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Abstract

This is a supplement to the main paper, having the same title. In this work we develop methods

to study the impact upon steady-state performance of delay announcements made to arriving

customers in a many-server queue with customer abandonment. We assume that the queue is

not visible to waiting customers, as in most customer contact centers, when contact is made

by telephone, email or instant messaging. We propose simple robust announcement schemes:

(i) the delay of the last served (DLS) customer and (ii) a fixed delay (FD) announcement

based on an appropriate long-run average delay. For any single-number delay announcement

made immediately upon arrival, customers may balk or have new abandonment behavior as

a function of the announced delay. We introduce a model of that customer response. To

perform a rough-cut performance analysis, prior to detailed simulation, we introduce a fluid

model, which provides an approximate and highly simplified description for large systems in

an overloaded regime. In the fluid model, all customers are faced with the same delay and

consequently can be given the same delay announcement. That property motivates considering

a second approximation scheme: an equilibrium fixed delay announcement in the stochastic

model, which we compute approximately using an iterative numerical algorithm (INA). We

show that these two approximate descriptions of aggregate performance are effective by com-

paring to simulations. We simulate systems with state-dependent DLS announcements and we

iterate over simulations using fixed delay announcements. Here we present additional material,

supplementing the main paper.
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1. Introduction

This is a supplement to the main paper, Armony et al. (2008), with the same title. Our

purpose is to provide some additional supporting material, which was not possible to include

in the main paper because of limited space. In places we are deliberately redundant in order

to make this supplement easier to read.

The Main Paper. In the main paper we study the impact on steady-state performance of

making delay announcements in a many-server queue with abandonments. We are thinking

of applications with invisible queues, such as routinely occurs in a customer contact center.

We consider single-number delay announcements. We propose two specific single-number an-

nouncement schemes: (i) the delay of the last served (DLS) customer and (ii) a fixed delay

(FD) announcement, based on an appropriate long-run average delay.

To perform a rough-cut analysis of performance, prior to detailed simulation, we use a fluid

model, extending Whitt (2006a), which provides an approximate and highly simplified descrip-

tion for large systems in an overloaded regime. In the fluid model, all customers are faced with

the same delay and consequently can be given the same delay announcement. That structure

of the fluid model motivates considering queueing models with FD announcements in order to

approximate the aggregate performance of the queueing model with state-dependent announce-

ments. We use an iterative numerical algorithm (INA) based on the numerical algorithm for

approximately analyzing an M/GI/s + GI model developed in Whitt (2005).

We evaluate the two approximation methods - the fluid model and the INA - by com-

paring the predicted performance with simulations of many-server queues with DLS and FD

announcements. When we simulate with FD announcements, we iterate until the average de-

lay of served customers coincides with the announced delay. The principal conclusions are:

(1) the fluid model does indeed provide a convenient tool to describe aggregate performance

and conduct further analysis, and (2) the INA provides a remarkably good approximation

for the steady-state behavior of the queueing model, with both state-dependent DLS delay

announcements and equilibrium fixed-delay announcements.

That initial investigation shows that the state-dependent announcements are more reliable

than FD announcements, yielding smaller average absolute error and average squared error.

The equilibrium FD announcement (making the actual delay equal to the announced delay)

is approximately equal to the average of the state-dependent predictions, but the variation is
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greater with the fixed announcements.

Organization of this Supplement. We start in Sections 2 and 3 by expanding upon the

description of the fluid model in Section 3 of the main paper. In Section 2 we describe the

fluid model without any delay announcements. Then in Section 3 we describe the fluid model

with delay announcements.

Next, in Sections 4 and 5 we present additional numerical results, complementing Section

6 of the main paper. In Section 4 we present numerical results for the all-exponential queueing

model introduced in Section 5 of the main paper, but with lower arrival rates. Here we consider

λ = 120 and λ = 110 instead of λ = 140. Since there are s = 100 servers, each with service

rate µ = 1, we are considering initial traffic intensities of 1.2 and 1.1 instead of 1.4. But the

reduced arrival rates after balking are only 103.7 and 101.9, so the system ceases to be so

overloaded after balking. In Section 5 we present additional numerical results for the simple

all-exponential model considered in Section 6 of the main paper, Armony et al. (2007), with

λ = 140. In particular, here we show the results of successive iterations, conducted to find the

equilibrium steady-state performance measures.

In Section 6 we introduce an alternative model of customer response to a delay announce-

ment w that falls in between the general model introduced in Section 3 of the main paper

and the all-exponential model considered in Section 5 of the main paper. Specifically, here in

Section 6 we consider conditional abandonment time distributions of the form

F c(t|w) =





Cc(t), 0 ≤ t ≤ w ,

Cc(w)Dc(t− w), t > w ,
(1.1)

where F c(t|w) ≡ 1− F (t|w) and C and D are cdf’s with Cc(0) = Dc(0) = 1. In Section 6 we

establish results paralleling the basic properties established in Section 5 of the main paper.

In Section 7 we study iterations in order to calculate the equilibrium performance. We do

so in the setting of Section 6 here. In Section 8 we include additional structural results for the

fluid model for more general after-announcement time-to-abandon cdf’s, extending the results

in Section 4 of the main paper. In Section 9 we draw conclusions.

2. The Fluid Model Without Announcements

An Approximation for a Many-Server Queueing Model. In this section we review the

fluid model introduced in Whitt (2006a). Our starting point is the G/GI/s + GI queueing

2



model, which allows for a general stationary arrival process. It is specified by a model 4-

tuple (A, s, G, F ): A ≡ {A(t) : t ≥ 0} is the arrival process, understood to be a stationary

point process with arrival rate λ, s is the number of servers, G is the service-time cumulative

distribution function (cdf) and F is the time-to-abandon cdf. It is understood that there is an

unlimited waiting room and the FCFS queue discipline is being used. Let S be a generic service

time and let T be a generic time to abandon. Our assumptions mean that G(t) ≡ P (S ≤ t)

and F (t) ≡ P (T ≤ t) for t ≥ 0. Let µ−1 ≡ E[S] be the mean service time and θ−1 ≡ E[T ]

be the mean time to abandon, both assumed to be finite. For simplicity, and without loss of

generality (by appropriately choosing the measuring units for time), we assume throughout

this paper that the mean service time is µ−1 = 1. So time is measured in units of mean service

times.

In this setting of the G/GI/s + GI model with µ = 1, the fluid model we use arises in the

limit as

λ →∞ and s →∞ with ρ ≡ λ

s
held fixed . (2.1)

As the limit indicates, the fluid model is intended for scenarios with large s and λ. The

parameter ρ defined in (2.1) is the traffic intensity in the original queueing model. It becomes

the fluid arrival rate in the fluid model. The fluid model is characterized by the parameter

3-tuple (ρ,G, F ). Even the way the parameters simplify going from the G/GI/s + GI model

with µ = 1 to the fluid limit provides great insight. Note that the arrival process enters in

only through its rate λ and, with the scaling in (2.1), is captured by the fluid arrival rate ρ.

However, the full cdf’s G and F remain relevant in the description of the fluid model, even

though it becomes deterministic.

The fluid model has been shown to be asymptotically correct in the limiting regime (2.1).

There is a proviso, however: The asymptotic correctness has only been verified for the Marko-

vian M/M/s + M special case in Garnett et al. (2002) and Whitt (2004) and a discrete-time

analog of the general G/GI/s + GI fluid model in Whitt (2006a). Since the time increments

can be arbitrarily short in the discrete-time model, the discrete-time model can be made arbi-

trarily close to the continuous-time model. Thus the discrete-time proof suffices for practical

engineering purposes, but it remains to directly treat the continuous-time model.

The fluid model has been shown to yield accurate approximations in overloaded scenarios

through comparisons with exact numerical results obtained from numerical algorithms and

simulations; see Whitt (2004, 2005,2006a). At the same time, the fluid model provides great

simplification that makes it possible to investigate other more complicated questions. For
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example, the fluid model was already applied by Ren and Zhou (2006) to study outsourcing

and by Whitt (2006b) to study staffing in the face of uncertain arrival rate and absenteeism.

Here we again find that the fluid model is useful to gain insight about delay announcements.

The fluid model describes the evolution over time of the system, as discussed in Whitt

(2006a). However, we will only consider the steady-state behavior of this fluid model. In

addition, we will do so under the condition that ρ > 1, which we call the overloaded regime.

Without customer abandonment, the system would be unstable when ρ > 1, and there would

be no proper steady state, but with customer abandonment a proper steady-state distribution

exists for the G/GI/s+GI queueing model (under regularity conditions) and the limiting fluid

model for all ρ > 0. Indeed, with customer abandonment, having ρ > 1 is quite natural.

