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WEAK CONVERGENCE THEOREMS FOR PRIORITY QUEUES:
PREEMPTIVE-RESUME DISCIPLINE

WARD WHITT, Yale University

1. Introduction and summary

We shall consider a single-server queue with r priority classes of customers
and a preemptive-resume discipline. In this system customers are served in order
of their priority while customers of the same priority are served in order of their
arrival. Higher priority customers, immediately upon arrival, replace lower
priority customers at the server, while customers displaced in this way return to
the server before any other customers of the same priority receive service. When
a displaced customer returns to the server, his remaining service time is the
uncompleted portion of his original service time (cf. Jaiswal (1968)).

As basic data, we assume that we are given a set of initial conditions and a se-
quence of ordered 2r-tuples of non-negative random variables, {(uf,,m,u;, vl 00,
n=1,2,---}, all defined on a common probability space, where the variable
u! represents the interarrival time between the (n — 1)th and nth customers in
the ith priority class and the variable v} represents the service time of the nth
customer of the ith priority class. The most important special case occurs when
the sequence of 2r-tuples can be represented as 2r independent sequences of
ii.d. random variables with finite, positive variances, but we permit other
possibilities. The sequence {u;} might result from the superposition of several
renewal processes (corresponding to multiple arrival channels), several of the
successive 1 might be O corresponding to batch processing, or u), and u} might
be dependent (corresponding to customers of different priority classes arriving
in the same channel for example); our basic assumpticn, just as in [9], is that
certain counting or partial sum processes associated with {(uj, -, ul, vy, -+, 05}
satisfy a weak convergence theorem.

Our object is to obtain weak convergence theorems for sequences of random
functions induced in the function space D[0, 1] by the basic stochastic processes
characterizing this system. Thus this paper is a continuation of the research
reported in [12], [8], [9], [14], [5], and [13]. The critical tool is a functional
central limit theorem for the sum of a random number of random variables
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with non-zero mean due to Iglehart and Kennedy (1970). Since such a theorem
exists for double sequences as well as single sequences, our analysis applies to
sequences of queueing systems as well as single queueing systems (cf. [9] and [13])
but for simplicity we shall only consider a single queueing system here. With a
single queueing system, the weak convergence theory leads to limit theorems in
heavy traffic; that is, when the queue is unstable and a steady state is never
achieved. Using sequences of queueing systems admits more possibilities. Of
course, heavy traffic limit theorems for sequences of queueing systems are also
possible, some of which are potentially useful as approximations for stable
queues, but weak convergence theorems for sequences of queueing systems are
also possible in situations other than heavy traffic. Here as well as in [12], [9],
and [13] we obtain weak convergence theorems for queues corresponding to each
weak convergence theorem for random functions induced by the partial sums
associated with the interarrival times and service times. Neither the normalization,
nor the form of the limit is critical. Although we focus primarily on heavy traffic,
it is important to note that with such generality other situations could be treated.
Forthcoming work by Iglehart and Kennedy will demonstrate that the weak
convergence approach is not limited to heavy traffic. Again, we shall consider
only a single queue in heavy traffic, but the same arguments apply to sequences
of queueing systems using [13], Theorem 3.19.

We should also remark that functional laws of the iterated logarithm, weak
laws of large numbers, and strong laws of large numbers all hold for the random
functions induced in D[0, 1] by the queueing processes if corresponding behavior
is exhibited by the random functions induced by the basic counting or partial
sum processes. The statement and proof of the functional low of the iterated
logarithm for priority queues is essentially the same as for standard multiple
channel queues (cf. [5]). The strong laws of large numbers are easy byproducts
of the proof of the functional laws of the iterated logarithm and the weak laws of
large numbers are easy consequences of the continuous mapping theorem for
convergence in probability. We shall only discuss weak convergence here, however.

Heavy traffic limit theorems (not weak convergence) for the single-server
queue with two priority classes and a preemptive-resume discipline were first
proved by Hooke and Prabhu (1969) and Hooke (1969). Hooke and Prabhu (1969)
mainly studied the virtual waiting time processes for the high and low priority
customers when arrivals occur in independent Poisson processes. The work in [3]
appears in Chapter 3 of [4] with a slightly different argument and is extended to
include arrivals occuring in independent rcnewal processes in Chapter 5 of [4].

We shall prove limit theorems for other processes in the same system with less
restrictive assumptions. Our results tend to answer questions from the point of
view of the server rather than the customer. We shall prove heavy traffic limit
theorems for the number of customers of each priority in the system at time ¢,
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the number of customers of each priority that have departed in the interval [0,7],
the work load in service time of each priority class facing the server at time ¢,
the accumulated time in [0,¢] during which the server has been available and there
have been no customers of a given priority in the system, and corresponding
characteristics of the entire system. We remark that the system studied hereis a
standard single-server queue in which customers are served in order of their
arrival without defections from the point of view of the highest priority customers.
The total service load is also the same for many priority disciplines. Thus, the weak
convergence theoremsin these cases are contained in our earlier work. A significant
aspect of this paper in comparison with our earlier work is that we obtain weak
convergence jointly for all the processes characterizing the systems. We extend
the work of Hooke and Prabhu by treating new processes. We do not discuss the
virtual waiting time of the lower priority customers as they do and they do not
discuss the processes we treat here. Our work intersects theirs only for those
processes, such as the total service load, for which heavy traffic limits were already
known because the priority discipline is not relevant. The setting of our theorems
is much more general, however, with weak convergence on the function space
instead of R! and the relaxing of the i.i.d. assumptions for interarrival times and
service times. We prove weak convergence theorems for sequences of random
functions induced in D[0,1] and the product space D[0,1] by the processes
above. For a discussion of the relevant weak convergence theory, see [2], or [12],
Chapter 3.

