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We propose nonstandard simulation estimators of expected time averages over finite intervals [0, t],
seeking to enhance estimation efficiency. We make three key assumptions: (i) the underlying
stochastic process has regenerative structure, (ii) the time average approaches a known limit as
time t increases and (iii) time 0 is a regeneration time. To exploit those properties, we propose a
residual-cycle estimator, based on data from the regenerative cycle in progress at time t, using only
the data after time t. We prove that the residual-cycle estimator is unbiased and more efficient
than the standard estimator for all sufficiently large t. Since the relative efficiency increases in t,
the method is ideally suited to use when applying simulation to study the rate of convergence to the
known limit. We also consider two other simulation techniques to be used with the residual-cycle
estimator. The first involves overlapping cycles, paralleling the technique of overlapping batch
means in steady-state estimation; multiple observations are taken from each replication, starting
a new observation each time the initial regenerative state is revisited. The other technique is
splitting, which involves independent replications of the terminal period after time t, for each
simulation up to time t. We demonstrate that these alternative estimators provide efficiency
improvement by conducting simulations of queueing models.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-
tics—renewal theory; I.6.6 [Computing Methodologies]: Simulation and Modelling—simula-
tion output analysis

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: efficiency improvement, variance reduction, regenerative
processes, time averages

1. INTRODUCTION

Suppose that X ≡ {X(t) : t ≥ 0} is a continuous-time stochastic process with
values in a general state space, and we want to use simulation to estimate the
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expected value of the associated time average

Y (t) ≡ t−1

∫ t

0

f(X(u)) du, t ≥ 0 , (1)

for some real-valued function f . For example, f(s) may be a reward rate earned in
state s; then E[Y (t)] is the expected average reward earned over the interval [0, t].
The standard estimator of the expected time average

α(t) ≡ E[Y (t)]

is a sample mean from n independent replications, i.e.,

α̂n(t) ≡ n−1
n∑

j=1

Yj(t) , (2)

where Yj(t) is the random observation of Y (t) in (1) from the jth replication and a
hat designates an estimator.

1.1 Alternative Estimators

We consider alternative estimators exploiting regenerative structure (see Smith
[1955] and Chapter VI of Asmussen [2003] for background) and prove that these
estimators are substantially more efficient than the standard estimator for suffi-
ciently large t. What we do applies equally well to discrete-time processes, where
the integral in (1) is replaced by a sum and t is a positive integer, but here we
restrict attention to continuous-time processes.

In addition to assuming that X is a regenerative process, we assume that (i) the
initial time 0 is a regeneration time and (ii) the expected time average converges
to a known limit

α ≡ lim
t→∞

α(t) .

The initial condition can be relaxed, as we indicate in Section 12, but we strongly
exploit knowledge of the limit α. It is common for α to be known, while α(t) is not.
For example, X(t) may be an irreducible finite-state semi-Markov process, with non-
exponential transition-time distributions. The limiting steady-state distribution
has an elementary form, given in (7.24) of Ross [2003], from which α is easy to
compute, but the expected time average α(t) is not so easy to compute. Another
large class of examples are product-form Markovian queueing networks. For them
too, the steady-state distribution is readily available - through the product form -
while the time-dependent behavior is relatively complicated.

We introduce two new estimation techniques to exploit the regenerative structure:
(i) a residual-cycle estimator, defined in Section 3, and (ii) overlapping cycles,
defined in Section 6. The residual-cycle estimator uses data from the regenerative
cycle in progress at time t, using only the data after time t. The technique of
overlapping cycles, paralleling the technique of overlapping batch means in steady-
state estimation [Meketon and Schmeiser 1984, Pawlikowski 1990], uses multiple
observations from each replication, starting a new observation each time the initial
regenerative state is revisited. We also consider using splitting together with those
two new techniques.
ACM Journal Name, Vol. V, No. N, February 2006.
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We prove that the residual-cycle estimator is unbiased and asymptotically more
efficient than the standard estimator by a factor of t as t → ∞. Through experi-
ments, we show that all three techniques are effective, provided that t is sufficiently
large, with the combination of all three techniques together performing best.

1.2 Estimating the Rate of Convergence

Our theorems and experiments show that our proposed methods are especially
promising when t is relatively large, but for large enough t, the known limit α itself
will be a good approximation for the expected time average α(t). However, we
rarely know in advance whether any specific candidate t is large enough. Thus it is
natural to rely on simulation if we want to estimate α(t) to within some specified
statistical precision.

In fact, since our methods work so well for large t, they are especially well suited
to study how fast α(t) converges to α as t increases. Accordingly, we show - under
an extra moment condition in the regenerative setting - that

t(α(t)− α) → β as t →∞ ; (3)

see Theorem 5.1. When the limit (3) holds, the constant β (or −β) is called the
asymptotic bias; see Section 5. In Section 11 we show that our estimators of α(t)
can be used together with regression to efficiently estimate β. That is helpful,
because the exact form of β - given in (40) - is complicated in general.

For a large class of Markov processes, both α and β can be effectively computed;
see Whitt [1992], so that we have the natural approximation

α(t) ≈ α +
β

t
. (4)

In those cases we can use simulation to investigate how well approximation (4)
performs. When we are genuinely interested in the large-time behavior of the
process, it is obviously very helpful to have estimators of α(t) that are highly
efficient for large t. When t is large, samples of Y (t) are more expensive to generate.

On the other hand, we recognize that many applications will have a fixed t. At
the outset, we admit that the methods here require t not to be too small in order
for the extra complexity required to implement these alternative estimators to be
worth the effort. But how large must t be? We do not have a definitive answer, but
our experiments give some insight. The relevant reference is the random length of a
regenerative cycle, here denoted by τ1. There is hope for efficiency gain if t > E[τ1].
Our limited experimental work indicates that a more precise reference may be
the mean of the stationary-excess (or equilibrium residual lifetime) distribution
of the cycle-time distribution, E[τ2

1 ]/2E[τ1], which is larger than E[τ1] when the
distribution is more variable than an exponential distribution, and less otherwise.
(See (27).) Our mathematical analysis and simulation experiments provide more
information.

1.3 Notions of Efficiency

We introduce these alternative estimators in order to achieve variance reduction,
but of course variance is not the only issue. We also need to take account of
computational effort. Thus we seek to increase the efficiency, where efficiency is
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taken as being inversely proportional to the product of the sampling variance and
the amount of labor expended in obtaining the estimate. The appropriateness
of that definition may not be entirely obvious. See Glynn and Whitt [1992] and
references therein for justification.

In our experiments we treat a small class of models, but we try to probe carefully
into the efficiency issue. Since the different estimators require different simulation
run lengths, we pay attention to simulation run length. In contrast to the standard
estimator, the residual-cycle estimator uses data after time t, with the amount of
data used being random, depending on the length of the remaining cycle.

But, simulation run length does not capture all of the computational effort. Thus,
in addition to simulation run length, we also consider average observed CPU time.
For these observed-CPU-time efficiency measures, our efficiency thus depends on
our implementation. Allowing for the possibility of improved implementation, our
reported efficiency gains involving average observed CPU time should be regarded
as lower bounds on what possibly can be achieved. Of course, the care we have
given to the meaning of efficiency is not the end of the story. For example, one
might also consider the human programming effort.

1.4 Related Research

Nonstandard estimators of α(t) when α and the steady-state distribution of X
are known were recently proposed by Glynn and Wong [1996], Wong, Glynn and
Iglehart [1999] and Henderson and Glynn [2002] for the case in which the underlying
stochastic process X in (1) is a Markov process. The first two papers exploit
coupling, while the last exploits martingales. Our approach exploiting regenerative
structure is quite different, and has the advantage that it applies to non-Markov
processes as well as Markov processes. Our approach is relatively easy to apply as
well. However, the other methods apply to a wider range of transient performance
measures, going beyond α(t). These methods remain to be compared.

The idea of exploiting the remaining part of the last regeneration cycle to achieve
efficiency improvement in simulations was originally due to Meketon and Heidel-
berger [1982], but they considered a different problem: They were concerned with
estimating α instead of α(t). They showed that the last part of the regenerative
cycle in progress at time t can be used to reduce the bias of an estimator of the
limiting time average α. Other ways to exploit regenerative structure for simulation
efficiency have been proposed by Calvin and Nakayama [1998, 2000].

Of course, the now classical way to exploit regenerative structure in simulation,
aiming to estimate the limit α and related steady-state quantities, is through regen-
erative simulation, as reviewed in Section VI.2.d of Asmussen [2003] and Crane and
Iglehart [1975]. That is not our concern here; we are not performing regenerative
simulation in that way.

1.5 Organization of the Paper

We start in Section 2 by specifying what we mean by regenerative structure and
reviewing the large-t asymptotic behavior of the standard estimator. In Section 3
we introduce the alternative residual-cycle estimator, and show that the residual-
cycle estimator for α(t) is unbiased and asymptotically more efficient than the
standard estimator by a factor of t as t → ∞. In Section 4 we observe that the
ACM Journal Name, Vol. V, No. N, February 2006.
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residual-cycle estimator can be regarded as a control-variable estimator, and show
that the control is asymptotically optimal as t → ∞. We show that the difference
between the residual-cycle control weight (which turns out to be 1) and the optimal
control weight can be bounded above by a quantity that decays as 1/

√
t as t →∞.

In Section 5 we prove the asymptotic-bias limit in (3) in a regenerative setting, and
obtain an explicit (but not necessarily tractable) expression for β.

In Section 6 we discuss the two additional simulation techniques to use together
with the residual-cycle estimator in order to further improve its efficiency: over-
lapping cycles and splitting. Our experiments show that each method produces an
order-of-magnitude improvement in efficiency when t is large.

In Section 7 we discuss ways to compare the alternative estimators, emphasizing
the notion of efficiency, which includes computational effort as well as the variance.
In Sections 8 and 9 we investigate how the different estimators perform for a rela-
tively simple queueing model: M/G/1/0, which has one server and no extra waiting
space. In Section 8 we obtain analytic results for the Markovian M/M/1/0 special
case; in Section 9 we describe the results of extensive simulation experiments for
M/G/1/0 models with three different service-time distributions: exponential (M),
deterministic (D) and hyperexponential (a mixture of two exponentials, H2).

In Section 10 we present a few results for a different model: the M/G/5/0 queue,
which has five servers instead of only one. In Section 11 we discuss ways to estimate
the asymptotic bias β in (3) using estimates of α(t). By using linear regression, we
can verify that

1
α(t)− α

≈ t

β

and estimate both β and α(t).
Finally, we make concluding remarks in Section 12. Additional material appears

in an Internet supplement, Kang et al. [2005]. There we provide additional detail
about our M/G/1/0 and M/G/5/0 experiments.

2. REGENERATIVE STRUCTURE

We assume that X is a regenerative process with respect to regeneration times
0 = T (0) ≤ T (1) ≤ · · ·; e.g., see Chapters V and VI of Asmussen [2003]. The ith

cycle occurs between T (i− 1) and T (i). The main idea is that, for each i ≥ 0, the
shifted pair of stochastic processes ({X(T (i)+u) : u ≥ 0}, {T (i+k)−T (i) : k ≥ 1})
is independent of the history before time T (i) and has a probability distribution
that is independent of i; i.e., everything indeed “starts over” at the regeneration
times T (i). By assuming that T (0) = 0, we assume that a first full cycle starts at
time 0. This initial condition can be relaxed, but at the expense of some additional
complexity, as we indicate in Section 12. The limit theorems extend, but there are
more issues to consider in experiments. In this paper we restrict attention to this
special initial condition.

