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ABSTRACT

Methods are developed for approximately characterizing the departure process of each

customer class from a multi-class single-server queue with unlimited waiting space and the first-

in first-out service discipline. The model is Σ(GI i / GI i )/1 with a non-Poisson renewal arrival

process and a non-exponential service-time distribution for each class. The methods provide a

basis for improving parametric-decomposition approximations for analyzing non-Markov open

queueing networks with multiple classes. For example, parametric-decomposition

approximations are the Queueing Network Analyzer (QNA). The specific approximations here

extend ones developed by G. Bitran and D. Tirupati (1988). For example, the effect of class-

dependent service times is considered here. With all procedures proposed here, the approximate

variability parameter of the departure process of each class is a linear function of the variability

parameters of the arrival processes of all the classes served at that queue, thus ensuring that the

final arrival variability parameters in a general open network can be calculated by solving a

system of linear equations.

Keywords: open queueing networks, multiclass queueing networks, parametric-decomposition

approximations, departure processes, heavy-traffic limit theorems.



1. Introduction and Summary

1.1 Parametric-Decomposition Approximations

A useful way to analyze the steady-state performance of open queueing networks with non-

Poisson external arrival processes and non-exponential service-time distributions is the

parametric-decomposition approximation method, first proposed by Reiser and Kobayashi [23]

and subsequently extended by the author [32],[24] and many others (see the references). The

main idea is to approximately analyze the individual queues separately after approximately

characterizing the arrival processes to each queue by a few parameters (usually two, one to

represent the rate and another to represent the variability). The goal is to approximately represent

the network dependence through these arrival-process parameters. After the congestion in each

queue has been described, the total network performance is approximated by acting as if all the

queues are mutually independent, i.e., the rest of the approximation is performed as if the steady-

state distribution of the numbers of customers at the queues had a product form.

An attractive alternative to parametric-decomposition approximations are Brownian models,

as in Harrison and Nguyen [13],[14]. Brownian models can even be used together with

parametric-decomposition schemes, as in Dai, Nguyen and Reiman [8]. However, here we only

consider parametric-decomposition approximations.

1.2 Aggregation in Multi-Class Models

The primary purpose of this paper is to present new methodology for extending the

parametric-decomposition approximation method to treat queueing networks with several classes

of customers. The procedure in [32],[24] already allows multiple customer classes, but there all

the classes are aggregated to form a single class before the rest of the approximation, in the spirit

of the celebrated Kleinrock independence assumption, p. 50 of [18]. With this procedure, all

class identity is not lost; the expected sojourn time of a customer following a given route is the
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sum of the expected sojourn times at the queues on that route, with the expected service time

components being the original expected service times specified for that particular customer class;

the aggregation only affects the calculation of the expected delays (before beginning service) at

the nodes on the route. Moreover, the aggregation procedure yields the correct traffic intensities,

so the in the delay calculations that only approximation appears in the variability parameters.

In many cases this aggregation step works quite well, but in some cases it does not.

Difficulties with aggregation in the parametric-decomposition approximations were noted by

Bitran and Tirupati [5] and Fendick, Saksena and Whitt [9],[10]. Bitran and Tirupati point out

difficulties with multiple classes and deterministic routing, especially in the low-variability

context common to manufacturing models. Fendick, Saksena and Whitt point out difficulties

with multiple classes and highly variable (e.g., batch) arrival processes together with class-

dependent service times.

Other difficulties with parametric-decomposition approximations are noted by Suresh and

Whitt [29] and Whitt [37]. Suresh and Whitt [29] show how exceptional variability (either high

or low) in an arrival process to a queue can be reduced in the departure process in a short time

scale when the queue has a moderate traffic intensity (e.g., ρ = 0. 6) and moderately variable

service times (e.g., exponential), while the exceptional variability in a larger time scale remains.

This exceptional variability in a larger time scale typically has little effect upon congestion in

subsequent queues with low-to-moderate traffic intensity, but it typically has a dramatic effect

upon the congestion in a subsequent queue with high traffic intensity. This phenomenon means

that it can be difficult to characterize the variability of an arrival process by a single variability

parameter. For example, the arrival process might have low variability in a short time scale and

high variability in a longer time scale, so that in a subsequent queue with traffic intensity ρ

congestion would be predicted well by having an arrival process variability parameter (squared

coefficient of variation) ca
2 ∼∼ 0. 5 when ρ = 0. 5 and ca

2 ∼∼ 5. 0 when ρ = 0. 9. This difficulty is
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the motivation for the use of variability functions instead of variability parameters, e.g., the

indices of dispersion in [9], [10] and references there (which we will not discuss further here).

Whitt [37] shows that multiclass queueing networks with class-dependent service times can

exhibit relatively complex behavior. In particular, there can be unanticipated large fluctuations in

the individual queue lengths due to the sudden movement of blocks of customers with very short

service times. This phenomenon suggests that it may be important to focus on the transient

behavior as well as the steady-state distribution. It remains to determine the implications for

steady-state distributions.

1.3 Parametric-Decomposition Approximations without Aggregation

The difficulties with aggregation into a single class suggest the need for parametric-

decomposition procedures without aggregation. What we want is an extension of the algorithm in

[32],[24] that produces arrival process parameters at each node for each class. (The resulting

approximate congestion measures such as expected delays at each queue might also be class

dependent as in Holtzman [15], Albin [2] and Fischer and Stanford [11], but we do not focus on

that here.) In fact, such a multi-class extension of the parametric-decomposition approximation

was proposed by Bitran and Tirupati, and it provides dramatic improvements in accuracy in some

cases. Their main contribution is an approximation for the variability parameter of the departure

process for each class from a single-server queue when the arrival process for each class is

characterized by an arrival rate and a variability parameter. As usual, the variability parameters

are squared coefficients of variation (SCV, variance divided by the square of the mean) in

renewal-process approximations. The Bitran-Tirupati approximation is based on the two-class

case, by aggregating all classes except the one of interest into one. Their approximation results in

a refinement of the splitting step in Section 4.4 of [32].

Throughout this paper we consider a single-server queue with unlimited waiting space and the
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FIFO (first-in-first-out) discipline. (However, the results also provide a basis for treating multi-

server queues; see Remark 2.5.) Let cd
2 and cd1

2 be the variability parameters of the overall

departure process and the departure process for class 1 alone; let p 1 be the proportion of all

departures that are class 1. If the total departure process were a renewal process and if each

successive departure were class 1 according to Bernoulli (independent) trials with probability p 1 ,

then the exact relation is

cd1
2 = p 1 cd

2 + 1 − p 1 , (1)

as given in (36) of [32]. Formula (1) obviously makes cd1
2 close to 1 when p 1 is small, but

without Bernoulli routing the actual variability can be quite different. As shown in [5],

deterministic routing can cause the true relation to deviate significantly from (1). As an

improvement, Bitran and Tirupati propose

cd1
2 = p 1 cd

2 + cn1
2 , (2)

where cn1
2 is the squared coefficient of variation of the total number of customers that arrive

during an interarrival time of class 1; see (6) of [5]. If the superposition arrival process of the

complement to class 1, henceforth referred to as class 2, is a Poisson process, then

cn1
2 = ( 1 − p 1 ) (p 1 + ( 1 − p 1 ) ca1

2 ) , (3)

where ca1
2 is the class-1 arrival-process variability parameter; see (7) of [5]. Bitran and Tirupati

also develop numerical procedures (involving iteration) for calculating approximate values of cn1
2

when the class-2 arrival process is less variable than Poisson, i.e., when ca2
2 < 1. These

numerical procedures (INT2 and INT3 in [5]) are based on the assumption that the class-1 and

class-2 arrival processes are renewal processes with Erlang interarrival-time distributions. When

the system is characterized by low variability, these numerical procedures perform significantly

better than (3), but these procedures are somewhat cumbersome.
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1.4 Enhancements to the Bitran-Tirupati Scheme

In [35] we proposed enhancements to the Bitran-Tirupati [5] approximations, which we

present here. (The present paper is an update of [35].) Further contributions in this direction

have been made by Stanford and Fischer [27],[28] and Fischer and Stanford [11]. Some of the

results here have also been exploited in [24].

We contribute to the Bitran-Tirupati approximation scheme by developing a new

approximation for cn1
2 in (2). In particular, we propose the formula

cn1
2 = ( 1 − p 1 ) (p 1 ca2

2 + ( 1 − p 1 ) ca1
2 ) , (4)

where as above ca2
2 is the approximating SCV for the superposition of all class j arrival processes

except class 1. Note that (4) reduces to (3) in the special case ca2
2 = 1. Formula (4) provides a

simple alternative to the complex Erlang numerical procedures when cai
2 ≤ 1, for i = 1 and 2. It

also applies to the important case when cai
2 > 1 for i = 1 or 2, which was not treated in [5]. As

with the formulas in [32], formulas (2)-(4) are appealing because they are linear in the arrival and

departure variability parameters, so that the final arrival-process variability parameters for all the

queues in the network can be obtained by simply solving systems of linear equations.

Just as Bitran and Tirupati obtained (3) in [5], we obtain approximation (4) by considering

specific renewal processes for which we can calculate cn1
2 (exactly or approximately). For this

purpose, we exploit batch-Poisson (B-P) and batch-deterministic (B-D) processes with geometric

batch sizes; i.e., the interarrival times of batches is exponential (B-P) or deterministic (B-D) and

the size of the batches is geometric on the positive integers. The geometric batch-size distribution

makes the individual customer interarrival times i.i.d. (independent and identically distributed).

The B-P and B-D processes are convenient because they are two-parameter renewal processes.

