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a b s t r a c t

The number of customers in a stable Mt/GI/n queue with a periodic arrival rate function and n servers
has a proper steady-state limiting distribution if the initial place within the cycle is chosen uniformly at
random. Insight is gained by examining the special case with infinitely many servers, exponential service
times and a sinusoidal arrival rate function. Heavy-traffic limits help explain an unexpected bimodal form.
The peakedness (ratio of the variance to the mean) can be used for approximations with finitely many
servers.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The purpose of this paper is to gain insight into the steady-state
distribution associated with stable Mt/G/n queues having a non-
homogeneous Poisson process (NHPP) as its arrival process and
a periodic arrival rate function. It is known that, under regular-
ity conditions, the number of customers in the system, Q (t), has
a limiting periodic distribution as t increases; e.g., see [5,14]. The
limiting periodic distribution can be defined by the limiting distri-
bution of the subsequence obtained by looking at successive cycles
at the same place within the cycle. If the initial place within the cy-
cle is chosen uniformly at random, then there is a proper limiting
steady-state distribution. That steady-state distribution describes
the long-run (time) average performance. (See Remark 2.1 for an
arrival view.)

In order to gain insight into that steady-state distribution,
we will focus on a special case that is remarkably tractable: the
Mt/M/∞model with a sinusoidal arrival rate function. Many con-
crete results for thismodel are contained in [2], andwewill exploit
them. We will obtain new results primarily by establishing heavy-
traffic limits for the steady-state distribution of the Mt/M/∞
model. Similar results can be established for more general models,
as we explain in Section 6.

When queues have time-varying arrival rates, we are usu-
ally most interested in time-dependent descriptions of the
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performance. However, wemay also be interested in the long-term
average performance, as captured by the steady-state distribution.
As we will show here, the steady-state distribution for the rela-
tively simple Mt/M/∞ model is somewhat complicated, having a
form that might not be anticipated, even given a good understand-
ing of the time-varying performance (as available from [2]). We
will illustrate in Section 2.

There is likely to be a greater interest in the steady-state distri-
bution of a periodic queue when the periodic cycles are relatively
short. Then customer times in the systemmightwell extend across
several cycles. Periodic NHPP arrival processes with short cycles
are natural models in service systems with arrivals generated by
appointments. At first we might think that an arrival process asso-
ciated with appointments should necessarily be deterministic, but
extra randomness leads to a periodic NHPP as a candidate arrival
process model. In particular, the deterministic appointment pat-
tern is often disrupted by the random arrivals of customers about
their scheduled appointment times, by random no-shows and by
random extra non-scheduled arrivals. Thus a periodic NHPP with
short cycles is a natural candidate arrival process model for the
systems with appointments. As in [12], an explicit formula for the
peakedness (ratio of variance to the mean of the steady-state dis-
tribution) can be useful for approximations for the systems with
finitely many servers; see (8).

We find that the steady-state distribution with short cycles
tends to be quite different from the steady-state distribution with
long cycles. To capture the behavior of the periodic Mt/M/∞
model with short and long cycles, we establish double limits in
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Sections 4 and 5. Previous work on periodic birth and death pro-
cesses and periodic queues is contained in [6,5,14,4,17] and refer-
ences therein.

2. The steady-state distribution

Consider the Mt/M/∞ queueing model with the sinusoidal
arrival rate function

λ(t) ≡ λ̄ (1 + β sin(γ t)) . (1)

There are three parameters: (i) the average arrival rate λ̄, (ii) the
relative amplitude β and (iii) the time scaling factor γ or, equiv-
alently the cycle length c = 2π/γ . Let the service times be i.i.d.
and independent of the arrival process, having mean service time
1/µ. Without loss of generality, by choosing the measuring units
of time, we assume that µ = 1. If we want to considerµ ≠ 1, then
we must replace λ and γ by λ/µ and γ /µ in the formulas below.
We will be considering the limiting behavior as γ ↓ 0 and γ ↑ ∞.
These are equivalent to limits as µ ↑ ∞ and µ ↓ 0, respectively.