Let N(t) be the number of cycles completed by time t, i.e.,

N(t) ≡ max{i ≥ 0 : T (i) ≤ t}, t ≥ 0 . (5)

The regenerative structure implies that {N(t) : t ≥ 0} is a renewal counting process.
ACM Journal Name, Vol. V, No. N, February 2006.
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The key random variables associated with the regenerative cycles are

τi ≡ T (i)− T (i− 1),

Ui ≡
∫ T (i)

T (i−1)

f(X(u)) du =
∫ τi

0

f(X(T (i− 1) + u)) du,

Ũi ≡
∫ T (i)

T (i−1)

|f(X(u))| du =
∫ τi

0

|f(X(T (i− 1) + u))| du,

Wi ≡ sup
0≤t≤τi

{∣∣∣∣
∫ t

0

f(X(T (i− 1) + u)) du

∣∣∣∣
}

. (6)

We assume that P (τ1 > 0) > 0 and E[τ1] < ∞.
As a consequence of our assumptions above, the four-tuples (τi, Ui, Ũi,Wi), i ≥ 1,

are independent and identically distributed (IID). The random variables Ũi and Wi

are included to provide regularity conditions; note that 0 ≤ |Ui| ≤ Wi ≤ Ũi almost
surely. The variable Ũi is a cruder bound than Wi, but easier to work with.

2.1 Examples

A familiar example of a regenerative process is the queue-length process in a stable
GI/GI/s/r queue, having s servers, r ≤ ∞ extra waiting spaces, and interarrival
times and service times coming from independent sequences of independent and
identically distributed (IID) random variables with general distributions; then times
when arrivals come to an empty system are regeneration times. The intervals
between these regeneration times are the familiar busy cycles in queueing. We
assume that the expected busy cycle is finite. If s is large, then busy cycles can
be very long, and that emptiness regeneration may occur only very rarely; indeed,
without regularity conditions (allowing interarrival times and service times sharply
bounded from above and below), the system might never empty, even for a stable
system; see Whitt [1972].

If X is a positive-recurrent continuous-time Markov chain (CTMC), then tran-
sitions to any designated state can serve as a regeneration time for the process.
Sometimes regeneration times need to be somewhat complicated. For example, for
reflected Brownian motion on the positive half line with negative drift, with reflec-
tion at the origin, successive visits to the origin after first visiting state 1 constitute
regeneration times; we cannot just work with successive visits to the origin, because
there is almost surely no next visit a positive distance away, starting at the origin:
Starting at the origin at time 0, the process almost surely visits the origin again
infinitely often in an interval (0, ε) for any ε > 0.

2.2 Classical Limit Theorems

As additional regularity conditions for estimating α(t) in the general regenerative
case, we want Y (t) to satisfy a strong law of large numbers (SLLN) and a central
limit theorem (CLT) as t →∞, i.e.,

Y (t) → α w.p.1 as t →∞ (7)

and
√

t[Y (t)− α] ⇒ σN(0, 1) as t →∞ , (8)
ACM Journal Name, Vol. V, No. N, February 2006.



Exploiting Regenerative Structure · 7

where N(0, 1) is a standard (mean 0, variance 1) normal random variable, σ is a
positive constant, and ⇒ denotes convergence in distribution. From Glynn and
Whitt [1993, 2002], we know that a necessary and sufficient condition for the SLLN
in (7) is

E[W1] < ∞ , (9)

while necessary and sufficient conditions for the CLT in (8) are

E[|U1|] < ∞ and Var(U1 − ατ1) < ∞ , (10)

where Var is the variance, in which case

E[U1] = αE[τ1] and Var(U1 − ατ1) = σ2E[τ1] . (11)

We assume that these assumptions hold. For (10), it suffices to have Var(τ1) < ∞
and Var(Ũ1) < ∞ (or, equivalently, E[τ2

1 ] < ∞ and E[Ũ2
1 ] < ∞), and we assume

that to be the case. We also assume that σ > 0 to avoid the degenerate case.
We also assume that additional regularity conditions hold, so that the regen-

erative stochastic processes X and f(X) have steady-state limiting distributions,
i.e.,

X(t) ⇒ X(∞) and f(X(t)) ⇒ f(X(∞)) as t →∞ ,

and the limit α arises as the steady-state mean, satisfying the classical ratio formula,

α = E[f(X(∞))] =
E[U1]
E[τ1]

.

The key extra condition is that the distribution of τ1 be nonlattice, which we assume;
see Theorem 1.2 on p. 170 of Asmussen [2003]. Throughout the rest of this paper we
assume that all the assumptions above are in force. We will also make additional
moment assumptions as needed. Corresponding results hold in the lattice case,
after obvious adjustments.

2.3 Asymptotics for the Standard Estimator

The regenerative structure enables us to describe the asymptotic behavior of the
standard estimator as t →∞ for any n. Given the SLLN in (7) and the CLT in (8),
all that remains is to establish appropriate uniform integrability. For background
on uniform integrability, see Sections 3.2 and 4.5 of Chung [1974], the Appendix
and Chapters I and II of Gut [1988], Section 3, especially Theorems 3.4-3.6, in
Billingsley [1999] and the unpublished paper by Glynn and Iglehart [1987]. The
following result is known, being contained in Glynn and Iglehart [1987], but we are
unaware of a published reference, so we will provide the details. We will be using
the same line of reasoning in later proofs.

The main consequence is the variance limit in (15), which implies that the vari-
ance of the standard estimator decays as 1/t as t → ∞ for any n. We will show
that the residual-cycle estimator does better by a factor of t.

Theorem 2.1. (reference case) As t →∞,
√

t[α̂n(t)− α] ⇒ σ√
n

N(0, 1) , (12)
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√
t[α(t)− α] → σE[N(0, 1)] = 0 , (13)
√

t[α̂n(t)− α(t)] ⇒ σ√
n

N(0, 1) , (14)

tVar(α̂n(t)) =
tVar(Y (t))

n
→ σ2

n
(15)

for each n, where σ is the positive constant from (8) and (11).

Proof. The first limit (12) is an immediate consequence of the CLT (8). The
CLT (8) and the uniform integrability (UI) of

√
t(Y (t)−α) imply (13). We use the

assumed moment conditions E[Ũ2
1 ] < ∞ and E[τ2

1 ] < ∞ to show that t(Y (t)− α)2

is UI. Glynn and Iglehart [1987] focused directly on this issue. In particular, they
establish the UI of tp/2(Y (t)−α)p, and we will follow their argument, letting p = 2.
We will make frequent reference to Gut [1988], which of course was not available
to Glynn and Iglehart. The approach is to bound the quantity by the sum of
more tractable quantities. We repeatedly use Lemmas 1.2 and 1.3 on p. 166 of
the Appendix in Gut [1988]. Let Zi be the centered version of Ui in (6), i.e.,
Zi ≡ Ui − ατi; let Vi ≡ Ũi + |α|τi for Ũi in (6). Recall that E[Z2

i ] = σ2E[τ1] < ∞
by (11) and E[V 2

i ] < ∞ by assumption. Then

(∫ t

0

{f(X(s))− α}ds

)2

≤



∣∣∣∣
N(t)+1∑

i=1

Zi

∣∣∣∣ +

∣∣∣∣∣
∫ T (N(t)+1)

t

{f(X(s))− α}ds

∣∣∣∣∣




2

≤ 2
∣∣∣∣

N(t)+1∑

i=1

Zi

∣∣∣∣
2

+ 2V 2
N(t)+1 . (16)

The first term in (16) is a random sum of centered (mean 0) random variables
with finite variance, where the random number of terms is governed by the renewal
process N ≡ {N(t) : t ≥ 0}. The UI for this random sum, divided by t, is covered
by Theorems I.6.2 and I.6.3 on pp. 29-33 and Theorem II.5.1 plus (5.5) on p. 54
of Gut [1988], drawing on Chow et al. [1979].

It remains to treat the second term in (16). That is aided by the fact that Vi

is nonnegative; see Theorem 3.6 of Billingsley [1999]. Incorporating the factor 1/t,
we can write

1
t
V 2

N(t)+1 ≤
1
t

N(t)+1∑

i=1

V 2
i . (17)

Next we apply the SLLN, Wald’s equation and the elementary renewal theorem to
deduce, first, that

1
t

N(t)+1∑

i=1

V 2
i → E[V 2

1 ]
E[τ1]

w.p.1 as t →∞ (18)

and, second, that

1
t
E




N(t)+1∑

i=1

V 2
i


 =

1
t
E[N(t) + 1]E[V 2

1 ] → E[V 2
1 ]

E[τ1]
as t →∞ . (19)
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However, by Theorem 3.6 of Billingsley [1999], (18) and (19) imply that 1
t

∑N(t)+1
i=1 V 2

i

is UI, which then implies 1
t V

2
N(t)+1 is UI by (17). We have thus shown that

t(Y (t) − α)2 is UI. That implies that its square root
√

t(Y (t) − α) is UI, from
which we get (13).

Combining (12) and (13) with the converging-together theorem, Theorem 3.1 of
Billingsley [1999], yields (14). Next note that Var(Y (t)) = E[(Y (t) − α(t))2] =
E[(Y (t) − α)2] − (α − α(t))2. By the CLT in (8) and the continuous mapping
theorem, Theorem 2.7 of Billingsley [1999], t(Y (t)−α)2 ⇒ σ2N(0, 1)2, where again
σ is from (8) and (11). That, with the UI of t(Y (t)−α)2 established above implies
that E[t(Y (t)−α)2] → σ2 as t →∞. The limit in (13) implies that t(α−α(t))2 → 0
as t →∞. These together imply (15).

3. THE RESIDUAL-CYCLE ESTIMATOR

We now introduce the alternative estimator based on regenerative structure and
knowledge of the limit α. We still use sample means from n independent replica-
tions, but we consider different statistics from each replication.

Our alternative estimator for α(t) is based on data from the last cycle at time t,
including the portion of that cycle after time t, exploiting knowledge of the limit
α. Let the residual-cycle time at t be

T+(t) ≡ T (N(t) + 1)− t (20)

and let the residual-cycle integral at t be

I+(t) ≡
∫ T (N(t)+1)

t

f(X(u)) du . (21)

Let the residual-cycle statistic be

R(t) = α +
αT+(t)

t
− I+(t)

t
. (22)

Then the residual-cycle estimator of α(t) based on n replications is

α̂r
n(t) ≡ n−1

n∑

j=1

Rj(t) , (23)

where Rj(t) is the random observation of the residual-cycle statistic from the jth

replication and we again suppress n in the notation.
We first show that the residual-cycle estimator is unbiased.

Theorem 3.1. (unbiased) For each n and t, E[α̂r
n(t)] = α(t).

Proof. Let C(t) ≡ tY (t) be the associated cumulative process. The residual-
cycle statistic naturally arises by looking at the cumulative process up to the end
of the last cycle in progress at time t, in particular,

C(t) ≡ tY (t) =
∫ t

0

f(X(u)) du

=
∫ T (N(t)+1)

0

f(X(u)) du−
∫ T (N(t)+1)

t

f(X(u)) du

ACM Journal Name, Vol. V, No. N, February 2006.
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=
N(t)+1∑

i=1

Ui −
∫ T (N(t)+1)

t

f(X(u))du (24)

=
N(t)+1∑

i=1

Ui − α

N(t)+1∑

i=1

τi + αT (N(t) + 1)−
∫ T (N(t)+1)

t

f(X(u)) du .