The asymptotic regime we consider, having ρ held fixed with ρ > 1, is a special case of

heavy traffic, often referred to as the efficiency-driven (ED) regime. The most common heavy-

traffic limiting regime is the quality-and-efficiency-driven (QED) regime, which is characterized

by having the traffic intensity approach 1 in the limit (at an appropriate rate); see Halfin and

Whitt (1981), Garnett et al. (2002) and Zeltyn and Mandelbaum (2005). However, with

customer abandonments, the ED regime also describes steady-state behavior and provides

useful insight.

The Steady-State Behavior of the Fluid Model. We now describe the steady-state

behavior of the fluid model without any system announcements. The steady-state distribution

of the fluid content in this regime is depicted in Figure 1. Figure 1 shows the density of fluid

content that has been in the system for a period of length t as a function of t, where time t

advances toward the left. (The approximate number of customers in the queueing system is

obtained by multiplying by s; e.g., the arrival rate in the queueing system is ρs when the fluid

arrival rate is ρ.)

This fluid density is a deterministic function, but nevertheless the two model cdf’s F

and G play a prominent role in the description, especially the time-to-abandon cdf F . In

particular, Figure 1 shows that the fluid density in queue is q(t) ≡ ρF c(t), 0 ≤ t ≤ w, where

F c(t) ≡ 1− F (t) is the complementary cdf (ccdf) of the abandonment cdf F . In steady state,

the servers are all always busy, and the total fluid service rate is 1. The system is kept in

steady state by having fluid enter service at rate 1 and fluid abandon at rate ρ− 1.

At the right in Figure 1 we see a density of ρ at t = 0, which corresponds to the fluid arrival

rate. Fluid abandons according to the cdf F up until time w. For 0 < t < w, a proportion
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in service in queue

Fc(t)

Gc(u)

1

w + u w time  t 0

Figure 1: The steady-state density of fluid content as a function of total time t in system, with
t increasing to the left, for the G/GI/s+GI fluid model with service rate 1, arrival rate ρ > 1,
service-time cdf G, time-to-abandon cdf F and no delay announcement.

F (t) of the fluid that would have been in the system for t time units has abandoned, while the

remaining proportion F c(t) remains in the system. The waiting time before served fluid enters

service, w, is determined by the requirement that

ρF c(w) ≤ 1 and ρF c(t) > 1 for 0 ≤ t < w . (2.2)

In (2.2) we allow the ccdf F c to have a jump (discontinuity) at w. In doing so, we assume

that ties are broken in favor of entering service: Throughout this paper we assume that

customers (or fluid) first enter service if possible and then afterwards the rest

abandons. Thus fluid enters service at rate 1 after waiting w. Abandonment is occurring

constantly at the rate ρ− 1. The deterministic time w is determined so that the rate of fluid

entering service is 1, which equals the maximum possible service rate. At time w, a proportion

(ρ− 1)/ρ of the arriving fluid has abandoned.

In Figure 1 we show the fluid arrival rate ρ being much higher than the maximum possible

fluid service rate 1. In practice, we think of the fluid arrival rate being not so much higher.
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We display a larger difference here in order to be able to clearly show the impact of a delay

announcement in this same scenario in the figures in the next section.

While the density of fluid content is deterministic, we interpret the experience of individual

customers or “atoms of fluid” as stochastic, regarding these as i.i.d. (The strong law of large

numbers is acting behind the scenes to convert the individual independent actions into an over-

all system deterministic behavior.) Each “customer” abandons before time t with probability

F (t), while the customer remains in the system after time t probability F c(t), provided that

0 < t < w. Each customer abandons at time w with probability F (w) − 1, which will be 0

unless F has a jump at w. Thus, as stated above, the waiting time (before entering service) is

precisely w for all customers that do enter service.

The customer experience in service is described by the region of Figure 1 to the left of

t = w, i.e., for times t > w. A proportion G(u) of the fluid entering service at any time will

have completed service by time w + u. Conversely, a proportion Gc(u) ≡ 1−G(u) will remain

in service. Thus the fluid content density takes the value Gc(u) at time w + u. The total fluid

content in service at any time is
∫ ∞

w
Gc(w − u) du =

∫ ∞

0
Gc(u) du = E[S] = 1 ; (2.3)

the total queue content (fluid content waiting in queue) is

q ≡
∫ w

0
q(t) dt = ρ

∫ w

0
F c(u) du . (2.4)

The total queue content q is strongly influenced by the time-to-abandon cdf F . The expected

or average waiting time for all fluid is

E[Wall] =
∫ w

0
F c(u) du =

w

ρ
+

∫ w

0
xdF (x) =

q

ρ
, (2.5)

which of course is less than the waiting time w of the fluid that is served. (We remark that

the corresponding formula (3.10) in Whitt (2006a) is incorrect.) We regard Wall as a random

variable because the experience of individual customers (atoms of fluid) is random.

3. The Fluid Model with Delay Announcements

We now consider a modification of the fluid model in Section 2 to allow for announcements

about anticipated delays to arriving customers. As in Section 2, we think of the fluid model

arising in the limit (2.1), but we do not prove any limit theorems here.

From Section 2, it should be evident that there is little we can do about abandonment

with the fluid model in the overloaded regime. The abandonment rate should be ρ − 1, and
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the throughput should be 1, which clearly is the maximum possible, provided that we remain

in the overloaded regime. On the other hand there is considerable freedom in changing the

customer waiting experience. Indeed, we can eliminate all waiting, while preserving maximum

throughput: We can simply select a proportion (ρ − 1)/ρ of all arrivals at every time and

elect not to serve them. Upon arrival, we can send them an announcement that the system is

overloaded, so that they will not be served at this time. They can be asked to call back later.

That reduces the effective fluid arrival rate to 1, and everybody that remains then can enter

service immediately. Those customers who cannot be served will leave immediately as well,

so we achieve maximum throughput without any waiting at all. That strategy might well be

deemed preferable to making no announcement at all, especially if the mechanism for choosing

who gets served is fair and perceived to be fair.

The Initial Customer Response. Here, however, we consider what happens when we

simply announce an anticipated delay. The fluid model provides great simplification, because

the system state in fluid steady state is deterministic. Thus, if we make a state-dependent

delay-announcement, then it is appropriate to give all customers the same announcement.

Within the context of this fluid model, the impact of any announcement strategy is to simply

change the arrival rate and the time-to-abandon cdf F .

We consider announcing to customers immediately upon arrival their anticipated waiting

time w (before beginning service). In the context of the fluid model in Section 2, initially we

would be informing all customers about the solution w to (2.2), which we call w̃b (b for before

considering the customer response; in the main paper we shifted the notation to w̃1, but we

do not here). However, we now must consider the impact on customer behavior of making

such an announcement. We assume that a proportion B(w̃b) will balk in response to a delay

announcement w̃b, where B is our balking cdf. We mention one possible form for the balking

cdf.

Definition 3.1. (information consistent balking) If Bc(w) = F c(w) for all w ≥ 0, i.e.,

if a customer balks at an announced delay whenever that customer would have abandoned by

that time without an announcement, then we say that we have information-consistent balking.

Information-consistent balking is a natural assumption, but it might not hold. It is at least

an important reference case. The actual fluid arrival rate, after removing the balking fluid will

be ρ(w̃b) = ρBc(w̃b). We will have failed to keep maximum throughput if ρ(w̃b) < 1, because
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the throughput will be min{ρ(w̃b), 1}.
We also have to specify how customers who decide to wait respond to the announcement.

That is done via the conditional time-to-abandon cdf F (t|w), given any announced delay w.

Since B already accounts for balking, we assume that F (0|w) = 0 for all w. As before, we

assume customers first enter service, and only abandon if that is not possible.