By Section 5 of [2], the number of customers in the system (or
thenumber of busy servers),Q (t), in theMt/M/∞queueingmodel
with the sinusoidal arrival rate function in (1) and mean service
time 1, starting empty in the distant past, has a Poisson distribution
at each time t with mean

m(t) ≡ E[Q (t)] = λ̄(1 + s(t)),

s(t) =
β

1 + γ 2 (sin(γ t) − γ cos(γ t)) .
(2)

Moreover,

sU ≡ sup
t≥0

s(t) =
β

1 + γ 2
(3)

and

s(tm0 ) = 0 and ṡ(tm0 ) > 0 for tm0 =
cot−1(1/γ )

γ
. (4)

The function s(t) increases from 0 at time tm0 to its maximum value
sU = β/


1 + γ 2 at time tm0 + π/(2γ ). The interval [tm0 , tm0 +

π/(2γ )] corresponds to its first quarter cycle.
Let Z be a random variable with the steady-state probability

mass function (pmf) of Q (t); its pmf is a mixture of Poisson pmfs.
In particular,

P(Z = k) =
γ

2π

 2π/γ

0
P(Q (t) = k) dt, k ≥ 0. (5)

The moments of Z are given by the corresponding mixture

E[Zk
] =

γ

2π

 2π/γ

0
E[Q (t)k] dt, k ≥ 1, (6)

so that E[Z] = λ̄.

Theorem 2.1 (The Variance and HigherMoments). For theMt/M/∞
model defined above, starting empty in the distant past,

E[Z2
] = (λ̄ + λ̄2) +

λ̄2β2

2(1 + γ 2)
, Var(Z) = λ̄ +

λ̄2β2

2(1 + γ 2)
,

E[Z3
] = (λ̄ + 3λ̄2

+ λ̄3) +
(3λ̄2

+ 3λ̄3)β2

2(1 + γ 2)
,

E[Z4
] = (λ̄ + 7λ̄2

+ 6λ̄3
+ λ̄4) +

(7λ̄2
+ 18λ̄3

+ 6λ̄4)β2

2(1 + γ 2)

+
λ̄4β4(3 + 6γ 2

+ 3γ 4)

8(1 + γ 2)4
.

Proof. We give a full proof in an appendix, and here do only the
variance:

Var(Z) = E[Z2
] − λ̄2

=
γ

2π

 2π/γ

0
(m(t) + m(t)2) dt − λ̄2

= λ̄ +
λ̄2γ

2π

 2π/γ

0
s(t)2 dt

= λ̄ +


λ̄2β2

(1 + γ 2)2


1
2π

 2π

0
[sin u − γ cos u]2 du

applying the change of variables u = γ t in the last step. Then
expand the integrand and apply the power reduction formulas,
2 sin2 θ = 1 − cos 2θ , 2 cos2 θ = 1 + cos 2θ , and 2 sin θ cos θ =

sin 2θ , noting that the integrals of the trigonometric terms vanish.
There are corresponding formulas for highermoments, e.g., 8 sin4 θ
= 3 − 4 cos 2θ + 4 cos 4θ . �

Remark 2.1 (An Alternative Arrival View). In this paper we focus
on the random variable Z in (5) describing the time-average
performance. If instead we want to describe the average view of
arrivals, then we would instead use the random variable Za, with
the pmf

P(Za = k) =
γ

2πλ̄

 2π/γ

0
λ(t)P(Q (t) = k) dt, k ≥ 0; (7)

see Proposition A.1 in the Appendix of [9].

Remark 2.2 (Peakedness). A successful approach for developing
performance approximations in stationary multi-server queues
with non-Poisson arrival processes is the concept of peakedness;
see [1,12,16] and references therein. This applies to many-server
queues with or without extra waiting space, and with or without
customer abandonment from queue. The peakedness is defined
as the ratio of the variance to the mean of the number of busy
servers in the associated infinite-server queue. With an Mt arrival
process having a periodic arrival rate function, a many-server
queue becomes a stationary model when we randomize over the
starting place in a cycle. Taking that point of view here, we see that
Theorem 2.1 yields the peakedness of the Mt arrival process (with
the initial position uniformly distributed over the cycle) relative to
the exponential service-time distribution; i.e.,

z ≡ z(λ̄, β, γ ) ≡
Var(Z)

E[Z]
= 1 +

λ̄β2

2(1 + γ 2)
. (8)

From (8), we can easily determine when z has a non-degenerate
limit as we let the parameters approach limits; we will be
considering some of those here. It is common to express the
peakedness as a function of the service rate µ. If we let the mean
service time be 1/µ, then we replace λ̄ and γ in (8) by λ̄/µ and
γ /µ.We see that the peakedness goes to 1, the same as an ordinary
Poisson arrival process, when γ → ∞ (short cycles) or as µ → 0
(long service times). We can apply this peakedness expression in
(8) to approximate the performance in a multi-server queue with
this periodic stationary arrival process, as in [12,16]. This can be the
basis for stationary-process approximations for periodic queues, as
in [10].

