary consequence of
(2.5) is that

[X,, Y.] = [X,, ¥..] as n > o0 in D0, 0}, (2.7)

where == denotes convergence in distribution (weak convergence), and DJ[0, o)
is endowed with the Skorohod J; topology on D[0, 0); i.e.,

Jim Ef([X,, Y.]) = Ef([ X, X)) (2.8)

for all continuous bounded real-valued functions on D{0, co).

While we have established convergence of the processes (transient behavior) as
n — co in great generality, we have yet to treat stationary or limiting distribu-
tions. The following example illustrates some of the difficuities.

EXAMPLE 2.1

Let the infinite capacity system be a simple M/M/1 queue with traffic
intensity p < 1. Let the associated n-capacity system be the modification in which
the system closes down, i.e., empties immediately with all service times set equal
to 0, the instant an arriving customer finds # customers in queue. Clearly the
representation assumption above holds, so that (2.2)-(2.9) hold, but the limiting
distributions do not converge. O

3.- Regenerative framework

We obtain convergence of steady-state distributions from convergence of the
transient behavior by exploiting regenerative structure. We now assume for
n < oo that the stochastic processes [ X, ¥,] are regenerative with generic cycle
times C, having non-lattice distributions with 0 < E(C,) < co, so that

[X,(2), %,(1)] = [ X,(c0), ¥, (c0)] as t > oo RV

and

E| (11X, %(0) a |
B 1%, (), ¥, (o)) = 2 62

for any bounded. measurable real-valued function f on the state space §; see
section V.1 of Asmussen [1]. As in [1], the cycle times C, are i.i.d., but there may
be some dependence between cycles of the process; see theorem S(b) here. The
expectations on the right of (3.2) refer to the zero-delayed case; l.e., ~we are
assuming a regeneration point at = 0. - -

To connect [ X, ¥, ] to [ X, Y], we also assume that these cycle times C,, are
consistent with our basic Representation Assumption in section 2, in a sense to be
defined below. Let 1, denote the indicator function of the set 4, i.e., 1,(x) =1 if
x € A and 0 otherwise.
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EXTENDED REPRESENTATION ASSUMPTION

In addition to the Representation Assumption above, we assume that 1. _,,

As a consequence of the extended representation assumption,

E[_/(;Cﬂf[xn(f)a Y,(1)] d‘] =E[1{cm<7:,}j(;cwf[xm(f)], 7, ()] df}

E[Lgar, [0, 0] &t ()

for any bounded measurable real-valued function f on S. We now can apply (3.3)
to obtain a condition for convergence of the steady-state distributions in total
variation, in the sense of (2.6).

THEOREM 1
If E[Clic 73] 0 as n—co in this regenerative framework with the ex-

tended representation assumption, then
[ X, (e0), ¥,(c0)] = [ Xo(o0), Yio(o0)] | = 0 a5 1 — co.

Proof
Since f is bounded, say by M,

E[I{C";Tn}focnf[xn(f), Y,(1)] df] éME[Cnl[cﬂzm]’

so that the second term in (3.3) is asymptotically negligible by the assumption. By
(2.3) and the Lebesgue dominated convergence theorem, the first term in (3.3)
converges to E[ [&=f[ X(¢), Y(¢)] dt]. By this argument, both the numerators and
denominators on the right of (3.2) converge. Moreover, the convergence is
uniform in f for f of the form 1,. O

Of course, the condition in theorem 1 will not always be satisfied. We now
present a sufficient condition that we will apply to GI/GI/c/n queues. The idea
is to bound the quantities associated with the n-capacity systems by a quantity
associated with the infinite-capacity system. :

PROPOSITION 2 _ | .
If there exists a nonnegative random variable Z such that E(Z) < <0 and

E[Cligom| <E[[Z+Cullc o) (3.4)
for all » sufficiently large or, equivalently, if
E|E[CI1sn)]| <E[E[Z+ Calleomy]] | (3.5)
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for all n sufficiently large, then

E[Cnl{c,,;'r,,}] — 0 as n— oo.

Proof

Since E(C_)<oo and E(Z)<oo, we can apply (2.3) and the Lebesgue
dominated convergence theorem to conclude that the right side of (3.4) converges
toQasn—o00. O

One way to establish (3.4) is to construct all systems on a common probability
space appropriately ordered. (Such a construction is possible whenever there is
stochastic order.) In section 5 we apply the next proposition with Z = 0.

