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ABSTRACT

Methods are developed for approximately characterizing the departure process of each
customer class from a multi-class single-server queue with unlimited waiting space and the first-
in first-out service discipline. The modd is Z(Gl;/Gl;)/1 with a non-Poisson renewal arriva
process and a non-exponential service-time distribution for each class. The methods provide a
basis for improving parametric-decomposition approximations for analyzing non-Markov open
gueueing networks with multiple classes. For example, parametric-decomposition
approximations are the Queueing Network Analyzer (QNA). The specific approximations here
extend ones developed by G. Bitran and D. Tirupati (1988). For example, the effect of class-
dependent service times is considered here. With all procedures proposed here, the approximate
variability parameter of the departure process of each class is a linear function of the variability
parameters of the arrival processes of all the classes served at that queue, thus ensuring that the
final arrival variability parameters in a general open network can be calculated by solving a

system of linear equations.

Keywords: open queueing networks, multiclass queueing networks, parametric-decomposition

approximations, departure processes, heavy-traffic limit theorems.



1. Introduction and Summary

1.1 Parametric-Decomposition Approximations

A useful way to analyze the steady-state performance of open queueing networks with non-
Poisson externa arrival processes and non-exponentia service-time distributions is the
parametric-decomposition approximation method, first proposed by Reiser and Kobayashi [23]
and subsequently extended by the author [32],[24] and many others (see the references). The
main idea is to approximately analyze the individual queues separately after approximately
characterizing the arrival processes to each queue by a few parameters (usualy two, one to
represent the rate and another to represent the variability). The goa is to approximately represent
the network dependence through these arrival-process parameters. After the congestion in each
gueue has been described, the total network performance is approximated by acting as if all the
gueues are mutually independent, i.e., the rest of the approximation is performed as if the steady-

state distribution of the numbers of customers at the queues had a product form.

An attractive aternative to parametric-decomposition approximations are Brownian models,
as in Harrison and Nguyen [13],[14]. Brownian models can even be used together with
parametric-decomposition schemes, as in Dai, Nguyen and Reiman [8]. However, here we only

consider parametric-decomposition approximations.

1.2 Aggregation in Multi-Class M odels

The primary purpose of this paper is to present new methodology for extending the
parametric-decomposition approximation method to treat queueing networks with several classes
of customers. The procedure in [32],[24] dready allows multiple customer classes, but there all
the classes are aggregated to form a single class before the rest of the approximation, in the spirit
of the celebrated Kleinrock independence assumption, p. 50 of [18]. With this procedure, all

class identity is not lost; the expected sojourn time of a customer following a given route is the



sum of the expected sojourn times at the queues on that route, with the expected service time
components being the original expected service times specified for that particular customer class;
the aggregation only affects the calculation of the expected delays (before beginning service) at
the nodes on the route. Moreover, the aggregation procedure yields the correct traffic intensities,

so thein the delay calculations that only approximation appears in the variability parameters.

In many cases this aggregation step works quite well, but in some cases it does not.
Difficulties with aggregation in the parametric-decomposition approximations were noted by
Bitran and Tirupati [5] and Fendick, Saksena and Whitt [9],[10]. Bitran and Tirupati point out
difficulties with multiple classes and deterministic routing, especialy in the low-variability
context common to manufacturing models. Fendick, Saksena and Whitt point out difficulties
with multiple classes and highly variable (e.g., batch) arrival processes together with class-

dependent service times.

Other difficulties with parametric-decomposition approximations are noted by Suresh and
Whitt [29] and Whitt [37]. Suresh and Whitt [29] show how exceptional variability (either high
or low) in an arrival process to a queue can be reduced in the departure process in a short time
scale when the queue has a moderate traffic intensity (e.g., p = 0.6) and moderately variable
service times (e.g., exponential), while the exceptional variability in alarger time scale remains.
This exceptional variability in a larger time scale typically has little effect upon congestion in
subsequent queues with low-to-moderate traffic intensity, but it typicaly has a dramatic effect
upon the congestion in a subsequent queue with high traffic intensity. This phenomenon means
that it can be difficult to characterize the variability of an arrival process by a single variability
parameter. For example, the arrival process might have low variability in a short time scale and
high variability in a longer time scale, so that in a subsequent queue with traffic intensity p
congestion would be predicted well by having an arrival process variability parameter (squared

coefficient of variation) c2 B 0.5whenp = 0.5and ¢2 B 5.0 when p = 0.9. This difficulty is



the motivation for the use of variability functions instead of variability parameters, e.g., the

indices of dispersionin[9], [10] and references there (which we will not discuss further here).