We now chart the way ahead. In Section 2 we prove the functional central limit
theorem for random sums which we will need. We use this theorem to prove weak
convergence theorems for the processes above in Sections 3 and 4. We treat
embedded sequences in Section 5. Finally, in Section 6 we discuss several specific
situations in which the hypotheses of the theorems in Sections 2, 3, 4, and 5 are
satisfied and exhibit a few corollaries.

2. Weak convergence for random sums

The fundamental tool in this paper is a functional central limit theorem for
random sums of random variables with possibly non-zero mean due to Iglehart
and Kennedy (1970). The theorems of this kind in Billingsley ((1968), Section 17)
apply to random variables with mean 0. Random sum theorems have previously
been used for proving weak convergence theorems for queues in [12] Section 7.4,
[9] Sections 3.4 and 3.5, [6], and [13] Section 5; in [6], [9], and [13] non-zero
mean versions have been employed. A random sum theorem (not weak conver-
gence) was also central to the work of Hooke (1969). Hooke ((1969), Theorem A2)
obtains his result using characteristic functions, but it is also a special case of
Theorem 2.1 below,
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For r = 1, let {(uy,---,u},v,),-,0[), n = 1} be a sequence of 2r-tuples of
random variables all defined on a common probability space. We consider single
sequences of random variables here, but a corresponding theorem exists for
double sequences (cf. [13]). Assume ), = 0(1 < i < r,n = 1) and define counting
processes {A'(), t = 0} associated with each sequence {u/}:

. max{k = 1:u{ + - +u; < t}, up <t
(2.1) A1) ={

0, ui >t

Now define various random functions in D[0,¢], 0 < ¢ < 0, 1nduced by A'(t),
the partial sums of {u,} and {vj}, the random sums o] + - + vly,, and the
constants A; and y;:

[nt]
Up=n"2 Z@i-iY, 4 '>0,
j=1
Al = [Ai(nt) — Ant]n'?, 4;>0,
(2.2) o = (Ai(nt)/n) Ac,

. - ["‘]'i -1 -
S, = n'? ‘Zl(vj_/iil)’ wtzo,
j=
and
. Ni(nt)
X =n "I/Z[Ev—iﬂ, ],
j=1

for1 = i<rand 0 <t < e Itis also convenient to define associated random
functions on the product space D[0,c] :

An (A'];,"‘,A,’;),
(2.3) o, = (9,,,9),
Sn = (Snl""’S;)’

and

Xn (Xia,X:)

The metric d,: D[0,c]" x D[0,c]"— R, defined for any x = (x,,--,x,) and
y =) €eD[0,c] by d(x,y) = max, .;,d(x;,y;), where d is the metric
on D[0, c], gives D[0, c]" the product topology and makes it a complete separable
metric space (cf. [2], Chapter 3). By Theorem 1 of [8], 4= A" if and only if
Ui = —puY?4" if P{A'eC[0,c]} = 1. Hence, we can start with weak con-
vergence of either U’ or A.. Actually, by [8] convergence of one sequence in
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D[0, c] implies convergence of the other in D[0,c — &] for any ¢, 0 <& < ¢, but
since ¢ is more or less arbitrary, this does not affect our argument and we shall
not make the distinction.

Theorem 2.1. If (4,,5,) = (4,S) in D[0,c]*" where ¢ = 1 + max{1,4,--,4,}
and P{(4.S) € C[0,c]*} = 1, then

4,,S,,®,, X,) = (4,8,®,X) in D[0,1]*,
X, > X in D[0,17,
X > X in D[0,1],

and

where X = (X!,---,X"), ® =(<1)1,-.‘.,<1>'), X' =So® +p; 4, and ® (1) = A;¢,
0<t<1,1ZiZr If A and S’ are independent, then

X'~ 21804 AL

Proof. Our argument will be essentially that of Iglehart and Kennedy ((1970),
Section 2), employing the random time change of [2], Section 17.
We first show that

24 (45,5, ®,) = (4,S,D).

Let g: D[0,c]—> R be defined for any xeD[0,c] by g(x) = supo§,§c|x(t)|.
Since (A,,S,) = (4, ), we obtain 4, = A’ and g(4}) = g(4’) using Theorem 5.1
of [2]. Now let h,: R — R and h: R — R be defined for any x & R by h,(x) = xn™'/?
and h(x) = 0. By Theorem 5.5 of [2], h,[g(4)] = h[g(4))] = 0. Since
d(@}, ®) < p(@h, D) = supog <] VD) (W) < h[g(4)], d(@®), @) = 0.
By Theorem 4.1 of [2], (2.4) is established.