Example 2.1 (Numerical Examples). Below we show plots of the
steady-state pmf. First, Fig. 1 shows the steady-state pmf for λ̄ =

10 (left) and λ̄ = 1000 (right), both for β = 10/35 = 0.286
and three values of γ : 1/8, 1 and 8. As anticipated, for λ̄ = 10,
we see that the steady-state pmf looks much like the Poisson pmf
that holds at each time t , which in turn is approximately a normal
probability density function (pdf), using the standard normal
approximation for the Poisson distribution. However, being a
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Fig. 1. The steady-state pmf in the Mt/M/∞ model with the sinusoidal arrival rate function in (1) for λ̄ = 10 (left) and λ̄ = 1000 (right), β = 10/35 = 0.286 and three
values of γ : 1/8, 1 and 8.
mixture, the steady-state distribution has extra variability, as can
be seen from (8), because Var(Z) > E[Z], whereas Var(Z) = E[Z]

for the Poisson distribution. As γ decreases, the cycles get longer,
making the steady-state even more variable (as quantified by the
variance).

However, we see a radically different picture for higher arrival
rates. When λ̄ = 1000, the plots for γ = 1 and γ = 1/8 look
radically different from the plot for γ = 8, which is reminiscent of
the previous plots for λ̄ = 10. For γ = 1 and γ = 1/8, we see that
these pmfs λ̄ = 1000 are bimodal, showing that the steady-state
distribution places more weight on the extremes than it does on
themean. In order to better explain these results, we next establish
heavy-traffic limits.

3. Heavy-traffic limits

In order to explain the plots for γ = 1 and γ = 1/8 when
λ̄ = 1000 in Fig. 1, we now establish heavy-traffic limits by letting
λ̄ → ∞. In the appendix we give a heavy-traffic limit for the mo-
ments in Theorem 2.1. As a consequence, we obtain the following
revealing limits for the skewness and the kurtosis of Z . The limiting
kurtosis of −1.5 should be compared with the least possible value
of −2 obtained by a Bernoulli random variable attaching probabil-
ity 1/2 to each of±1. The variance Var(Z) is one half of the variance
of that two-point distribution.

Corollary 3.1 (Heavy-Traffic Limit for the Kurtosis). As λ → ∞, the
skewness and kurtosis of Z approach the simple limits

γ1(Z) ≡
E[(Z − E[Z])3]

E[(Z − E[Z])2]3/2
→ 0,

γ2(Z) ≡
E[(Z − E[Z])4]

E[(Z − E[Z])2]2
− 3 → −1.5.

We now establish a limit for the entire distribution of Z by
considering a sequence ofMt/M/∞models indexed by n, where n
is the average arrival rate. In particular, we assume that (1) holds
with λ̄n = n. We again let the mean service time be 1/µ = 1 and
assume that the system starts empty in the distant past, so that the
system is in periodic steady state at time 0.

By letting λ̄n = n, we are using the familiar many-server
heavy-traffic scaling, as in many previous studies, e.g., [8,7,11] and
references therein. We will apply the functional weak law of large
numbers (FWLLN), which is a special case of Theorem 3.21 of [11],
but for the Mt/M/∞ model there is more history, e.g., [8]. The
ordinary LLN version of the fluid limit concludes that

Qn(t)
n

⇒ 1 + s(t) in R as n → ∞ (9)

for each t . The associated deterministic fluid approximation is

Qn(t) ≈ n(1 + s(t)), t ≥ 0. (10)

Let Zn be a random variable with the steady-state distribution
associated with the nth model, defined as in (5). Let Z̄n ≡ Zn/n
be the associated scaled steady-state random variable, again using
the usual fluid scaling. This application of the fluid limit in (9) is
interestingmathematically because it leads to a stochastic limit for
the scaled steady-state random variable Z̄n. That can be explained
because the variability, as partially characterized by the variance,
is an order of magnitude larger in the present setting than in the
usual stationary setting. Let⇒ denote convergence in distribution.

Theorem 3.1 (The Fluid Limit). For the sequence of Mt/M/∞models
indexed by n defined above,

Z̄n ⇒ Z in R as n → ∞, (11)

with E[Z̄n] = E[Z] = 1 for all n and

Var(Z̄n) → Var(Z) ≡
β2

2(1 + γ 2)
as n → ∞, (12)

where Z has support on the interval [1 − sU , 1 + sU ] and non-
degenerate cdf

F(x) ≡ P

Z ≤ 1 + sUx


= 1 − F(−x)

=
1
2

+
γ

2π
[s−1(xsU) − tm0 ], (13)

for 0 ≤ x ≤ 1, s in (2), sU in (3) and tm0 in (4).