There is thus a direct correspondence between these parameters and the rate and variability

parameter used in the approximations. For any ca
2 ≥ 0 (≥ 1 ), there is a unique B-D (B-P) process
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with the given ca
2 and arrival rate. We use B-D as well as B-P to treat the cases with 0 ≤ ca

2 < 1.

However, it turns out that both cases yield the same approximation.

Of course, the proof of the pudding is in the tasting. We show that (4) performs quite well

when compared to simulation and the other approximations for the experiments considered by

Bitran and Tirupati [5]. The accuracy in this step is good, but not phenomenal; it seems to be

consistent with the accuracy of other approximations used in the overall procedure.

The desired approximation for cd1
2 is obtained by combining (2) and (4). Note that the

resulting formula

cd1
2 = p 1 cd

2 + p 1 ( 1 − p 1 ) ca2
2 + ( 1 − p 1 )2 ca1

2 (5)

is a convex combination: The weights p 1 , p 1 ( 1 − p 1 ) and ( 1 − p 1 )2 on the variability

parameters cd
2 , ca2

2 and ca1
2 sum to 1. Furthermore, a common approximation for cd

2 is another

convex combination

cd
2 = ρ2 cs

2 + ( 1 − ρ2 ) ca
2 , (6)

where ρ is the traffic intensity, and cs
2 and ca

2 are the variability parameters (squared coefficients

of variation) for the service times and the total arrival process; see (38) of [32], (23) of [33] and

(2) of [5]. Combining (5) and (6), we obtain

cd1
2 = ρ2 p 1 cs

2 + ( 1 − ρ2 ) p 1 ca
2 + p 1 ( 1 − p 1 ) ca2

2 + ( 1 − p 1 )2 ca1
2 . (7)

If we continue and approximate ca
2 by the asymptotic method, (4.14) of [23] or (1) of [5], then

ca
2 = p 1 ca1

2 + ( 1 − p 1 ) ca2
2 . (8)

Combining (7) and (8), we obtain the convex combination

cd1
2 = ρ2 p 1 cs

2 + ( 2 − ρ2 ) p 1 ( 1 − p 1 ) ca2
2 + [ ( 1 − p 1 )2 + ( 1 − ρ2 ) p1

2 ] ca1
2 (9)

When there actually are k classes with approximating arrival SCVs c̃a j
2

, we can also use the
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asymptotic method for ca2
2 to obtain

ca2
2 =

j = 2
Σ
k

[p j /( 1 − p 1 ) ] c̃a j
2

(10)

where p j and c̃a j
2

are the corresponding parameters for class j, and

cd1
2 = ρ2 p 1 cs

2 + ( 2 − ρ2 ) p 1
j = 2
Σ
k

p j c̃a j
2

+ [ ( 1 − p 1 )2 + ( 1 − ρ2 ) p1
2 ] ca1

2 . (11)

Formula (11) is the natural generalization of the first Bitran-Tirupati procedure (INT1) based on

(2) and (3); their procedure is the same except c̃a j
2

for j ≠ 1 is replaced by 1 in (11).

Natural alternatives to (11) are obtained by using different approximations for the

superposition variability parameters ca
2 and ca2

2 than (8) and (10). In particular, the stationary-

interval method and various hybrid approximations can be used instead; see Section 4.1 of [31],

[1], and Section 4.3 of [32]. We examine the simple alternative based on (29) and (30) of [32] for

the Bitran and Tirupati experiments; i.e. ca
2 = wcAM

2 + 1 − w, where cAM
2 is the asymptotic-

method approximation and the weight w comes from (29) of [32]. For these cases, the hybrid

using (29) and (30) of [32] performs better than (11), but both perform quite well. (See

Section 5.)

1.5 The Low-Intensity Variability-Preservation Principle

From (5) or the subsequent formulas (7), (9) and (11), we can see what the approximation

predicts in limiting cases. As p 1 → 1, cd1
2 → cd

2 as it obviously should. As p 1 → 0,

cd1
2 → ca1

2 . The appropriateness of the limit as p 1 → 0 is less obvious, but upon reflection it

can be seen to be, as Bitran and Tirupati argue. In [36] we prove a limit theorem rigorously

justifying this limiting behavior. In fact, we show that under very general conditions the entire

class-1 departure process converges in distribution to the class-1 arrival process as p 1 → 0 (i.e.,

the finite-dimensional distributions converge). In fact, with probability one, each sample path of



- 8 -

the class-1 departure process converges to the corresponding sample path of the class-1 arrival

process. (The general idea of the low-intensity variability-preservation principle is due to Bitran

and Tirupati [5], but the strong forms involving the distribution of the entire stochastic process

and the individual sample paths appear in [36].)

The analysis in [5], [36] and here thus supports the remarkably simple approximation

cd1
2 ∼∼ ca1

2 for p 1 small , (12)

which has very significant implications for queueing networks. For an open queueing network

with a very large number of classes, (12) helps provide rapid back-of-the-envelope

approximations. The associated delays at the queues should be calculated using superposition

approximations (e.g., [1],[2],[9],[10],[11],[15],[32]) though. At queues to which many classes

come, each with relatively small intensity, the delays for each class would be essentially the same

as for Poisson arrivals, but if some class passes through several queues at which its proportion of

the total arrival rate is very small, and then comes to a queue at which it is the only class or there

are only a few classes, then the variability of the original external arrival process of this class

should play a role; i.e., the appropriate variability parameter for the arrival process of this class at

this last queue would be the variability parameter of the external arrival process of this class (just

as in [29] discussed in §1.2).

This important phenomenon arises in many applications. For example, in packet

communication networks where messages are sent over virtual circuits (fixed routes), packets

often enter the network in a highly bursty manner over a relatively slow access line where there is

relatively little sharing of facilities. In contrast, in the network there is substantial sharing

because the network switching and transmission are orders of magnitude faster. Finally, the

packets emerge from the network and proceed to their destination over another relatively slow

access line. Formula (12) and the discussion above indicate that the high variability should be
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substantially dissipated within the network, but should reappear at the destination. Even though

the packets might pass through several queues in the network, the packet arrival process at the

destination (the packet departure process from the network) should be similar to the original

packet arrival process at the source. In [36] this phenomenon is substantiated by a simulation of a

packet network model from [9].

1.6 Class-Dependent Service Times

Motivated by [9] we also want to treat models in which the different classes can have different

service-time distributions, a situation not addressed by Bitran and Tirupati [5]. As shown in [9],

class-dependent service times can cause strong dependence among successive service times (and

thus evidently in the overall departure process). To appreciate the significance of class-dependent

service-time distributions, consider the two-class case in which the class-2 service times are zero.

Obviously the class-1 departure process from this queue is the same as if class 2 were not present;

consequently the approximation for cd1
2 should be independent of p 1 . Our analysis produces

approximations for the general case. It also suggests, for simple approximations, that the traffic-

intensity proportion should often appear in (1)-(11) instead of the arrival-rate proportion. In fact,

both play a role. To state our proposed approximation to account for class-dependent service

times, let ρ i be the contribution to the traffic intensity by class i. Instead of (11), we propose the

approximation

cd1
2 = ρ1

2 cs1
2 + p 1

j = 2
Σ
k

ρj
2 pj

− 1 ( c̃a j
2

+ cs j
2 ) + ( 1 − 2ρ 1 ρ + ρ1

2 ) ca1
2 . (13)

Proper treatment of class-dependent service times is vital for treating manufacturing models in

which some classes are introduced to represent occasional down times of machines. For such

models, the approximations here provide significant improvements over [5], just as [5] provides

significant improvements over [32].
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1.7 Supporting Methodology: The Case of a Continuously Busy Server

In the spirit of [31],[33], we also want to provide a systematic basis for developing

approximations. Thus, we describe asymptotic-method (AM) and stationary-interval (SI)

characterizations that can be the basis for refined hybrid approximations. To a large extent, this

paper can thus be regarded as a multi-class extension of [33]. We focus solely on departure

processes, but the application to queueing networks should be clear.

In our detailed mathematical analysis, we focus on a special limiting case, the case in which

the server is continuously busy. We develop detailed descriptions of the AM and SI

approximations under this condition. The results are thus directly applicable only to the case

ρ ≥ 1, but more generally they can be exploited to develop hybrid approximations. The idea is to

use convex combinations with weights on the continuously-busy approximations that approach 1

as ρ → 1. It is significant that the final AM and SI continuously-busy approximations agree,

because our approximating assumptions make the continuously-busy class-1 departure process a

renewal process; see (19) and (28). The SI continuously-busy approximation also yields an

approximation for cn1
2 in (2) as a special case; we simply set all the service times equal to 1.

Then the class-1 interdeparture time is precisely the number of customers to arrive during a

class-1 interarrival time. Our generalization of (3) appears in (31). When the service times are

not class-dependent, (31) reduces to (4); otherwise the arrival rate proportions in (4) should be

replaced by traffic intensity proportions.

1.8 Organization of the Rest of this Paper

The rest of this paper is organized as follows. In Section 2 we develop the AM approximation

under the continuously-busy assumption; the final AM variability parameter is (19). A fairly

general interesting special case appears in (20). In Section 3 we develop the SI approximation

under the continuously-busy assumption. In Section 3.1 we show how to approximate a general
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arrival process partially characterized by its arrival rate and variability parameter by a B-D or B-P

renewal process. In Section 3.2 (3.3) we calculate the SI approximation for cd1
2 under the

assumption that class 2 is a B-P (B-D) renewal process. In Section 4 we discuss refined hybrid

procedures. In Section 5 we make comparisons with simulation and other approximations in the

case of common service-time distributions using the Bitran-Tirupati experiments in [5]. There we

show that (11) and the variant using (29) and (30) of [32] for superposition instead of the AM

approximation in (8) and (10) perform well. Finally, we present our conclusions in Section 6.