Now we are ready to apply the composition function of [2], page 144, but note
that ®,(t) and ®(¢) may assume values greater than 1. Therefore, let D[0,1]
consist of all those functions ye D[0,1] which are non-decreasing and satisfy
0 < y(¢) £ c. Note that ®, and ® when restricted to [0,1] are elements of D [0,1]
so that (2.4) holds in D[0,c]* x D.r0,1]". Then we use the composition which
maps D[0,c] x D[0,1] into D[0, 1], defined for any x € D[0, c] and y € D.[0, 1] by

(xoy)(® =x(y1), 0=t=1
Hence, we can apply Theorem 5.1 of [2] to obtain
(A3s Sps @y Sy 0 @y + 17 Ay, S, 0 O + 1 A7)
> (4,5,0,5 0 ®' + p AL, ST + A

in D[0,1]*. Since ¢ > 1, we have applied a projection to get from D[0,c] to
D[0,1] for some components. Next observe that
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d4r[(AmSn s (I)" s S: o (I)n1 + Hl— lAnl’ Tt S: o (D; - ﬂ: IA;)a (Am Sna (I)m X:a 'sX:)] =0
and then apply Theorem 4.1 of [2]. Note that X} = S0 ® + u;'Alif ®(1) <c,
but P{®/(1)<c,1<i<r}—>1 because @, =>®. Finally, note that S‘o @'
~ A}?S% because A2 S%, = Sio @, 2M3Si = A}/2S', and S} o @' = S'o @'. Con-
sequently, with the independence assumption,

11,‘1/2SE+ ui—lAi ~ Sio d)i + ﬂi_lA"

As a special case, we have the ordinary central limit theorem for random sums:

Corollary 2.1. Let {u,,n = 1} and {v,,n = 1} be two independent sequences
of iid. random variables with Eu, = A "'>0, Ev, = p~ ', Var(y,) = o2,
0 <62 < o, Var(v,) = 02, and 0 < 62 < 0. Then

lim P {i(»(');‘” < x} = @n)~Y2 f eV gy,

> ot/ -
where
X(O) = v+ + o4,
max{k = 1, u; + - +u, <t} u, <t
AQt) = { 1 p St} 1
0, u; > t,
p = EvlEu = ip,
and

a = (Aa? + u~223a2)'2,

Proof. Theorems 10.1 and 17.3 of [2] imply that 4. = (1%°c%)!/?¢" and
Sy = 0,£%, where ¢! and &* are Wiener processes. The independence implies that
(4,5)) = [(A*a2)'1?¢, 6,£*] where &' and &2 are independent Wiener processes
(cf. [2], page 27). Theorem 2.1 implies that X} = AL/2S* + u;7'A* = (A,62)1/?¢E?
+ (u 2202 2EL, but aé' + bE* ~ (a® + b*)V?¢, where a and b are arbitrary
constants, &' and &2 are independent Wiener processes, and ¢ is a Wiener process
( ~ means equality in distribution). Finally, it only remains to apply Theorem 5.1
of [2] with the projection for ¢ = 1. Also let n go to infinity in a continuous
manner (cf. [2], page 16).

3. The basic processes, workload and idle time processes

Let {4'(f),t = 0} be the process which counts the number of arrivals in priority
class i (1 £ i £ r) in [0,¢], that is, let

max{k = L:uj + - +ul < t}, ul <t

@3.1) A = {

09 u'; >t
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We shall assume that the system is initially empty, but [2], Theorem 4.1 can be
used to verify that our weak convergence theorems are invariant under different
initial conditions. Assuming the system is initially empty, the processes
{X'(1),t = 0} depict the total input of work of priority class i (1 <i <) in
[0,7] if

i i
32) X(t) = {”1 + e Vgunys uy =t

0, ujl >t

Now assume that the priority increases from 1 to r. Then for the highest priority
customers the process {Y'(f), ¢t = 0}, where

(3.3) Y'(t) = X'(1) — ¢,

is the net input process. The process depicting the workload of priority class r
facing the server at time ¢ can then be defined by

(3.4 L) =Y @®— inf Y'(s).
0Ss<t
For priority class r, L'({) = W'(t), where W'(f) is the virtual waiting time process
for customers in priority class r. The accumulated idle time for priority class r
in [0,7] can then be depicted by the process {I'(), t = 0}, where
3.5 I'O=L@-Y (@) = — inf Y'(s).
0<sst

The process {I'(#),t = 0} records the accumulated time in [0,f] during which
there is no customer of priority class r waiting or being served. Notice that our
system is just like the standard single-server queue from the point of view of the
highest priority customer. Thus, weak convergence results for the highest priority
class agree with earlier ones for the standard single-server queue (cf. [12], [9],
or [13]). The relationships depicted in (3.1)-(3.5) are basic notions in queueing
(cf. Bene§ (1963)); we mention them only to be complete. We should remark
however that we regard (3.1)<(3.10) as definitions and not theorems. We do not
wish to follow the practice of some authors who try to prove that basic defining
formulas satisfy verbal interpretations. In other words, we define L'(t) by (3.4) and
interpret L'(t) as the total workload of priority class r facing the server at time ¢.
Obviously some authors might choose different initial definitions, but as long as
they are equivalent, it will not affect our discussion here.

It is now easy to define the processes {Y'(#),? = 0}, {I'(¢),t =0} and
{L'(®), t = 0} for 1 < i < r— 1. We do this recursively:

Y = X' -I'"'(@),
I')) = — inf Y¥(s),

0<sst

(3.6)
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and L(t) = Y1) — inf Y(s)

0=<s<t

Yi) + IQ).

The process Y(¢) is the net input process for priority class i; the process I'(f)
depicts the accumulated time in [0,7] during which the server is available for
priority class i but there is no customer of priority class i in the system; and the
process Li(1) depicts the workload of priority class i facing the server at time t.
Note that I'(t) does not represent the accumulated time in [0, f] during which there
is no customer of priority class i because ['(t) depends on the availability of the
server. For i < r, I!(¢) does not coincide with the virtual waiting time process for
priority class i. We refer the reader to Hooke (1969) for a treatment of the virtual
waiting time processes when i < r.