Since α = E[U1]/E[τ1], we can apply Wald’s equation, p. 105 of Ross [1996], to
obtain

E




N(t)+1∑

i=1

Ui − α

N(t)+1∑

i=1

τi


 = 0 . (25)

Hence, taking expectations on both sides of equation (24), we see that

E[C(t)] = tE[Y (t)] = tα(t) = αE[T (N(t) + 1)]− E

[∫ T (N(t)+1)

t

f(X(u)) du

]

= tα + αE[T (N(t) + 1)− t]− E

[∫ T (N(t)+1)

t

f(X(u)) du

]
= E[tR(t)] ,

where R(t) is the residual-cycle statistic in (22). Dividing through by t in the last
equation, completes the proof.

When we consider efficiency, we must account for the fact that the residual-cycle
estimator requires extra work, because it uses data after time t. We now show
that the excess time and content after time t is asymptotically of order O(1), and
thus asymptotically negligible compared to t. Indeed, as t →∞, the length of the
residual cycle is distributed as the stationary-excess distribution of the cycle-length
distribution. Let d= denote equality in distribution.

Theorem 3.2. (excess) As t →∞,

(T+(t), I+(t), t(R(t)− α)) ⇒ (T+(∞), I+(∞), αT+(∞)− I+(∞)) in R3 . (26)

where the limit is a proper random vector, with T+(∞) having the familiar equilib-
rium residual lifetime (or stationary-excess) distribution associated with the distri-
bution of τ1; i.e.,

P (T+(∞) ≤ x) =
1

E[τ1]

∫ x

0

P (τ1 > y) dy . (27)

As a consequence, for each n,

t(α̂r
n(t)− α) ⇒ n−1

n∑

i=1

Li as t →∞ , (28)

where Li are IID random variables with L1
d= αT+(∞)− I+(∞).

Proof. The second limit (28) follows from the first by (23) and the limit of
the final term in (26) follows directly from (22), exploiting the continuous map-
ping theorem, Theorem 2.7 of Billingsley [1999], so it suffices to consider the first
ACM Journal Name, Vol. V, No. N, February 2006.
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two terms in (26). Exploiting the assumption that the cycle length T (1) has a
nonlattice distribution, we can apply the key renewal theorem, p. 155 of Asmussen
[2003], to deduce the joint convergence (T+(t), I+(t)) ⇒ (T+(∞), I+(∞)) as t →∞,
where (T+(∞), I+(∞)) is a proper random vector, with T+(∞) having the familiar
equilibrium residual lifetime (or stationary-excess) distribution, which has mean
E[T+(∞)] = E[τ2

1 ]/2E[τ1] and second moment E[T+(∞)2] = E[τ3
1 ]/3E[τ1]. We

first apply the Portmanteau theorem, p. 15 of Billingsley [1999], to show that the
desired limit is equivalent to the associated limit

E[g(T+(t), I+(t))] → E[g(T+(∞), I+(∞))] as t →∞ (29)

for all continuous and bounded real-valued functions g. We then observe that,
for any such function g, the expected value on the left side of (29) satisfies the
renewal equation. Hence, it suffices to apply standard arguments in Asmussen
[2003], exploiting direct Riemann integrability, just as in the proof of the closely-
related Proposition 9 in Glynn and Whitt [1993].

We now show that the variance of the residual-cycle estimator decays as 1/t2 as
t → ∞ for any n, which is faster than for the standard estimator by a factor of t.
For that, we need to impose some additional moment conditions.

Theorem 3.3. (variance asymptotics) If, in addition to the regenerative as-
sumptions in force, E[τ3

1 ] < ∞ and E[τ1Ũ
2
1 ] < ∞, then

t2Var(α̂r
n(t)) → Var(L1)

n
< ∞ as t →∞ , (30)

for L1 in Theorem 3.2.

Proof. It suffices to separately treat the two components of R(t) in (22): T+(t)
and I+(t). (Again apply Lemma A.1.3 on p. 166 of Gut [1988].) In particular, we
need to show that both T+(t)2 and I+(t)2 are UI, without further normalization,
where we have already established the convergence in distribution in (26). Conver-
gence in distribution extends immediately to the squares by the continuous mapping
theorem, Theorem 2.7 of Billingsley [1999]. First, Gut [1988] has established con-
vergence in distribution of I+(t) in his Theorem II.6.2, which implies convergence
in distribution of I+(t)2 by the continuous mapping theorem. Gut [1988] has also
established convergence of the moments E[T+(t)2] in his Theorem II.6.3, under the
assumed condition that E[τ3

1 ] < ∞. By Theorem 3.6 of Billingsley [1999], that
implies UI of T+(t)2.

Hence it remains to treat I+(t)2, exploiting the condition E[τ1Ỹ
2
1 ] < ∞. Since

I+(t)2 is nonnegative, it suffices to establish convergence of the moments. For that
we can apply the key renewal theorem again. Let A(t) ≡ E[I+(t)2] for t ≥ 0. Then
A(t) satisfies the renewal equation

A(t) = a(t) +
∫ t

0

A(t− u) dFτ1(u) , (31)

where

a(t) =
∫ ∞

u=t

E

[(∫ u

s=t

f(X(s)) ds

)2
∣∣∣∣∣ τ1 = u

]
dFτ1(u) . (32)
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In order to apply the key renewal theorem in Section V.4 of Asmussen [2003], we
need a(t) in (32) to be directly Riemann integrable (d.R.i.), for which conditions
are given in Proposition 4.1 on p. 154 of Asmussen [2003]. For that purpose, we
use

ab(t) =
∫ ∞

u=t

E

[(∫ u

s=t

|f(X(s))| ds

)2
∣∣∣∣∣ τ1 = u

]
dFτ1(u) . (33)

Note that ab(t) in (33) is nonincreasing in t. It is also Lebesgue integrable, because

∫ ∞

t=0

ab(t) dt ≤
∫ ∞

t=0

(∫ ∞

u=t

E

[(∫ u

s=0

|f(X(s))| ds

)2
∣∣∣∣∣ τ1 = u

]
dFτ1(u)

)
dt

=
∫ ∞

u=0

(∫ u

t=0

E

[(∫ u

s=0

|f(X(s))| ds

)2
∣∣∣∣∣ τ1 = u

]
dt

)
dFτ1(u) (34)

=
∫ ∞

u=0

uE

[(∫ u

s=0

|f(X(s))| ds

)2
∣∣∣∣∣ τ1 = u

]
dFτ1(u) = E[τ1Ỹ

2
1 ] < ∞ .

Thus ab(t) is d.R.i. by Proposition 4.1 (v) in Asmussen [2003]. But then a(t) itself
is d.R.i. by Proposition 4.1 (iv), because 0 ≤ a(t) ≤ ab(t).

The key renewal theorem thus implies that E[I+(t)2] ≡ A(t) → E[I+(∞)2] as
t → ∞, where I+(∞) is the limit (convergence in distribution) in (26). Because
of the nonnegativity, Theorem 3.6 of Billingsley [1999] implies that I+(t)2 is UI if
E[τ1Ũ

2
1 ] < ∞.

It would be nice to know the variance constants Var(L1) in (30) and σ2 in (8),
(11) and (15), but there are no convenient expressions. It is natural to estimate
these directly while performing the simulation.

4. A CONTROL-VARIABLE ESTIMATOR

Another way to arrive at the residual-cycle estimator of α(t) is to think of the
steady-state limit α as a control variable; see Section 2.3 of Bratley et al. [1987].
With that in mind, let

Ẑn(t) =
1
n

n∑

i=1

Zi(t) , (35)

where Zi(t) are IID with

Zi(t)
d= Z(t) ≡ t−1




N(t)+1∑

i=1

Ui − α

N(t)+1∑

i=1

τi


 . (36)

Given the relation (25), we can then think of Ẑn(t) as a control variate for estimating
α(t) by the standard estimator α̂n(t).

The associated control statistic would then be α̂c,n(t) ≡ α̂n(t) − ctẐn(t), where
Ẑn(t) is given in (35) and ct is an an appropriate positive constant, called the control
weight. The optimal control estimator, denoted by α̂c∗,n(t), is obtained using the
ACM Journal Name, Vol. V, No. N, February 2006.
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optimal control weight

c∗t ≡
Cov(Y (t), Z(t))

Var(Z(t))
; (37)

see Section 2.3 of Bratley et al. [1987]. However, observe that

α̂c,n(t) = α̂r
n(t) when ct = 1 , (38)

where α̂r
n(t) is the residual-cycle estimator. Thus, the residual-cycle estimator α̂r

n(t)
can be regarded as the control estimator with control weight ct = 1, which is not
the optimal control weight.

We now show that the residual-cycle estimator, when viewed as a control-variable
estimator, is asymptotically equivalent to the optimal control-variable estimator as
t →∞; we also determine a bound on the rate of convergence.

Theorem 4.1. (control-weight bound) For all t > 0,

t1/2|c∗t − 1| ≤
√

tVar(R(t))
Var(Z(t))

→ Var(L1)
σ2

as t →∞ (39)

for each n, where L1 is in Theorem 3.2.

Proof. First note that Y (t) = Z(t) + R(t) and

√
tZ(t) =

∑N(t)+1
i=1 (Ui − ατi)√

t
⇒ σN(0, 1)

for σ in (8) and (11); e.g., see Theorem 14.4 of Billingsley [1999] or Glynn and Whitt
[2002]. By uniform integrability, it follows that tVar(Z(t)) → σ2 as t → ∞.
Hence we can write

|c∗t − 1| =
∣∣∣∣
Cov(Y (t), Z(t))

Var(Z(t))
− 1

∣∣∣∣ =
∣∣∣∣
Cov(Z(t) + R(t), Z(t))

Var(Z(t))
− 1

∣∣∣∣ =
∣∣∣∣
Cov(R(t), Z(t))

Var(Z(t))

∣∣∣∣

≤
√

Var(R(t))Var(Z(t))
Var(Z(t))

=

√
Var(R(t))
Var(Z(t))

∼
√

K

t
,

for some constant K. In particular, from (15) and (30), K =
√

Var(L1)/σ2.

5. THE ASYMPTOTIC BIAS

In this section we justify the asymptotic bias limit in (3). The asymptotic form gives
important insight about the relation between the unknown α(t) and the known α.