PROPOSITION 3
If there exists a nonnegative random variable Z with E(Z) < co such that

C,<Z+C, wp.l, (3.6)
then (3.4) holds.

Proof
The assumptions imply that

from which (3.4) is immediate. O

4. General multi-server FCFS loss systems

Now assume that the infinite-capacity queueing system is a single facility with
unlimited waiting space, ¢ servers working in parallel and the FCFS (first-come
first-served) queue discipline. Let the stochastic behavior be specified by a
sequence {(u,, v.): k> 1} of orderéd pairs of nonnegative random variables,
where u, represents the interarrival time between the (k — 1)* and k™ arrival,
and v, is the service time of the k™ arrival, but we make no independence or
common-distribution assumptions. Hence, we have an A/A /c¢/c0 model (A for
arbitrary, instead of G for general stationary or GI for renewal). Let the system
start out empty at time 0. Other initial conditions can be introduced through:the
basic sequence {(u,, v,)}; ie., if u, =0 for 1 < k< K with u,, ;> 0, then there
are K customers in the system at time 0.

The n-capacity system can be defined in terms of the infinite capacity system,
using the same sequence {(u,, v,)}, by letting n — ¢ be the size of the waiting
room and stipulating that arrivals that find the waiting room full are lost (an
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A/A/c/n system). If customer k is lost, he takes his service time v, away with
him. Obviously, we have represented the capacity-n system in terms of the
infinite-capacity system as assumed in section 2, so that the limits described there
apply here. With the additional structure in this section, we can also say what
happens after T,; we can conclude that the infinite-capacity system serves as a
bound for the finite-capacity systems, as needed in proposition 3. We use the fact
that all customers admitted to the capacity-n system have the same service times
as. their counterparts in the infinite-capacity system.

THEOREM 4
- With the special construction, X, (¢) < X_(¢) for all » and ¢

Proof
For any sample path, we can represent { X, (¢): > 0} in terms of { X_(¢): ¢ >
0} in two steps: first, by replacing the service times of all customers that would be

lost by 0 and, second, by not counting these customers. Since customers with 0

service times do not affect the time in system of other customers, the second step
is clearly consistent with the claim. For the first step, we use known monotonicity
properties for A/A/c/o0 systems, in particular, theorem 8 and the following
remark in Whitt [18]: Making the service times smaller can only reduce X, (¢). To
see this directly, recall that

D,=U+W, +u, (4.1)

where D, is the departure epoch, U, = u; + - - - +u, is the arrival epoch, and W,
the waiting time before beginning service of the n™ arrival. Decreasing some of
the service times v, causes D, to decrease or remain the same, because U, is
unchanged and W, was shown to be a nondecreasing function of (v,,...,v,_;) by
Kiefer and Wolfowitz [11]. Since all arrival epochs are the same and all departure
epochs are ordered, all queue lengths are ordered. [3J

Recall that a set of probability measures on a complete separable metric space
is tight if for each € > 0 there exists a compact subset K such that P(X)>1—e.
for all P in the set; pp. 9, 37 of Billingsley [2]. Tightness guarantees that every
sequence of probability measures from the set has a weak convergent subse-
quence (with a proper limit).

COROLLARY 1
If {X_,(¢): t>0} is tight, then { X, (¢): £ 0, n >0} is tight, so that every
sequence { X, (#,): k> 0} has a.weak convergent subsequence.

We say that one real-valued random variable X; is stochastically less than or
equal to another, and write X, <, X;, if P(X,>¢) < P(X,>1t) for all f; see
chapter 1 of Stoyan [15].
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COROLLARY 2
(a) M X_(1)= X_(o0) and X, ()= X, (00) as 1 — oo, then

X, (o0) <,, X_(00).
(b) If (a) holds for all n, then { X (co): n > 1} is tight.

It 1s of course also of interest to compare the finite-capacity systems for
different capacity sizes. We would like to conclude that X, (1) < X, (¢) when
n, <n, < oo with the special construction, but this is not true in general, as we
show below. However, it is possible to show that the epoch of the k'* admitted
arrival and the &' departure (not the departure epoch of the k™ arrival) occur
sooner in the system with larger capacity. This is verified by a minor modification
of theorem 1 of Sonderman [14].