Whitt [37] shows that multiclass queueing networks with class-dependent service times can
exhibit relatively complex behavior. In particular, there can be unanticipated large fluctuations in
the individual queue lengths due to the sudden movement of blocks of customers with very short
service times. This phenomenon suggests that it may be important to focus on the transient
behavior as well as the steady-state distribution. It remains to determine the implications for

steady-state distributions.

1.3 Parametric-Decomposition Approximations without Aggregation

The difficulties with aggregation into a single class suggest the need for parametric-
decomposition procedures without aggregation. What we want is an extension of the algorithm in
[32],[24] that produces arrival process parameters at each node for each class. (The resulting
approximate congestion measures such as expected delays at each queue might also be class
dependent as in Holtzman [15], Albin [2] and Fischer and Stanford [11], but we do not focus on
that here.) In fact, such a multi-class extension of the parametric-decomposition approximation
was proposed by Bitran and Tirupati, and it provides dramatic improvements in accuracy in some
cases. Their main contribution is an approximation for the variability parameter of the departure
process for each class from a single-server queue when the arrival process for each class is
characterized by an arrival rate and a variability parameter. As usual, the variability parameters
are squared coefficients of variation (SCV, variance divided by the sguare of the mean) in
renewal-process approximations. The Bitran-Tirupati approximation is based on the two-class
case, by aggregating all classes except the one of interest into one. Their approximation results in

arefinement of the splitting step in Section 4.4 of [32].

Throughout this paper we consider a single-server queue with unlimited waiting space and the



FIFO (first-in-first-out) discipline. (However, the results also provide a basis for treating multi-
server queues, see Remark 2.5.) Let ¢ and c3; be the variability parameters of the overall
departure process and the departure process for class1 aone; let p; be the proportion of all
departures that are class1. If the total departure process were a renewal process and if each
successive departure were class 1 according to Bernoulli (independent) trials with probability p4,

then the exact relation is

ciy = pici + 1 - py, 1

as given in (36) of [32]. Formula(1) obviously makes c3; close to1 when p; is small, but
without Bernoulli routing the actual variability can be quite different. As shown in [5],
deterministic routing can cause the true relation to deviate significantly from (1). As an

improvement, Bitran and Tirupati propose
Ci1 = P1C§ + Chy )

where ¢2; is the squared coefficient of variation of the total number of customers that arrive
during an interarrival time of class1; see (6) of [5]. If the superposition arrival process of the

complement to class 1, henceforth referred to as class 2, is a Poisson process, then

car = (1 - p1) (p1 + (1 - py) Ca1) , ©)

where ¢2; is the class-1 arrival-process variability parameter; see (7) of [5]. Bitran and Tirupati
also develop numerical procedures (involving iteration) for calculating approximate values of ¢2;
when the class-2 arrival process is less variable than Poisson, i.e, when ¢, < 1. These
numerical procedures (INT2 and INT3 in [5]) are based on the assumption that the class-1 and
class-2 arrival processes are renewal processes with Erlang interarrival-time distributions. When
the system is characterized by low variability, these numerical procedures perform significantly

better than (3), but these procedures are somewhat cumbersome.



1.4 Enhancementsto the Bitran-Tirupati Scheme

In [35] we proposed enhancements to the Bitran-Tirupati [5] approximations, which we
present here. (The present paper is an update of [35].) Further contributions in this direction
have been made by Stanford and Fischer [27],[28] and Fischer and Stanford [11]. Some of the

results here have also been exploited in [24].