Theorem 5.1. (asymptotic bias) If, in addition to the regenerative assumptions
in force, E[τ1Ũ1] < ∞, then

t(α(t)− α) → β ≡
∫∞
0

a(t) dt

E[τ1]
as t →∞ , (40)

where the limit in (40) is finite and

a(t) = −
∫ ∞

u=t

E

[∫ u

s=t

{f(X(s))− α}ds

∣∣∣∣ τ1 = u

]
dFτ1(u) . (41)
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Proof. To justify (40), we modify (24) by subtracting αt:

C(t)− αt =
∫ t

0

{f(X(u))− α}du

=
∫ T (N(t)+1)

0

{f(X(u))− α}du−
∫ T (N(t)+1)

t

{f(X(u))− α}du

=
N(t)+1∑

i=1

Zi −
∫ T (N(t)+1)

t

{f(X(u))− α}du , (42)

where Zi ≡ Ui − ατi. Since E[Zi] = 0, we can apply Wald’s equation, p. 105 of
Ross [1996], to obtain

E




N(t)+1∑

i=1

Zi


 = E[N(t) + 1]E[Zi] = 0 . (43)

Hence, taking expectations on both sides of equation (42), we see that

E[C(t)− αt] = −E

[∫ T (N(t)+1)

t

{f(X(u))− α}du

]
. (44)

Now we can apply the key renewal theorem to deduce that

E[C(t)− αt] → β as t →∞ , (45)

which is equivalent to (40). To carry out the analysis, we let

A(t) ≡ E[C(t)− αt] = −E

[∫ T (N(t)+1)

t

{f(X(u))− α}du

]
. (46)

Then A(t) satisfies the renewal equation

A(t) = a(t) +
∫ t

0

A(t− u) dFτ1(u) , (47)

where a(t) is given by (41).
Paralleling (33), let

ab(t) =
∫ ∞

u=t

E

[∫ u

s=t

|f(X(s))− α| ds

∣∣∣∣ τ1 = u

]
dFτ1(u) . (48)

Note that ab(t) is nonincreasing and
∫ ∞

t=0

ab(t) dt ≤
∫ ∞

t=0

(∫ ∞

u=t

E

[∫ u

s=0

|f(X(s))− α| ds

∣∣∣∣ τ1 = u

]
dFτ1(u)

)
dt

=
∫ ∞

u=0

(∫ u

t=0

E

[∫ u

s=0

|f(X(s))− α| ds

∣∣∣∣ τ1 = u

]
dt

)
dFτ1(u)

=
∫ ∞

u=0

uE

[∫ u

s=0

|f(X(s))− α| ds

∣∣∣∣ τ1 = u

]
dFτ1(u)

≤
∫ ∞

u=0

uE

[∫ u

s=0

{|f(X(s))|+ α}ds

∣∣∣∣ τ1 = u

]
dFτ1(u)
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= E[τ1Ũ1] + αE[τ2
1 ] < ∞ , (49)

so that ab(t) is Lebesgue integrable and thus d.R.i. by Proposition 4.1 (v) of
Asmussen [2003].

We can then deduce that a(t) itself is d.R.i. by breaking up f(s) − α into its
positive and negative parts. Let (x)+ ≡ max {x, 0} and (x)− ≡ −min {x, 0}. Then
a(t) = −a+(t) + a−(t), where

a+(t) =
∫ ∞

u=t

E

[∫ u

s=t

(f(X(s))− α)+ ds

∣∣∣∣ τ1 = u

]
dFτ1(u) (50)

and

a−(t) =
∫ ∞

u=t

E

[∫ u

s=t

(f(X(s))− α)− ds

∣∣∣∣ τ1 = u

]
dFτ1(u) . (51)

We see that a+(t) and a−(t) are both d.R.i. because 0 ≤ a+(t) ≤ ab(t) and
0 ≤ a−(t) ≤ ab(t). We can thus apply the key renewal theorem to a+(t) and a−(t)
and put the results together to get the limit for a(t).

Explicit expressions for the asymptotic bias can be determined for special cases.
e.g., for Markov chains and diffusion processes, see Whitt [1992] and references
therein. For example, if the underlying stochastic process X is an irreducible finite-
state CTMC with stationary probability vector π and fundamental matrix Z, then
the asymptotic bias can be expressed directly as a matrix product by

β = πZf t , (52)

where f t is a representation of the function f in (1) as a column vector; see (33) of
Whitt [1992]; see (49) of Whitt [1992] for the corresponding formula for a diffusion
process. Equivalently, β can be represented as a solution of Poisson’s equation; i.e.,
β = xf t, where x is the unique solution to xQ = −f t + f̄ et, where f̄ ≡ πf t and
et is a column vector of 1′s; see Corollary 4 to Proposition 10 of Whitt [1992]. For
birth-and-death processes and other skip-free Markov chains, β can be calculated
recursively; see Remark 1 in Whitt [1992]. Thus, for these Markov processes, if t
is large, then we may exploit this asymptotic relation as an approximation, and
directly compute both α and β in order to generate a good approximation for α(t).

Moreover, the next term often is exponentially small, as in (74) in Section 8, so
the asymptotic relation tends to yield a good approximation. For time-reversible
irreducible finite-state CTMC’s, which includes all birth-and-death processes, (74)
is a refinement of the bias formula (40); see Section 3.2 of Keilson [1979]. More
generally, the property is related to the notion of geometric ergodicity in Markov
chains; see Chapters 15 and 16 of Meyn and Tweedie [1993].

6. OTHER EFFICIENCY-IMPROVEMENT TECHNIQUES

In this section we consider two other candidate efficiency-improvement techniques:
overlapping cycles and splitting. We think of them being used together with the
residual-cycle estimator. The overlapping-cycle technique can be considered with
the standard estimator, but we found it to be ineffective in that way.
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6.1 Overlapping-Cycle Estimators

This is another way to exploit the regenerative structure. We can extend each of the
estimators above by developing new statistics, starting over at each regenerative
time within each replication. Suppose that we do this for m cycles within each
replication. The new overlapping-cycle standard estimator is

α̂o,m(t) ≡ α̂n,o,m(t) ≡ (mn)−1
n∑

j=1

m∑

i=1

Yj(Tj(i− 1), t) , (53)

where n is the number of replications, m is the number of cycles per replication,
Tj(i− 1) is the (i− 1)st regeneration time in the jth replication and Yj(Tj(i− 1), t)
is the statistic Y (t) in (1) based on data after the (i−1)st regeneration time within
the jth replication, i.e.,

Yj(Tj(i− 1), t) ≡ t−1

∫ t

0

f(Xj(Tj(i− 1) + u)) du, t ≥ 0 . (54)

Because of the involved notation, henceforth we frequently omit the subscript n
from our estimators. It is always understood that the estimators are based on n
replications.

As with the residual-cycle estimator, the run length for each replication with the
overlapping-cycle standard estimator is now random. The expected run length
for each replication is mE[T (1)] + t, while the variance is mV ar(T (1)). The
overlapping-cycle standard estimator seems more promising than the ordinary stan-
dard estimator for situations in which t should be greater than the mean cycle time
E[T (1)]. (Of course, we typically will not know E[T (1)] in advance.) Under that
condition, this alternative procedure produces many more samples per total run
length, but improved efficiency is not automatic, because the m samples within
each replication are dependent. On the other hand, if t is much less than E[T (1)],
than this procedure will tend to be less efficient than just using mn independent
replications, because large portions of cycles are likely to be wasted.

We also consider an overlapping residual-cycle estimator of α(t) based on n repli-
cations and m cycles per replication, namely,

α̂r
o,m(t) ≡ α̂r

n,o,m(t) ≡ (mn)−1
n∑

j=1

m∑

i=1

Ro
i,j(t) , (55)

where Ro
i,j(t) is the overlapping-residual-cycle statistic starting from regeneration

time Tj(i − 1) in the jth replication; i.e., Ro
i,j(t) is just the residual cycle statistic

R(t) based on the underlying stochastic process {Xj(Tj(i− 1) + u) : u ≥ 0} which
is regenerative with respect to the regeneration times Tj(k)− Tj(i− 1), k ≥ i− 1,
where the subscript j indicates the jth replication.

6.2 Splitting

As discussed in Hammersley and Handscomb [1964] and Bratley et al. [1987],
simulation efficiency may often be enhanced by splitting a simulation run into inde-
pendent sub-runs at some time, or after some state has been reached. If we split at
time t, then p independent sub-runs are produced after time t, given the common
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history of the process realized up to time t. Clearly the portion up to time t is
totally dependent in these p runs, but we only generate that initial portion once.
We thus obtain more samples after time t, without having to re-simulate the initial
portion.

In this paper, we consider splitting at time t to enhance the two residual-cycle
estimators, α̂r(t) and α̂r

o,m(t), thereby obtaining estimators α̂r
s,p(t) and α̂r

o,m,s,p(t);
e.g.,

α̂r
o,m,s,p(t) ≡ α̂r

n,o,m,s,p(t) ≡ (mnp)−1
n∑

j=1

m∑

i=1

p∑

k=1

Ro,s
i,j,k(t) , (56)

where Ro,s
i,j,k(t) is the kth independent splitting starting at time t of the ith overlapping-

residual-cycle statistic starting from regeneration time Tj(i− 1) in the jth replica-
tion; i.e., Ro,s

i,j,k(t) is the kth splitting of the residual cycle statistic R(t) based on the
underlying stochastic process {Xj(Tj(i− 1) + t) : t ≥ 0} which is regenerative with
respect to the regeneration times Tj(l)− Tj(i− 1), l ≥ i− 1, where the subscript j
indicates the jth replication.

We now investigate the effectiveness of splitting the residual-cycle estimator.
The following analysis is standard, but important. To proceed, we now consider a
general stochastic process {X(u) : u ≥ 0} and a filtration of sigma-fields (histories)
generated by X, Ft ≡ σ({X(u) : 0 ≤ u ≤ t}). As before, define a residual run to
be the process {X(u) : t ≤ u ≤ T (N(t) + 1)} and let the residual-cycle estimator
R(t) be as in (22). We generate p independent residual runs (splittings) contingent
on the observation up to time t and obtain Rs

i (t) for 1 ≤ i ≤ p. Even though Rs
i (t)

and Rs
j(t) are not independent for i 6= j, because they share a common portion up

to time t, they are conditionally independent given Ft.
The splitting residual estimator, based on a single replication of X on [0, t], is

defined by

R̄s(t) ≡ 1
p

p∑

i=1

Rs
i (t) .

The conditional independence implies that

Var

(
1
p

p∑

i=1

Rs
i (t)

∣∣∣∣∣ Ft

)
=

1
p
Var (R(t) | Ft) , (57)

so that

Var
(
R̄s(t)

)
= Var

(
E

[
R̄s(t)

∣∣ Ft

])
+ E

[
Var

(
R̄s(t)

∣∣ Ft

)]

= Var

(
E

[
1
p

p∑

i=1

Rs
i (t)

∣∣∣∣∣ Ft

])
+ E

[
Var

(
1
p

p∑

i=1

Rs
i (t)

∣∣∣∣∣ Ft

)]

= Var (E [R(t) | Ft]) +
1
p
E [Var (R(t) | Ft)] . (58)

Since Var (E [R(t) | Ft]) and E [Var (R(t) | Ft)] depend just on the stochastic pro-
cess and are independent of p, we can clearly see the influence of increasing p. When
we increase p, only the second term in (58) will decrease. The variance reduction
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achieved by splitting is

Var
(
R̄(t)

)

Var
(
R̄s(t)

) =
Var (E [R(t) | Ft]) + E [Var (R(t) | Ft)]
Var (E [R(t) | Ft]) + 1

pE [Var (R(t) | Ft)]
, (59)

so that the potential variance reduction is large, approaching a factor p, when the
ratio

E [Var (R(t) | Ft)]
Var (E [R(t) | Ft])

(60)

is large, but not otherwise.
To proceed further, assume that the computational cost is proportional to the

length of simulation horizon. Then the cost to get one split residual-cycle estimator
with p splittings is proportional to t+ pE[T (N(t)+1)− t]. To achieve a half-width
HW , the total computational effort is proportional to

(t + pE[T (N(t) + 1)− t])Var
(
R̄s(t)

)

HW 2
.

To minimize this effort, it is sufficient to minimize

(t + pE[T (N(t) + 1)− t])Var
(
R̄s(t)

)

= (t + pE[T (N(t) + 1)− t])
(

Var (E [R(t) | Ft]) +
1
p
E [Var (R(t) | Ft)]

)

= tVar (E [R(t) | Ft]) + E[T (N(t) + 1)− t]E [Var (R(t) | Ft)]

+pE[T (N(t) + 1)− t]Var (E [R(t) | Ft]) +
1
p
tE [Var (R(t) | Ft)] .