Proof. The convergence in (11) follows from the LLN stated in (9).
In particular,

P(Z̄n ≤ 1 + x) = P(Zn ≤ n(1 + x))

=
γ

2π

 2π/γ

0
Πn(1+x)(nm1(t)) dt,

⇒
γ

2π

 2π/γ

0
1(−∞,x](s(t)) dt

≡ P(Z ≤ 1 + x) as n → ∞, (14)
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Fig. 2. The cdf of the scaled steady-state randomvariable Z̄n in theMt/M/∞model
with the sinusoidal arrival rate function in (1) for β = 10/35 = 0.286, γ = 1 and
four values of n = λ̄ = 10, 35, 100 and 1000.

where Πx(m) is the cdf of a Poisson distribution with mean m
and 1A(x) is the indicator function of the set A, equal to 1 when
x ∈ A and 0 otherwise. We also use the bounded convergence
theorem to get associated convergence of the integrals, using the
fact that, for each x, the indicator function appearing in the limit
is continuous in t for all but finitely many t . We then see that
(13) is an equivalent expression for this limiting cdf, using the fact
that m(t) is a continuous strictly increasing function over its first
quarter cycle, starting where it is 0 and increasing. The variance
result in (12) follow from Theorem 2.1. �

Theorem 3.1 establishes convergence in distribution Z̄n ⇒

Z , which means convergence of the cdfs. To directly see that
convergence, Fig. 2 shows the cdfs of the scaled random variables
Z̄n for Example 2.1 with four values of n ranging from 10 to
1000. The limiting random variable Z has support on the interval
[0.798, 1.202]. Thus, we see that the case n = 1000 is close to the
limiting form.

We will now derive the probability density function (pdf) of Z .
For that purpose, it is convenient to introduce

g(x) ≡
s(tm0 + [xπ/(2γ )])

sU
, 0 ≤ x ≤ 1. (15)

From (3) and (4), we see that g : [0, 1] → [0, 1] is strictly
increasing and continuous with g(0) = 0, g(1) = 1 and ġ(1) = 0,
where ġ is the derivative. Hence g has a unique inverse g−1

:

[0, 1] → [0, 1], which also is strictly increasing and continuous,
with g−1(0) = 0, g−1(1) = 1 and g(g−1(x)) = g−1(g(x)) = x for
0 ≤ x ≤ 1.

On the other hand, after letting h(x) ≡ F(x) − (1/2), from (13)
and (15), we have

h(g(x)) ≡ F(g(x)) −
1
2

= P

Z ≤ 1 + sUg(x)


−

1
2

=
γ

2π
[s−1(g(x)sU) − tm0 ],

=
γ

2π
[s−1(s(tm0 + xπ/γ )) − tm0 ] = x for all x,

0 ≤ x ≤ 1, (16)
so that h = g−1.

Corollary 3.2. The limiting random variable Z in (11) has interval of
support [1 − sU , 1 + sU ], cdf

P

Z ≤ 1 + sUg(x)


= P


S > 1 − sUg(x)


= x +

1
2
, 0 ≤ x ≤ 1, (17)
and pdf

fZ (1 + sUg(x)) = fS(1 − sUg(x)) =
1

sU ġ(x)
, 0 ≤ x ≤ 1, (18)

for g in (15), or

fZ (1 + sUy) = fS(1 + sUy) =
1

sU ġ(g−1(y))
, 0 ≤ y ≤ 1. (19)

The pdf fZ (y) is bimodal, approaching +∞ at y = 1 ± sU , and has a
unique minimum value at y = 1.

Proof. The expression for the cdf in (17) follows directly from (13),
(15) and (16), noting that

x = h(g(x)) = F(g(x)) −
1
2

= P

S ≤ 1 + sUg(x)


−

1
2
.

Expressions (18) and (19) follow from (17), the chain rule and the
inverse function theorem. From (15) and (2), we see that g(x) is
increasing over [0, 1] with g(1) = 1, while ġ(x) is decreasing with
ġ(1) = 0. (The maximum of g(x) for x ≥ 0 occurs at x = 1.) �

The limiting steady-state random variable Z associated with
the deterministic fluid approximation for Qn(t) in (10) is not itself
deterministic. The non-degenerate steady-state pdf explains the
shape we see for γ ≤ 1 in Fig. 1 when n = 1000.