EXAMPLE 4.1
To see that we need not have X (¢) < X,(¢) for all ¢ or
X, = lim 17 [X,(s) ds < lim 7' [X,(5) ds =T, (4.2)
1= co 0 t—>co 0

consider a D/A /1 /o0 model in which u, =1, v,, =2 and v,, ;=€ for all k
and a small positive € (0 <€ <1/2). For the D/A /1/1 model constructed from
it, X;(¢#)=1 for all z>2, so that X, =1 in (4.2). For the D/A/1/2 model,
X(t)=2for3<t<4; X;(t)=1forl<t<l+e 2<5t<3 and 4<1<4+¢
X,(t)=0for 0<r<1, 1+e<t<2 and 4 +e<1t<5. Moreover, the form of
X,(t) in the interval [1 + 4k, 5 + 4k] is independent of %, so that X, = (3 + 2¢) /4
in (4.2). Fore<1/2, X, < X,.

As given, the D/A /1 /00 model above is not stable, but it can easily be made
stable by inserting periodic blocks of 0 service times. This would reduce both X,
and X,, but leave X, < X|. Moreover, as constructed, the processes X, () do not
converge in distribution as ¢ — co. To obtain such convergence, we can perturb
the model above slightly. In particular, consider the GI/A /1 /00 model in which
u, is uniformly distributed in {1 — 8, 1 + 8] for very small § and

P(v,,=2and v,,,, =€ forall k}=P(v,, =€ and v,,,, =2 for all k)
=1/2.
Then X,(f) = X,(c0) and X,(¢) = X,(0) with E[X,(c0)] = E[ X,(c0)]. O

5. The GI/G1 /¢ /n loss model

Finally, comsider the classical GI/GI/c/n loss model, ie., the A/A/c/n
model of section 4 with the additional assumption that {u,} and {v,} are
independent sequences of i.i.d random variables with E(u;) < oo and E(v,) < c0;
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see chapter XI of Asmussen [1]. As usual, let p = E(v;)/cE(1,). For n < o0, let
Y,(¢) be a vector representing the number of busy servers, the residual service
times of each and the residual interarrival time at time ¢, so that [X,, ¥ ] is a
Markov process. We say that a distribution function F is spread out if, for some
n, the n-fold convolution F*” satisfies F*"(x) > G(x) > 0 for all x, where G is
not identically zero and is absolutely continuous (has a density) with respect to
Lebesgue measure; see p. 140 of {1}

THEOREM $§
Suppose that p < 1. If (a) P(u; > v,) >0 and &, has a non-lattice distribution
or (b) u, has a spread-out distribution, then

[X,(2), ¥, (¢)] = [ X,(0), ¥,(c0)] as t = oo for each n < oo (5.1)
and
[ X, (o0}, Y,(o0)] = [ X (), You(o0)} Il > 0 a5 7 — co. (52)

Proof

(a) For each n < co, the epochs just prior to an arrival in the empty state
constitute regeneration points for the processes [ X, Y,] and the cycle times C,
have nonlattice distributions with E(C,) < oo, so that (5.1) holds; for the case
n = o0, see Whitt [16] or proposition 3.2 on p. 187 and corollaries 2.5 and 2.8 on
pp- 251-252, of Asmussen [1]. In this case, the process cycles as well as the cycle
time C_ are 1i.d. Using the special construction in section 4, X (1) < X_(¢) for
all » and ¢, so that the result above holds for n < co too, with C, < C_ w.p.1.
Indeed, with the special construction in Section 4, we could use the regeneration
points associated with n = co for all n. (Then the regeneration points for # < oo
would be a subset of the epochs just prior to an arrival in the empty state.)
Hence, we can apply proposition 3, to obtain the condition of theorem 1, which
implies (5.2). '

(b) Now epochs just prior to an arrival in the empty state might not occur
infinitely often, but the processes [X,, ¥,] become Harris recurrent Markov
processes, and thus regenerative processes for which (3.2) holds; see pp. 126, 150,
252 of [1]. For the case n = co, the cycle times can be arrival epochs associated
with the arrival indices that serve as the regeneration points for the discrete-time
vector waiting time process constructed in lemma 2.4 on p. 250 of [1]. We use the
fact that the final ¢ arriving customers in the cycle enter service immediately
upon arrival and all previous customers are gone by the end of the cycle; see
corollary 2.8 on p. 252 of [1], where total-variation convergence as in (5.2) is
established for (5.1) with n = co. In this case, the process cycles need not be
independent. By using the construction in the proof of theorem 4, ie., by
assigning lost customers zero service times, we can construct the regeneration
points in such a way that the extended representation assumption in section 3 is
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satisfied; note that the vector waiting time sequences are also ordered under the
construction in section 4. Indeed, after constructing all processes on the sample
space, we can use the regeneration points associated with » = co for n < co. The
stationary distribution at these points is independent of n for n > ¢. Finally, the
regenerative cycle distributions are spread out by proposition 3.2 on p. 187 of [1].
The rest of the proof is as in (a). O