For any given t, we see that this is a convex function of p whose minimum is achieved
at

p∗(t) =

√
t

E[T (N(t) + 1)− t]
× E [Var (R(t) | Ft)]

Var (E [R(t) | Ft])
. (61)

Of course, p∗(t) must be an integer, so we replace p∗(t) in (61) by bp∗(t)c or
bp∗(t) + 1c.

In applications we anticipate that the three expectation-and-variance terms in
(61) will not change so rapidly with t, so that we might approximate the optimum
number of splittings by p∗(t) ≈ √

Kt for some constant K. We thus anticipate that
p∗(t) will grow with t proportional to

√
t. In practice, the constant K might be

estimated by doing pilot simulation runs.
When t is large, the additional computational effort to perform splitting will

be negligible, because E[T (N(t) + 1) − t] will be approximately constant and t +
pE[T (N(t) + 1)− t] will be approximately t. Thus the critical factor for efficiency
improvement from splitting is the ratio in (60), which of course depends on the
application.

7. RELATIVE EFFICIENCY

In preparation for concrete examples, we now discuss ways to compare two estima-
tors in the simulation experiments. Following the discussion so far, we look at the
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ratio of the variances, namely,

Vr ≡ Vr(t) ≡ Var(α̂(t))
Var(α̂r(t))

(62)

and the associated estimated value

V̂r ≡ V̂r(t) ≡ V̂ar(α̂(t))

V̂ar(α̂r(t))
, (63)

where a hat designates an estimator, the superscript r designates the residual-cycle
estimator, and no superscript designates the standard estimator. (The subscript n
is omitted throughout.) The limits in (15) and (30) imply that Vr(t)/t converges
to a finite positive limit as t → ∞ (for any n), showing the superiority of the
residual-cycle estimator for large t.

However, the variance of the estimators is not the only issue, because the run
length for the residual-cycle estimator is longer than the run length for the standard
estimator, being T (N(t)+1) instead of t. Moreover, the run length of the residual-
cycle estimator is random. Thus, we really want to look at the relative efficiency
of the two estimators, where the efficiency is taken as inversely proportional to the
product of the sampling variance and the amount of labor expended in obtaining
that estimate; see pp. 22 and 51 of Hammersley and Handscomb [1964] and Glynn
and Whitt [1992].

Thus, we focus on the following measure of relative efficiency:

Er ≡ Er(t) ≡ Var(α̂(t))× E[CT (t)]
Var(α̂r(t))× E[CT r(t)]

(64)

and the associated estimated value

Êr ≡ Êr(t) ≡ V̂ar(α̂(t))× ĈT (t)

V̂ar(α̂r(t))× ĈT
r
(t)

, (65)

where CT (t) and CT r(t) are the random amounts of CPU time used to obtain the
standard and residual-cycle estimators, respectively, while ĈT (t) and ĈT

r
(t) are

the associated estimates, based on sample averages.
For simplicity, it is often convenient to use the expected total simulation run

length as a surrogate for the amount of labor expended in obtaining the estimate.
We thus also look at the following alternative measure of efficiency:

Fr ≡ Fr(t) ≡ Var(α̂(t))× E[RL(t)]
Var(α̂r(t))× E[RLr(t)]

, (66)

and associated estimated value

F̂r ≡ F̂r(t) ≡ V̂ar(α̂(t))× R̂L(t)

V̂ar(α̂r(t))× R̂L
r
(t)

, (67)

where RL(t) and RLr(t) are the random simulation run lengths used to obtain the
standard and residual-cycle estimators, respectively, while R̂L(t) and R̂L

r
(t) are

the associated estimates based on sample averages.
From the perspective of efficiency, the residual-cycle estimator is also more promis-

ing than the standard estimator as t gets larger, because then the random run length
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T (N(t) + 1) of each replication will not differ greatly from t. Indeed, by Wald’s
equation and the elementary renewal theorem, we have

E[T (N(t) + 1)]
t

=
E[N(t) + 1]E[τ1]

t
→ 1 as t →∞ .

Indeed, the asymptotic relative efficiency favoring the residual-cycle estimator, as
measured by Fr(t), is the same as the relative variance, being of order t as t →∞.

Hereafter, paralleling (23) and (62)–(67), we use the notation

α̂r
o,m,s,p, Vr

o,m,s,p, Er
o,m,s,p, Fr

o,m,s,p

to refer to the estimator, the variance ratio and the cpu-time (CT) and run-length
(RL) efficiencies, respectively, for the combined estimator, using all three tech-
niques. We suppress the subscripts o,m when overlapping is omitted; we suppress
the subscripts s, p when splitting is omitted; and we suppress the subscripts s, p
and the superscript r when considering the overlapping standard estimator.

8. A TEST MODEL: THE M/G/1/0 QUEUE

In order to see how these various simulation estimators perform, we conducted
extensive simulation experiments with a relatively simple queueing model: the
M/G/1/0 queue, which has a Poisson arrival process with rate λ, IID service
times with a general cdf G having mean 1/µ, a single server and no extra wait-
ing space. Because there is only one server and no extra waiting space, there can
be either one customer in the system or none. We looked at the stochastic process
{X(t) : t ≥ 0}, where X(t) = 1 if a customer is present, and X(t) = 0 otherwise.
We considered the alternative estimators for the expected value of the time average
Y (t) ≡ t−1

∫ t

0
X(s) ds, starting out empty at time 0, a regenerative state. That is a

special case of (1) above with f being the identity function, i.e., f(x) = x for all x.
The random variable Y (t) is the proportion of time that the server is busy during
the interval [0, t].

For the M/G/1/0 queue, the successive busy and idle times form an alternating
renewal process. Thus the limit α is well known, namely,

α =
µ−1

λ−1 + µ−1
=

λ

λ + µ
.

For the general M/G/1/0 model, we have a two-state semi-Markov process, so that
the various time-dependent performance measures can be computed using numerical
transform inversion; e.g., see Duffield and Whitt [2000]. We consider this model,
not because we need simulation efficiency for it, but because its tractability helps
us understand what is happening.

8.1 Theory for the M/M/1/0 Case

Before actually considering the numerical experiments, we discuss closed-form an-
alytical results that can be obtained in one case. Perhaps the most elementary
nontrivial example is the queue-length process in the M/M/1/0 queueing model,
because it is a two-state continuous-time Markov chain (CTMC). In addition to
being an alternating renewal process, it is a birth-and-death process. As above, let
the queue-length stochastic process be denoted by X ≡ {X(t) : t ≥ 0}. Let the
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states be labelled 0 and 1. Let the birth (arrival) rate in state 0 be λ and let the
death (service) rate in state 1 be µ. Let Pi,j(t) ≡ P (X(t) = j|X(0) = i) denote the
transition probability, i.e., the conditional probability of being in state j at time t
given that the process started in state i at time 0.

For this example, the transition probabilities are easy to calculate by solving a
system of two ordinary differential equations; see Example 6.11 on p. 364 of Ross
[2003]. Here are the formulas:

P0,0(t) =
µ

λ + µ
+

λ

λ + µ
e−(λ+µ)t and P1,0(t) =

µ

λ + µ
− µ

λ + µ
e−(λ+µ)t, t ≥ 0 ,

with P0,1(t) = 1− P0,0(t) and P1,1(t) = 1− P1,0(t).
Recall that the initial state is 0 and the function f is the identity map. Then,

α(t) = t−1

∫ t

0

P0,1(u) du =
λ

λ + µ
− λ

t(λ + µ)2
(1− e−(λ+µ)t), t ≥ 0 . (68)

We can directly calculate the variances V ar(Y (t)) and V ar(R(t)) for Y (t) in
(1) and R(t) in (22). Thus we can calculate the variances of the standard and
residual-cycle estimators. We say that g(t) is O(t) as t → ∞ if |g(t)/t| < M for
some constant M for all t sufficiently large. In this example,

Var(Y (t)) =
a0

t
+

a1

t2
+

a2e
−rt

t
+

a3e
−rt

t2
+

a4e
−2rt

t2
,

Var(R(t)) =
b0

t2
+

b1e
−rt

t2
+

b2e
−2rt

t2
,

Vr(t) ≡ Var(α̂n(t))
Var(α̂r

n(t))
=

Var(Y (t))
Var(R(t))

= c0t + c1 + c2te
−rt + O(e−rt) , (69)

as t →∞, where

a0 =
2λµ

(λ + µ)3
, a1 =

λ(λ− 4µ)
µ(λ + µ)4

, a2 = a0(1− λ

µ
),

a3 =
4λµ

(λ + µ)4
, a4 =

λ2

(λ + µ)4
, r = λ + µ,

b0 =
λ2 + 4λµ + 2µ2

(λ + µ)4
, b1 =

2λ2

(λ + µ)4
, b2 = −b1/2,

c0 =
a0

b0
=

2λµ(λ + µ)
λ2 + 4λµ + 2µ2

, c1 =
a1

b0
=

λ2 − 4λµ

λ2 + 4λµ + 2µ2
,

c2 =
a2 − a0b1

b0
,

c1

c0
=

a1

a0
=

λ− 4µ

2µ(λ + µ)
. (70)

We can apply the variance formulas to calculate the relative efficiency of the two
estimators, using the actual expected run length, instead of the estimated expected
run length. We use the fact that

E[T (N(t) + 1)]− t =
1
µ

+
P0,0(t)

λ
→ λ2 + λµ + µ2

λµ(λ + µ)
as t →∞ . (71)
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Then the run-length efficiency is

Fr(t) =
tVar(Y (t))

E[T (N(t) + 1)]Var(R(t))
= c0t + c1 + O(te−rt) , (72)

where ai, bi and ci are the parameters in (70).
This simple example shows us what we should look for more generally. From

(68), we see that

α(t)− α =
β

t
− β

t
e−γt, t ≥ 0 , (73)

for β = −λ/(λ + µ)2 and γ = λ + µ. Under suitable regularity conditions, we will
have asymptotics like (73) for much more general models, but with equality replaced
by asymptotic equivalence and for different parameters β and γ. In particular, we
will have

α(t)− α ∼ β

t
− δ

t
e−γt, t ≥ 0 , (74)

for appropriate parameters β, γ and δ, where f(t) ∼ g(t) means that f(t)/g(t) → 1
as t → ∞, and f(t) ∼ g(t) + h(t) means that f(t) ∼ g(t), h(t)/g(t) → 0 and
f(t)− g(t) ∼ h(t) as t →∞; i.e., we have an asymptotic expansion; see pp. 5-11 of
Erdélyi [1956]. The parameter β in (73) and (74) is the asymptotic bias, as in (3)
and (40).

8.2 Splitting in the M/M/1/0 Case

We now apply the splitting result in Section 6 to the M/M/1/0 model. For this
model, the Markov and memoryless properties allow us to replace Ft by X(t). Let
U and V denote generic interarrival and service times, respectively, having means
λ−1 and µ−1, respectively. Then

E[R(t)|X(t) = 0] = µ0 = E

[
α +

α

t
(U + V )− 1

t
Y

]
= α +

1
tµ
− 1

tµ
= α ,

E[R(t)|X(t) = 1] = µ1 = E

[
α +

α

t
V − 1

t
V

]
= α− 1

t(λ + µ)
,

Var[R(t)|X(t) = 0] = σ2
0 = Var

(
α +

α

t
(U + V )− 1

t
V

)

=
1
t2

(α2Var(U) + (α− 1)2Var(V )) =
2

t2(λ + µ)2
,

Var[R(t)|X(t) = 1] = σ2
1 = Var

(
α +

α

t
V − 1

t
V

)
=

1
t2(λ + µ)2

.