4. A double limit for short cycles

From the plot of the steady-state pmf when λ̄ = 1000 on the
right in Fig. 1, we see that the fluid approximation performs very
poorlywhenγ = 8. Indeed, the plot is so different from the conclu-
sion of Theorem 3.1 that we are inclined to question the validity of
Theorem 3.1. However, Fig. 3 addresses that concern by displaying
the steady-state distribution for even larger values of λ̄. In partic-
ular, Fig. 3 shows the steady-state pmf when λ̄ = 104 (left) and
λ̄ = 106 (right). These are computed by approximating the Pois-
son pmf at each time t by the associated normal pdf with the same
mean and variance. From these plots, we see that Theorem 3.1 fi-
nally does apply to γ = 8 for these extremely large values of λ̄.
Nevertheless, Theorem 3.1 does not yield reasonable approxima-
tions for typical values of λ̄. Thatmotivates us to also develop other
approximations based limits in which γn → ∞ as well as n → ∞.

We now consider the new scaled random variable

Ẑn ≡
Zn − E[Zn]

√
n

=
Zn − n
√
n

, n ≥ 1. (20)

Let N(m, σ 2) denotes a random variable with the normal distribu-
tion having meanm and variance σ 2.

Theorem 4.1 (Double Limit for the Steady-State Distribution with
Short Cycles). For the sequence of Mt/M/∞models indexed by nwith
the scaling

γn
√
n

→ ∞ as n → ∞, (21)

we have the convergence

Ẑn ⇒ N(0, 1) in R as n → ∞, (22)

for Ẑn in (20), which is consistent with E[Ẑn] = 0 for all n and

Var(Ẑn) → 1 as n → ∞. (23)
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Fig. 3. The steady-state pmf in the Mt/M/∞ model with the sinusoidal arrival rate function in (1) for λ̄ = 104 (left) and λ̄ = 106 (right), β = 10/35 = 0.286 and three
values of γ : 1/8, 1 and 8.
Proof. For the stationary processes associated with the associated
sequence of stationary M/M/∞ models indexed by n, the limit in
(22) is elementary. We will show that the limit is in the same for
this sequence of Mt/M/∞ models is the same. It suffices to show
that the functional central limit theorem for the arrival process has
the same limit. Let An(t) be the arrival counting process in system
n, we will show that

Ân(t) ≡
An(t) − nt

√
n

⇒ B(t) in D as n → ∞, (24)

where here⇒denotes convergence in distribution in the functions
space D, as in [15], and {B(t) : t ≥ 0} is the standard Brownian
motion (BM). From [11], that limit for the arrival processwill imply
the corresponding limit for Qn(t).

To establish (24), recall that An can be expressed as An(t) =

N(Λn(t)), t ≥ 0, where N(t) be a rate-1 Poisson process and Λn(t)
is the cumulative arrival rate function in system n, i.e.,

Λn(t) ≡

 t

0
λn(s) ds = n


t +

β[1 − cos(γnt)]
γn


, t ≥ 0.

It is well known that

N̂n(t) ≡
N(nt) − nt

√
n

⇒ B(t) in D as n → ∞.

Moreover, with the scaling in (21)we have Λ̄n ⇒ e inD as n → ∞,
where Λ̄n(t) ≡ Λn(t)/n and e(t) ≡ t , t ≥ 0. Since {An(t) : t ≥ 0}
is distributed the same as {Nn(Λ̄n(t)) : t ≥ 0}, we can apply the
continuousmapping theoremwith the compositionmap to get the
convergence

An(t) − Λn(t)
√
n

=
Nn(Λ̄n(t)) − nΛ̄n(t)

√
n

⇒ B(t) in D as n → ∞. (25)

We can thus complete the proof by applying the convergence-
together theorem, Theorem 11.4.7 of [15], since

Λn(t) − nt
√
n

=

√
n(1 − cos(γnt))

γn
⇒ 0 as n → ∞ (26)

uniformly in t over compact intervals by virtue of the scaling
in (21). �
Observe that, with the scaling in (21), the variance satisfies

Var(Ẑn) = 1 +
nβ2

2(1 + γ 2
n )

→ 1 as n → ∞. (27)

We thus suggest combining the exact variance with Theorem 4.1
to generate the approximation for large n and γ :

Ẑn ≈ N(0, σ 2
n ) for σ 2

n = 1 +
nβ2

2(1 + γ 2
n )

. (28)

Remark 4.1 (An Associated Diffusion Process Limit). A minor
modification of the proof of Theorem 4.1 yields a periodic diffusion
process limit for Qn(t) if we instead assume that βn

√
n → β∗ > 0

with γn = γ as n ≡ λ̄n → ∞. Under that condition, Ân(t) ≡

n−1/2
[An(t) − nt] ⇒ B(Λ∗(t)) in D, where B is again BM and

Λ∗(t) = β∗(1 − cos(γ t))/γ and we can apply [11]. The resulting
approximation for Z is a mixture of Gaussian distributions, which
does not offer much advantage over the exact distribution in (5).