2. Asymptotic-Method Approximation with a Continuously Busy Server

Consider a single-server queue with unlimited waiting room and the FIFO discipline to which

k classes of customers arrive to receive service. Let customers from class i arrive according to an

arrival counting process A i (t) and have successive service times v in , n ≥ 1. Let D i (t) be the

resulting departure counting process for class i. In this section we develop an asymptotic-method

(AM) approximation for the vector of departure processes [D 1 (t) , ... , D k (t) ] under the heavy-

traffic-type assumption that the server is continuously busy. In particular, we prove a functional

central limit theorem (FCLT) for [D 1 (t) , ... , D k (t) ] under general FCLT conditions. For the

approximations, this means that we express the AM variability parameter for the departure

process of class i, cDi
2 , in terms of the AM variability parameters of the arrival processes and

service times cA1
2 , ... , cAk

2 , cS1
2 , ... , cSk

2 and the associated means; see

[4],[16],[17],[30],[31],[33] for background.

2.1 A General Functional Central Limit Theorem

We work in the setting of [4] and [30], which means weak convergence (convergence in

distribution), denoted by = >. We consider random elements of D ≡ D[ 0 , ∞), the space of all

real-valued functions on [ 0 , ∞) which are right continuous with left limits. Let the space D be

endowed with the standard Skorohod (J 1) topology and let product spaces D k be endowed with
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the usual product topology. Let C ≡ C[ 0 , ∞) be the subset of continuous functions in D.

Convergence x n → x in D reduces to uniform convergence on compact subsets when x ∈ C.

We define the following random elements of D:

Â in (t) = n − 1/2 [A i (nt) − λ i nt] , V̂ in (t) = n − 1/2 [
j = 1
Σ
[nt]

v i j − τ i nt] ,

D̂ in (t) = n − 1/2 [D i (nt) − δ i nt] (14)

for 1 ≤ i ≤ k and t ≥ 0. Obviously λ i is intended to be the arrival rate and τ i the mean service

time of class i. Let ρ i = λ i τ i be the associated traffic intensity for class i. Let

λ = λ 1 + ... + λ k be the total arrival rate, τ = λ − 1

i = 1
Σ
k

λ i τ i the overall mean service time and

ρ = ρ 1 + ... + ρ k = λ τ the total traffic intensity. We assume that the server is eventually

continuously busy, which means that ρ ≥ 1. Obviously the overall departure rate must be τ − 1 if

the server is always busy. Hence, we should have δ i = λ i /λ τ. Our main result in this section is

a FCLT for the departure processes given a joint FCLT for the arrival processes and service

times. The resulting approximation under the standard independence and moment conditions

appears in (19) below.

Theorem 1. If [Â 1n , ... , Â kn , V̂ 1n , ... , V̂ kn ] = > [Â 1 , ... , Â k , V̂ 1 , ... , V̂ k ] in D 2k where

P(A i ∈ C) = P(V̂ i ∈ C) = 1, 1 ≤ i ≤ k, and ρ > 1, then

[Â 1n , ... , Â kn , V̂ 1n , ... , V̂ kn , D̂ 1n , ... , D̂ kn ] = > [Â 1 , ... , Â k , V̂ 1 , ... , V̂ k , D̂ 1 , ... , D̂ k ] in D 3k

where δ i = λ i /λ τ and

D̂ i (t) =



1 −

ρ
ρ i_ __





ρ − 1/2 Â i (t) −


 ρ

λ i_ __




3/2

V̂ i (t) −
ρ3/2

λ i_ ____

j≠i

j = 1
Σ
k 

λj
1/2 V̂ j (t) + τ j Â j (t) .
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Proof. Let T(t) be the process representing the total work to arrive in the interval [ 0 , t] and let

C(t) be an associated inverse process, defined by

C(t) = sup { s ≥ 0 : T(s) ≤ t } .

Then D i (t) = A i (C(t) ), t ≥ 0, by virtue of the continuously-busy assumption. Since ρ > 1,

the continuously-busy assumption is eventually satisfied, so that the limiting behavior is

unaffected by any initial discrepancy (idleness). (This can be rigorously justified by Theorem 4.1

of [4]; we only consider the continuously busy case.) Define the following random functions in

D:

T̂ in (t) = n − 1/2


 j = 1

Σ
A i (nt)

v i j − λ i τ i nt




, T̂ n = T̂ 1n + ... + T̂ kn ,

Ĉ n (t) = n − 1/2




C(nt) −



i = 1
Σ
k

λ i τ i





− 1

nt





, t ≥ 0 . (15)

As in [8],

[Â 1n , ... , Â kn , V̂ 1n , ... , V̂ kn , T̂ 1n , ... , T̂ kn , T̂ n , Ĉ n ] = > [Â 1 , ... , Â k , V̂ 1 , ... , V̂ k , T̂ 1 , ... , T̂ k , T̂ , Ĉ]

in D 3k + 1 , where

T̂ i (t) = V̂ i (λ i t) + τ i Â i (t) , T̂ = T̂ 1 + . . . + T̂ k

and Ĉ(t) = −


i = 1
Σ
k

λ i τ i





− 1

T̂



t /

i = 1
Σ
k

λ i τ i





, t ≥ 0 ,

by Theorems 5.1, 4.1 and 7.3 of [30]; see the Remark after Theorem 5.1 and the Corollary to

Lemma 7.6. Applying Theorem 5.1 of [30] again, we see that [D̂ 1n , ... , D̂ kn ] = > [D̂ 1 , ... , D̂ k ]

jointly with all the processes above, where
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D̂ i (t) = A i (t /λ τ) = (λ i /λ τ)
j = 1
Σ
k

[V̂ j (λ j t /λ τ) + τ j Â j (t /λ τ) ]

=
d

(λ τ) − 1/2



Â i (t) − (λ i /λ τ)

j = 1
Σ
k

[λj
1/2 V̂ j (t) + τ j Â j (t) ]





= (λ τ) − 1/2



1 −

ρ
ρ i_ __





Â i (t) −


 λ τ

λ i_ __




3/2

V̂ i (t) −
(λ τ)3/2

λ i_ ______

j≠i

j = 1
Σ
k

[λj
1/2 V̂ j (t) + τ j Â j (t) ]

with =
d

(equality in distribution, as processes) holding by the normalization in (13); e.g., the limits

must satisfy Â i (ct) =
d

c 1/2 A i (t).

Remarks. (2.1) A FCLT for the total departure process D(t) = D 1 (t) + ... + D k (t) with

ρ > 1 was previously established in Theorem 4.2 of [16].

(2.2) Under standard additional independence assumptions, the limit process

[Â 1 , ... , Â k , V̂ 1 , ... , V̂ k ] is composed of independent Brownian motions (BMs). Then the limit

in Theorem 1 is multivariate BM. If the limit processes Â 1 , ... , Â k , V̂ 1 , ... , V̂ k in Theorem 1

are independent BMs with zero means and variances α1
2 , ... , αk

2 , β1
2 , ... , βk

2 , respectively, then

[D̂ 1 , ... , D̂ k ] is a BM in C k with zero means, variances σi
2 and covariances σi j

2 , where

σi
2 =




1 −

ρ
ρ i_ __





2

ρ
αi

2
_ __ +



 ρ

λ i_ __




3

βi
2 +

ρ 3

λi
2

_ __

j≠i

j = 1
Σ
k

[λ j βj
2 + τj

2 αj
2 ] (16)

and

σi j
2 = −




1 −

ρ
ρ i_ __



 ρ2

λ j τ i αi
2

_ ______ −



1 −

ρ
ρ j_ __



 ρ2

λ i τ j αj
2

_ ______ +
ρ3

λ i λ j_ ____ (λ i βi
2 + λ j βj

2 ) . (17)

(2.3) We obtain the resulting asymptotic method (AM) approximation for the departure

process from (16) if we work with squared coefficients of variation. Let the AM parameters be

cAi
2 = λi

− 1 αi
2 , cDi

2 = δi
− 1 σi

2 and cSi
2 = τi

− 2 βi
2 . (18)
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We treat cAi
2 and cDi

2 differently from cSi
2 in (18) because Â in (t) and D̂ in (t) are random functions

associated with counting processes, while V̂ in (t) is not; see Section 2 of [31]. From (16) and

(18), we obtain

cDi
2 = ( 1 − q i )2 cAi

2 + qi
2 cSi

2 +

j≠i

j = 1
Σ
k

qj
2 (p i / p j ) (cA j

2 + cS j
2 ) , (19)

where q i = ρ i /ρ and cAi
2 and cSi

2 are the AM variability parameters determined by the FCLT for

the arrival and service processes based on (13), (16) and (18). Note that most of cDi
2 in (19) is

dimensionless, as it must be. Note that most of the weights in (19) are functions of q i = ρ i /ρ

instead of p i = λ i /λ; i.e., the relative traffic intensities appear in (19) as well as the relative

arrival rates in (1)-(11). In the special case of two classes, if τ 2 = 0, then q 1 = 1 and

cD 1

2 = cS1
2 , as it should; if τ 1 = 0, then q 1 = 0, q 2 = 1 and

cD 1

2 = cA1
2 + (p 1 / p 2 ) (cA2

2 + cS2
2 ). If p 2 and q 1 are both very small (a rather pathological

case), then cD 1

2 is very large. However, this is realistic; then class 2 must be contributing rare

exceptionally long service times, as in the case of service interruptions, e.g., machine down times.