Now letting z(t) = P (X(t) = 0) (given by P0,0(t) in (68)), we finally get

Var
(
R̄s

)
= Var (E [R(t) | Ft]) +

1
p
E [Var (R(t) | Ft)]

= (µ0 − µ1)2z(t)(1− z(t)) +
1
p
(σ2

0z(t) + σ2
1(1− z(t)))

=
z(t)(1− z(t))

t2(λ + µ)2
+

(
1
p

)(
1 + z(t)

t2(λ + µ)2

)
. (75)
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For this model, we also get the optimal splitting number p∗(t) by

p∗(t) =

√
t

E[T (N(t) + 1)− t]
× E [Var (R(t) | Ft)]

Var (E [R(t) | Ft])

=

√
t

1
λz(t) + 1

µ

× 1 + z(t)
z(t)(1− z(t))

. (76)

Note that formula (76) simplifies greatly if we can regard z(t) as approximately
constant. Since z(t) converges to a finite limit as t → ∞, z(t) should be approxi-
mately constant for large t. For example, for the special case in which λ = µ = 1
and z(t) ≈ 1/2, p∗(t) =

√
4t.

However, this example shows that there is the potential of significant variance
reduction through splitting, because the ratio in (60) in this example is (1 +
z(t))/z(t)(1− z(t)), which becomes large as z(t) approaches either 1 or 0.

9. M/G/1/0 NUMERICAL EXAMPLES

In this section we describe our experience with numerical examples for the M/G/1/0
model. We give a concise summary here; more details appear in Kang et al. [2005].
Without loss of generality, we fix the measuring units for time by letting the mean
service time be 1. We considered three different service-time distributions: expo-
nential (M), deterministic (D) and hyperexponential (H2), which is a mixture of
two exponential distributions, and thus more variable than a single exponential
distribution. The specific H2 density we considered was

g(x) =
0.8
17.0

× 0.1e−0.1x +
16.2
17.0

× 1.8e−1.8x, x ≥ 0 ,

which has SCV = 9.0 (i.e., squared coefficient of variation, defined as the variance
divided by the square of the mean).

For the M/M/1/0 case, most of the results can be obtained directly from Section
8. In this case, the analytic results and simulation results are useful to provide a
check on each other.

The analytic results are especially useful to show the form of the functions; e.g.,
as in equations (68), (69) and (72). On the other hand, the simulation results
are the only available way to actually measure the computational effort through
computer time expended, as characterized by the efficiency Êr

o,s. We will see that
run length is not always equivalent to cpu time.

9.1 The Experiment

We ran simulation experiments for three values of λ: 0.5, 1.0 and 1.5. Since we
found no significant differences in the results for these three cases, we concentrated
on the case λ = 1, for which α = 0.5. For this case, the mean regenerative cycle
length is E[τ1] = 2.0. We are primarily thinking of our procedures applying to time
t greater than the mean cycle length, but we consider the full range of t in our
experiments.

We performed simulation experiments for six different estimators: (1) standard,
(2) standard plus overlapping cycles, (3) residual-cycle, (4) residual-cycle plus over-
lapping cycles, (5) residual-cycle plus splitting, and (6) residual-cycle plus both
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overlapping cycles and splitting. For each model and estimator, we considered 14
different time points t, changing in powers of 2. For M/D/1/0 and M/M/1/0, the
times were 2k for −3 ≤ k ≤ 10. Since α(t) approached α much more slowly with the
highly variable H2 service-time distribution, we used times 2k for 0 ≤ k ≤ 13 for
the M/H2/1/0 model. For both overlapping (m) and splitting (p), we considered 5
levels: 1 (not used), 10, 30, 50 and 100. When we combined all three techniques, we
used the same number of splittings as overlapping cycles. The 6 different estimators
and 5 levels of overlapping and/or splitting leads to 18 cases, not counting the time
t. Thus, that produces 18 × 14 = 252 separate simulation experiments overall. In
each separate simulation experiment we used n = 1000 independent replications.
Thus we performed 252× 1000 = 252, 000 simulation runs.

9.2 The Results

We present some of those results in Tables I–IV below; the rest appear in Kang
et al. [2005]. Since the M/D/1/0 results were similar to the M/M/1/0 results,
we only display the M/M/1/0 results here. To save space, we reduced the number
of time points from 14 to 10 in each case, putting five in each table below. We
also reduced the number of cases here by not displaying the level m = 50 for the
overlapping cycles and the level p = 50 for the splitting. That reduced the number
from 14× 18 = 252 to 10× 13 = 130.

Tables I–IV clearly show that the overlapping cycles does not help the standard
estimator. The efficiencies Êo,m and F̂o,m are consistently less than or equal to 1
or only slightly above 1.

The situation looks much better when we consider the residual-cycle estimators,
but even then the performance is not uniformly good. The time t evidently must
exceed a threshold for there to be any efficiency benefit. For the M/G/1/0 queue
with α = 0.5, that threshold seems to occur when 0.40 ≤ α(t) ≤ 0.45, when α(t) is
within between 20% and 10% of the limit α = 0.50. When α(t) ≥ 0.45, we see con-
sistent efficiency gains from the residual-cycle estimator and its overlapping-cycle
and splitting refinements. When α(t) < 0.40, the standard estimator is consis-
tently more efficient. The observed threshold is only slightly greater than the mean
cycle length E[τ1] = 2.0 for M service, but considerably greater for H2 service,
and somewhat less for D service. Our limited experimentation suggests that, as
a general principle, the threshold for simulation-efficiency gain from the residual-
cycle estimator might be approximately the limiting mean residual cycle, which is
the mean of the equilibrium residual-lifetime of the cycle-time distribution, i.e., we
might expect efficiency gain from using these techniques for times t with

t ≥ E[T+(∞)] = E[τ2
1 ]/2E[τ1] = E[τ1](SCV (τ1) + 1)/2 . (77)

This principle is borne out in this one M/G/1/0 example, where the threshold is
1 for D, 2 for M and 10 for H2. More generally, this conjecture remains to be
investigated.

We see dramatic improvement as t increases. From the perspective of the variance
ratio, especially V̂r

o,s for the combined estimator, the variance reduction looks very
impressive for larger values of t, e.g., V̂r

o,100,s,100 = 326, 000 for the M/M/1/0 model
with t = 1024. However, the story is less impressive when we look at the efficiencies,
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Table I. The Efficiencies for M/M/1/0: n = 1000, λ = 1.0, α = 0.5

t 0.1250 1.0 2.0 4.0 8.0

α̂(t) 0.0489 0.2997 0.3674 0.4294 0.4742
HWn,1 0.0106 0.0197 0.0171 0.0138 0.0103
bVo10 7.7 8.6 6.5 4.6 2.8
bVo30 23.9 27.8 18.0 11.8 6.4
bVo100 84.4 82.3 64.5 39.1 23.1
bVr 9.8e-004 0.24 0.66 1.9 4.1
bVr

o10 8.9e-003 1.5 3.9 9.6 22
bVr

o30 0.03 4.6 11.2 25.2 63
bVr

o100 0.10 14.4 37.6 80.3 193
bVr

s10 6.5e-003 1.0 3.1 7.6 18
bVr

s30 0.013 1.3 4.2 10.4 24
bVr

s100 0.016 1.6 4.5 12.4 27
bVr

o10,s10 0.063 8.3 24 65 140
bVr

o30,s30 0.33 34 100 264 591
bVr

o100,s100 1.5 134 380 929 2,302

bEo10 0.9 1.1 1.0 1.0 0.8
bEo30 1.0 1.2 1.0 1.0 0.7
bEo100 1.0 1.1 1.1 1.0 0.9
bEr 1.0e-003 0.2 0.7 1.9 4.1
bEr
o10 1.0e-003 0.18 0.58 2.1 6.1
bEr
o30 1.2e-003 0.20 0.60 2.0 7.0

bEr
o100 1.1e-003 0.19 0.62 1.9 6.9
bEr
s10 9.0e-004 0.18 0.73 2.3 8.2
bEr
s30 6.2e-004 0.09 0.38 1.4 5.0

bEr
s100 2.3e-004 0.03 0.13 0.5 1.9

bEr
o10,s10 8.7e-004 0.16 0.63 2.6 8.8
bEr
o30,s30 5.4e-004 0.079 0.32 1.3 4.8

bEr
o100,s100 2.3e-004 0.029 0.11 0.44 1.8

bFo10 0.05 0.45 0.66 0.83 0.87
bFo30 0.05 0.47 0.60 0.77 0.77
bFo100 0.05 0.41 0.65 0.77 0.90
bFr 6.0e-005 0.096 0.37 1.4 3.4
bFr

o10 5.5e-005 0.070 0.36 1.6 6.3
bFr

o30 6.4e-005 0.076 0.36 1.6 7.5
bFr

o100 6.0e-005 0.072 0.37 1.6 7.4
bFr

s10 4.3e-005 0.060 0.37 1.6 6.4
bFr

s30 2.8e-005 0.028 0.18 0.85 3.6
bFr

s100 1.0e-005 0.010 0.059 0.32 1.3
bFr

o10,s10 4.2e-005 0.050 0.31 1.6 6.9
bFr

o30,s30 2.4e-005 0.024 0.14 0.77 3.5
bFr

o100,s100 1.0e-005 0.009 0.05 0.25 1.2

because the variance reduction is obtained at the expense of some computational
effort. Nevertheless, F̂r

o,30,s,30 = 35, 000 for the M/M/1/0 model with t = 1024.
However, for the largest values of t, we might already be confident that α(t) will be
close to the limit α. It may be best to judge the performance by looking at cases
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Table II. The Efficiencies for M/M/1/0 : n = 1000, λ = 1.0, α = 0.5

t 16.0 64.0 128.0 256.0 1024.0

α̂r
o100,s100(t) 0.48437 0.49608 0.49805 0.49903 0.49976

HWn,1 7.50e-003 3.94e-003 2.72e-003 1.97e-003 9.80e-004
bVo10 1.6 1.1 1.1 1.2 1.1
bVo30 3.7 1.5 1.2 1.2 1.0
bVo100 11.7 3.5 2.1 1.4 1.0
bVr 9.3 40 73 130 567
bVr

o10 42 188 329 668 3,086
bVr

o30 125 521 998 2,167 8,683
bVr

o100 349 1,814 3,248 6,583 29,095
bVr

s10 38 174 317 666 2,587
bVr

s30 51 222 411 871 3,505
bVr

s100 57 253 476 1,042.1 3,935
bVr

o10,s10 288 1,363 2,399 4,823 19,671
bVr

o30,s30 1,174 5,269 9,910 19,407 83,507
bVr

o100,s100 4,440.1 18,867 38,162 77,404 326,297

bEo10 0.58 0.58 0.62 0.74 0.70
bEo30 0.60 0.41 0.39 0.42 0.40
bEo100 0.63 0.38 0.28 0.20 0.17
bEr 9.3 41 74 131 574
bEr
o10 14.8 100 191 406 1,935
bEr
o30 19.5 146 321 778 3,363

bEr
o100 17.9 191 411 953 4,629
bEr
s10 18.2 145 280 637 2,464
bEr
s30 15.3 138 279 753 3,301

bEr
s100 6.6 83 226 676 3,484

bEr
o10,s10 28.8 354 863 2,268 11,666
bEr
o30,s30 16.0 240 779 2,595 22,412

bEr
o100,s100 5.7 88 335 1,291 16,906

bFo10 0.76 0.85 0.96 1.10 1.10
bFo30 0.81 0.80 0.81 0.95 0.97
bFo100 0.87 0.86 0.84 0.77 0.88
bFr 8.5 39 72 129 567
bFr

o10 19 145 285 620 3,028
bFr

o30 26 269 682 1,759 8,205
bFr

o100 26 441 1,267 3,702 24,345
bFr

s10 19 141 283 630 2,550
bFr

s30 13 130 304 740 3,355
bFr

s100 5.4 75 220 658 3,428
bFr

o10,s10 27 399 1,087 3,006 17,086
bFr

o30,s30 14 236 849 3,057 35,831
bFr

o100,s100 4.7 80 322 1,294.2 20,803

ACM Journal Name, Vol. V, No. N, February 2006.