Definition 3.2. (response delay function) A function d : [0,∞) → [0,∞) is a response

delay function for the fluid model if, for each announced delay w ≥ 0, either (i) ρBc(w) ≤ 1

and d(w) = 0 or (ii) ρBc(w) > 1 and

ρBc(w)F c(d(w)|w) ≤ 1 and ρBc(w)F c(t|w) > 1 for 0 ≤ t < d(w) . (3.1)

Since F (·|w) is assumed to be a cdf for each w ≥ 0, the response delay function d is well

defined. Consequently, served customers (fluid) wait w̃a ≡ d(w̃b) in response to the delay

announcement w̃b (a for after the announcement w̃b; in the main paper we shifted the notation

from w̃a to w̃2, but we do not here). Thus, assuming that ρBc(w) > 1, the waiting fluid density

(in queue) that has been in the system for time t becomes ρBc(w̃b)F c(t|w̃b) for 0 < t < w̃a,

where w̃a = d(w̃b) satisfies

ρBc(w̃b)F c(w̃a|w̃b) ≤ 1 and ρBc(w̃b)F c(t|w̃b) > 1 for 0 ≤ t < w̃a , (3.2)

paralleling (2.2). Fluid enters service at rate 1 at time w̃a. Paralleling (2.4), the total queue

content now is

q ≡ q(w̃b) =
∫ w̃a

0
q(t|w̃b) dt = ρBc(w̃b)

∫ w̃a

0
F c(t|w̃b) dt . (3.3)

To review, in the setting of Figure 1, we are announcing the delay of all served fluid, now

called w̃b. When we consider customer response, we will have the behavior shown in Figure

2. The new fluid density is shown by the solid-line curve, while the original fluid density –

without the delay announcement – is now shown by the dashed-line curve. The effective arrival

rate is reduced from ρ > 1 to ρ(w̃b) ≡ ρBc(w̃b) due to balking, and thereafter (provided that

ρ(w̃b) > 1) abandonment occurs before time w̃a at a slower rate. At time w̃a, the fluid density

reaches (and possibly drops below) level 1 and customers enter service at rate 1.

From Figure 2, we see that the system has benefitted from the delay announcement. The

fluid throughput is still at the maximum value 1, but the waiting has been reduced. All

customers who are served now wait w̃a instead of w̃b. The abandoning customers wait less

as well. The most impatient customers elect to balk when they get the delay message. The
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Direct Response to Delay Announcement

in service in queue

Gc(u)

0

1
)~(

b
w

b
w
~

aw
~uw

b

~

Figure 2: A possible steady-state density of fluid content in the same fluid model shown
in Figure 1, but modified by announcing the initially observed delay w̃b to all customers
immediately upon arrival.

balking rate is ρB(w̃b). Those customers who decide not to balk abandon at a slower rate, but

the remaining abandonments occur by time w̃a.

An Equilibrium Fluid Delay. However, there is a consistency problem. The announced

delay for served customers, w̃b, is not consistent with the actual delay for served customers,

w̃a, after the customer response. With DLS announcements, we expect the average delay of

served customers to nearly equal the average announced delay.

Definition 3.3. (equilibrium fluid delay) An announced delay w is an equilibrium delay

for the fluid model if d(w) = w, where d is the response delay function in Definition 3.2; i.e.,

w̃e is an equilibrium delay if either (i) ρBc(0) ≤ 1 and w̃e = 0 or (ii) ρBc(0) > 1 and

ρBc(w̃e)F c(w̃e|w̃e) ≤ 1 and ρBc(w̃e)F c(t|w̃e) > 1 for 0 ≤ t < w̃e . (3.4)

So how might Figure 2 change if we use an equilibrium-delay announcement? We might

(depending on the detailed model elements) instead have the fluid-density plot shown in Fig-
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ure 3. The equilibrium-delay announcement w̃e is less than the original delay w̃b before an

announcement, but it is greater than the actual delay w̃a in response to the announced delay

w̃b. In the setting of Figure 3, we still achieve maximum throughput and we still reduce delays

compared to what we achieve in Figure 1 with no announcement at all. However, we cannot

do as well as in Figure 2, but that is understandable, because the actual delay w̃a associated

with announcement of w̃b is inconsistent, and thus not sustainable (a behavioral assumption).

The effective arrival rate is reduced from ρ > 1 to ρ(w̃e) = ρBc(w̃e) > 1 due to balking, and

thereafter abandonment occurs before time w̃e. At time w̃e, the fluid density reaches level 1

and all waiting customers enter service. The dashed-line curves show the previous two cases

for contrast.

An Equilibrium Delay Announcement

in queuein service

time  t 0

1 )~(
b

w

)~(
e

w

b
w
~

aw
~

ew
~

Figure 3: A possible steady-state density of fluid content in the same fluid model shown in
Figures 1 and 2, but with an equilibrium-delay announcement w̃e to all customers immediately
upon arrival.
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4. Numerical Results for Lower Arrival Rates

In Section 6 of the main paper we provided numerical results, comparing aggregate sys-

tem performance measures with state-dependent DLS announcements and FD announcements,

obtained from simulations, to corresponding approximate aggregate performance measures ob-

tained from the fluid-model approximation and the INA. We considered the all-exponential

model in Section 5 of the main paper, which is the Erlang-A (or M/M/s + M) model before

the announcement. In the case of FD announcements, the model becomes a M/M/s + GI

model, allowing a non-exponential time-to-abandon distribution after the announcement. The

simulations are for both the case of an FD announcement and a state-dependent announce-

ment, where the state-dependent announcement is the delay of the last customer to enter

service.

In this section we present corresponding numerical results for other cases. In the main

paper, we let the arrival rate be λ = 140, which is quite a heavy load. That led to a reduced

arrival rate of 111.9 after balking, which still leaves the system in an overloaded regime. In

contrast, here we consider initial arrival rates of 120 and 110 and a higher balking rate of

β = 2.0 instead of β = 1.0. These lower arrival rates and higher balking rates here yield lower

reduced arrival rates (after balking) of only 103.7 and 101.9, which can be considered normal

loading, given that we have customer abandonment.

We now describe our experiment in more detail: We consider the all-exponential model with

s = 100 servers and individual service rate µ = 1.0. We also let the individual abandonment

rate before an announcement be θ = 1.0. When we make the delay announcement, we then

use the all-exponential model with β = 2.0, γ = 0.5 and δ = 4.0. We make the balking rate be

greater than the abandonment rate before an announcement (β = 2.0 > 1.0 = θ), but we make

the abandonment rate for those who elect to wait be less than the abandonment rate before an

announcement (γ = 0.5 < 1.0 = θ). For the initial delay announcement, we use the equilibrium

delay w̃e in the fluid model. We assume that the balking probability is B(w̃e) = 1 − e−βw̃e

in both the queueing models and the fluid model. By the independent-thinning property of

Poisson processes, that produces an M/M/s + GI model, having IID times to abandon with a

non-exponential distribution, with common reduced arrival rate ρBc(w̃e) after taking account

of balking.

As noted in the main paper, the simulation program was written in C. As in the main

paper, the simulation results are based on 100 independent replications of runs each with
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1, 000 × λ (= 120, 000 and = 110, 000 here, respectively) arrivals. Data were collected after

it was verified that initial conditions had only negligible effect on performance. The sample

standard error (standard deviation of the sample mean over the 100 replications) are shown

below the estimates in parentheses.

Paralleling Table 1 in the main paper, in Tables 1 and 2 here we display performance results

for the system before and after an initial announcement in the cases λ = 120 and λ = 110. We

do not yet describe equilibrium behavior in Tables 1 and 2 here (except for the fluid model).

Tables 5 and 6 here contain the main results for the equilibrium behavior. In Tables 1 and 2

we make a single announcement: we always announce the equilibrium fluid delay. That puts

the fluid model in equilibrium, but not the stochastic model.

To understand the practical implications, suppose that the mean service time is 10 minutes.

Without a delay announcement, the expected waiting times for served customers in those two

cases is, respectively 0.179 and 0.101, which corresponds to 1.79 minutes or 107.4 seconds and

1.01 minutes or 60.6 seconds. In contrast, the equilibrium delay in the fluid model for these

two scenarios is, respectively, 0.073 and 0.038. With a mean service time of 10 minutes, these

equilibrium delays are 43.7 seconds and 22.8 seconds, respectively. When we announce these

equilibrium delays, the balking rate is 16.3 and 8.1, respectively, yielding reduced arrival rates

of 103.7 and 101.9, respectively.

Tables 1 and 2 compare numerical approximations to the fluid approximations. Given

those arrival rates and parameters, we can calculate essentially all steady-state performance

measures for the resulting full M/M/100 + GI model, first for the fluid approximation and

second for the two queueing models. As in the main paper, we consider two cases for the

after-announcement-time abandonment rate δ: (i) δ = γ = 0.5 and (ii) δ = 4.0 > 0.5 = γ. The

numerical algorithm is exact for the M/M/s + M model.

These performance measures given in Tables 1 and 2 show that the accuracy of the fluid

approximation decreases as the load decreases, but the accuracy remains excellent before the

announcement. The fluid model performs poorly after the announcement in Tables 1 and 2,

but it performs much better when compared to the equilibrium behavior of the stochastic

models, as we will show in Tables 5 and 6.