(2.4) A trivial case arises when k = 1. Then the departure process assuming the server is

continuously busy is obviously just the counting process associated with the service times. From

V̂ in = > V̂ 1 plus the Corollary on p. 83 of [30], we get D̂ 1n = > D̂ 1 where δ 1 = 1/τ 1 and

D̂ 1 (t) = − τ1
− 1 V̂ 1 (t /τ 1 ) =

d
− τ1

− 3/2 V̂ 1 (t). Note that this is consistent with Theorem 1; then

( 1 − ρ 1 /ρ) = 0, λ 1 /λ = 1, λ j = 0 and Â j (t) = 0 for j ≠ 1.

(2.5) Theorem 1 extends relatively easily to queues with m parallel servers. The limit holds

with t replaced by t / m in D̂ in (t) and D̂ i (t), so that the AM approximation cDi
2 in (19) is

unchanged. The proof of the extended version of Theorem 1 is complicated by the fact that D i (t)

does not coincide exactly with A i (C(t / m) ) when m > 1, but the difference is asymptotically

negligible. Theorem 4.1 of [4] can be applied because the normalized difference in the FCLT is



- 16 -

dominated by

1≤i≤k
max

0≤t≤T

1 ≤ j ≤ A i (nt)
sup n − 1/2 v i j ,

which converges to 0 in probability because T̂ n = > T̂ where P(T̂ ∈ C) = 1; apply the maximum

jump functional with Theorem 5.1 of [4].

(2.6) As noted in [31],[33], the AM approximation is asymptotically correct in heavy traffic,

where heavy traffic applies at subsequent queue where the point process is the arrival process. In

fact, we can simply combine Theorem 1 here with Theorem 1 of [17]. In the setting of

Remark 2.2, this means that if the departure process D i (t) serves as the sole arrival process at

another queue of the same type (where the service times are i.i.d. and independent of D i (t)) with

traffic intensity ρ′ , then the standard heavy-traffic limit holds for this second queue as ρ′ → 1

and the limit depends on the process D i (t) only through cDi
2 in (19) and its rate via the

contribution to ρ′

2.2 A Specific Multi-Class Model with Batch Arrivals

We now describe one fairly general special case of the model in Section 2.1 that was

considered in [9],[10]. For class i let the service times be i.i.d. with mean τ i and squared

coefficient of variation csi
2 ; let arrivals be generated in i.i.d. batches with batch size having mean

m i and squared coefficient of variation cbi
2 ; let the arrivals within a batch be separated by i.i.d.

spacings with mean ξ i and squared coefficient of variation cxi
2 ; let the interval between the last

arrival of one batch and the first arrival of the next batch be the sum of one spacing and an idle

time; let the successive idle times be i.i.d. with mean η i and squared coefficient of variation cyi
2 ;

and let the service times, batch sizes, spacings and idle times for all the classes be mutually

independent. Let γ i = m i ξ i /(m i ξ i + η i ). The parameter γ i measures the long-run proportion

of time that the arrival process is in a busy state (not in an idle time). The arrival rate for class i is
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λ i = m i /(m i ξ i + η i ) and the traffic intensity is ρ i = λ i τ i .

Corollary. If ρ > 1 for this particular multi-class model, then the conditions of Theorem 1 are

satisfied with the limit process [Â 1 , ... , Â k , V̂ 1 , ... , V̂ k ] being composed of independent BMs,

so that [D̂ 1 , ... , D̂ k ] is a BM in C k and

cAi
2 ≡ λi

− 1 αi
2 = m i ( 1 − γ i )2 (cbi

2 + cyi
2 ) + γi

2 cxi
2

cSi
2 ≡ τi

− 2 βi
2 = csi

2

cDi
2 ≡ δi

− 1 σi
2 = ρ λi

− 1 σi
2

= a( 1 − q i )2 [m i ( 1 − γ i )2 (cbi
2 + cyi

2 ) + γi
2 cxi

2 ] + qi
2 csi

2 (20)

+

j≠i

j = 1
Σ
k

qj
2 (p i / p j ) [ (m j ( 1 − γ j )2 (cb j

2 + cy j
2 ) + γj

2 cx j
2 + cs j

2 ) ] ,

where again q i = ρ i /ρ and p i = λ i /λ.

The key supporting FCLT for A i (t) and the formula for cAi
2 are established in [9]. (The heavy

traffic limit for the workload (virtual waiting time) and waiting time processes as ρ → 1 is also

established in [9].) The Corollary to Theorem 1 expresses cDi
2 in terms of the 4k variability

parameters (cs j
2 , cb j

2 , cx j
2 , cy j

2 ), and the 4k means (τ j , m j , ξ j , η j ), 1 ≤ j ≤ k. Note that the

means only affect cDi
2 via the ratios p i / p j , γ i = m i ξ i /(m i ξ i + η i ), q i = (ρ i /ρ) and the mean

batch size m i .

3. Stationary-Interval Approximation With a Continuously Busy Server

We now determine the squared coefficient of variation of a stationary interval between

departures in the departure process for one class assuming that the server is continuously busy.

For this result, the model assumptions are much stronger than in Section 2, but the exact results

for these special cases can provide the basis for quite general approximations, as we indicated in

Section 1. We call the resulting squared coefficient of variation cd1
2 the stationary-interval (SI)
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variability parameter for the limiting case of a continuously busy server.

As in [5], we only consider the two-class case. When there are more than two classes, we

assume that all classes but the one of interest are aggregated into one. We assume that customers

in the class of interest arrive in a batch-renewal process: Successive batches are i.i.d. with the

batch sizes having mean m 1 and squared coefficient of variation cb1
2 ; successive interarrival times

of batches are also i.i.d., having mean λ̂1
− 1

and squared coefficient of variation ĉa1
2

. (The overall

arrival rate is λ 1 = λ̂ 1 m 1 and the overall arrival variability parameter is ca1
2 . In general, ca1

2 is

not uniquely defined, but it is if the batch sizes have a geometric distribution, because that makes

the arrival process a renewal process; see Section 3.1.) The service times of class 1 are i.i.d. with

mean τ 1 and squared coefficient of variation cs1
2 . The other class is assumed to be either a batch-

Poisson (B-P) process or a batch-deterministic (B-D) process. Successive batches are i.i.d. with

the batch sizes having mean m 2 and squared coefficient of variation cb2
2 ; successive interarrival

times of batches are also i.i.d. being exponentially distributed with mean λ̂2
− 1

and squared

coefficient 1 in the B-P case, and being constant with mean λ̂2
− 1

and squared coefficient of

variation 0 in the B-D case. (The overall class-2 arrival rate and variability parameter are

λ 2 = λ̂ 2 m 2 and ca2
2 . When the batch-size distribution is geometric, ca2

2 is well defined, but

otherwise not.) The class-2 service times are i.i.d. with mean τ 2 and squared coefficient of

variation cs2
2 . All the batch sizes, interarrival times and service times are assumed to be mutually

independent.

In Section 3.1 we indicate how to approximate a general arrival process partially specified by

its arrival rate and variability parameter by these special batch processes. Then in Sections 3.2

and 3.3 we calculate the SI variability parameter for the class-1 departure process, assuming that

the class-2 arrival process is one of these special batch processes.



- 19 -

3.1 Approximating General Processes by these Special Batch Processes

The arrival process for the second class is quite special, being B-P or B-D, but we can treat

more general processes for the second class by first approximating them by one of our special

processes. Such approximations can be done in many ways; we suggest obtaining a specific

approximation by working with geometric batch-size distributions. Let the batch size B be

distributed as

P(B = k) = ( 1 − p) p k − 1 , k = 1 , 2 , ... (21)

The batch-size distribution thus has mean m 2 = 1/( 1 − p) and squared coefficient of variation

p = (m 2 − 1 )/ m 2 . The geometric distribution is particularly useful because the associated B-P

and B-D processes are then two-parameter renewal processes. The two parameters are the mean

batch size m 2 (or, equivalently, p in (21)) and the mean of the interarrival time of batches λ̂2
− 1

. In

each case, the overall arrival rate for the process is λ 2 = λ̂ 2 m 2 . For the B-P process, the

squared coefficient of variation of an interarrival time is ca2
2 = 2m 2 − 1, which can assume any

value greater than or equal to 1. For the B-D process, the squared coefficient of variation of an

interarrival time is ca2
2 = m 2 − 1, which can assume any value greater than or equal to 0.

Hence, given a general class-2 arrival process partially characterized by rate λ 2 and variability

ca2
2 , we can approximate it by a renewal process with these same parameters. For any ca2

2 , we can

use a B-D renewal process by setting λ 2 = λ̂ 2 m 2 and (m 2 − 1 ) = ca2
2 , i.e.,

m 2 = ca2
2 + 1 and λ̂ 2 = λ 2 / m 2 = λ 2 /(ca2

2 + 1 ) . (22)

For any ca2
2 ≥ 1, we can use a B-P renewal process by setting λ 2 = λ̂ 2 m 2 and

( 2m 2 − 1 ) = ca2
2 , i.e.,

m 2 = (ca2
2 + 1 )/2 and λ̂ 2 = λ 2 / m 2 = 2λ 2 /(ca2

2 + 1 ) . (23)

We recommend using a B-D process for ca2
2 < 1 and a batch-Poisson process for ca2

2 ≥ 1, but a
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full process is not needed here in Sections 3.2 and 3.3.

3.2 When the Second Class is Batch-Poisson

In this section we assume that the class-2 arrival process is B-P. We determine the squared

coefficient of variation of a stationary interval between successive class-1 departures, assuming

that the server is continuously busy.