It is easy to combine these processes to obtain similar processes characterizing
the entire system. The process depicting the total input of work into the entire
system is {X(1), t = 0}, where

3.7 X(1) = X'ty + - + X"

The net input process into the system is {Y(¢), t = 0}, where
(3.8) Y(t) = X(») —t.

Then the idle time for the entire system is {I(t), t = 0}, where

3.9) I(t) = — inf Y(s)

0ss<t

and the total service load facing the server at time ¢ is {L(t), t = 0}, where

L(?) Y(t) — inf Y(s) or
(3.10) 0<s<t

= L)+ + L)

Note that these total system processes do not depend on the priority discipline
as long as the server is always working whenever there is a customer somewhere
in the system. Hence, weak convergence theorems for the processes in (3.7)~(3.10)
are contained in our earlier work. All the important new processes here are con-
tained in (3.6). However, our weak convergence theorems here are for all the
processes jointly.

We shall now define random functions induced in the function spaces D[0,1]

or D[0,c], 0 <c < oo, by the processes in (3.1)=(3.10). The normalization by
n'/? is to be expected, but is not used explicitly.
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™
Ny
1l

[Ai(nt) — 4nt]n*?, X4 >0, 1=Zis<r,

[nt]
St = n12 'Zl(v}—p,-’l), 15isr,
J=

X, = [X'(nt) — pmt]n*?,  p=Afu, 1Sis,
Yy = [Y(n) = (p, — Dne]n*7,
(3.11)
X, = [X(nt) — pnt]n'?,  p=pi+-+p,,
Y, = [Y(nt) = (p — Dnf]/n*2,
Y, = Y(n)/n''?,
1, = [I(nt) - (1 - p)nt]in'’2,
I, = I(n/n'?,
L, = [L(nt) — (p — Dni}/n*?,
and L, = L(ntn'>,

We shall also define various random functions in the product spaces D[0,1]"
or D[0,c]", 0 < ¢ < co. Let

4, = (45, 4),
(3.12) S, = (Si,--,8D,
and L= (X, X0,
Theorem 3.1. If (4,,S,) = (4,S) in D[0,c]* where ¢ = 1 + max{1,1,,---,4,}
and P{(4,S) e C[0,c]*} = 1, then
(@ (4,S,X,X,Y.Y) =>(4,5,X,X,X",X) in D[0,1]° "3,

(b) if p>1, (4,8, X,,X,,Y, Y,L,I)=>(4,S,X,X",X,X,0),

(© if p=1, (4,8 X0, X5, Yy, Yoo Ly, 1) = (4,8, X, X, X", X, f(X), 8(X)),
and

@ ifp<l,(4,S,X,X,Y, Y, L,L)= (4,8, X,X,X", X,0, - X)
allin D[0,17>**, where p = p; + -+ + p,, p; = A;/u;, and
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() X'=Sod + 4} 1gisr,
() X=X"+--+X,
(iii) ®Y(r) = Ay, 0<t<1,
@iv) (1) = 0, 0st=s1,
(v) f:D[0,1]— D[0,1] is defined for any x € D[0, 1] by
J)(®) =x(1)— inf x(s), O0=tr=1,

and 0=sst
(vi) g: D[0,1] - D[0,1] is defined for any x € D[0, 1] by
ge)(H) = — inf x(s), Ost=1.
0<s<t

Proof. Theorem 2.1 implies that (4,,S,, X,) = (4,5, X) in D[0,1]*. The
continuous mapping theorem ([2], Theorem 5.1) with h: D[0,1]*— D[0,1]>*3
defined for any (x,y, z)€D[0, 11" by h(x,y,z) = (x, ¥, 2, z; + - + z,,
Z,,zy + - + z,) gives us part (a), after observing that X; = ¥, and X, = Y,.
Parts (b)«(d) follow by the usual arguments since L, = f(Y,) and I, = g(Y,)
(cf. [7] Theorem 1, [14] Theorem 1, or [13] Theorems 4.2, 4.3, and 4.4).

In order to obtain weak convergence theorems for the processes Y'(r), I(r),
and L(t) (1 £ i £ r), we shall consider only two priority classes, but the method
applies to an arbitrary number. Even with only two classes there are five different
cases. Let U, = (4,,Ss X, X, Y5, ¥,) and U = (4,8, X, X, X", X).

Theorem 3.2. Let (A} A2,S:,S?%) = (4',4%,5',S%) in D[0,c]* where
¢ =1+ max{l1,4,,4,} and P{(4", 4%,S",5* e C[0,c]*} = 1. Then

(@) if pp> 1, if

L(nt) — (p, + p, — Dnt: I(nt) I*(nt) L*(nt) —(p, — Dnt
Z(t) = (Un(t)a niuz » gLz iz niiz ’
Y'(nt) — pynt I'(nt) L'(nt) — p,nt
and if

Z=(UX'+X%0,0,X*X",0,X"),

then Z, = Z in D[0,1]>*'°;

(b) ifp,=1if

L(nt) — pynt I(nt) I*nt) I*(nt) Y'(nf)—pynt
Z,,(t)=(U,,(t), L I i i

I'(nt) Lnt)— o,nt
ntiz * niiz ’ 0=st=s 1,
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andifZ = (U, X" + X2,0,8(X?),f(X*), X' — g(X?),0, X" — g(X?)), then Z, = Z
in D[O, 1]3r+10;

(¢) ifp,<tlandp,+p,>1,if

_ L(nt) — (py + p; — Dt I(nt) I*(nt) — (1 — pint I[*(nt)
Zx) = (U,,(t), e 22 (et L),

Lpsy _ 1 1y _
Y (nt) — (py ;*/'zpz Dnt 1 8121) ’ L'(nt) — (py '*;/ﬁz’z l)mf), 0<r<1,
n n n

and if Z=(U,X"+X%0,—X%0,X" + X%,0,X* + X%, then Z,=7 in
D[O, 1]3r+10 :

(@ ifpy+p,=1if

L(nt) I(nt) I*nt)—(1—p)nt IXnt) Y(n1)
Zn(t) = (Un(t), nllz ? nllz’ n1/2 2 s nllz b nll'z ?