We contribute to the Bitran-Tirupati approximation scheme by developing a new

approximation for ¢3; in (2). In particular, we propose the formula
2 _ 2 _ 2
chr = (1 = p1)(p1ca2 + (1 - p1) Ca1) , (4)

where as above c2, is the approximating SCV for the superposition of all class| arrival processes
except class 1. Note that (4) reduces to (3) in the special case c2, = 1. Formula(4) provides a
simple aternative to the complex Erlang numerical procedureswhenc? < 1, fori = 1and 2. It
also applies to the important case when ¢4 > 1fori = 1 or 2, which was not treated in [5]. As
with the formulas in [32], formulas (2)-(4) are appealing because they are linear in the arrival and
departure variability parameters, so that the final arrival-process variability parameters for all the

queues in the network can be obtained by simply solving systems of linear equations.

Just as Bitran and Tirupati obtained (3) in [5], we obtain approximation (4) by considering
specific renewal processes for which we can calculate c2; (exactly or approximately). For this
purpose, we exploit batch-Poisson (B-P) and batch-deterministic (B-D) processes with geometric
batch sizes; i.e., the interarrival times of batches is exponential (B-P) or deterministic (B-D) and
the size of the batches is geometric on the positive integers. The geometric batch-size distribution
makes the individual customer interarrival times i.i.d. (independent and identically distributed).
The B-P and B-D processes are convenient because they are two-parameter renewal processes.
There is thus a direct correspondence between these parameters and the rate and variability

parameter used in the approximations. For any c2 = 0 (= 1), thereis aunique B-D (B-P) process



with the given c2 and arrival rate. We use B-D aswell as B-P to treat the caseswith 0 < ¢Z < 1.

However, it turns out that both cases yield the same approximation.

Of course, the proof of the pudding is in the tasting. We show that (4) performs quite well
when compared to simulation and the other approximations for the experiments considered by
Bitran and Tirupati [5]. The accuracy in this step is good, but not phenomenal; it seems to be

consistent with the accuracy of other approximations used in the overall procedure.

The desired approximation for c3; is obtained by combining (2) and (4). Note that the

resulting formula

Cir = p1cd + p1 (1 = py) cai2 + (1 - p1)?cay (5)

is a convex combination: The weights p;, p;(1 - p;y) and (1 - p;)? on the variability
parameters c3, c2, and c2; sum to 1. Furthermore, a common approximation for c3 is another

convex combination
¢ = p?ci + (1 - p?) 3, (6)

where p is the traffic intensity, and ¢2 and c2 are the variability parameters (squared coefficients
of variation) for the service times and the total arrival process; see (38) of [32], (23) of [33] and

(2) of [5]. Combining (5) and (6), we obtain
i1 = P7 Pp1cs + (1 - p?) p1 cd + pr(l - py) ¢ + (1 - py)?céy . (7
If we continue and approximate c2 by the asymptotic method, (4.14) of [23] or (1) of [5], then
i = piCiy + (1 - py) ck . )
Combining (7) and (8), we obtain the convex combination
ci = P?p1cs + (2 - p?) pa(l = p1) ¢z + [(1 - p1)® + (1 - p?) pEl c&1  (9)

When there actually are k classes with approximating arrival SCVs Eij, we can also use the



asymptotic method for cZ, to obtain
2 . =2
Caz = X [Pj/(1 = p1)] Cy (10)
j=2
where p; and Esj are the corresponding parametersfor classj, and

k 2
iy = p?pac + (2 -p?) p1 3 piCay + [(L - p1)? + (L -p?)pfl ci . (11)
=2

Formula (11) is the natural generalization of the first Bitran-Tirupati procedure (INT1) based on

(2) and (3); their procedure is the same except Eij forj # lisreplaced by 1in (11).