Given that the server is continuously busy, a stationary interval between departures of class-1

customers, say D 1 , is one class-1 service time plus the sum of the class-2 service times of all

class-2 customers to arrive during a class-1 interarrival time. As in [5], the Poisson property

associated with the class-2 B-P process makes this class-1 interdeparture time well defined and

relatively easy to analyze. Since the class-1 process is batch renewal, the class-1 interarrival time

is of length 0 with probability (m 1 − 1 )/ m 1 and of positive length (having mean λ̂1
− 1

and

squared coefficient of variation ĉa1
2

) with probability 1/ m 1 . Since cd1
2 + 1 = E(D1

2 )/(ED 1 )2 ,

we obtain the desired variability parameter cd1
2 from the first two moments of D 1 .

Theorem 2. If the server is continuously busy and the class-2 arrival process is B-P, then the first

two moments of D 1 are

E(D 1 ) = τ 1 +
λ̂ 1 m 1

λ̂ 2 m 2 τ 2_ _______ =
λ 1

ρ_ __ (24)

and

E(D1
2 ) = (cs1

2 + 1 ) τ1
2 +

λ̂ 1 m 1

2τ 1 λ̂ 2 m 2 τ 2_ ___________ +
λ̂ 1 m 1

λ̂ 2 m 2 cs2
2 τ2

2
_ __________ +

λ̂ 1 m 1

λ̂ 2 m2
2 (cb2

2 + 1 ) τ2
2

_ ________________ +
λ̂1

2
m 1

λ̂2
2

m2
2 ( ĉa1

2
+ 1 ) τ2

2
_ ________________

= τ1
2 (cs1

2 +
ρ 1

(ρ + ρ 2 )_ ________ +
ρ 1 τ 1

ρ 2 τ 2_____ [cs2
2 + m 2 (cb2

2 + 1 ) ] +
ρ1

2

ρ2
2

_ __ m 1 ( ĉa1
2

+ 1 ) , (25)

so that
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cd1
2 = q1

2 cs1
2 + ( 1 − q 1 )2 (p 1 / p 2 ) [cs2

2 + m 2 (cb2
2 + 1 ) ] + ( 1 − q 1 )2 [m 1 ( ĉa1

2
+ 1 ) − 1 ] (26)

where q 1 = ρ 1 /ρ and p 1 = λ 1 /λ as before.

Proof. Let U 1 be a class-1 batch interarrival time, ν 1 a class-1 service time, {v 2n : n ≥ 1 } a

sequence of i.i.d. service times for class 2, {B 2n : n ≥ 1 } a sequence of i.i.d. batch sizes for

class-2, and {N(t) : t ≥ 0 } a Poisson process with rate λ̂ 2 . With probability (m 1 − 1 )/ m 1 ,

D 1 = ν 1; with probability 1/ m 1 , D 1 = v 1 +
i = 1
Σ
N 2

v 2i where N 2 =
i = 1
Σ

N(U 1 )

B 2i . Hence,

E(N 2 ) = λ 2 (EU 1 ) (EB 21 ) = λ̂ 2 m 2 / λ̂ 1 and

Var (N 2 ) = E[N(U 1 ) ] Var (B 21 ) + Var [N(U 1 ) ] (EB 21 )2

=
λ̂ 1

λ̂ 2 cb2
2 m2

2
_ ________ +






λ̂ 1

λ̂ 2_ __ +
λ1

2

λ̂2
2

ĉa1
2

_ _____





m2
2 =






λ̂ 1

λ̂ 2 (cb2
2 + 1 )_ ___________ +

λ̂1
2

λ̂ 2 ĉa1
2

_ _____





m2
2 ,

E


i = 1
Σ
N 2

v 2i





= λ̂ 2 m 2 τ 2 / λ̂ 1

Var


i = 1
Σ
N 2

v 2i





= (EN 2 ) Var (ν 21 ) + Var (N 2 ) (Eν 21 )2

=
λ̂ 1

λ̂ 2 m 2 cs2
2 τ2

2
_ __________ +






λ̂ 1

λ̂ 2 (cb2
2 + 1 )_ ___________ +

λ̂1
2

λ̂2
2

ĉa1
2

_ _____





τ2
2 m2

2 and

E(D) = τ 1 + λ̂ 2 m 2 τ 2 / λ̂ 1 m 1

E(D 2 ) = τ1
2 (cs1

2 + 1 ) +
λ̂ 1 m 1

2λ̂ 2 m 2 τ 2 τ 1_ ___________ +
λ̂ 1 m 1

λ̂ 2 m 2 cs2
2 τ2

2
_ __________ +






λ̂ 1 m 1

λ̂ 2 (cb2
2 + 1 )_ ___________ +

λ̂1
2

m 1

λ̂2
2

(ca1
2 + 1 )_ ___________






τ2
2 m2

2 .

Remarks. (3.1) If the class-1 arrival process is characterized by the general parameters λ 1 and

ca1
2 , then we can obtain cd1

2 from (26) by letting m 1 = 1 and replacing ĉa1
2

by ca1
2 . Then
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cd1
2 = q1

2 cs1
2 + ( 1 − q 1 )2 (p 1 / p 2 ) [cs2

2 + m 2 (cb2
2 + 1 ) ] + ( 1 − q 1 )2 ca1

2 . (27)

Furthermore, if the batch-size distribution for class-2 is geometric as in (21), then

cb2
2 = (m 2 − 1 )/ m 2 and ca2

2 = 2m 2 − 1 = m 2 (cb2
2 + 1 ), so that (27) becomes

cd1
2 = q1

2 cs1
2 + ( 1 − q 1 )2 (p 1 / p 2 ) [cs2

2 + ca2
2 ] + ( 1 − q 1 )2 ca1

2 . (28)

Note that (28) is consistent with the AM approximation in (19) in the two-class case. This occurs

because all the approximations now make the class-1 departure process assuming that the server

is continuously busy a renewal process. (This is not difficult to prove using the lack of memory

property associated with the Poisson process and the geometric distribution.)

If the class-1 and class-2 service times also have a common distribution, then (28) becomes

cd1
2 = q 1 cs

2 + q 1 ( 1 − q 1 ) ca2
2 + ( 1 − q 1 )2 ca1

2 , (29)

which agrees with (5) because then p 1 = q 1 and cd
2 = cs

2 .

(3.2) We obtain the desired formula for cn1
2 in (2) directly from (27) by setting τ 1 = τ 2 = 1

and cs1
2 = cs2

2 = 0 (because all service times are identically 1). The general formula is

cn1
2 = q 1 ( 1 − q 1 ) [m 2 (cb2

2 + 1 ) ] + ( 1 − q 1 )2 ca1
2 . (30)

With geometric batch sizes for class 2, we apply (28) to obtain

cn1
2 = q 1 ( 1 − q 1 ) ca2

2 + ( 1 − q 1 )2 ca1
2 , (31)

which reduces to (4) because p 1 = q 1 . Obviously (28) and (19) provide a simple modification to

treat different service-time distributions. It seems intuitively reasonable that we should weight

ca2
2 more compared to ca1

2 as τ 2 /τ 1 increases. (Recall that

( 1 − q 1 )2 (p 1 / p 2 ) = q 1 ( 1 − q 1 ) (τ 2 /τ 1 ).)
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3.3 When the Second Process is Batch-Deterministic

The general approximation formulas in (28) and (31) are easy to apply for all values of ca2
2 ,

but the B-P model of Section 3.2 only applies to the case ca2
2 ≥ 1. To treat lower class-2

variability we consider the B-D process in this section. However, it turns out that the analysis

here supports simply using (28) and (31) for all ca2
2 ≥ 0.

Given that the class 1 and 2 arrival processes are independent and stationary versions, the

arrival point of an arbitrary class-1 batch is uniformly distributed over the deterministic interval

between the arrival points of class-2 batches. Using this property, we can calculate the first two

moments E(D 1 ) and E(D1
2 ) exactly, given the distribution of U 1 , the class-1 batch interarrival

time. Thus, given λ̂ 1 and ĉa1
2

, we can fit a distribution to them, as in Section 3 of [31], and then

calculate E(D 1 ) and E(D1
2 ).

Instead, here we propose a simple approximation: We approximate the number of class-2

batches to arrive during U 1 by λ̂ 2 U 1 . In particular, we use λ̂ 2 EU 1 = λ̂ 2 / λ̂ 1 as its mean and

λ̂2
2

( ĉa1
2

+ 1 )/ λ̂1
2

as its second moment. Of course, the approximate mean is exact, but the

approximate second moment is not. With the notation in Theorem 2 and its proof, under this

approximating assumption we obtain

E(N 2 ) = λ̂ 2 m 2 / λ̂ 1

Var (N 2 ) =
λ̂ 1

λ̂ 2 cb2
2 m2

2
_ ________ +




 λ̂1

2

λ̂2
2

( ĉa1
2

+ 1 )_ ___________ −
λ̂1

2

λ̂2
2

_ __





m2
2

=
λ̂ 1

λ̂ 2 cb2
2 m2

2
_ ________ +

λ̂1
2

λ̂2
2

ĉa1
2

m2
2

_ ________
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E
i = 1
Σ
N 2

ν 2i =
λ̂ 1

λ̂ 2 m 2 τ 2_ _______

Var


i = 1
Σ
N 2

v 2i





= E(N 2 ) Var (ν 21 ) + Var (N 2 ) (Eν 21 )2

=
λ̂ 1

λ̂ 2 m 2 cs2
2 τ2

2
_ __________ +






λ̂ 1

λ̂ 2 cb2
2

_ _____ +
λ̂1

2

λ̂2
2

ĉa1
2

_ _____





τ2
2 m2

2 ,

so that

E(D 1 ) =
λ̂ 1 m 1

λ̂ 1 m 1 τ 1 + λ̂ 2 m 2 τ 2__________________ =
λ 1

ρ_ __ (32)

E(D1
2 ) = τ1

2 (cs1
2 + 1 ) +

λ̂ 1 m 1

2λ̂ 2 m 2 τ 2 τ 1_ ___________ +
λ̂ 1 m 1

λ̂ 2 m 2 cs2
2 τ2

2
_ __________ +






λ̂ 1 m 1

λ̂ 2 cb2
2

_ _____ +
λ̂1

2
m 1

λ̂2
2

( ĉa1
2

+ 1 )_ ___________





τ2
2 m2

2

= τ1
2




cs1

2 +
ρ 1

(ρ + ρ 2 )_ ________ +
ρ 1 τ 1

ρ 2 τ 2_____ [cs2
2 + m 2 cb2

2 ] +
ρ1

2

ρ2
2

_ __ m 1 ( ĉa1
2

+ 1 )




and

cd1
2 = q1

2 cs1
2 + ( 1 − q 1 )2 (p 1 / p 2 ) [cs2

2 + m 2 cb2
2 ] + ( 1 − q 1 )2 [m 1 ( ĉa1

2
+ 1 ) − 1 ] (33)

where q 1 = ρ 1 /ρ.