I(nt) L!(nt)
vl —nT/T)’ 0=st=s1,

and if Z=(U,f(X'+X%),8(X*+X%), =X, 0, X + X%, o(X" + X?),f(X* + X?)),
then Z, = Z in D[0,1]*"*1°;
(e) ifpy+p, <Lif

L(nt) I(nt)— (1 —py—pdrt I*(nt)— (1 — p,)nt IX(nt
Z(t) = (Un(t)= FEVPRL Hi72 2 w2 o) ’ nf/z)

Yi(nt) = (py + ps — Dt I'(nt) — (1 — py — p)nt  L\(nf)\
ni/2 4 nli2 A

0st<1,

and if Z = (U,0, - X' — X%,— X2,0,X* + X2, — X! - X%,0), then Z,=>Z in
D[O, 1]3r+ 10.
(Definitions of X’, 8, f, and g are given in Theorem 3.1.)

Proof. Limits for the first three terms of Z, follow from Theorem 3.1 in each
case. The rest can be obtained by successively applying Theorems 4.1 and 5.1
of [2] using the relationships outlined in (3.1)~(3.10). Each component of Z,, is
a continuous function of earlier components, differs from such components by
an amount converging to 0, or converges to 6 itself.



Weak convergence theorems for priority queues: preemptive-resume discipline 85

4. The number in the system and the number of departures

Let {Q'(f),t = 0} be the processes counting the number of priority class i
customers in the system at time ¢ and let {D'(¢), ¢t = 0} be the processes counting
the number of priority class i customers that have been served and have departed
in[0,1],1 < i < r.Let {Q(t), t = 0} and {D(1), t = 0} be the processes recording
the number of customers of all priorities in the system at time ¢t and having de-
parted in [0,¢]. Obviously Q(f) = Q'(¢) + --- + Q'(¢), D(t) = D'(t) + --- + D'(t)
and Q'(t) = A'(f) — D'(f). In this section we shall prove weak convergence
theorems for these processes in heavy traffic.

It is now convenient to introduce counting processes associated with the

sequences of service times {vj, n = 1}, 1 < i < r. Let {N(t), t = 0} be defined by
. max{k§1:v‘1+~--+vi§t}, uigt

“.n N'(t) = { .
vy >t

b

for 1 £ i £ r. Also define random functions in D[0,1] or D[0,c], 0 <c< o
induced by these processes:

Ni(nt) — pnt 1
ni/2 ’

IIA
IIA
-

4.2) Ni =

Theorem 1 of [8] implies that N} = — u>2S" if and only if S! = S, where
P{S'eC} = 1. Tt is also easy to show by the same argument that (4,,S,,N,)
= (4,8,N) if (4,,S,) = (4,S), where N, = (N}, --,N;), N=(N',---,N",
N' = —p??S’, and P{(4,S) e C*"} = 1. The processes N'(t) are important because

D'(t) = N'(t - TI'(t)), 0<t=1, and
4.3)
Di(ty = NiI'*'()-1'(¢)), O0=<t=<1, 1ZiZr—1.
Again we shall consider the special case of r = 2, but the argument applies to
any r = 2.
Theorem 4.1. Let the assumptions of Theorem 3.2 be satisfied and let Z, and
Z be as in Theorem 3.2 in each case below.
(a) Ifp, >1,if

D'(nt) D*(nt) — p,nt D(nt) —p nt Q'(nt) — A,nt
B..:(t)=( W) ntiz nirz > nilz = nilz —,

Q*(nt) — (A — po)nt Q(nt) — (A, + A, — #2)’")

niiz > nli2 Ost=1,

b

and if B = (Z,0,N*,N*,4',4> — N*,4' + A*> — N?), then B, = B in
D[0’1]3r+16 .
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(b) Ifp, =1,if

D'(nt) D*(nt)— p,nt D(nt) — upnt Q'(nt) — Ant
B(1) =(Z,,(t), aiz nii2 > w2 s Wiz —,

0*(nt) Q(nt) — A;nt
n1/2 ’ n1/2 4 0 é t é 1’

and if B = (Z,u,8(X?), N*— p,8(X?, N*+ (py — p,)g(X?), A* — p,8(X?),
Hof (X3, A' — pg(X?) + pof(X?),0 < t < 1, then B, = B in D[0,1]>*1°,

(c) Ifp,<1landp,+p,>1,if

DY(nt) — u;(1 — py)nt  D*(nt) — A,nt
Bn(t) =(Zn(t)’ n1/21 2 ’ n1/2 2 >
D(nt) — [uy(1 — py) + A,dnt Q'(nt) — [Ay — py(1 — p)]nt
iz > nilz >
Q*(nt)  Q(nt) — [A4, — uy(1 — py)]nt ) 0<t<1
nllz b nllz 2 = = ’

and if B =(Z,(1—p,)'?N' — iy X%, A% (1—pp)'PN' — i, X* + 4%, A' -
(1= p)N' + ;1 X2, 0, A — (1 — p,)N* + p, X?), then B, = B in D[0,1]>**€,