Both the INA and the simulation program provide the basis for an efficient algorithm to

find the equilibrium delay in the context of the queueing model. We can start by applying

the fluid model, using the fluid equilibrium delay as the initial candidate fixed. Then we can

iterate in the manner described above, to converge to the equilibrium delay in the queueing
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all-expon. model with λ = 120, s = 100, µ = θ = 1.0, β = 2.0, γ = 0.5 and two cases for δ

before announcement after announcement w̃e = 0.073
performance measure exact fluid numer. (δ = 0.5) numer. (δ = 4.0) fluid

announced delay – – 0.073 0.073 0.073
balking rate 0.0 0.0 16.3 16.3 16.3

arr. rate (after balk) 120.0 120.0 103.7 103.7 103.7
abandon rate 20.2 20.0 5.4 6.3 3.7

throughput rate 99.8 100.0 98.3 97.4 100.0
P (B) 0.000 0.000 0.136 0.136 0.136
P (A) 0.168 0.167 0.045 0.053 0.031

P (B ∪A) 0.168 0.167 0.181 0.189 0.167
P (W > 0|S ∪A) 0.97 1.00 0.76 0.53 1.00

E[Q] 20.1 20.9 10.9 4.5 8.6
E[W |S] 0.179 0.182 0.105 0.0417 0.073

SD[W |S] 0.097 0.00 0.106 0.048 0.000
E[W |A] 0.113 0.138 0.105 0.076 0.070

E[W ; S ∪A] 0.168 0.174 0.105 0.044 0.072
P (W ≤ 0.05|S) 0.098 0.00 0.406 0.624 0.00

P (W ≤ 0.073|S) 0.146 0.00 0.477 0.738 0.50
P (W ≤ 0.1|S) 0.220 0.00 0.559 0.856 1.00
P (W ≤ 0.2|S) 0.596 1.00 0.810 0.997 1.00

Table 1: A comparison of the fluid approximations with numerical calculations of steady-state
performance measures in the all-exponential model, before and after the delay announcement
in the case λ = 120. Two cases are used for the after-announcement-time abandonment rate:
(i) δ = 0.5 = γ and (ii) δ = 4.0 > 0.5 = γ. In all cases the constant fluid-equilibrium
announcement w̃e = 0.073 is used, without iteration.
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all-expon. model with λ = 110, s = 100, µ = θ = 1.0, β = 2.0,γ = 0.5 and two cases for δ

before announcement after announcement
performance measure exact fluid numer. (δ = 0.5) numer. (δ = 4.0) fluid

announced delay – – 0.038 0.038 0.038
arr. rate (after balk) 110.0 110.0 101.9 101.9 101.9

balking rate 0.0 0.0 8.1 8.1 8.1
abandon rate 10.9 10.0 4.7 5.8 1.9

throughput rate 99.1 100.0 97.2 96.1 100.0
P (B) 0.000 0.000 0.074 0.074 0.074
P (A) 0.099 0.091 0.042 0.051 0.017

P (A ∪B) 0.099 0.091 0.116 0.127 0.091
P (W > 0|S ∪A) 0.84 1.00 0.68 0.49 1.00

E[Q] 10.9 10.2 8.6 2.73 3.8
E[W |S] 0.101 0.095 0.084 0.025 0.038

SD[W |S] 0.085 0.00 0.106 0.037 0.000
E[W |A] 0.101 0.113 0.097 0.056 0.038

E[W ; S ∪A] 0.099 0.093 0.085 0.027 0.038
P (W ≤ 0.038|S) 0.298 0.00 0.589 0.718 0.50
P (W ≤ 0.05|S) 0.342 0.00 0.636 0.777 1.00
P (W ≤ 0.1|S) 0.541 1.00 0.801 0.946 1.00
P (W ≤ 0.2|S) 0.862 1.00 0.965 0.999 1.00

Table 2: A comparison of the fluid approximations with numerical calculations of steady-state
performance measures in the M/M/100 + M model before and after the delay announcement
in the case λ = 110. Two cases are used for the after-announcement-time abandonment rate:
(i) δ = 0.5 = γ and (ii) δ = 4.0 > 0.5 = γ. In all cases the constant fluid-equilibrium
announcement w̃e = 0.038 is used, without iteration.
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model. We apply this iteration scheme, with both the numerical algorithm and simulation,

to find the equilibrium-fixed-delay announcement for the two cases λ = 120 and λ = 110 in

Tables 3 and 4. We see that the INA based on Whitt (2005) is quite close to the simulation.

In addition to the previous notation, Wa denotes the announced waiting time, which is

itself a random variable with state-dependent announcements.

Iteration Results for λ = 120, s = 100, µ = θ = 1.0, β = 2.0, γ = 0.5 and δ = 4.0
simulation numerical algorithm

performance measure Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter. 2 Iter. 3 Iter. 4
announced delay 0.073 0.0426 0.048 0.073 0.0417 0.0479 0.0473

arr. rate (after balk) 103.7 110.4 108.9 103.7 110.4 109.0 109.17
P (B) 0.136 0.082 0.092 0.136 0.080 0.092 0.090

(0.00011) (0.000085) (0.000080)
P (A) 0.053 0.097 0.089 0.053 0.098 0.088 0.089

(0.00023) (0.00030) (0.00028)
E[Q] 4.7 5.6 5.5 4.5 5.5 5.4 5.40

(0.018) (0.016) (0.015)
E[W |S] 0.0426 0.048 0.048 0.0417 0.0479 0.0473 0.0475

(0.00016) (0.00014) (0.00013)
SD[W |S] 0.0491 0.047 0.047 0.048 0.046 0.046 0.046

(0.00007) (0.000061) (0.000056)
E[W |A] 0.084 0.070 0.073 0.076 0.064 0.067 0.067

(0.000093) (0.000070) (0.000065)
SD[W |A] 0.0411 0.034 0.035 0.040 0.035 0.036 0.036

(0.000059) (0.000063) (0.000057)
E[W −Wa|S] -0.030 0.0055 -0.000027

(0.00016) (0.00014) (0.00013)
E[|W −Wa||S] 0.051 0.039 0.040

(0.000067) (0.000048) (0.000041)
E[|W −Wa|2|S] 0.0033 0.0022 0.0022

(0.0000063) (0.0000067) (0.0000052)
Prob(W > Wa) 0.257 0.484 0.444 0.263 0.497 0.449 0.455

(0.0004) (0.0012) (0.0011)

Table 3: Iterations toward equilibrium with λ = 120: A comparison between the numerical
calculations of steady-state performance measures in the all-exponential model with FD an-
nouncements (INA) to simulation estimates with FD announcements in the case λ = 120. The
abandonment rate before the announcement is γ = 0.5, while the abandonment rate after the
announcement is δ = 4.0. The initial announcement is the the fluid-equilibrium w̃e = 0.073.

We are primarily interested in comparing the equilibrium steady-state performance with

announcements to the corresponding approximate equilibrium steady-state performance based

on the fluid model and the INA. We do that for λ = 120 and λ = 110 in Tables 5 and 6.

The example considered in the main paper was quite heavily loaded, with λ = 140. In
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Iteration Results for λ = 110, s = 100, µ = θ = 1.0, β = 2.0, γ = 0.5 and δ = 4.0
simulation numerical algorithm

performance measure Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter. 2 Iter. 3
announced delay 0.038 0.0257 0.027 0.038 0.0251 0.0267

arr. rate (after balk) 101.9 104.5 104.2 101.9 104.6 104.28
P (B) 0.074 0.050 0.053 0.074 0.049 0.052

(0.000079) (0.000073) (0.000063)
P (A) 0.052 0.069 0.067 0.051 0.070 0.067

(0.000195) (0.00027) (0.00027)
E[Q] 2.82 3.03 3.01 2.73 2.97 2.95

(0.0096) (0.0109) (0.011)
E[W |S] 0.0257 0.027 0.027 0.0251 0.0267 0.0266

(0.000087) (0.000096) (0.00010)
SD[W |S] 0.037 0.037 0.037 0.037 0.036 0.037

(0.00006) (0.000065) (0.000068)
E[W |A] 0.062 0.054 0.055 0.056 0.050 0.051

(0.000073) (0.000062) (0.000066)
SD[W |A] 0.031 0.0298 0.0299 0.032 0.031 0.031

(0.000053) (0.000062) (0.000068)
E[W −Wa|S] -0.012 0.0013 -0.00011

(0.000087) (0.000096) (0.00010)
E[|W −Wa||S] 0.035 0.030 0.030

(0.000029) (0.0000396) (0.000039)
E[|W −Wa|2|S] 0.00156 0.0014 0.0014

(0.0000032) (0.00000498) (0.000005)
Prob(W > Wa) 0.294 0.392 0.381 0.283 0.378 0.366