If, as in Remark 3.1, the class-1 arrival process is characterized by general parameters λ 1 and

ca1
2 , then we can let m 1 = 1 and replace ĉa1

2
by ca1

2 in (33). Furthermore, if the class-2 batch-

size distribution is geometric as in (21), then cb2
2 = (m 2 − 1 )/ m 2 and

ca2
2 = m 2 − 1 = m 2 cb2

2 , so that (33) agrees with (28). Thus, (19), (28) and (33) all support the

same approximation.
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4. Hybrid Approximations

We now illustrate how the results for the continuously-busy limiting case in Sections 2 and 3

can be used to construct heuristic hybrid approximations to cover the usual cases in which the

queue is not continuously busy. Paralleling [1], the idea is to consider convex combinations that

are consistent with established results in various limiting cases.

4.1 A Direct Two-Class Hybrid Approximation

Let cd1
2 (ρ) represent the approximate class-1 departure variability parameter as a function of

the traffic intensity ρ; let cd1
2 be the continuously-busy approximation in (28). (It helps that the

two-class AM and SI approximations for cd1
2 in (19), (28) and (33) agree.) A natural hybrid

approximation based on the two-class case is

cd1
2 (ρ) = ρ2 cd1

2 + ( 1 − ρ2 ) ca1
2 (34)

= ρ2 [q1
2 cs1

2 + ( 1 − q 1 )2 (p 1 / p 2 ) [cs2
2 + ca2

2 ] + ( 1 − q 1 )2 ca1
2 ] + ( 1 − ρ2 ) ca1

2

= ρ1
2 cs1

2 + ρ2
2 (p 1 / p 2 ) [cs2

2 + ca2
2 ] + ( 1 − 2ρ 1 ρ + ρ1

2 ) ca1
2 ,

where cs2
2 and ca2

2 are aggregate variability parameters for all other classes when k > 2. Formula

(34) was chosen because it satisfies certain limiting consistency conditions. For all ρ, as

q 1 → 0, ρ 1 → 0 and cd1
2 (ρ) → ca1

2 , which is consistent with [36]. For all ρ, as q 1 → 1,

ρ 1 → ρ and cd1
2 (ρ) → cd

2 (ρ), the one-class SI approximation in (6). For all q 1 , as ρ → 1,

ρ 1 → q 1 and cd1
2 (ρ) → cd1

2 in (19), (28) and (33), as it should because the server approaches

being continuously busy. Finally, for all q 1 , as ρ → 0, cd1
2 (ρ) → ca1

2 , which can be shown to

be the appropriate pure light-traffic approximation.

4.2 A Multi-Class Hybrid Approximation

When there are more than two classes, (34) involves aggregating all classes except the first in

order to determine τ 2 , cs2
2 and ca2

2 . Instead of doing this aggregation, we can use (19). Then (34)
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becomes (13).

4.3 Common Service-Time Distributions

In the special case of common service-time distributions, τ 1 = τ 2 = τ and cs1
2 = cs2

2 = cs
2

so that (34) becomes

cd1
2 (ρ) = ρ 1 (ρ − ρ 1 ) ca2

2 + ( 1 − 2ρ 1 ρ + ρ1
2 ) ca1

2 (35)

and (13) becomes

cd1
2 (ρ) = ρ ρ 1 cs

2 + ρ 1
j = 2
Σ
k

ρ j c̃a j
2

+ ( 1 − 2ρ 1 ρ + ρ1
2 ) ca1

2 . (36)

Moreover, (36) coincides with (35) when we use the asymptotic method (10) to approximate the

aggregate variability parameter ca2
2 in (35) in terms of the individual variability parameters c̃a j

2
,

2 ≤ j ≤ k. Even with non-identical service-time distributions, (35) and (36) remain candidate

approximations, using (7) and (8) of [32] to determine cs
2 . Of course, it remains to determine ca2

2

when class 2 is an aggregate of other classes. The AM approximation is (10); the other natural

simple alternative is the QNA hybrid ca2
2 = wcAM

2 + 1 − w where cAM
2 is (10) and the weight w

comes from (29) and (30) of [32]. Formulas (13) and (35) coincide if ca2
2 is the AM

approximation in (10).

4.4 Extension of the Bitran-Tirupati Approximation

Another candidate approximation is obtained from (2), i.e., (6) of [5], using (6) and (31). Let

cd1
2 (ρ) = p 1 cd

2 (ρ) + cn1
2

= p 1 [ρ2 cs
2 + ( 1 − ρ2 ) ca

2 ] + cn1
2

= p 1 ρ2 cs
2 + p 1 ( 1 − ρ2 ) ca

2 + q 1 ( 1 − q 1 ) ca2
2 + ( 1 − q 1 )2 ca1

2 (37)

(Note that p 1 and q 1 both appear in (37).) Formula (37) behaves the same as (34) if p 1 → 0 and

q 1 → 0 or if p 1 → 1 and q 1 → 1, but behaves differently as ρ → 0 and ρ → 1. However,
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qualitatively (37) and (34) are quite similar. Note that (37) could be modified using (19), just as

(34) was converted to (13).

With common service-time distributions, (37) reduces to (7). If, in addition, we express ca
2 in

terms of ca1
2 and ca2

2 using the AM approximation in (8), i.e., ca
2 = q 1 ca1

2 + ( 1 − q 1 ) ca2
2 , then

(37) and (7) become (9), as noted in Section 1.

4.5 The Case of Zero Service Times

Another consistency condition to consider involves what happens as the mean service time for

one class goes to zero. If τ 2 → 0 with λ 2 fixed, then for class-1 it is as if class-2 were not

present. Consistent with this exact theoretical reference point, (34) approaches (6) for class-1

alone. However, (37) fails to satisfy this condition; it is smaller by the factor p 1 , which could be

arbitrarily small. Similarly, we can consider what happens when τ 1 → 0 with λ 1 fixed, but the

exact behavior is more complicated; (34) approaches ca1
2 + ρ2

2 (p 1 / p 2 ) (ca2
2 + cs2

2 ), while (7) is

unchanged, except cs
2 changes as τ 1 → 0, i.e., cs

2 → p 2 (cs2
2 + 1 ) − 1. Hence, (34) captures,

at least qualitatively, the real explosion in variability that occurs as τ 1 → 0 and p 1 → 1, while

(7) and (37) do not. Thus, (34) is our proposed two-class procedure and (13) is our proposed full

multi-class approximation.

4.6 Summary

A summary of the candidate approximations for cd1
2 discussed here appears in Table 1. There

are three procedures that work with all k classes and five procedures that work with only 2 classes

(the class of interest plus the rest aggregated). The two Erlang-based two-class procedures INT2

and INT3 from [5] are not included in this list. All procedures in Table 1 have cd1
2 a linear

function of the arrival variability parameters ca j
2 , so that for an open network of queues the net

arrival-process parameters can be obtained by solving a system of linear equations. Moreover, it

is easy to see that this system of equations always has a unique solution.
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5. The Bitran-Tirupati Experiments with Common Service-Time Distributions

In this section we compare our approximations for cd1
2 (ρ) with the approximations and

simulation results of Bitran and Tirupati [5]. Throughout this section, we follow [5] and assume

that all classes have a common service-time distribution. Our leading candidates are (35) and

(36) which are special cases of (34) and (13). (These are our first choices because they satisfy all

the consistency conditions.) Our third candidate is (7) which coincides with (37), and is based on

(2), (4), (6), and (31). Our fourth candidate is (11).

Variants of candidate approximations (35) and (7) are obtained depending on how we

approximate the variability parameters ca
2 and ca2

2 for the respective superposition arrival

processes. The AM approximations for ca
2 and ca2

2 are given in (8) and (10). (It was already

noted that the AM approximation converts (7) into (11).) The QNA hybrid is the convex

combination wcAM
2 + 1 − w where cAM

2 is the AM approximation and the weight w comes from

(29) and (30) of [32]. An SI approximation and other hybrids are discussed in [1] and [31]. We

only consider the QNA hybrid approximation for superposition processes here (and the AM via

(11)).

The first experiments from [5] that we consider involve two or more i.i.d. arrival processes.