Exploiting Regenerative Structure · 27

Table III. The Efficiencies for M/H2/1/0 : n = 1000, λ = 1.0, α = 0.5

t 1.0 4.0 8.0 16.0 64.0

α̂r
o100,s100(t) 0.083 0.186 0.263 0.361 0.4626

HWn,1 0.0110 0.0162 0.0174 0.0174 0.0112
bVo10 7.6 3.5 2.1 1.6 1.1
bVo30 21.3 9.0 5.2 3.2 1.5
bVo100 68.2 29.6 16.2 9.9 3.1
bVr 3.3e-003 0.089 0.30 1.1 6.5
bVr

o10 0.018 0.19 0.64 1.3 10.4
bVr

o30 0.061 0.48 1.3 2.8 18.9
bVr

o100 0.18 1.6 3.9 8.7 42.4
bVr

s10 0.013 0.19 0.75 2.6 17.9
bVr

s30 0.018 0.22 0.81 3.2 20.1
bVr

s100 0.019 0.24 0.85 3.3 21.8
bVr

o10,s10 0.092 0.65 1.8 5.5 34.6
bVr

o30,s30 0.33 1.9 5.2 14.7 88.9
bVr

o100,s100 1.2 6.7 14.8 46 282

bEo10 1.1 0.88 0.75 0.67 0.62
bEo30 1.2 1.00 0.76 0.60 0.47
bEo100 1.2 0.99 0.79 0.67 0.39
bEr 3.0e-003 0.089 0.52 1.0 6.6
bEr
o10 2.7e-003 0.050 0.22 0.52 6.0
bEr
o30 3.4e-003 0.053 0.21 0.49 5.9

bEr
o100 2.8e-003 0.051 0.20 0.56 5.1
bEr
s10 1.5e-003 0.032 0.19 0.71 9.7
bEr
s30 7.5e-004 0.0127 0.062 0.34 5.6

bEr
s100 2.3e-004 4.4e-003 0.021 0.11 2.2

bEr
o10,s10 1.1e-003 0.012 0.049 0.19 3.5
bEr
o30,s30 4.5e-004 4.1e-003 0.016 0.25 1.1

bEr
o100,s100 1.5e-004 1.3e-003 3.9e-003 0.016 0.31

bFo10 0.40 0.62 0.67 0.77 0.83
bFo30 0.36 0.58 0.64 0.67 0.80
bFo100 0.34 0.58 0.63 0.73 0.76
bFr 9.1e-004 0.046 0.19 0.79 6.0
bFr

o10 8.4e-004 0.03 0.17 0.51 7.6
bFr

o30 1.0e-003 0.029 0.15 0.55 9.4
bFr

o100 8.7e-004 0.030 0.147 0.64 10.1
bFr

s10 4.8e-004 0.018 0.11 0.57 9.5
bFr

s30 2.4e-004 6.9e-003 0.041 0.29 5.6
bFr

s100 7.4e-005 2.4e-003 0.013 0.094 2.3
bFr

o10,s10 3.6e-004 6.8e-003 0.031 0.16 3.6
bFr

o30,s30 1.4e-004 2.2e-003 9.4e-003 0.048 1.1
bFr

o100,s100 4.8e-005 6.8e-004 2.4e-003 0.0133 0.31
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Table IV. The Efficiencies for M/H2/1/0 : n = 1000, λ = 1.0, α = 0.5

t 128.0 256.0 512.0 1024.0 8192.0

α̂r
o100,s100(t) 0.4816 0.4907 0.4953 0.49767 0.49971

HWn,1 8.30e-003 5.93e-003 4.09e-003 3.04e-003 1.06e-003
bVo10 1.0 1.1 1.0 1.1 1.0
bVo30 1.2 1.1 1.0 1.0 0.9
bVo100 2.0 1.4 1.0 1.1 1.0
bVr 14 26 53 132 1064
bVr

o10 27 47 80 191 1,383
bVr

o30 44 89 149 275 2,424
bVr

o100 96 223 377 1,030 7,584
bVr

s10 39 82 147 325 2,588
bVr

s30 45 92 175 394 3,013
bVr

s100 48 94 186 401 3,109
bVr

o10,s10 81 169 330 720 5,355
bVr

o30,s30 196 395 765 1,712 12,958
bVr

o100,s100 620 1,222 2,361 5,172 39,969

bEo10 0.65 0.70 0.67 0.74 0.72
bEo30 0.43 0.43 0.43 0.44 0.42
bEo100 0.29 0.23 0.19 0.20 0.19
bEr 15 25 52 131 1,093
bEr
o10 17 29 53 130 966
bEr
o30 16 35 61 117 1,087

bEr
o100 14 37 66 190 1,493
bEr
s10 27 66 121 305 2,624
bEr
s30 18 54 124 334 3,011

bEr
s100 8.3 27 83 246 2,948

bEr
o10,s10 14 45 125 352 3,606
bEr
o30,s30 4.3 16 57 217 4,499

bEr
o100,s100 1.3 4.8 18 76 3,158

bFo10 0.89 1.00 0.96 1.11 1.00
bFo30 0.83 0.88 0.93 0.98 0.93
bFo100 0.77 0.77 0.75 0.91 0.99
bFr 14 25 52 132 1,064
bFr

o10 23 43 77 187 1,379
bFr

o30 29 71 133 259 2,406
bFr

o100 37 124 269 861 7,399
bFr

s10 27 68 132 307 2,570
bFr

s30 19 55 132 338 2,952
bFr

s100 9.0 29 89 257 2,904
bFr

o10,s10 16 55 161 472 5,017
bFr

o30,s30 4.9 19 70 289 7,997
bFr

o100,s100 1.4 5.4 21 91 4,985
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in which α(t) ≈ 0.495, which is within 1% of the limit. Then the efficiency gains
can be considered from the cases t = 64 for M/M/1/0 and t = 512 for M/H2/1/0;
the maximum efficiency gains, considering only Ê is 354 for M service and 125 for
H2 service.

Consistent with our theoretical analysis of splitting in Sections 6 and 8, we see
that the benefit of splitting is not monotone in the number p of splittings for each
t, and the optimal level of splitting, p∗(t) evidently is increasing in t; p = 10 seems
best for small t, while p = 30 seems best for medium t, and p = 100 seems best
for large t. (Analysis indicated p∗ =

√
Kt.) In contrast, the residual-cycle plus

overlapping-cycle efficiencies Êr
o,m and F̂r

o,m seem to increase in m when t is not too
small.

9.3 Uniformity of Effectiveness

The tables show that the efficiency gains for the H2 service time occur for much
larger values of t than for the other two service-time distributions. However, the
time-dependent mean α(t) approaches the common limit α = 0.5 much more slowly
for the H2 service-time distribution. We found a fascinating uniformity of effec-
tiveness over time if instead of looking at the efficiency as a function of time t, we
look at the efficiency as a function of α(t) or as a function of α(t)/α.

We also found it informative to plot the logarithm of the efficiency, with base
10. The logarithm with base 10 shows the order of magnitude effect; a value k
corresponds to 10k or k orders of magnitude improvement. To see the uniformity,
we plotted the logarithm (base 10) of all the efficiency functions Ê(t) versus α(t)
for the time points t considered.

By uniformity of effectiveness we mean that the three curves for the three service
times tend to fall on top of each other. They all show steady improvement as t
increases (with the exception of the overlapping-cycle modification of the standard
estimator). We found that it is even more revealing to use a log scale on both
axes; i.e., to plot the logarithm of the efficiency against − log10 (1− (α̂(t)/α)) (the
logarithm of the relative bias, regarding the estimator as an estimate of the limit
α), with all logarithms to base 10. We then see a striking linear relationship when
t is sufficiently large or, more precisely, when the estimator α̂(t) is sufficiently close
to α = 0.5.

We illustrate in Figures 1 and 2. In Figure 1 we plot the logarithm of the effi-
ciency Êr(t) for the pure residual-cycle estimator α̂r(t) versus − log (1− (α̂r(t)/α)).
In Figure 2 we plot the logarithm of the efficiency Êr

o,30,s,30(t) for the combined es-
timator α̂r

o,30,s,30(t) versus − log (1− (α̂r
o,30,s,30(t)/α)). The plots for the other

estimators are similar; see Kang et al. [2005].
The values 1 and 2 on the horizontal x axis of Figure 2 mean that α(t) differs from

the limit α by 10% and 1%, respectively, while the values 1 and 2 on the vertical
y axis mean that the estimated efficiency Êr

o,30,s,30(t) is 101 = 10 and 102 = 100,
respectively. By definition, the threshold for efficiency gain occurs at 0 on the y
axis, which evidently occurs when α̂r

o,30,s,30(t) is within about 10% of the limit α.
The linear relationship might be said to begin when− log10 (1− (α̂r

o,30,s,30(t)/α)) =
0.5, but certainly has begun when− log10 (1− (α̂r

o,30,s,30(t)/α)) = 1.0, when α̂r
o,30,s,30(t)

is within 10% of α.
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9.4 Implemented Efficiency Versus Run-Length Efficiency

The experiments nicely illustrate differences between different notions of “effi-
ciency.” First, we expect to see that the run-length and cpu-time efficiencies will be
less than the variance ratios, because the variance reduction is usually obtained at
some run-length and cpu-time cost, but sometimes that cost is small. To illustrate,
first consider the largest time, t = 1024 for the M/M/1/0 model in Table II. Since
a mean cycle time E[τ1] = 2.0 is negligible compared to t = 1024, it should not be
surprising that F̂r ≈ Êr ≈ V̂r ≈ 570. In this case, the variance reduction is fully
realized without run-length or cpu-time cost.

But in other cases, we expect to see a degradation of efficiency gain as we go
from the variance ratio to the run-length and cpu-time efficiency measures. For
example, for that same time t = 1024 with exponential (M) service in Table II,
when we turn to the overlapping-cycle residual-cycle estimator α̂r

o, we see that
there is a bit more run-length cost, because now the m overlapping cycles make up
a larger portion of the time t = 1024. Accordingly, we are not surprised to see that
F̂r

o,100 ≈ 24, 300 < 29, 100 ≈ V̂r
o,100.

The experiments also nicely illustrate differences between the “theoretical” run-
length efficiency and the “implemented” cpu-time efficiency. Even though F̂r

o,100 ≈
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Fig. 1. The logarithm (base 10) of the cpu-time efficiency of the residual-cycle estimator, bEr(t),
as a function of minus the logarithm (base 10) of the estimated 1− (α̂r(t)/α).
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Fig. 2. The logarithm (base 10) of the cpu-time efficiency of the combined estimator, bEr
o,30,s,30(t),

as a function of minus the logarithm (base 10) of the estimated 1− (α̂r
o,30,s,30(t)/α).