5. A double limit for long cycles

We can also establish a double limit for long cycles by letting
γn ↓ 0 as n → ∞. We then obtain simple explicit expressions for
the cdf and pdf, which help explain the figures. These are closely
related to the classical arcsine law in probability theory, which in
turn is a special beta distribution; see p. 50 of [3].

Theorem 5.1 (Double Limit for the Steady-State Distribution with
Long Cycles). If γn → 0 as n → ∞ for the sequence of Mt/M/∞
models indexed by n, then

Z̄n ≡
Zn
n

⇒ Z in R as n → ∞, (29)

where Z has cdf

P(Z ≤ 1 + βx) =
1
2

+
arcsin(x)

π
, −1 ≤ x ≤ 1, (30)

and pdf

f(Z−1)/β(x) = f(Z−1)/β(−x) =
1

π
√
1 − x2

, 0 ≤ x ≤ 1, (31)
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Fig. 4. A comparison of the cdf (left) and pdf (right) of the limit Z in Theorem 5.1 with the exact values of the cdf and pdf of the scaled steady-state random variable Z̄n in
the Mt/M/∞ model with the sinusoidal arrival rate function in (1) for β = 10/35 = 0.286, γn = 1/

√
n and three values of n = λ̄: 10, 100 and 10, 000.
or, equivalently,

fZ (x) = fZ (−x) =
1

βπ

1 − [(x − 1)/β]2

, 1 ≤ x ≤ 1 + β, (32)

with

E[Z] = 1 and Var(Z) =
β2

2
. (33)

Proof. We use a minor modification of the proof of Theorem 3.1.
For any fixed γ , perform the change of variables u = γ t in (14) to
obtain

P(Z̄n(γ ) ≤ 1 + βx) = P(Zn(γ ) ≤ n(1 + βx))

=
1
2π

 2π

0
Πn(1+βx)(m1(u/γ )) du,

⇒
0
2π

 2π

0
1(−∞,βx](s(u/γ )) du

≡ P(Z(γ ) ≤ 1 + βx) as n → ∞. (34)

Next observe that

m1(t/γ ) =


1 +

β

1 + γ 2


(sin(t) − γ cos(t))

→ 1 + β sin(t) as γ ↓ 0

uniformly in t . Hence the convergence in the second line of (34) is
uniform in γ with the limit being the expression for γ = 0. We
thus have the limit

P(Z ≡ Z(0)) ≤ 1 + β sin(π(t − 0.5)) = t, −1 ≤ t ≤ 1,

which directly implies (30) and (31). For the variance, start with a
direct expression and then perform the change of variables y = x2
to get

E[((Z − 1)/β)2] =
2
π

 1

0

x2
√
1 − x2

dx

=
1
π

 1

0

y
√
y(1 − y)

dy =
1
2
, (35)

because the final integral is the expression for the mean of the
arcsine or Beta(1/2, 1/2) distribution on [0, 1], which of course is
1/2. �
From Theorem 5.1, we have the approximations

P(Zn ≤ nx) ≈ P(Z ≤ x) and P(Zn ≤ y) ≈ P(Z ≤ y/n), (36)

so that

fZn(y) ≈
fZ (y/n)

n
(37)

for fZ in (32).
The cdfs and pdfs are compared in Fig. 4.

6. Extensions

Extension of the results here for other related models follow by
essentially the same arguments. First, extensions to the Mt/GI/∞
model with the sinusoidal arrival rate function in (1) and a
non-exponential service-time distribution follow from Section 4
of [2]. The same reasoning applies, but the formulas are more
complicated. Second, extensions also hold for Mt/GI/∞ models
with other periodic arrival rate functions, but the expressions
become even more complicated. The cdf of S remains easy to
compute in the same way if (i) cycles can be defined so that the
mean function is first increasing in the first part of the cycle and
then decreasing thereafter, and (ii) themean function is symmetric
when it is reflected about its peak, so that the downward part in
reverse time starting at the end of the cycle coincides with the
upward part in forward time over its half cycle. Without condition
(ii), we can treat the upward and downward portions separately
and combine the results.