Let the workload at time ¢ be the sum of all remaining service times of
customers in the system at time ¢. We can obtain convergence of the limiting
workload distributions as n — co directly from theorem 5 by including in ¥, (¢)
the remaining service time of each of the X, (¢) customers in the system at time ¢.

By essentially the same argument, we can obtain convergence as n — co of the
limiting distributions for associated embedded sequences, ¢.g., for the number in
system just prior to the »"™ arrival and the waiting time of the n™ arrival. If we
focus on external arrivals, then we can apply theorem 4, because the arrival
epochs will be the same for all n. (A lost customer departs the same time it
arrives.) Under the condition of theorem 5(a), the cycle times C, now consist of
the number of arrivals between successive epochs just prior to an arrival in the
empty state, and the integral in (3.2) is replaced by a sum. If we want to consider
only arrivals that actually enter the system, then C, becomes smaller, so that we
still have C, < C, w.p.1. S

6. Embedded Markov chains in M /G /1 and GI /M /1

The queuneing systems M/G /1 and GI/M/1 can also be analyzed by focusing
on embedded discrete-time Markov chains, but even when we have discrete-time
Markov chains the established theory ([7], [19]) does not always apply. For the
M/G/1/rn queue, the transition matrix of the usual embedded chain (lookmg
just after departures) is a truncation of the transition matrix for n = co. More-
over, the transition matrix for n=co has upper-Hessenberg form, so that
previous theory establishes that the lm:utmg distributions converge as n — co; see
[7. On the other hand, for GI/M/1/n thé transition matrix of the usual
embedded chain (looking just before arrivals) is not a truncatiof: of the transmon
matrix for n = co, so that the previous theory does not apply We remark that
sections 2 and 3 can also be applied directly to approximate general 1nf1mte—state
Markov chains by associated finite-state truncauons, then we do not need Y
and Y, .

7. Extensions

The results in sections 2 and 3 remain valid if 7, in (2.1) is a more general
hitting time, provided that (2.3) holds. Moreover, X_(¢) need not be real-valued:
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For example, in a queueing network X_(¢) might be the vector representing the
number of customers at each queue and 7, might be the first time any queue
length exceeds n. Of course, to establish convergence of steady-state distributions
in other models, we must establish the condition in theorem 1. It is also not
essential that the sample paths of [X_, ¥ )] be RCLL; this is a convenient
regularity condition to obtain (2.2) and appropriate measurability.

Finally, it is not essential to have the independence associated with the
regenerative framework in section 3; it suffices to have (3.2) and the extended
representation assumption. In a general stationary framework, (3.2) can often be
obtained from the stochastic mean value theorem; see (1.5.3) on p. 45 of Franken
et al. [6]. (Then we might not have (3.1); ie. [ X, {c0), Y, (c0)] might have the
stationary distribution without there being a limiting distribution.)

As a consequence, to obtain (5.2), but not necessarily (5.1), instead of the
independence conditions in section 5 we can assume that the sequence of ordered
pairs {(u,, v,)} is stationary and ergodic (the G/G/c/n model), provided that
there exist appropriate renewing events or construction points, as in chapter 4 of
Borovkov [3] or chapter 2 of Franken et al. [6], which are.consistent with the
extended representation assumption. The natural renewing events are arrivals to
an empty system. As in the GI/Gl/c/n model, there are always infinitely many
of these simple renewing events for ¢ = 1 but not necessarily for ¢ > 1; see section
2.4 of [6] and section 4.7 of [3].However, the main point is that theorem 5 extends
readily to a very large class of G/G/c/n models.

An interesting goal for further research is to obtain quantitative estimates of
the distance between the distributions of [ X (00), Y, (00)] and [ X (o0), Y (c0}].
An approach that should prove useful for this purpose pointed out by a referee is
the uniform-in-time continuity method for regenerative processes in section 4 of
Kalashnikov {8].
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