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Call Arrival Rate to a U.S. Bank Service Center over a Day
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Arrival Rate to an Israeli ED over a Week
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What Arrival Process Model is Appropriate

for the bank?

hopefully a homogeneous Poisson process (PP)

(Treating as stationary over half hours because service times

are short, i.e., using the Pointwise-Stationary Approximation)

and for the ED?

hopefully a nonhomogeneous Poisson process (NHPP)

(Patient Lengths of Stay (LoS) are too long for PSA.)

But are these Poisson models appropriate?
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A Nonhomogeneous Poisson Process (NHPP)

no batches: Arrival occur one at a time.

independent increments: For all k ≥ 2 and

0≤ t1 ≤ t2 ≤ t3 ≤ ·· · t2k , A(t2)−A(t1) (number of arrivals in

[t1, t2]), A(t4)−A(t3), . . . ,A(t2k)−A(t2k−1) are k

independent random variables.

increments have a Poisson distribution:

P(A(t2)−A(t1) = k) = e−m(t1,t2))m(t1,t2)
k

k!

mean is the integral of the arrival rate λ (t):

m(t1, t2) =
∫ t2
t1

λ (s)ds, t ≥ 0.

The Poisson process (PP) is the special case in which:

λ (t) = λ (constant). Unlike the NHPP, the PP has

stationary increments.



Justification for Poisson: People Acting Independently

Theorem

(The Law of Rare Events) The superposition of n independent

i.i.d. nonstationary (stationary) point processes with intensities

λ (t)/n (λ/n) converges in distribution to an NHPP (PP) with

arrival rate function λ (t) (λ ) as n→ ∞.

Often called the Palm-Khintchine theorem.

The component processes need not be renewal, as often

assumed.

The component processes need not be identical.



Examples Where PP and NHPP Are Suspect

Likely to be smoother, less variable or less bursty:

scheduled arrivals, as at doctor’s office.

enforced separation, as in landings at airports.

Likely to be more variable or more bursty

overflow processes, in finite capacity systems, because they

tend to occur in clumps, when the main system is overloaded.

batch arrivals, as in arrivals to amusement parks, arrivals at

hospital ED because of accident or arrivals at ED that come by

public transport (where customers may use resources as

individuals).



Main Idea

Perform Statistical Tests with Arrival Data
to see if the NHPP fits.

But how to do it?



Constructing Statistical Tests of an NHPP

1 Reduce to a statistical test of a PP by assuming that the

arrival-rate function is piecewise-constant, and then focusing

on the subintervals.

2 Reduce to statistical test of i.i.d. random variables with a

specified distribution on each interval.

3 Use the Kolmogorov-Smirnov (KS) statistical test of i.i.d.

random variables with a specified distribution.



Converting to a Kolmogorov Smirnov Test

1 Standard KS Test

Interarrival times of a PP are i.i.d. exponential random

variables.

Use KS test for i.i.d. exponential variables on each interval

2 CU KS Test: Exploit Conditional Uniform (CU) Property to

transform data and then use KS test (first key idea)

Given n arrivals Ak in [0,T]: Ak/T are n iid uniforms on [0,1]

No nuisance parameter: independent of arrival rate

Can combine data from different intervals and days

But note: The scaled arrival times are i.i.d. uniforms,

not the interarrival times!!



The Kolmogorov-Smirnov (KS) Statistical Test (1)

Null Hypothesis, H0: We have a sample of size n from a

sequence {Xk : k ≥ 1} of i.i.d. random variables with continuous

CDF F

Alternative Hypothesis, H1: We have a sample of size n from a

another (specified) sequence of random variables



The Kolmogorov-Smirnov (KS) Statistical Test (2)

The KS test is based on the absolute difference (a random

variable, rv)

Dn ≡ sup
x
|Fn(x)−F (x)|,

where F is the postulated cdf in H0, n is the sample size and Fn(x)

is the empirical CDF (another rv), i.e.,

Fn(x)≡ 1

n

n

∑
k=1

1Xk≤x , −∞ < x < +∞.

Observe Dn = D̂n for the data.

Reject hypothesis H0 if D̂n > xα , where

P(Dn > xα |H0) = α = 0.05 (significance level)

Compute p-value: P(Dn > D̂n|H0) (level for rejection)



Problem with the CU Test

KS test of NHPP using CU property has very low power

Power: P(RejectH0|H1) (1 - type II error)

Low power means that alternatives pass too easily!