(0.00092) (0.0012) (0.0012)

Table 4: Iterations toward equilibrium with λ = 110: A comparison between the numerical
calculations of steady-state performance measures in the all-exponential model with FD an-
nouncements (INA) to simulation estimates with FD announcements in the case λ = 110. The
abandonment rate before the announcement is γ = 0.5, while the abandonment rate after the
announcement is δ = 4.0. The initial announcement is the the fluid-equilibrium w̃e = 0.038.

contrast, Tables 5 and 6 consider examples with lower arrival rates – 120 and 110 – and higher

balking probability – β = 2.0 instead of β = 1.0 – but still with δ = 4.0 > 0.5 = γ. Since these

models are also overloaded before the announcement, it should come as no surprise that the

approximations are effective before considering the announcement. As we should anticipate,

Tables 5 and 6 show that the accuracy of the INA approximations for the equilibrium steady-

state delay E[W |S] after the announcement decreases as the load decreases, with the error

increasing from 4% for λ = 140 to 16% for λ = 120 and 18% for λ = 110, but surprisingly

the error in the fluid approximation actually declines, with the error decreasing from 33% for

λ = 140 to 28% for λ = 120 and 15% for λ = 110.
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State-Dependent Announcements Versus Equilibrium-Fixed-Delay Announcements
λ = 120 and s = 100 simulation approximations
performance measure state-dep. equil. fixed equil. fixed fluid

announced delay last 0.048 0.0473 0.073
arr. rate (after balk) 107.8 108.9 109.17 103.7

P (B) 0.102 0.092 0.090 0.136
(0.00027) (0.000080)

P (A) 0.071 0.089 0.089 0.31
(0.00012) (0.00028)

E[Q] 6.2 5.5 5.4 8.6
(0.015) (0.015)

E[W |S] 0.057 0.048 0.0475 0.073
(0.00015) (0.00013)

SD[W |S] 0.0507 0.047 0.046 0.000
(0.00008) (0.000056)

E[W |A] 0.068 0.073 0.067 0.070
(0.0001) (0.000065)

SD[W |A] 0.0462 0.035 0.036
(0.00009) (0.000057)

E[W −Wa|S] 0.0065 -0.000027
(0.00001) (0.00013)

E[|W −Wa||S] 0.022 0.040
(0.00004) (0.000041)

E[|W −Wa|2|S] 0.001 0.0022
(0.000003) (0.0000052)

Prob(W > Wa) 0.460 0.444 0.455
(0.0004) (0.0011)

Table 5: A comparison of equilibrium steady-state performance measures for the case λ = 120:
state-dependent announcements (the delay of the last customer to enter service), estimated by
simulation, versus equilibrium-fixed-delay announcements using three different methods: (1)
simulation, (2) the numerical M/M/s+GI algorithm (INA), and (3) the fluid approximation.
The all-exponential model is used with arrival rate λ = 120, service rate µ = 1, abandonment
rate before the announced time γ = 0.5, and after-announcement-time abandonment rate
δ = 4.0.

As stated in the main paper, we conclude that all approximations perform remarkably well

when δ = γ. We also conclude that the INA approximation is quite accurate under heavy

loading, but the accuracy decreases as the load decreases. Finally, we conclude that the fluid

approximation is a useful rough approximation.
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State-Dependent Announcements Versus Equilibrium-Fixed-Delay Announcements
λ = 110 and s = 100 simulation approximations
performance measure state-dep. equil. fixed equil. fixed fluid

announced delay last 0.027 0.0267 0.038
arr. rate (after balk) 103.4 104.2 104.28 101.9

P (B) 0.0599 0.053 0.052 0.074
(0.00018) (0.000063)

P (A) 0.0499 0.067 0.067 0.017
(0.00012) (0.00027)

E[Q] 3.56 3.01 2.95 3.8
(0.010) (0.011)

E[W |S] 0.033 0.027 0.0266 0.038
(0.000098) (0.00010)

SD[W |S] 0.042 0.037 0.037
(0.00007) (0.000068)

E[W |A] 0.056 0.055 0.051 0.030
(0.00010) (0.000066)

SD[W |A] 0.041 0.0299 0.031
(0.000088) (0.000068)

E[W −Wa|S] 0.0050 -0.00011
(0.000012) (0.00010)

E[|W −Wa||S] 0.015 0.0301
(0.000038) (0.000039)

E[|W −Wa|2|S] 0.00064 0.0014
(0.0000021) (0.000005)

Prob(W > Wa) 0.379 0.381 0.366
(0.00064) (0.0012)

Table 6: A comparison of aggregate performance measures for the case λ = 110: state-
dependent announcements (the delay of the last customer to enter service), estimated by
simulation, versus equilibrium-fixed-delay announcements using three different methods: (1)
simulation, (2) the numerical M/M/s+GI algorithm (INA), and (3) the fluid approximation.
The all-exponential model is used with arrival rate λ = 110, service rate µ = 1, abandon-
ment rate before the announced time γ = 0.5, and after-announcement-time abandonment
rate δ = 4.0.
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5. Additional Details for Arrival Rate λ = 140

In this section we present additional details for the model considered in Section 6 of Armony

et al. (2007), where λ = 140. In Table 2 of Armony et al. (2007) we showed simulation results

comparing the equilibrium steady-state performance with state-dependent DLS announcements

to equilibrium-fixed-delay announcements, both the numerical algorithm (INA) and iterated

simulation. We repeat Table 2 of the main paper as Table 7 here.

State-Dependent Announcements Versus Equilibrium-Fixed-Delay Announcements
Simulation Results for λ = 140, s = 100, µ = θ = β = 1.0, γ = 0.5 and two cases for δ

δ = 0.5 = γ δ = 4.0 > 0.5 = γ

equilibrium-fixed state-dep. equilibrium-fixed state-dep.
performance numerical numerical

measure algorithm sim. DLS algorithm sim. DLS
announcement 0.225 0.225 last 0.1616 0.155 last

arr. rate (after) 111.8 111.8 112.1 119.11 119.8 118.6
P (B) 0.201 0.201 0.199 0.149 0.144 0.153

(0.000091) (0.00022) (0.00010) (0.00022)
P (A) 0.086 0.087 0.086 0.137 0.143 0.132

(0.00028) (0.000092) (0.00028) (0.00013)
E[Q] 24.3 24.3 24.2 18.8 18.5 19.4

(0.084) (0.030) (0.025) (0.027)
E[W |S] 0.225 0.225 0.226 0.1616 0.155 0.169

(0.00079) (0.00031) (0.00021) (0.00026)
SD[W |S] 0.134 0.133 0.091 0.066 0.066 0.072

(0.00038) (0.00017) (0.00013) (0.00012)
E[W |A] 0.150 0.149 0.129 0.137 0.145 0.136

(0.00040) (0.00019) (0.00010) (0.00017)
E[Wa] 0.224 0.224 0.226 0.162 0.155 0.169

(0.00032) (0.00026)
E[W −Wa|S] 0.00096 0.011 0.00050 0.0057

(0.00079) (0.000025) (0.00021) (0.000014)
E[|W −Wa||S] 0.108 0.055 0.052 0.039

(0.00033) (0.000081) (0.00010) (0.000047)
E[|W −Wa|2|S] 0.018 0.0050 0.0044 0.0025

(0.00010) (0.000016) (0.000017) (0.0000056)
Prob(W > Wa) 0.456 0.367 0.418 0.523 0.477 0.470

(0.0018) (0.00028) (0.00097) (0.00023)

Table 7: A comparison between the numerical calculations of equilibrium steady-state per-
formance measures in the all-exponential model with FD announcements (INA) to simula-
tion estimates for both FD announcements and state-dependent DLS delay announcements.
Two cases are used for the after-announcement-time abandonment rate: δ = γ = 0.5 and
δ = 4.0 > 0.5 = γ.
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all-expon. model with λ = 140, s = 100, µ = θ = β = 1.0, γ = 0.5 and δ = 4.0
performance measure iteration 2 iteration 3 iteration 4

announced delay 0.157 0.161 0.1616
arrival rate after balking 119.7 119.2 119.11

balking rate 20.3 20.8 20.89
abandon rate 19.8 19.28 19.20

throughput rate 99.9 99.02 99.01
Prob(Balk) 0.145 0.149 0.149

Prob(Aban) 0.141 0.138 0.137
Prob(Aban or Balk) 0.286 0.287 0.286

Prob(Delay|Not Balk) 0.981 0.980 0.979
E[Q] 18.7 18.78 18.77

E[W |Served] 0.161 0.1616 0.1616
SD[W |Served] 0.065 0.066 0.066

E[W |Aban] 0.136 0.1364 0.1365
E[W ; all, Not Balk] 0.157 0.1575 0.1576
P (W ≤ 0.1|Served) 0.169 0.172 0.172

P (W ≤ announced|Served) 0.431 0.450 0.454
P (W ≤ 0.2|Served) 0.721 0.710 0.708
P (W ≤ 0.4|Served) 1.000 1.000 1.000

Table 8: Iterations 2− 4 of FD with the numerical algorithm from Whitt (2005) until the con-
stant announced delay matches the actual conditional expected delay given that the customer
is served, in the M/M/100 + GI model with λ = 140.