Consequently, cai
2 is the same for all classes. In this case (but not more generally), (11) and (36)

coincide, both reducing to

cd1
2 (ρ) = ρ 1 ρcs

2 + ( 1 − ρ 1 ρ) ca1
2 . (38)

There thus remain three new candidate approximations: (7), (11) and (35). Approximations

(7) and (35) involve applying the superposition approximations in [32] to ca
2 and ca2

2 , and ca2
2 ,

respectively. The QNA hybrid approximations for ca2
2 and ca

2 do not agree. Since the component

streams are i.i.d., the effective number of streams ν in (30) of [32] is just the actual number of

streams. For ca2
2 , this is obviously one less than for ca

2 . Following [5], we consider the cases
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ν = 2 , 3 , 5 and 10. For treating ca2
2 , we thus need to consider 1 , 2 , 4 and 9. The resulting

weights w for (29) of [32] and approximate variability parameters for the six cases involving

ca1
2 = 0. 500, 0.333, 0.250 and ρ = 0. 6 , 0. 9 are given in Table 2. As can be seen from Table 2,

the QNA hybrid recognizes the tendency for superposition processes to converge to Poisson

processes as the number of streams increases: ca
2 and ca2

2 increase toward 1 as ν increases. The

limiting case in which ca2
2 is replaced by 1 was used by Bitran and Tirupati to obtain (3).

The three approximations for cd1
2 (ρ), (38) and the QNA hybrids plus (7) and (35), are

compared to simulation and the Bitran-Tirupati approximations (INT1 and INT3 from [5]) in

Tables 3 and 4. All these approximations perform reasonably well (much better than a direct

application of [32], as shown in [5]). The most elementary approximations are (38) and INT1;

(38) is better for small numbers ν of component arrival processes, but INT1 improves as ν

increases, reflecting the convergence to Poisson. The two QNA hybrids perform essentially the

same, both being somewhat better than (38) and INT1. The performance of the QNA hybrids is

roughly comparable to INT3; however, the QNA hybrids may be preferred because they are more

elementary and generalize to other cases.

It is of course of interest to see how these departure-process approximations perform when the

departure process serves as an arrival process to a subsequent queue. Even a perfect match of

cd1
2 (ρ) with simulation does not guarantee good congestion approximations because the

parameter cd1
2 (ρ) only partially characterizes the departure process. Moreover, the departure

process is typically not renewal. However, experience indicates that good congestion

approximations usually require cd1
2 (ρ) to be close to the actual value [33], so that the

comparisons in Tables 3 and 4 are meaningful. To illustrate how the approximations apply to the

congestion measures, we consider one case from [5], let the number of arrival processes be 5,

ca1
2 = cs

2 = 0. 333, and ρ = 0. 6 (the eighth row of Table 4). Let the departure process of each

class be routed to a separate single-server queue with i.i.d. Erlang service times (cs
2 = .333 ) and
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traffic intensity 0.8. The observed simulation average number of customers in one of these

queues was 1.79. Using the approximation (45) and (47) of [32] the approximate values by (7),

(35), (38), INT3 and INT1 are, respectively 1.78, 1.78, 1.75, 1.77 and 1.96. In contrast, simple

M / M /1 and M / G /1 approximations are 4.00 and 2.93, respectively.

We also consider a second experiment from [5]. There are two arrival processes with the

arrival-rate proportion p 1 = λ 1 /λ = j /10, 1 ≤ j ≤ 9. Let all the arrival and service variability

parameters be 0.333 and let ρ = 0. 6. Since there are only two streams, ca2
2 does not require

aggregation and (35) coincides with (38). Moreover, since cs
2 = ca1

2 = ca2
2 = 0. 333, by these

methods cd1
2 (ρ) = 0. 333 for all ρ and p 1 . However, for the QNA hybrid based on (7), ca

2 must

be calculated. Since the streams have unequal intensity (except in the case p 1 = 0. 5), the

equivalent number of streams ν from (30) of [32] is less than two. The calculations for the QNA

approximation of ca
2 appear in Table 5 together with the various approximations for cd1

2 (ρ). The

approximations perform reasonably well, but are not exceptionally accurate, having relative errors

of about 5-20%. As noted in [5], these approximations evidently perform better as the number of

component streams increases (unlike (1) when there is deterministic routing).

6. Conclusions

In Sections 2 and 3 we presented theoretical results characterizing the departure processes of

individual customer classes from multi-class queues under the assumption that the server is

continuously busy. As noted in Remark 2.5, the AM result also applies to multi-server queues.

Obviously, these results can be used to describe the queue in the special limiting case, in which

the server is almost always continuously busy, but they also can be used to develop hybrid

approximations for more general cases. In Section 4 we proposed relatively simple hybrid

approximations based on our theoretical results, especially (13) and (34), and in Section 5 we

showed that these hybrid approximations perform reasonably well when compared to simulations.
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Overall we have established a basis for improvements in the parametric-decomposition method

for approximating open queueing networks. It remains to refine the approximations and do more

extensive experiments. This is intended for a future paper. Experiments are especially needed in

the case of class-dependent service times. One such experiment is described in Section 3 of [36].

The approximations developed here and in [5] offer significant improvements over the

random splitting formula (1) when the routing is deterministic. Conversely, when the routing is

primarily random, (1) and [32] are preferred. Of course, in many realistic networks both random

routing and deterministic routing are present, so that it is appropriate to account for both kinds of

routing in the network analysis. A hybrid routing approximation has been implemented in [24].

Further work in this direction seems worthwhile.
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_ _________________________________________________________
k-class methods_ _________________________________________________________

(11) extension of INT1 in [5] using (4)
instead of (3), ignores class-
dependent service times

_ _________________________________________________________

(13) based on (19) and (34), addresses
class-dependent service times

_ _________________________________________________________

(36) with cs
2 via [32] based on (19) and (34), but ignoring














class-dependent service times
_ _________________________________________________________

2-class methods
_ _________________________________________________________
(11) with cai

2 = 1 INT1 from [5], ignores class-
dependent service times

_ _________________________________________________________

(7) with cs
2 , ca

2 , ca2
2 calculated

via [32]
extension of INT1 in [5] using (4)
instead of (3) and QNA
superposition approximation
instead of (8) and (10)

_ _________________________________________________________

(34) with ca2
2 and cs2

2 via [32] based on (28), addresses class-
dependent service times

_ _________________________________________________________

(35) with cs
2 and ca2

2 via [32] based on (28) and (34), but ignores
class-dependent service times

_ _________________________________________________________

(37) with ca2
2 and cs2

2 via [32] based on (2), (6) and (31), only
partially addresses class-dependent
service times via cn1

2 in (31)_ _________________________________________________________ 


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Table 1. A summary of candidate approximations for cd1
2 , the class-1 departure-process

variability parameter.



_ _________________________________________________________________________
ρ = 0. 9 ρ = 0. 6

Number _ ______________________________________________________________

of streams Weight Single-stream ca1
2 Weight Single-stream ca1

2_ ______________________ _ ______________________
ν w 0.500 0.333 0.250 w 0.500 0.333 0.250

_ _________________________________________________________________________

1 1.000 0.500 0.333 0.250 1.000 0.500 0.333 0.250

2 0.962 0.519 0.359 0.279 0.610 0.695 0.593 0.543

3 0.926 0.537 0.382 0.306 0.439 0.781 0.707 0.671

4 0.893 0.554 0.405 0.330 0.342 0.829 0.772 0.744

5 0.862 0.569 0.425 0.354 0.281 0.860 0.813 0.789

9 0.758 0.621 0.494 0.431 0.163 0.919 0.891 0.878

10 0.735 0.632 0.510 0.449 0.148 0.926 0.901 0.889_ _________________________________________________________________________ 
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Table 2. Approximate variability parameters for superposition arrival processes via QNA:
wcAM

2 + 1 − w with the weight w coming from (29) and (30) of [32].



_ ______________________________________________________________________________________________________
Variability Parameter cd1

2

Aggregate Parameters _ __________________________________________________

Number of One from QNA [32] New from Bitran-Tirupati [5]
component Arrival _ ___________________________________________________

streams Stream arrival hybrids Departures (11), (36) QNA hybrids
(products) _ ______________ and _ _______________________________________

ca1
2 ĉa2

2
ca

2 cd
2 (38) (7) (35) INT1 INT3 Simulation

_ ______________________________________________________________________________________________________

ν = 2 0.500 .500 .519 .369 .433 .434 .433 .559 .460 .475
(p 1 = 0. 5 ) 0.333 .333 .359 .338 .333 .336 .333 .502 .369 .373

0.250 .250 .279 .323 .284 .287 .284 .474 .323 .328
_ ______________________________________________________________________________________________________

ν = 3 0.500 .519 .537 .372 .455 .461 .458 .568 .469 .486
(p 1 = 0. 333 ) 0.333 .359 .382 .342 .333 .342 .338 .484 .351 .37

0.250 .279 .306 .328 .273 .282 .278 .442 .290 .303
_ ______________________________________________________________________________________________________

ν = 5 0.500 .554 .569 .378 .473 .484 .480 .553 .496 .522
(p 1 = 0. 2 ) 0.333 .405 .425 .351 .333 .348 .343 .440 .340 .361

0.250 .330 .354 .337 .264 .280 .274 .394 .270 .287
_ ______________________________________________________________________________________________________

ν = 10 0.500 .621 .632 .390 .487 .500 .495 .532 .488 .515
(p 1 = 0. 1 ) 0.333 .494 .510 .367 .333 .351 .345 .393 .334 .355

0.250 .431 .449 .355 .257 .277 .270 .324 .259 .279_ ______________________________________________________________________________________________________ 
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Table 3. Approximate single-class departure-process variability parameters cd1
2 for one multi-class queue with

independent and identically distributed component streams and service times: the case of ρ = 0. 9 and
cs

2 = 0. 333 (cf. Table 1 of [5]).