Solve by applying KS test after data transformation (Apply KS

test after producing new sequence of i.i.d. variables under H0)

Log KS Test, from Brown (2005)

Lewis KS Test, from Durbin (1961), Lewis (1965) and Kim

and W (2014)



The Log KS Test from §3 of Brown et al. (2005)

Given n ordered arrival times 0 < T1 < · · ·< Tn < t in [0, t], let

X Log
j ≡−(n+ 1− j) loge

(
t−Tj

t−Tj−1

)
, 1≤ j ≤ n

Under H0: If these rvs are obtained from a PP over [0, t]

using the CU property, then {X Log
j : 1≤ j ≤ n} are n i.i.d.

mean-1 exponential rvs → KS Test

The power is greater than the CU KS Test for most

alternatives



The Lewis (1965) KS Test Based on Durbin (1961)

- U(j) = Tj/t, 1≤ j ≤ n from 0 < T1 < · · ·< Tn < t in [0, t]

ordered uniforms from the CU property

- C1 = U(1),Cj = U(j)−U(j) and Cn+1 = 1−U(n) and C(j) so that

C(1) < C(2) < · · ·< C(n+1) ordered intervals

- Zj = (n+ 2− j)(C(j)−C(j−1)) scaled intervals

Under H0: (Z1, . . . ,Zn) is distributed the same as

(C1, . . . ,Cn); (S1, . . . ,Sn) (where Sj ≡ Z1 + · · ·+Zk) is

distributed the same as (U(1), . . . ,U(n)) → KS Test

The Lewis KS test has even more power!



Example: Different KS Tests Applied to an Alternative

Alternative: A renewal process with interarrival times having a

hyperexponential CDF with c2X = Var(X )/(E [X ])2 = 2

Simulation Experiment:

- Simulated 104 replications of 104 interarrival times

- Considered arrivals in [103, 103 + 200] (stationary version)

- Apply KS tests to each replication w/ significance level α = 0.05

Table: Performance of alternative KS tests

KS test Lewis Standard Log CU

Power (P(RejectH0|H1)) 0.94 0.63 0.51 0.28

Average p value 0.01 0.10 0.13 0.23



Insightful Plots 1: Average of ECDF over 104 Replications
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Insightful Plots 2: ECDF of p-values over 104 Replications



Applying the KS Tests to Service System Data

Three common features of arrival data we need to address (to

avoid reaching the wrong conclusion):

1 data rounding, e.g., to seconds

2 choosing subintervals over which the rate varies too much

3 over-dispersion caused by combining data from multiple days

that do not have the same arrival rate

In Kim and Whitt (2014, M&SOM) we use simulation to

investigate how to address each problem, and apply our methods

to call center and hospital arrival data.



Example: Call Arrivals at the U.S. Bank (slide 2)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

100

200

300

400

500

600

700

t

ar
riv

al
 r

at
e 

pe
r 

ho
ur



Example: Lewis KS Test Applied to Call Center Data

Data: 30 days in April 2001 (more in KW2014, M&SOM)

Question: We observe that the arrival rate is nearly linear and

increasing in the interval [7am, 10am]. We want to test whether

the arrival process in [7am, 10am] is an NHPP.

Table: Lewis KS test Results: The role of rounding and subintervals

subinterval length Before unrounding After Unrounding

L (hours) Avg p-value # Pass Avg p-value # Pass

3 0.00±0.01 1 0.04±0.05 4

1.5 0.09±0.08 7 0.26±0.11 18

1 0.16±0.08 15 0.48±0.10 29

0.5 0.20±0.09 18 0.51±0.10 30



Overdispersion: Excessive Variability

Overdispersion occurs in the arrival data if the
arrival rate varies too much over successive
days.

It is not a problem if it can be predicted, e.g., by
forecasting.

It can be avoided in the KS tests by applying the
CU transformation to different days separately
and then combining the data afterwards.

But overdispersion in arrival data is a genuine
concern and needs to be examined.



Example from the U.S. Bank again



Estimate Day-To-Day Variation: 25 Mondays Overall

Look at: 13:00-13:30.

Quick Rough Analysis:

range: [2500, 3200], mean ≈ 2850.

5 STD DEV ≈ 700, STD DEV ≈ 140.

variance ≈ 19,600>> 2850 Too large!.

(The variance equals the mean in the Poisson

distribution.)

Actual Data Analysis:

actual sample mean = 2,842.

actual sample variance = 24,539 >> 2,842. Thus, Too

large!.



Separating Hourly Rate from the Daily Total: Normalize

Mondays 



Summary (1 of 2)

1 We have conducted extensive simulation experiments to study

the power of alternative KS tests for a NHPP (arrival process

model in service system models).

2 The CU transformation allows us to apply the KS test to i.i.d.

random variables and eliminates the nuisance parameter, but

the CU test itself has very low power for non-exponential

interarrival times.

3 Our analysis strongly supports the approach proposed by

Brown et al. (2005), but finds another related KS test

proposed by Lewis (1965) consistently has even greater power.

4 We discussed three common features that need to be

addressed when applying the KS tests to real arrival data.
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Summary (2 of 2)

Three common features that need to be addressed when applying

the KS tests to real arrival data:

1 data rounding

2 choosing the subintervals to be treated as piecewise constant

3 over-dispersion

Over-dispersion appears to be the greatest practical concern in

actual arrival processes. It can be tested for directly. If present

at high levels, it requires new models and analysis techniques.
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