In Table 8 we show iterations 2− 4 to arrive at the equilibrium delay announcement with

the numerical queueing algorithm from Whitt (2005) in the case δ = 4.0. The first iteration

is shown in Table 1 of the main paper. It starts with the announcement E[W |S] = 0.224 and

obtains the steady-state expected delay E[W |S] = 0.157 that is the announcement in iteration

2. In the subsequent table, Table 9 we show the corresponding iterations performed using

simulation with the same model. We see close agreement between Tables 8 and 9.

Finally, in Table 10 we present additional details for Example 7.1 in the main paper, which

investigates all-exponential models with γ(w) = δ(w) for all w and γ(w) linear. Specifically, we

let δ(w) = γ(w) = γ0 + γ1w, where the (constant) parameters γ0 and γ1 are chosen so that the

different cases all have the same equilibrium fluid delay, w̃e = 0.224. At that equilibrium fluid

delay, we let γ(w̃e) ≡ γ0 + γ1w̃e = 0.5 for all our choices of the parameters γ0 and γ1. Table 10

displays simulation results for γ0 = 0.0, 0.25, 0.45 and 0.50. The corresponding values of the

other parameter are: γ1 = 2.232, 1.116, 0.2232 and 0.000. The case of γ0 = 0.5 and γ1 = 0.0

coincides with the previous simulation results in Table 2 of the main paper. Here we compare

these simulation results to the fluid approximation from Table 1 of the main paper.
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all-expon. model with λ = 140, s = 100, µ = θ = β = 1.0, γ = 0.5 and δ = 4.0
performance measure iteration 1 iteration 2 iteration 3

announced delay 0.224 0.153 0.155
Prob(Balk) 0.201 0.142 0.144

(0.000092) (0.00010) (0.00010)
Prob(Aban) 0.087 0.145 0.143

(0.00026) (0.00033) (0.00028)
E[Q] 17.1 18.4 18.4

(0.041) (0.028) (0.025)
E[W |Served] 0.153 0.155 0.155

(0.00036) (0.00023) (0.00021)
E[W |Aban] 0.148 0.145 0.145

(0.00023) (0.00012) (0.00010)
P (W > Wa) 0.197 0.485 0.477

(0.00094) (0.0011) (0.00097)

Table 9: Three iterations of FD with simulation until the constant announced delay matches
the actual conditional expected delay given that the customer is served, in the M/M/100+GI
model with λ = 140.

M/GI/100/200 + GI model with λ = 140 and E[T ] = 1.0
all-exponential model with γ(w) = δ(w) = γ0 + γ1w

where γ0 + γ1w̃e = 0.5 with w̃e = 0.224, for four values of γ0

Perf. Measure γ0 = 0.0 γ0 = 0.25 γ0 = 0.45 γ0 = 0.50 fluid approx.
P (Balk) 0.194 0.196 0.198 0.201 0.201
P (Aban) 0.089 0.087 0.087 0.087 0.085

E[Q] 23.8 23.9 24.2 24.2 23.7
E[W |Served] 0.221 0.222 0.226 0.226 0.224

E[W −Wa] 0.012 0.012 0.011 0.011 –
E[|W −Wa|] 0.056 0.056 0.055 0.055 –

E[(W −Wa)2] 0.0052 0.0051 0.0051 0.0050 –

Table 10: Fluid approximations compared to simulations of DLS Delay Announcements in the
M/M/100 + GI model with λ = 140.
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6. Alternative Customer-Response Model

Much is possible if we allow very general cdf’s F (t|w). Obviously there are uncountably

many cdf’s F (t|w) (indexed by w), each a function of t. So it is helpful to consider some

concrete structural assumptions.

In Sections 5 and 6 of the main paper we focused attention on the special case of all-

exponential models. Here we consider a generalization of that model. In this Section, we

assume that the family of conditional cdf’s F (t|w) is characterized by two fixed cdf’s C and

D, one describing the abandonment behavior before the announced time w, and the other

describing the abandonment behavior after the announced time w. We might anticipate that

an announcement w will make many customers balk instead of wait. But, for those who elect

to wait, we expect the abandonment rate to be less up to time w, and perhaps that behavior

after not balking can be characterized by a single cdf C(t). Similarly, customers may abandon

at a faster rate after the announcement time w if they have not yet been served at that time,

and that too might be characterized by a fixed cdf D(t). But below we do not make any

specific assumptions about these cdf’s C and D.

What we propose is displayed in the introduction here in equation (1.1). The general case

is discussed in the main paper.

Theorem 6.1. (existence and uniqueness) Consider the fluid model specified above.

(a) Suppose that Bc(w)Cc(w) is strictly decreasing in w. Then there is at most one equi-

librium delay satisfying Definition 3.3 in the main paper, denoted by w̃e.

(b) Suppose, in addition, that Cc is strictly decreasing and Bc(w)Cc(w) is a continuous

function of w. If

ρBc(0)Cc(0) = ρ > 1 and lim
w→∞ ρBc(w)Cc(w) < 1 , (6.1)

then there exists a unique equilibrium delay w̃e, satisfying w̃e > 0 and

ρBc(w̃e)Cc(w̃e) = 1 . (6.2)

Proof. Existence of an equilibrium delay in (b) follows from the intermediate-value theorem,

using (6.1), which ensures a solution to the first equation in (4.5) of the main paper.

For a related result on the existence and uniqueness of the equilibrium in an M/M/s + GI

queue, see Zohar et. al. (2002). To avoid pathologies, we introduce the following regularity

condition.
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Condition 6.1. (regularity condition) Assume that ρ > 1 and the ccdf’s F c(w), Bc(w),

Cc(w) and Dc(w) are all continuous and strictly decreasing with

F c(0) = Bc(0) = Cc(0) = Dc(0) = 1 (6.3)

and

F c(w) → 0, Cc(w) → 0 and Dc(w) → 0 as w →∞ . (6.4)

Clearly Condition 6.1 implies both conditions in Theorem 6.1. Moreover, Condition 6.1

implies Condition 5.1 of the main paper. Thus we can apply Theorem 6.1 to conclude that

now, under Condition 6.1 there exists a unique equilibrium delay.

Corollary 6.1. (existence and uniqueness) Under the regularity conditions in Condition

6.1, there exists a unique equilibrium delay w̃e.

We can characterize the equilibrium delay as a quantile. We say that x is the qth quantile

of a continuous and strictly increasing cdf H if H(x) = q.

Corollary 6.2. (quantile characterization) Let X and Y be random variables with cdf’s B

and C, respectively. Under the regularity conditions in Condition 6.1, the unique equilibrium

delay w̃e is the [(ρ− 1)/ρ]th quantile of the cdf of X ∧ Y ≡ min {X,Y }.

Proof. Note that the ccdf of X ∧ Y is Bc(t)Cc(t). Then note that ρBc(w)Cc(w) = 1 as

required in (6.2), if and only if

P (X ∧ Y ≤ w) = 1−Bc(w)Cc(w) =
ρ− 1

ρ
.

7. Iterations and Convergence

In this section, we assume that we make an initial delay announcement w0. Then we observe

the actual steady-state delay w1 of those customers who are served, in the context of the fluid

model. We then make the latter our delay announcement, and see the actual steady-state

delay w2 of those customers served with announcement w1. We continue in this way, looking

at the actual steady-state delay wk+1 of those customers served, given delay announcement

wk, for k ≥ 0. This iteration scheme is a natural way to compute the equilibrium delay, but

it does not actually correspond to a natural evolution of the system over time, because the

system with DLS announcements would not be able to reach steady state before adjustment.

For that reason, we have left this material out of the main paper.
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At the end of this section we also consider an alternative damped iteration scheme. Such

alternative iterative schemes may be of considerable practical importance, because the direct

iteration scheme can lead to oscillations, as we will show. These iteration schemes are useful

because they provide ways to determine the equilibrium delay.