() Ifpy+py =1,if

1 _ — 2 —
Bt) =(Z..(t),D (nf) nl’,’;(l pant D ('::1),2 Aant
D(nt) — [p(1 — po) + A ]nt Q'(nt) — [Ar — (1 — po)]nt
nirz ’ w2 ’
Q*(nt)  Q(nt) — [4 — uy(1 — p;)Int
L ool ogig,
and if

B =(Z,(1—p))'*N' — [ X? + g(X* + X?)], 4%, 4% + (1 — p,)'/*N!
—m[X? +g(X' + XH], 4" — (1 = p)'>N" + p [ X + g(X* + XP)],
0,4 — (1 — p,)'AN' + i, [ X2 + g(X' + X3)]),

then B, = B in D[0,1]%*1S,

e Ifpi+p;,<l,if
D'(nt) — A;nt  D*(nt) — A,nt D(nt) — (4, + A,)nt
B,(1) =(Zn(t)’ (nl/z — iz ) n:/z 2 g

e Qe o) gy

iz » Ttz T
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and if B = (Z,A', A%, A' + 4%,0,0,0), then B, = B in D[0,1]* * !¢, (Recall that
X'=Sod +pu;t4A, N = —p¥*S, ®(t)=1t, and 0(t) =0, 0 <t < 1.
The functions f and g are defined in Theorem 3.1.)

Proof. (a) We have observed above that (4,,S,,N,) = (4,S,N) if (4,, S,)

= (4,S) where P{(4,S)eC*} = 1. Thus (Z,,N,) = (Z,N) in D[0,1]**'" in
each case by Theorem 3.2. From Theorem 3.2 we note that I? = 0, where

2
(4.4) Ifs%%l, 0=t=1,
and
(4.5) 0 =0, O0=t=1.

We now construct a random time change ®? € D,[0, 1], defined by

72
(4.6) <D,?Eﬁt—17(lt)—, 0sts1

(cf. [2], Section 17). Clearly ®? = @, where
@.7) of)=t, 0<t<1.
Theorem 4.4 of [2] and Theorem 3.2 imply that
(4,58, N, 17,0%) = (4,S,N,0,)
and the continuous mapping theorem ([2], Theorem 5.1) implies that
(Aps Sy Noy N2 © @2 — 12, 42 — N2 0 ©2 + p,I2) =
(4,S,N,N?0 ®* — p1,0,4> — N?0 @ + p,0),

but since N2o ® = N2, D? = N2o ®2 — 1%, and Q> = A% — D?, where D?
and Q? are displayed in the theorem, we have shown that

(4,58, N, D,0%) = (4,5,N,N?, 4> — N?).

Now recall that D'(t) = N'(I*(f) — I'(¥)). We now define a random time
change @, € Dy[0,1] by
2 7!
(4.8) ”EI_("LB_UE‘_)_, 0st=1.
Observe that @, is non-decreasing because increases in I'(¢) can only occur when
there are increases in I1%(f). Moreover, @, = 0, where 0 is given in (4.5). Also
define I, by

7= I*(nt) — I'(nt)

n niiz »

(4.9 0t 1.
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By Theorem 3.2, I, = 0 too. Hence, D, = N}o @, + p,I, = 0. Again Theorem
4.4 of [2] implies that
(458, Now D1, 02, 1, ®,) = (4,8, N,N*, 4% — N*,0,6).

Finally Theorem 5.1 of [2] completes part (a), cbserving that D; = N}lo @,
+ i1y, Dy =Dy + D}, Q) = Ay = D;,0,=0y + Q;}, where D,, D}, D,, 05, Q7
and Q, are as described in B, of (a).

(b) The argument for (b) is similar, but now we rely on the random sum
theorem of Section 2. Now I? = g(X?), where I? is given in (4.4), so that we can
use the random time change ®? in (4.6). Again ®? = ®, where ®() = ¢,
0 <t £ 1. By Theorem 3.2 and [2], Theorem 4.4, we can conclude that

(4ns Sy Nau I7, ®7) = (4,8, N?, g(X?), ®)
and by [2], Theorem 5.1,
(48w N30 ®F — 1,17, A7 — Ni 0 @F + pol7) =
(4,8,N?0 @ — pg(X?), 4> — N?0 @ + p,(X?)),

but D? = N2o ®2 — p,12, Q% = A?—D?, N*o®=N? and A*- N>+
128(X?) = p,f(X?) so that

(AmSmeo Qr%) = (A:S’ N2 - I‘l'Zg(XZ)’I‘l'Zf(Xz))'

Let®, be as in (4.8). Once again ®, = 0, where 0 is given in (4.5), but I, = g(X?),
where I, is defined in (4.9). Hence, D; = Njo @, + u, 1, = py8(X?), where
D} is as described in B,. The rest of (b) follows as usual from the continuous
mapping theorem.