Natural aternatives to (11) are obtained by using different approximations for the
superposition variability parameters ¢ and c3, than (8) and (10). In particular, the stationary-
interval method and various hybrid approximations can be used instead; see Section 4.1 of [31],
[1], and Section 4.3 of [32]. We examine the simple aternative based on (29) and (30) of [32] for
the Bitran and Tirupati experiments; i.e. c2 = wcZy + 1 — w, where ciy is the asymptotic-
method approximation and the weight w comes from (29) of [32]. For these cases, the hybrid
using (29) and (30) of [32] performs better than (11), but both perform quite well. (See

Section 5.)
1.5 TheLow-Intensity Variability-Preservation Principle

From (5) or the subsequent formulas (7), (9) and (11), we can see what the approximation
predicts in limiting cases. As p; — 1, ¢; — ¢35 as it obviously should. As p; - O,
c3; — C2;. The appropriateness of the limit as p; — O is less obvious, but upon reflection it
can be seen to be, as Bitran and Tirupati argue. In [36] we prove a limit theorem rigorously
justifying this limiting behavior. In fact, we show that under very general conditions the entire
class-1 departure process converges in distribution to the class-1 arrival processasp; — O (i.e,

the finite-dimensional distributions converge). In fact, with probability one, each sample path of



the class-1 departure process converges to the corresponding sample path of the class-1 arrival
process. (The general idea of the low-intensity variability-preservation principle is due to Bitran
and Tirupati [5], but the strong forms involving the distribution of the entire stochastic process

and the individual sample paths appear in [36].)
Theanalysisin [5], [36] and here thus supports the remarkably simple approximation
c5, B3 for p; small, (12)

which has very significant implications for queueing networks. For an open gqueueing network
with a very large number of classes, (12) helps provide rapid back-of-the-envelope
approximations. The associated delays at the queues should be calculated using superposition
approximations (e.g., [1],[2],[9],[10],[11],[15],[32]) though. At queues to which many classes
come, each with relatively small intensity, the delays for each class would be essentialy the same
as for Poisson arrivals, but if some class passes through several queues at which its proportion of
the total arrival rate is very small, and then comes to a queue at which it isthe only class or there
are only a few classes, then the variability of the original external arrival process of this class
should play arole; i.e., the appropriate variability parameter for the arrival process of this class at
this last queue would be the variability parameter of the external arrival process of this class (just

asin[29] discussedin §81.2).

This important phenomenon arises in many applications. For example, in packet
communication networks where messages are sent over virtual circuits (fixed routes), packets
often enter the network in a highly bursty manner over arelatively slow access line where there is
relatively little sharing of facilities. In contrast, in the network there is substantial sharing
because the network switching and transmission are orders of magnitude faster. Finally, the
packets emerge from the network and proceed to their destination over another relatively slow

access line. Formula (12) and the discussion above indicate that the high variability should be



substantially dissipated within the network, but should reappear at the destination. Even though
the packets might pass through several queues in the network, the packet arrival process at the
destination (the packet departure process from the network) should be similar to the original
packet arrival process at the source. In[36] this phenomenon is substantiated by a simulation of a

packet network model from [9].
1.6 Class-Dependent Service Times

Motivated by [9] we also want to treat models in which the different classes can have different
service-time distributions, a situation not addressed by Bitran and Tirupati [5]. Asshownin[9],
class-dependent service times can cause strong dependence among successive service times (and
thus evidently in the overall departure process). To appreciate the significance of class-dependent
service-time distributions, consider the two-class case in which the class-2 service times are zero.
Obviously the class-1 departure process from this queue is the same as if class 2 were not present;
consequently the approximation for c¢3; should be independent of p;. Our analysis produces
approximations for the general case. It also suggests, for simple approximations, that the traffic-
intensity proportion should often appear in (1)-(11) instead of the arrival-rate proportion. In fact,
both play a role. To state our proposed approximation to account for class-dependent service
times, let p; be the contribution to the traffic intensity by classi. Instead of (11), we propose the
approximation

ci = pica + pa ji p? PY(Ea + €3) + (1 - 2p1p + pf) By . (13)
Proper treatment of class-dependent service times is vital for treating manufacturing models in
which some classes are introduced to represent occasional down times of machines. For such
models, the approximations here provide significant improvements over [5], just as [5] provides

significant improvements over [32].
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1.7 Supporting Methodology: The Case of a Continuously Busy Server

In the spirit of [31],[33], we also want to provide a systematic basis for developing
approximations. Thus, we describe asymptotic-method (AM) and stationary-interval (Sl)
characterizations that can be the basis for refined hybrid approximations. To a large extent, this
paper can thus be regarded as a multi-class extension of [33]. We focus solely on departure

processes, but the application to queueing networks should be clear.