For the specified iterative scheme, we seek conditions for the convergence of the sequence

{wk : k ≥ 0} to a limit w∞ and for that limit to be the unique equilibrium-delay announcement

w̃e. We might naturally consider starting with w0 = w̃b, the actual delay of served fluid with

no delay announcement, but we would like to say that wk → w̃e as k → ∞ for all initial

announced delays w0.

For further discussion, let d(w) denote the actual delay associated with announcement w,

i.e., the response delay function defined in Definition 4.2 of the main paper. We are interested

in the structure of the function d. For example, we are interested in the possible monotonicity

of d and the possible convergence of the resulting sequence wk+1 = d(wk), k ≥ 0. For example,

we would like to conclude that wk+1 ≡ d(wk) > wk for all k ≥ k0, for some initial k0. We start

by describing some pathological behavior.

Example 7.1. (oscillation with excessive balking) Suppose that ρ(w) = ρBc(w) < 1

for all w > w̃, where w̃ < w̃1 with ρBc(0)Cc(0)Dc(w̃1) = 1. If w0 > w̃, then w2k−1 = 0 and

w2k = w̃1 for all k ≥ 1. However, for any balking cdf B satisfying Condition 6.1, this pathology

will not occur if Dc(t) decreases rapidly enough in t.

Unlike the last example, our next example requires that we drop Condition 6.1.

Example 7.2. (reluctance to balk or abandon before the announced delay) Suppose

that customers are reluctant to balk. Specifically, suppose that ρBc(w) > 1 + ε > 1 for all

w ≥ 0, contrary to condition (6.4). Moreover, suppose that customers are reluctant to abandon

before the announced delay. Specifically, suppose that Cc(t) = 1 for all t. Then wk → ∞ as

k →∞. Indeed, wk ≥ w0 + kδ, where Dc(δ) = ε. The reason is that wk+1 > wk + δ for all k,

as is easily verified.

Example 7.3. (convergence to w̃b) Let us reconsider Example 5.1 in the main paper with

B = F and Cc(t) = 1 for all t, but now let Dc(t) be continuous and strictly decreasing instead

of having Dc(t) = 0 for all t. Suppose in addition that

Dc(t) <
F c(t + w)

F c(w)
for all t and w . (7.1)
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Then it is easy to see that there is no equilibrium delay and

wk+1 > wk for all k ≥ 0 and wk ↑ w̃b as k →∞ (7.2)

provided that w0 < w̃b.

Now we state properties of the iteration, many of which can be verified directly. Necessary

and sufficient conditions for monotone convergence are given in part (f). While these conditions

can be satisfied, they also can easily be violated.

Theorem 7.1. (properties of the iteration) Consider the fluid model with Condition 6.1.

(a) For each delay announcement w with 0 ≤ w < w̃e, the actual delay d(w) = w′ satisfies

ρBc(w)Cc(w)Dc(w′ − w) = 1 , (7.3)

so that w < d(w) ≤ w + d(0).

(b) For each delay announcement w with w > w̃e, the actual delay d(w) = w′ satisfies

0 ≤ d(w) < w̃e.

(c) If w2 > w1 > w̃e and d(w1) > 0, then d(w1) > d(w2).

(d) If w1 < w2 < w̃e and

Dc(w − w1)−Dc(w − w2) ≤ Bc(w1)Cc(w1)−Bc(w2)Cc(w2) for all w > w2 , (7.4)

then d(w1) < d(w2).

(e) If d(w) < w̃e for all w with 0 ≤ w < w̃e, then

wk < wk+1 ≡ d(wk) < w̃e for all k ≥ 1 and wk ↑ w̃e as k →∞ . (7.5)

(f) We have d(w) < w̃e for all 0 ≤ w < w̃e, as needed in part (e) above, if and only if

ρBc(w)Cc(w)Dc(w̃e − w) < 1 for all 0 ≤ w < w̃e . (7.6)

Proof. For part (e), we need to show that the established limit of wk must indeed be w̃e.

Suppose that wk ↑ w∞ < w̃e. But we must have d(w∞) > w∞. However, d(w) is continuous

in w at w∞. That would imply that limk→∞wk = d(w∞) > w∞, which is a contradiction. So

the only possible limit is w̃e.

A concrete case where condition (7.6) is satisfied appears in Theorem 7.2 (a) below. A

concrete case where condition (7.6) is violated and the conclusion also is violated appears in

Theorem 7.2 (b).
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There are some difficulties in general: First, we may have d(w) > w̃e for w < w̃e and,

in the event that occurs, we may fail to have strict monotonicity of the two-stage iteration

d(2)(w) ≡ d(d(w)), and consequently the announced delay sequence might oscillate or diverge.

We illustrate by next giving an example in which the two-stage iteration operator d(2)(w) has

multiple fixed points.

Example 7.4. (multiple fixed points for the two-stage iteration operator) In this

example we give an example of cycling around the equilibrium delay w̃e instead of convergence

to it. In particular, we show that the two-stage iteration operator d(2)(w) ≡ d(d(w)) has

multiple fixed points. This example uses linear functions with slope−1. In particular, ρF c(t) =

ρBc(t) = ρ− t for 0 ≤ t ≤ ρ. We also have ρBc(w)F c(t|w) = ρ− 2t, which we point out is not

consistent with (1.1), because we cannot define the cdf D independent of w, as is done there.

The cyclic behavior is shown in Figure 4. In this example, w2k = w0 and w2k−1 = w1 = d(w0)

for all k ≥ 1. Such cycling will occur in this linear example (with lines of slope −1) for each

announced delay w with 0 < w < w̃n except for the equilibrium delay w̃e = w̃n/2.

Cycling Around the Equilibrium Delay

in service in queue
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Figure 4: Cycling around the equilibrium delay: The announced delay becomes the actual
delay every other iteration.
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We now consider iteration and convergence for the all-exponential model. We show that

there is bad oscillating behavior when δ = γ < β in part (b). let [x]+ ≡ max {x, 0}.

Theorem 7.2. (iteration and convergence for the all-exponential model) Consider

the fluid model above under the all-exponential condition (6.1) in the main paper.

(a) Assume that δ ≥ β + γ. Then the delay associated with announcement w is

d(w) =
log ρ + (δ − γ − β)w

δ
for 0 < w ≤ w̃e , (7.7)

which has the property that w < d(w) < w̃e = log ρ/(β + γ), while d(w) = 0 for w ≥ w̃b,

0 < d(w) < w̃e for w̃e ≤ w ≤ w̃b and d(0) = w̃1 = log ρ/δ < w̃e. As a consequence,

w̃e > wk+1 ≡ d(wk) > wk ≥ w̃1 > 0 for all k ≥ 2 (7.8)

and wk ≡ d(k)(w0) → w̃e as k →∞.

(b) Assume that δ = γ < β. Then

d(w) =
[
log (ρ)

γ
−

(
β

γ

)
w

]+

=
[
w̃e −

(
β

γ

)
(w − w̃e)

]+

, (7.9)

d(2n)(w) =





0, w ≤ w̃e(1− (γ/β)2n) ,

log (ρ)
γ , w ≥ w̃e(1 + (γ/β)2n−1) ,

w̃e + (w − w̃e)
(

β
γ

)2n
, t > w ,

(7.10)

Consequently, for all w < w̃e,

d(2n)(w) = 0 and d(2n+1)(w) =
log (ρ)

γ
(7.11)

for all n sufficiently large; for all w > w̃e,

d(2n+1)(w) = 0 and d(2n)(w) =
log (ρ)

γ
(7.12)

for all n sufficiently large.

Proof. (a) Note that w′ ≡ d(w) is characterized by ρ(w′)F c(w′|w) = 1, which for the all-

exponential model can be expressed as ρe−βwe−γwe−δ(w′−w) = 1, 0 < w ≤ w̃e, or, equivalently

(by taking logarithms), (7.7). The other formulas are elementary.
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Remark 7.1. (damped iteration) In order to avoid oscillations, it may be desirable to use

a damped iteration. We can let the successive announced delays be defined recursively by

wk+1 = pd(wk) + (1− p)wk = wk + p(d(wk)− wk) (7.13)

for some constant p with 0 < p ≤ 1. Instead of part (f) of Theorem 7.1, with the damped

iteration we have d(w) < w̃e for all 0 ≤ w < w̃e, as needed in part (e) above, if and only if

ρBc(w)Cc(w)Dc((w̃e − w)/p) < 1 for all 0 ≤ w < w̃e. As Dc(w) is strictly decreasing, it is

easy to verify that this condition will always be satisfied for p small enough. We establish a

result for the general conditional time-to-abandon cdf in the next section.