() Let I? and I, be defined by

_ L) = (1 = p)nt
= nirz ’

IZ

(4.10)

2 7! — —_
SRR Ll N PN

I,
but define new random time changes ®? and @, by

_ 2

@35[2‘—1(—’")-]/\1, 0<t<1, and
p2h

(4.11)

=[P = I'(nt)
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By Theorem 3.2, I} = — X%, I, > — X%, ®? = ® and ®, = ®, where &) = ,
0 <t <1 Nowlet N} and N, be defined by N? = N%,,,, and N} = N{i-ppm
It is easy to show that D? = p,'?N2o ®2 — 1,12 if ®? < 1 and d(D?, p;"*N2o ®}
— 1,12 = 0. Similarly, D! = (1 - p,)'*N'o ®, + u,I, if ®,<1 and d(D},
(1 —p,)""*No @, + p,I,) = 0. The rest of the argument is as before, observing
that 1/2 VZO (DZ 1_/2N2 1— 172 Nl 1) 1 _ 1/2N1 d
P2 iVp n = P2 H ( Pz) a O Py = ( Pz) > an
Py iN? + X2 = A%,

(d) The results for D? and Q7 in parts (d) and (e) follow by the argument
of (c) because p, <1 in all three cases. Again we can use I, and @, defined in
(4.10) and (4.11), but now I, = — X?— g(X' + X?), while ®, = ®, where
®(f) =t, 0 £t £ 1, as before. Thus arguing as in (c), we obtain d(D}, N o ®,
+u,I)=0 and D! =(1—p)"*N'—u,[X?*+ g(X* + X?)]. The rest is
straightforward.

(e) We have noted that the argument for D? and Q? is contained in (c). Let J,
and @, be redefined as

;. _Int)—I'(nt) — pynt

[n n1/2 ? 0 é t é. 1,

(4.12)

_[(nt) = I'(nt)
o =[Fs A

Then I, = X! and ®, = ®, where ®(¢) = t,0 < t < 1. Finally d(D,}, 91/21\7}0 o,
+ pyl,) = 0so that D)} = p/”’N' + p, X' = A"

5. Embedded sequences

There are many embedded sequences associated with the processes of Sections 3
and 4. We could look at any of the processes only at the arrival points of a partic-
ular priority class, only at the arrival points of all customers, only at the departure
points of a particular priority class, or only at the departure points of all cus-
tomers. Weak convergence theorems are available for all of these new processes
using the inverse random time change argument of [8], Section 7 and [7]. Our
random time changes are based respectively on the processes A1), A(f) = A\(f)
+ .-+ A’(t), D'(t), and D(t) = D'(t) + --- + D'(1).

We shall only carry out the argument for one process, but all the others can be
treated in the same way. Note that the possibilities include studying the number
of class i customers in the system at arrival points or departure points of class j
customers, i # j.

We shall look at the number of class 2 customers in the system at arrival points
of class 2 customers (r = 2). Let {0/} = {Q*(t2-),n=1}, .12 = u? + - + u?,
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be this sequence of random variables and let {Q/} be the sequence of random
functions induced in D[0,c], ¢ = 1 + 1,, by {4}:

(5.1) 0 =[Oty — prtlin?,  0=1=1

Theorem 5.1. Let the assumptions of Theorem 3.2 be satisfied (¢ = A, + 1).

(@ If p,>1and B=21;7'(1; — i) in (5.1), then

0 = 25 V1H(A” — N*) + 2,72y — p)A%;
(b) if p, =1and B = 4;'(4, — u,) = 0in (5.1), then
Ot = 25 12f(4% = NP);
(¢) if p, <1land f = 0in(5.1), then
Q) =0;

with the various quantities defined in Theorems 3.1, 3.2, and 4.1.

Proof. Let A? and ®? be as in (2.2). By Theorems 2.1 and 4.1, (42 ®2, 0?)
= (4%,®%,0%) in D[0,c]*, where ®*(f) = 4,1, 0 <t <1, and Q, and Q2 are
displayed in each case of Theorem 4.1. Note that @, = Q%o ®? + A2 in D[0,1]
if ®* < ¢ in parts (a) and (b). Hence, d(Q,, 07 o ® + pA2) = 0. Thus
020 ®2 = Q4+ BA* = (Q+ Ao @' o @, where ®~'(f) = 4;'t, 0t < 1.
Then Theorem 7.1 of [8] implies that Q= (Q* — B4%)o @ ~%, but (Q* — p4?)
0@ ! =Q%0 @ ! +p4%0 @71 ~ 1312Q* + 1, Y*BA% In order to apply
Theorem 7.1 of [8], we need C-tightness for {Q4}, but we can obtain it with the
relation

{woa(34,8) 2 &} € {Wos,e2(6) Z &} U {p(@7,®) > 6},
(cf. [8], Theorem 8.1).

In (c) we have d(Q%0 ®2,0,) = 0 so that Q40 ®? = 9 = 6o ® ! o ® which
implies that Q4 = o ®~ ! = 0 by Theorem 7.1 of [8] again. The same argument

gets C-tightness for {Q/}.