Finally, the heavy-traffic limit supporting the fluid approxima-
tion in Section 3 can also be established for more general mod-
els with periodic arrival rate functions, including the Gt/G/∞
model with dependent service times studied in [13] and the non-
Markovian Gt/GI/st + GI model with time-varying finite capacity
and customer abandonment from queue as in [7], exploiting the
FWLLNs established in those papers. Just as here, the approximat-
ing steady-state distribution will be non-degenerate even though
the fluid limits for the number of customers in the system are de-
terministic.
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Appendix

In this appendix we first give a full proof of Theorem 2.1 and
then we establish limits for the moments displayed there as λ̄ →

∞, γ → ∞ and γ → 0. We conclude with a figure related to
Fig. 1, showing the same example for λ̄ = 35 and 100; see Fig. 5.

A.1. Proof of Theorem 2.1

Recall that the first fourmoments of a Poisson distributionwith
mean m are m1 = m, m2 = m + m2, m3 = m + 3m2

+ m3 and
m4 = m+7m2

+6m3
+m4. Hence, from (5), we have the following

formula for the first four moments of the steady-state variable Z:

E[Z] =
γ

2π

 2π/γ

0
m(t) dt = λ̄,

E[Z2
] =

γ

2π

 2π/γ

0
(m(t) + m(t)2) dt,

E[Z3
] =

γ

2π

 2π/γ

0
(m(t) + 3m(t)2 + m(t)3) dt,

E[Z4
] =

γ

2π

 2π/γ

0
(m(t) + 7m(t)2 + 6m(t)3 + m(t)4) dt. (38)

Recall from (2) that s(t) = m(t) − 1. To evaluate the integrals
in (38), let

Sk =
γ

2π

 2π/γ

0
s(t)k dt =

1
2π

 2π

0
s(u/γ )k du, k ≥ 1, (39)

where s(u/γ ) = (β/(1 + γ 2))(sin u − γ cos u), with the last
expression following from the change of variables u = γ t . Now
recall the power-reduction formulas that follows from the double
angle formula:

sin2 θ =
1 − cos 2θ

2
, cos2 θ =

1 + cos 2θ
2

,

sin3 θ =
3 sin θ − sin 3θ

4
, cos3 θ =

3 cos θ + cos 3θ
4

,

sin4 θ =
3 − 4 cos 2θ + 4 cos 4θ

8
,

cos4 θ =
3 + 4 cos 2θ + cos 4θ

8
,

sin θ cos θ =
sin 2θ

2
, sin2 θ cos2 θ =

1 − cos 4θ
8

.

(40)

As a consequence of (40), we have S1 = S3 = 0 (and S2k+1 = 0 for
all k ≥ 0), and

S2 =


β

1 + γ 2

2 
1 + γ

2


,

S4 =


β

1 + γ 2

4 
3 + 6γ 2

+ 3γ 4

8


. (41)

Hence,
γ

2π

 2π/γ

0
m(t)2 dt = λ̄2(1 + S2) = λ̄2

+
λ̄2β2

2(1 + γ 2)
,

γ

2π

 2π/γ

0
m(t)3 dt = λ̄3(1 + 3S2) = λ̄3

+
3λ̄3β2

2(1 + γ 2)
,

γ

2π

 2π/γ

0
m(t)4 dt = λ̄4(1 + 6S2 + S4),

= λ̄4
+

6λ̄4β2

2(1 + γ 2)
+

λ̄4β4(3 + 6γ 2
+ 3γ 4)

8(1 + γ 2)4
(42)

for Sk in (39) and (41). Finally, we combine (38) and (42) to obtain
the desired moments in Theorem 2.1. �
A.2. Limiting forms of the moments

In this section we show how the moments in Theorem 2.1
behave as various parameters approach limits: λ̄ → ∞, γ → ∞

and γ → 0.

A.2.1. Heavy-traffic limits
We next describe the asymptotic behavior of these moments as

λ̄ → ∞. Of particular interest are the skewness and the kurtosis,
which approach 0 and −1.5, respectively.