8. More Results for a General Time-to-Abandon CDF

In this section we present a few additional results for the more general time-to-abandon

cdf functions F (t|w) considered in Section 5 of the main paper.

We consider the model of Section 3, with arrival rate ρ(w) and conditional time-to-abandon

cdf F (t|w) in response to the announced delay w. The equilibrium delay w̃e is given by

Definition 3.1 of the paper, namely

ρ(w̃e)F c(w̃e|w̃e) = 1 , (8.1)

with

ρ(w̃e)F c(t|w̃e) > 1 for 0 < t < w̃e . (8.2)

We shall employ the following regularity condition. It is stronger than Condition 5.1 in the

main paper, containing some features used to establish iteration results.

Condition 8.1. (regularity condition) Assume that

(a) ρ(w)F c(w|w) is strictly decreasing in w.

(b) ρ(w) is continuous in w, and F c(t|w) is continuous in both arguments.

(c) For each w ≥ 0, F c(t|w) is continuous and strictly decreasing in t, and F c(t|w) ≤ K(t)

for some function K(t) with limt→∞K(t) = 0.

(d) ρ(w)F c(t|w) is strictly decreasing in w, for all t ≥ 0 and w ≥ t.

(e) ρ(0)F c(0|0) > 1, and limw→∞ ρ(w)F c(w|w) < 1.

Corresponding to Theorem 4.1 of the paper, we have:
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Theorem 8.1. (existence and uniqueness) Consider the fluid model specified above.

(a) Suppose that Condition 8.1(a) holds. Then there is at most one equilibrium delay w̃e.

It is characterized by ρ(w̃e)F c(w̃e|w̃e) = 1 .

(b) Suppose Condition 8.1 holds. Then there exists a unique equilibrium delay w̃e.

Proof. Part (a) is immediate from the required equality in (8.1). As for the existence claim

in (b), existence of a solution to equation (8.1) follows from 8.1(b,e) using the intermediate-

value theorem, and the required inequality in (8.2) is then satisfied by the strict monotonicity

of F c(t|w) as per Condition 8.1(c).

We assume henceforth that our model satisfies Condition 8.1.

Consider next the iterative algorithm: wk+1 = d(wk).

Theorem 8.2. (properties of the iteration)

(a) For each delay announcement w with 0 ≤ w < w̃e, we have d(w) > w.

(b) For each delay announcement w with w > w̃e, we have d(w) < w̃e.

(c) If w2 > w1 > w̃e then d(w2) ≤ d(w1), where the inequality is strict if d(w1) > 0.

(d) Suppose that ρ(w)F c(t|w) is strictly decreasing in w for each t ≥ 0. If w2 > w1 then

d(w2) ≤ d(w1), where the inequality is strict if d(w1) > 0.

(e) If d(w) < w̃e for all w with 0 ≤ w < w̃e, then wk ↑ w̃e as k →∞.

(f) We have d(w) < w̃e for all 0 ≤ w < w̃e, as needed in part (e) above, if and only if

ρ(w)F c(w̃e|w) < 1 for all 0 ≤ w < w̃e . (8.3)

Proof. (a) Recall that the equilibrium delay w̃e satisfies ρ(w̃e)F c(w̃e|w̃e) = 1. By Condition

8.1(a) we have that ρ(w)F c(w|w) > 1 for w < w̃e. Therefore, by monotonicity of F c(t|w) the

solution d(w) to equation in (4.2) of the main paper satisfies d(w) > w.

(b) From ρ(w̃e)F c(w̃e|w̃e) = 1 and Condition 8.1(d) it follows that ρ(w)F c(w̃e|w) = 1. The

monotonicity of F c(t|w) in t now implies that d(w) < w.

(c) If d(w1) = 0 then ρ(w1)F c(0|w1) ≤ 1. Condition 8.1(d) thus implies that ρ(w2)F c(0|w2) <

1, so that d(w2) = 0. If d(w1) > 0 then ρ(w1)F c(d(w1)|w1) = 1. Note that d(w1) < w1 and

d(w2) < w1 by part (b) of this Theorem. Condition 8.1(d) then implies that ρ(w2)F c(d(w1)|w2) <

1. Thus, d(w2) < d(w1).

(d) The proof is similar to that of part (c).
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(e) The proof is identical to part (e) of Theorem 5.1 in the paper. Continuity of the

solution d(w) to ρ(w)F c(d(w)|w) = 1 follows from the continuity and monotonicity properties

in Condition 8.1(b,c).

(f) Immediate by the equilibrium condition and the strict monotonicity of F c(t|w), as per

Condition 8.1(c).

We next consider the damped iteration scheme mentioned in Remark 5.1.

Theorem 8.3. (monotone convergence of the damped iteration) Consider the iteration

wk+1 = dp(wk), where

dp(w) = w + p(d(w)− w) (8.4)

and 0 ≤ p < 1.

(a) If dp(w) < w̃e for all 0 ≤ w < w̃e, then wk ↑ w̃e as k →∞.

(b) The condition of part (a) holds if and only if

ρ(w)F c

(
w +

w̃e − w

p
|w

)
< 1 for all 0 ≤ w < w̃e . (8.5)

(c) Suppose that α , d
dtF

c(t|w̃e)|t=w̃e < 0 and β , d
dwF c(w̃e|w)|w=w̃e < ∞. Then condition

(8.5) is satisfied for all p small enough.

Proof. (a) The proof of this part is similar to that of Theorem 7.1(e).

(b) By (8.4), dp(w) < w̃e is equivalent to d(w) < w + (w̃e − w)/p. But since there exists

a unique response function d(w) by Theorem 5.1 (a) of the main paper, by monotonicity of

F c(t|w) in t the last inequality is equivalent to the inequality in (8.5).

(c) Define gp(w) = ρ(w)F c(w + (w̃e − w)/p|w). Note that gp(w̃e) = 1 by the equilibrium

condition, and that
d

dw
gp(w)|w=w̃e ≤ ρ(w̃e)

(
α +

p− 1
p

β

)
. (8.6)

Since α < 0 then the latter is positive for some p1 small enough. Therefore gp1(w) < 1 on some

interval w̃e − ε < w < w̃e with ε > 0. Since gp is monotone increasing in p, the same holds for

all p ≤ p1. On the other hand, for w ≤ w̃e − ε we have that

gp(w) ≤ ρ(0)F c

(
ε

p
|w

)

which uniformly converges to 0 as p ↓ 0, by the bound in Condition 8.1(c). If follows that for

p small enough, say p ≤ p2, we have that gp(w) < 1 for all w ≤ w̃e − ε. Thus, Condition 8.5

holds for all p ≤ min{p1, p2}.
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9. Conclusions

To investigate the impact on aggregate system performance of making delay announce-

ments, either state-dependent or fixed, we proposed the fluid model approximating the G/GI/s+

GI queueing model with customer abandonment, based on Whitt (2006a), and the iterative nu-

merical algorithm (INA) based on the approximate numerical algorithm for the M/GI/s+GI

model with an FD announcement, based on Whitt (2005). We showed how these approaches

can be adapted to treat delay announcements.

Simulation experiments in which we announce the delay of the last customer to enter

service show that these approximate descriptions of aggregate performance, based on fixed

delay (FD) announcements, are quite accurate in an overloaded regime. For describing the

aggregate performance, the numerical algorithm provides greater accuracy, but the fluid model

yields simple closed-form expressions that make it possible to analyze other related issues, as

illustrated by the short investigation of biased announcements.

In the context of the fluid model, we established conditions for the existence of a unique

equilibrium delay announcement and provided conditions for a natural iteration to converge

to that equilibrium delay. We gave explicit formulas in the case of the all-exponential model.

We showed that multiple fluid equilibria can exist if regularity conditions are not satisfied.

Many interesting directions for research remain. For example, it remains to investigate and

model actual customer response to announcements in practice, continuing work in progress by

Feigin (2005). For practical application, we need to determine the critical model elements: the

balking cdf B and the conditional time-to-abandon cdf F (t|w). If we use model (1.1), then we

need to determine the two-abandonment cdf’s C and D appearing in (1.1) as well as the basic

queueing model elements. We need to better understand how customers actually do respond to

different kinds of announcements. With that information, hopefully the present paper will help

to understand the impact of customer behavior upon aggregate system performance, including

throughput, abandonment rate, queue lengths and delays. As a consequence, hopefully contact

centers will be able to improve both efficiency and the quality of service provided, giving

customers a better service experience, without expending unnecessary resources.
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