6. Special cases

Section 3 of [9] can be used to generate a number of different situations in which
the hypotheses of Theorems 3.1, 3.2, 4.1, and 5.1 are satisfied. In [9] we studied
sequences of queueing systems, but the analysis for a single queueing system is
even easier. The most important special case is obtained from Theorem 2.1in the

proof of Corollary 2.1:

Corollary 6.1. Let {u!,n = 1} and {v),n = 1} (1 £ i < r) be 2r independent
sequences of iid. random variables with Ed,=2'>0, Evt) = p7*>0,
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Var(u)—o,,,0<o,,‘<oo Var(v}) = 62, and 0 <02 <0, 1 <i <r. Then
Theorems 2.1, 3.1, 3.2, 4.1 and 5.1 hold with

Ai

(Ala2)!? (1 gigr
and

IIA

Si — O,viér+i (1 él r)’

where ¢' (1 £ i £ 2r) are 2r independent Wiener processes. Then also

Xl — Al}/2si+”I-1At — (1601)1/2£r+i +(/1-2/136 )1/2£l i

N' = — 138" = — (ulog) '™
and
X=al'+ 4ol ~a,

where o; = (Lol + 1 %622 a = (@2 + - + o}V, E (1 i £ 2r) are 2r
independent Wiener processes, {' (1 £ i £ r) are r independent Wiener processes,
and { is a Wiener process. Moreover, f(af) ~ a|&| and g(af) ~ a|&|, where f
and g are the functions defined in Theorem 3.1, g is an arbitrary positive constant,
and [él is the one-dimensional Bessel process.

Ordinary heavy traffic limit theorems for the processes studied in Sections 3, 4,
and 5 under the assumptions of Corollary 6.1 are immediate, obtained in the same
manner as Corollary 2.1. The projection for ¢+ = 1 (n,:D[0,1] - R defined by
7,(x) = x(1)) is a continuous function. Hence, we only need to apply Theorem 5.1
of [2]. We also replace n with a continuous variable going to infinity (cf.[2],
page 16). We shall only spell out a few of these results.

Corollary 6.2. With the assumptions of Corollary 6.1,
(a) ifp <1, then for any x > 0

hmP{ ()Sx}=1;

t—* o

(b) ifp =1, then

i P{L(’) J' 2/n)“2 Ty, x 20

lim VS
t—~*
L x <0;

and

(c) ifp > 1,then

lim P {L(t)—;t(f/;:_l—)—t < x} = (2n)-1/2f_we _”z'lzdy;

=
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(d) if p <1, then

lim :10) t(jz P)t } (Zn)—1/2j_ eV 2 gy,

t— 0

(e) ifp =1, then

Q= ”2f e P dy, x20
lmp{fgf;s,c}={ e

t—> o0
0, x <0,

and forany x; 2 0and x, =20

YA(X1—Y) —
lim P {L(t) < x I(t) J‘ J 2(2y Z) e—(Z_v-z)z,lzdzdy;

1/2 = > tl/z— (27!:)1/2

t—

(f) if p > 1, then for any x > 0
hmP{ 0 }=1,

1/2 =
t—= 00

where o = [, (Aol + p?Aiel) with a® = A(o;, + ¢2) when p = 1.

Proof. -~ As usual we apply the projection at ¢ = 1 and the continuous mapping
theorem ([2], Theorem 5.1). In (b) we have used the joint distribution of &(1)
and g(&)(1) (cf. [11], page 281).

Corollary 6.3. With the assumptions of Corollary 6.1,
(a) ifp, > 1, then
— 2 — —

w2 =0 o,ti/2 =

*x1

X2
=(21r)_1J e_yz/zdyf e 7 dz
o -

(asymptotic independence);
(b) if p, =1, then
M) - Lt
i p (L0 g 2O )

tl/Z = Xy tll2 =

w2y, { @z—y)? xz} .
j J J Tnugad exP 203 202 dzdydx;

(¢c) ifp, <landp, + p, = p > 1, then for any x, > 0

1 _ 2 x1
lim P {L (t) (pl + P2 l)t x L (t) < xz} (27'5) “I.IZJ. e")’z/Zdy;

t= o0

1/2 LT
- ot t
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(dy if p; + p, = p = 1, then for any x, >0

IO 50 }_ (2/m) ( e ¥dy,  x,20
=

Xy
llmP{g{ll—z___xl,Wéx 0

t—*oc LO’ x1 < 0;
and
(&) ifp;+p, =p <1, thenforany x; >02nd x, >0

{éi(_t_).<x _1.‘:39.<x2}=1.

llmP t1/2 - 19 tl'lz =

=0

Proof. The standard projection argument applies, using 7,: D[0,1] x D[0,1]
— R2. In part (b) the weak convergence limit is («,&; + g(@,&,), f(@,&;)) which
equals (&, + g(2,&,), a,&, — g(a,E,)). We then express the joint density for
(s &y, ay&y, g(8,)) (1) as in part (b) of Corollary 6.2.

Corollaries 6.2 and 6.3 are just samples of the ordinary limit theorems on R!
that can be obtained with the assumptions of Corollary 6.1 by means of the
projection at t = 1. Such corollaries could be stated for every theorem in Sec-
tions 3-5, but since the method is clear, we only give a few examples. In Corollary
6.1 we have mentioned the most important special case for which the hypo-
theses of Theorems 2.1, 3.1, 3.2, 4.1, and 5.1 are satisfied. Section 3.4 of [9] shows
how to treat queues with batch processing and Section 3.5 of [9] shows how to
treat queues in which customers of different priorities arrive in the same channel.
This last situation would imply that 4, = 4 even though A} and A are not in-
dependent. Section 4 of [9] shows how we may obtain weak convergence theorems
for networks of facilities such as the one we have analyzed. Lemma 1 of [14]
illustrates how to treat multiple arrival channels for each priority class. Chapter 4
of [2] together with [7] shows how to treat dependent sequences.

It is also possible to obtain weak convergence theorems for many other related
processes and functionals. The main tool is the continuous mapping theorem
([2], Theorem 5.1). For examples, see [8], Section 9.

Finally, it may be possible to obtain weak convergence theorems for other
priority queues by using the processes studied in this paper as modified processes
in the manner of [8] and [9].
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