24, 300, the cpu-time efficiency is only Êr
o,100 ≈ 4, 600, a substantial difference. That

occurs because it requires extra computation to implement the refined overlapping-
cycle estimator. The much higher run-length efficiency indicates what might possi-
bly be gained from a more efficient implementation, but the cpu-time efficiency is
what was actually realized. The main point is to recognize that it is important to
substantiate efficiency gains through actual implementation.

There are other interesting subtle differences as well. Consider the overlapping-
cycle modification of the standard estimator, α̂o,r for M service at the smallest
time point, t = 0.125. The variance ratios V̂o,m show variance gains just slightly
less than would occur with m multiple independent replications. However, the
run-length efficiencies are very very low: F̂o,m ≈ 0.05. That can be understood
by recognizing that we waste a lot of time generating full cycles. The time t is
only 1/16 of the mean cycle time E[τ1] = 2.0, so we should expect the run-length
efficiency loss we see.

What is startling to see, however, is that the cpu-time efficiencies show no such
degradation: Êo,m ≈ 1.0. At first that suggests an error, but upon reflection it is not
hard to understand. From the cpu-time perspective, there is relatively little waste
during a cycle, because a full cycle is generated by generating only two random
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Table V. Key Parameters in the M/G/5/0 Queue

λ E[τ1] α

1 2.716667 0.996933
2 3.633333 1.926606
3 6.133333 2.669837
4 10.716667 3.203733
5 18.283333 3.575661
6 29.966667 3.837597
7 47.109524 4.026964
8 71.258333 4.167934
9 104.161111 4.275828
10 147.766667 4.360478

variables: the initial interarrival time and then the following service time. Every
cycle, no matter how short, will require generating at least one of these variables.

10. EXPERIMENTS FOR THE M/G/5/0 QUEUE

It is evident that the results for the M/G/1/0 model are roughly indicative of
what will happen for other single-server GI/G/1/r models, provided that either
the traffic intensity ρ = λ/µ is not large (e.g., ρ < 0.7) or the traffic intensity is
moderate (e.g., ρ < 1.5) and r is relatively small. Then the busy cycles will not
be long. But the busy cycles will be much more variable, so we can expect α(t) to
approach α more slowly.

As we indicated in Section 2, the situation can be much more complicated with
multiserver GI/G/s/r queues, when the regeneration epochs are the times arrivals
come to an empty system, because the busy cycles can become very long. For
large s, the empty state is visited so rarely that the residual-cycle estimator and
its refinements are not promising, and we did not consider them.

To consider a second manageable case, we considered the M/G/s/0 loss model
with s = 5 and µ = 1. As before, we let X(t) be the number of customers in the
system at time t, and we focus on the time average, with the function f in (1)
being the identity map. As before, arrivals to an empty system are the designated
regeneration epochs.

The intervals τi between successive regeneration points are busy cycles. It is
instructive to start to see how α and the mean busy cycle E[τ1] depend on the
arrival rate λ. Table V contains these results for λ varying from 1 to 10. The mean
busy period E[τ1] depends only on λ, µ and the steady-state (truncated Poisson)
distribution π, which has the insensitivity property, so both E[τ1] and α depend on
the service-time distribution only through its mean. In particular, with I an idle
period,

π0 =
E[I]
E[τ1]

=
λ−1

E[τ1]
. (78)

10.1 The Experiment

We performed simulations for the three service-time distributions - D, M and H2

- with µ = 1 and for three values of λ - 1, 3 and 5. We choose the time horizons
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Fig. 3. The logarithm (base 10) of the cpu-time efficiency of the residual-cycle estimator, bEr(t),
as a function of minus the logarithm (base 10) of the estimated 1 − (α̂r(t)/α) for the M/G/5/0
model with λ = 5, based on n = 1000 replications.

to roughly satisfy 1 ≤ − log(1 − α(t)/α) ≤ 4. For these experiments, we again
considered n = 1000 replications.

10.2 The Results

Paralleling Figure 2, for each possible value of λ, we plotted the logarithm (base
(10) of the observed cpu-time efficiency, − log10 Êr, versus − log10 (1− (α̂r(t)/α))
for the three service-time distributions. We present the plot for λ = 5 in Figure 3
below. Tables and plots for all other cases appear in Kang et al. (2005).

Once again we see, first, that there are substantial efficiency gains for large t,
second, that the three curves for D, M and H2 service fall on top of each other and,
third, that the relationship between these two quantities is again approximately
linear.

11. ESTIMATING THE ASYMPTOTIC BIAS

Given the asymptotic-bias relation (3) and (30), we can perform statistical analysis
with our simulation results to see if the relation is approximately true for finite
times of interest, and estimate the asymptotic-bias value β. We use our estimates
of α(t) for larger times t.
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Taking logarithms, we have

− log10 (α− α(t)) ≈ − log10 (−β) + log10 t (79)

for β > 0. Thus we plot (log10(ti),− log10(α − α(ti))) for all ti, i = 1, . . . , n for
the M/G/1/0 model in Figure 4, using 11 time points after discarding the initial 3
time points. (Recall that we used 14 time points of the form tk; see Section 9.) The
points evidently lie on a line of slope 1, as they should. The estimated slopes for
the M/G/1/0 model, estimated β values and their R2-values by regression analysis,
are given in Table VI. Even though equation (79) holds only asymptotically, we
see that the linearity is observed for the times we considered.

We obtain a better estimate of the asymptotic bias β by performing a linear
regression, based on the relation

1
α(t)− α

∼ t

β
. (80)

Those estimates are also given in Figure 4 and Table VI, under the linear columns.
The two M/M/1/0 estimates of β in Table VI can be compared to the exact value
β = −λ/(λ + µ)2 = −0.2500 from (73). The linear regression based on (80) is very
accurate.
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Fig. 4. Regression plots for M/G/1/0.

Table VI. Regression analysis for the M/G/1/0 model.
log-log linear

est. slope −β̂ R2 −β̂ R2

MD 1.0058 0.1286 1.0000 0.1243 1.0000
MM 0.9892 0.2372 0.9997 0.2502 1.0000
MH2 0.9827 2.1043 0.9993 2.3869 0.9999

The following is the same analysis for M/G/5/0. The fit is less precise for this
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Fig. 5. Regression plots for M/G/5/0.

Table VII. Regression analysis for the M/G/5/0 model.
log-log linear

est. slope −β̂ R2 −β̂ R2

MD 1.0111 1.4064 0.9947 1.5164 0.9856
MM 0.9924 1.95162 0.9966 2.1398 0.9978
MH2 0.9823 16.2368 0.9990 20.0852 0.9965

more complicated model, but the high R2 values confirm the effectiveness of the
procedure.

12. CONCLUDING REMARKS

In this paper we considered how to efficiently apply computer simulation to estimate
α(t) ≡ E[Y (t)] for the time average Y (t) in (1), where the underlying stochastic
process X is a regenerative process, when the limit α is known and time 0 is a
regeneration time. We proposed the residual-cycle estimator αr

n(t) in (23). We
established limits for the variances of the standard estimator and the residual-cycle
estimator in Theorems 2.1 and 3.3, implying that the residual-cycle estimator is
asymptotically more efficient than the standard estimator as t →∞ by a factor of
t. In Section 4 we showed that the residual-cycle estimator can be regarded as a
control-variable estimator using the control variate in (35), and that it approaches
the asymptotically optimal control-variable estimator as t →∞.

In Section 5 we established the asymptotic-bias limit in (3). In Section 11 we
showed how our estimators of α(t), together with ordinary linear regression, can be
used to efficiently estimate the bias parameter β. For our experiments, approxima-
tion (4) performed remarkably well. It would be interesting to see what happens
for more complicated examples, e.g., with heavy-tailed distributions (where the
moment conditions here are satisfied, without higher moments being finite). Then
the two-term asymptotic expansion in (74) will not hold, even though (3) remains
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valid.
In Section 6 we proposed two other efficiency-improvement techniques to use

with the residual-cycle estimator: overlapping cycles and splitting. Overlapping
cycles can also be used with the standard estimator, but that combination did not
provide any benefit in the simulation experiments. We analyzed the splitting of
the residual-cycle estimator and showed, for any given model, that the efficiency
is a concave function of the number p of splittings with a unique maximum, and
derived an expression for the optimal number of splittings p∗(t) in (61), which is
a function of t, appearing to be roughly proportional to

√
t. In equation (76) we

gave an explicit formula for p∗(t) in the M/M/1/0 model. If, as an approximation,
we assume that the time-dependent probability z(t) there can be taken to be a
constant for large t, then indeed we have p∗(t) ≈ √

Kt for some constant K. The
simulation experiments confirm that the efficiency gains by splitting the residual-
cycle estimator, for fixed t first increase in p and then decrease, as predicted by the
analysis. Moreover, the optimum number increases in t as well.

We conducted simulation experiments to study how the various simulation esti-
mators perform. Extensive simulation experiments for the M/G/1/0 queue showed
that these residual-cycle methods are indeed effective when t is sufficiently large.
Using actual cpu time to represent the computational effort required, i.e., our ef-
ficiency measure E , we deduce that the most efficient method for large t is the
combination of all three efficiency-improvement techniques; see Tables II and IV.
For more details, see Kang et al. [2005].

However, in that example, t had to be above a threshold, in particular, so that
α(t) was within 10%-20% of the limit α = 0.5, before any efficiency gain was
realized. For very large t such as t = 210 = 1024, the relative efficiency of the
estimator using all three techniques was more than 20, 000. However, at that time,
|α− α(t)| ≈ 1/4000, so in practice we might already be confident that α is a good
approximation for α(t). The relative efficiency was about 300 when α(t) was within
1% of the limit.

We also did limited experiments for the M/G/5/0 model, and found that the
residual-cycle estimator again provides efficiency gains. Thus we conclude that
these efficiency-improvement techniques are promising more generally, provided
that t is suitably large. The methods here seem especially promising to estimate
the rate of convergence of α(t) to α as t →∞.

It would be interesting to compare the techniques in this paper with previous
efficiency-improvement techniques proposed by Glynn and Wong [1996] and Hen-
derson and Glynn [2002].

12.1 Non-regenerative initial states.

We may want to consider the transient behavior of a system that does not start
in a convenient regeneration state. We can still exploit the regenerative structure,
but to do so we need to do it after the first regeneration time T (1) > 0. For that
purpose, let the residual-cycle statistic with non-regenerative initial state R(i)(t) be
just Y (t) if T (1) > t. However, if T (1) ≤ t, then we let

R(i)(t) = t−1[C(T (1)) + α + αT+(t− T (1))− I+(t− T (1))] , (81)

where C(t) ≡ tY (t) is the cumulative process in (24).
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Just as with the residual-cycle estimator, the final residual-cycle estimator with
non-regenerative initial state is the sample mean

α̂r,i
n (t) ≡ n−1

n∑

j=1

R
(i)
j (t) , (82)

where R
(i)
j (t) is the modified residual-cycle statistic from the jth replication.

We expect this extension to perform well if t is large compared to E[T (1)]. In-
deed, the theorems describing the asymptotic behavior as t →∞ can be extended
to this setting. The unresolved issue is the actual performance for finite t. Unlike
the residual-cycle estimator starting at a regeneration time, this estimator is bi-
ased for each t. As part of the asymptotic analysis, we can show that the bias is
asymptotically negligible as t →∞, but the performance of this estimator for typ-
ical times of interest requires testing. In addition to the variance/efficiency issue,
which we have focused on in this paper, we need to check the effect of the bias.
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