_ _____________________________________________________________________________________
Variability Parameter cd1

2_ __________________________________________________
Number of One Aggregate New from Bitran-Tirupati [5]
component Arrival Departure _ ________________________

streams Stream from [32] (11), (36) QNA hybrids
(products) and _ _______________________________________

ca1
2 cd

2 (38) (7) (35) INT1 INT3 Simulation
_ _____________________________________________________________________________________

ν = 2 0.500 0.452 .470 .476 .470 0.595 .498 0.500
(p 1 = 0. 5 ) 0.333 0.350 .333 .342 .333 0.499 .369 0.371

0.250 0.299 .266 .275 .266 0.453 .304 0.303
_ _____________________________________________________________________________________

ν = 3 0.500 0.464 .480 .492 .496 0.591 .493 0.507
(p 1 = 0. 333 ) 0.333 0.364 .333 .349 .353 0.481 .351 0.377

0.250 0.316 .260 .278 .283 0.427 .277 0.287
_ _____________________________________________________________________________________

ν = 5 0.500 0.484 .488 .506 .507 0.568 .493 0.510
(p 1 = 0. 2 ) 0.333 0.392 .333 .357 .358 0.44 .340 0.360

0.250 0.347 .256 .282 .287 0.376 .262 0.276
_ _____________________________________________________________________________________

ν = 10 0.500 0.524 .494 .513 .508 0.539 .495 0.507
(p 1 = 0. 1 ) 0.333 0.446 .333 .359 .352 0.393 .334 0.354

0.250 0.407 .253 .282 .283 0.32 .255 0.274_ _____________________________________________________________________________________ 
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Table 4. Approximate single-class departure-process variability parameters cd1
2 for one multi-class queue

with independent and identically distributed component streams and service times: the case of
ρ = 0. 6 and cs

2 = 0. 333 (cf. Table 3 of [5]).



_ ____________________________________________________________________________________
from [32] New From Bitran-Tirupati [5]_ _________________________________

Equivalent Aggregate
Number of Hybrid Variability ______________________________________________

Streams Weight Parameters (11), (35)
_____________ Simulation

p 1 ν w ca
2 cd

2 (36) and (38) (7) (Erlang) INT3 INT1_ ____________________________________________________________________________________
.1 1.22 0.876 .416 .386 .333 .339 .351 .335 .393

.2 1.47 0.769 .487 .432 .333 .353 .352 .340 .439

.3 1.72 0.685 .543 .468 .333 .374 .362 .346 .473

.4 1.92 0.629 .581 .492 .333 .397 .358 .356 .493

.5 2.00 0.610 .593 .500 .333 .417 .372 .370 .500

.6 1.92 0.629 .581 .492 .333 .428 .381 .383 .493

.7 1.72 0.685 .543 .468 .333 .428 .401 .394 .473

.8 1.47 0.769 .487 .432 .333 .412 .398 .397 .440

.9 1.22 0.876 .416 .386 .333 .381 .403 .383 .393_ ____________________________________________________________________________________ 
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Table 5. Comparison of approximations for the single-class departure-process variability parameter: the
case of two component arrival processes with proportions p 1 and ( 1 − p 1 ),
ca1

2 = ca2
2 = cs

2 = 0. 333, and ρ = 0. 6. (cf. Table 7 of [5]).



_ _________________________________________________
Model Cases______________________________________
Parameters 1 2 3 4 5_ _________________________________________________

class 1
λ 11 0.9 0.45 0.45 1.0 1.0
ca11

2 1.0 1.0 0.0 1.0 0.0
τ 11 1.0 1.0 1.0 0.4 0.4
cs11

2 1.0 1.0 0.0 1.0 0.0
_ _________________________________________________

τ 12 1.0 2.0 2.0 0.9 0.9
cs12

2 0.0 0.0 0.0 0.0 0.0
ρ 2 0.9 0.9 0.9 0.9 0.9

_ _________________________________________________
class 2
λ 21 8.1 0.9 0.9 8.0 8.0
ca21

2 0.0 0.0 1.0 0.0 1.0
τ 21 0.0 0.5 0.5 0.05 0.05
cs21

2 0.0 0.0 1.0 0.0 1.0
_ _________________________________________________

τ 23 0.1 0.9 0.9 0.11 0.11
cs23

2 0.0 0.0 0.0 0.0 0.0
ρ 3 0.81 0.81 0.81 0.88 0.88

_ _________________________________________________

queue 1
p 11 0.100 0.333 0.333 0.111 0.111
q 11 1.000 0.500 0.500 0.500 0.500
ρ 1 0.900 0.900 0.900 0.800 0.800
aggregate
via [32]
λ 1 9.0 1.35 1.35 9.0 9.0
τ 1 0.100 0.667 0.667 0.089 0.089
cs1

2 19.0 0.875 0.500 3.78 1.81
ca1

2 0.108 0.354 0.677 0.145 0.893
cd1

2 15.4 0.776 0.534 2.47 1.48
_ _________________________________________________ 
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Table 6. Model data for the two-class three-queue network without common service-time distributions.
(λ i j is the arrival rate of class i at queue j, λ j is the total arrival rate at queue j, etc.)



_ ________________________________________________________
Cases_ __________________________________

Results 1 2 3 4 5_ ________________________________________________________

cd11
2 via QNA [32] 2.44 0.93 0.84 1.16 1.05

INT1 from [5] 2.46 0.97 0.40 1.19 0.26
(11) 2.36 0.80 0.31 1.07 0.25

(7) 2.35 0.70 0.40 1.06 0.26
(37) 1.54 0.51 0.43 0.52 0.41
(34) 1.00 0.60 0.20 0.68 0.04_ ________________________________________________________

Simulation 1.00
95% confidence interval (exact)

_ ________________________________________________________

cd21
2 via QNA [32] 13.96 0.85 0.69 2.31 1.43

INT1 from [5] 13.96 0.74 0.73 2.28 1.17
(11) 13.86 0.57 0.64 2.16 1.16

(7) 13.96 0.74 0.47 2.54 1.33
(37) 13.86 0.77 0.61 2.45 1.32
(34) 14.58 0.81 0.60 1.28 0.68_ ________________________________________________________

Simulation
95% confidence interval

_ ________________________________________________________

EQ 12 via QNA [32] 9.3 3.8 3.40 4.6 4.30
INT1 from [5] 9.4 3.9 1.55 4.7 0.90

(11) 9.1 3.2 1.22 4.3 0.86
(7) 9.0 2.8 1.55 4.3 0.90

(37) 6.0 2.0 1.66 2.0 1.55
(34) 4.1 2.3 0.64 2.8 0.03_ ________________________________________________________

Simulation 4.1
95% confidence interval (exact)

_ ________________________________________________________

EQ 23 via QNA [32] 20.5 1.41 0.96 7.04 4.47
INT1 from [5] 20.5 1.11 1.08 6.96 3.72

(11) 20.4 0.59 0.80 6.61 3.69
(7) 20.5 1.11 0.32 7.71 4.18

(37) 20.4 1.19 0.71 7.45 4.16
(34) 21.6 1.30 0.69 4.04 2.16_ ________________________________________________________

Simulation
95% confidence interval

_ ________________________________________________________ 
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Table 7. Comparison of several approximations with simulation for the two-class three-queue model
specified in Table 6.



APPENDIX A

An Experiment with Class-Dependent Service Times

In this Appendix we discuss an experiment to compare the various approximations for the single-class

departure-process variability parameters cdi
2 (ρ) and the resulting congestion measures at subsequent

queues with simulation results in the case of class-dependent service-time distributions. For this purpose,

we consider a relatively simple two-class three-queue network. Class 1 visits queues 1 and 2 and class 2

visits queues 1 and 3, in that order. The class-1 (-2) departure process from queue 1 is thus the sole arrival

process to queue 2 (3). In our notation there now are two subscripts, the first referring to the class and the

second to the queue. To evaluate the approximations, we focus on cdi1
2 ≡ cdi1

2 (ρ), the class-i departure-

process variability parameter from queue 1, for i = 1 and 2; EQ 12 , the expected queue length (not

counting the customer in service, if any) of class 1 customers at queue 2; and EQ 23 , the expected queue

length of class-2 customers at queue 3.

When the total variability parameters ca
2 and cs

2 are needed in the approximation they are obtained via

[32], see (7), (8), (29) and (30) there. Their values are displayed in Table 6. The approximate expected

queue lengths at queues 2 and 3 are computed using the Kraemer and Langenbach-Belz [19] approximation,

i.e.,

EQ =
2 ( 1 − ρ)

ρ2
_ ________ (ca

2 + cs
2 ) g(ρ , ca

2 , cs
2 ) (A1)

where

g(ρ , ca
2 , cs

2 ) =








exp




− ( 1 − ρ)

(ca
2 + 4cs

2 )

(ca
2 − 1 )_ __________





, ca
2 ≥ 1 .

exp



−

3ρ
2 ( 1 − ρ)_ ________

(ca
2 + cs

2 )

( 1 − ca
2 )2

_ _________




, ca
2 ≤ 1

(A2)

Of course, here cdi1
2 plays the role of ca

2 and csi j
2 plays the role of cs

2 . (In all our examples

cs12
2 = cs23

2 = 0.)
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We consider five cases. The model parameters appear in Table 6 and the results appear in Table 7. The

importance of the new approximations is dramatically demonstrated in cases 1 and 5, where there is a great

difference in the service-time distributions of the two classes. Note especially the expected queue length at

queue 2 in case 5; the proposed new approximation (34) is better than the others by several orders of

magnitude. Overall, Table 7 should show that the new approximations perform quite well, especially the

leading candidate (34). (Since this is a two-class example, (13) and (34) coincide.)

In [36] a simulation experiment is reported for the multi-class batch-arrival model in Section 2.2. These

experimental results also strongly support the new approximations as well as the low-intensity

approximation principle discussed in Section 1.5.