Corollary A.1 (Heavy Traffic Limits). If λ̄ → ∞, then

E[Z]

λ̄
→ 1,

E[Z2
]

λ̄2
→ 1 +

β2

2(1 + γ 2)
,

E[Z3
]

λ̄3
→ 1 +

3β2

2(1 + γ 2)
,

E[Z4
]

λ̄4
→ 1 +

6β2

2(1 + γ 2)
+

β4(3 + 6γ 2
+ 3γ 4)

8(1 + γ 2)4
, (43)

so that the central moments satisfy

Var(Z)

λ̄2
≡

E[(Z − E[Z])2]

λ̄2
→

β2

2(1 + γ 2)
,

E[(Z − E[Z])3]

λ̄3
→ 0,

E[(Z − E[Z])4]

λ̄4
→

3β4

8(1 + γ 2)2
, (44)

and the skewness and kurtosis have the simple limits

γ1(Z) ≡
E[(Z − E[Z])3]

E[(Z − E[Z])2]3/2
→ 0,

γ2(Z) ≡
E[(Z − E[Z])4]

E[(Z − E[Z])2]2
− 3 → −1.5. (45)

A.2.2. Short cycles
We now consider the limits of the moments in (38) as γ → ∞

and as γ → 0. For the kurtosis, we see that the two iterated limits
limλ̄→∞ limγ→∞ and limγ→∞ limλ̄→∞ do not agree.

Corollary A.2 (Short Cycles). As γ → ∞, the moments in (38) ap-
proach the moments of a random variable Z∞ having a Poisson distri-
bution with mean λ̄:

E[Z∞] = λ̄, E[Z2
∞

] = λ̄ + λ̄2, E[Z3
∞

] = λ̄ + 3λ̄2
+ λ̄3,

E[Z4
∞

] = λ̄ + 7λ̄2
+ 6λ̄3

+ λ̄4.

The associated second, third and fourth central moments of Z∞ are

Var(Z∞) ≡ E[(Z∞ − E[Z∞])2] = λ̄,

E[(Z∞ − E[Z∞])3] = λ̄ and

E[(Z∞ − E[Z∞])4] = λ̄ + 3λ̄2, (46)

so that the skewness and kurtosis are

γ1(Z∞) ≡
E[(Z∞ − E[Z∞])3]

E[(Z∞ − E[Z∞])2]3/2
=

1
√

λ̄
,

γ2(Z∞) ≡
E[(Z∞ − E[Z∞])4]

E[(Z∞ − E[Z∞])2]2
− 3 =

1
λ

, (47)

both of which converge to 0 as λ̄ → ∞.

A.2.3. Long cycles
In contrast to Corollary A.2, we see that the two iterated limits

limλ̄→∞ limγ→0 and limγ→0 limλ̄→∞ do agree.
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Fig. 5. The steady-state pmf in the Mt/M/∞ model with the sinusoidal arrival rate function in (1) for λ̄ = 35 (left) and λ̄ = 100 (right), β = 10/35 = 0.286 and three
values of γ : 1/8, 1 and 8.
Corollary A.3 (Long Cycles). As γ → 0, the moments in (38) ap-
proach

E[Z0] = λ̄, E[Z2
0 ] = (λ̄ + λ̄2) +

λ̄2β2

2
,

E[Z3
0 ] = (λ̄ + 3λ̄2

+ λ̄3) +
(3λ̄2

+ 3λ̄3)β2

2
, (48)

E[Z4
0 ] = (λ̄ + 7λ̄2

+ 6λ̄3
+ λ̄4) +

(7λ̄2
+ 18λ̄3

+ 6λ̄4)β2

2

+
3λ̄4β4

8
.

The associated second, third and fourth central moments of Z0 are

Var(Z0) ≡ E[(Z0 − E[Z0])2] = λ̄ +
λ̄2β2

2
,

E[(Z0 − E[Z0])3] = λ̄ +
3λ̄2β2

2
, (49)

E[(Z0 − E[Z0])4] = λ̄ + 3λ̄2
+

(7λ̄2
+ 6λ̄3)β2

2
+

3λ̄4β4

8
,

so that the skewness and kurtosis satisfy

γ1(Z0) ≡
E[(Z0 − E[Z0])3]

E[(Z0 − E[Z0])2]3/2

=
√
2

(2λ̄ + 3λ̄2β2)

(2λ̄ + λ̄2β2)3/2
∼

3
√
2

λ̄β
,

γ2(Z0) ≡
E[(Z0 − E[Z0])4]
E[(Z0 − E[Z0])2]2

− 3 →
3
2

− 3 = −
3
2
, (50)

as λ̄ → ∞.
A.3. Additional plots

We conclude by giving plots in Fig. 5 of two cases related to
Fig. 1.
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