In our detailed mathematical analysis, we focus on a specia limiting case, the case in which
the server is continuously busy. We develop detailed descriptions of the AM and Sl
approximations under this condition. The results are thus directly applicable only to the case
p = 1, but more generally they can be exploited to develop hybrid approximations. Theideaisto
use convex combinations with weights on the continuously-busy approximations that approach 1
asp — 1 Itissignificant that the final AM and Sl continuously-busy approximations agree,
because our approximating assumptions make the continuously-busy class-1 departure process a
renewal process, see (19) and (28). The Sl continuously-busy approximation aso yields an
approximation for ¢2; in (2) as a special case; we simply set al the service times equal to 1.
Then the class-1 interdeparture time is precisely the number of customers to arrive during a
class-1 interarriva time. Our generalization of (3) appears in (31). When the service times are
not class-dependent, (31) reduces to (4); otherwise the arrival rate proportions in (4) should be

replaced by traffic intensity proportions.
1.8 Organization of the Rest of this Paper

The rest of this paper is organized asfollows. In Section 2 we develop the AM approximation
under the continuously-busy assumption; the final AM variability parameter is (19). A fairly
general interesting special case appears in (20). In Section 3 we develop the Sl approximation

under the continuously-busy assumption. In Section 3.1 we show how to approximate a general
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arrival process partialy characterized by its arrival rate and variability parameter by a B-D or B-P
renewal process. In Section 3.2 (3.3) we calculate the SI approximation for c3; under the
assumption that class 2 is a B-P (B-D) renewal process. In Section 4 we discuss refined hybrid
procedures. In Section 5 we make comparisons with simulation and other approximations in the
case of common service-time distributions using the Bitran-Tirupati experimentsin [5]. There we
show that (11) and the variant using (29) and (30) of [32] for superposition instead of the AM

approximation in (8) and (10) perform well. Finally, we present our conclusions in Section 6.

2. Asymptotic-Method Approximation with a Continuously Busy Server

Consider a single-server queue with unlimited waiting room and the FIFO discipline to which
k classes of customers arrive to receive service. Let customers from classi arrive according to an
arrival counting process A; (t) and have successive service times v;,, n = 1. Let D;(t) be the
resulting departure counting process for classi. In this section we develop an asymptotic-method
(AM) approximation for the vector of departure processes[D (1) ,... , Dy (t)] under the heavy-
traffic-type assumption that the server is continuously busy. In particular, we prove a functional
central limit theorem (FCLT) for [D{(t) ,... , Di(t)] under general FCLT conditions. For the
approximations, this means that we express the AM variability parameter for the departure
process of classi, c3;, in terms of the AM variability parameters of the arrival processes and
service  times €Ay, .., Cak, C41, .., C& and the associated means,  see

[4],[16],[17],[30],[31],[33] for background.
2.1 A General Functional Central Limit Theorem

We work in the setting of [4] and [30], which means weak convergence (convergence in
distribution), denoted by =. We consider random elements of D = D[O0, «), the space of all
real-valued functions on [0, «) which are right continuous with left limits. Let the space D be

endowed with the standard Skorohod (J;) topology and let product spaces DX be endowed with
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the usual product topology. Let C = CJ[O0, ) be the subset of continuous functions in D.

Convergencex,, — Xin D reducesto uniform convergence on compact subsetswhen x 0 C.

We define the following random elements of D:

Ain(t)

- [nt]
n~Y2 [Ai(nt) = Aint] , Vin(t) = n"Y2['5 vi; - 1ynt] ,
=1

Din(t) = n"Y2[D;(nt) - &nt] (14)

forl <i<kandt= 0. Obviously A; isintended to be the arrival rate and t; the mean service

time of class i. Let p; = A\;T; be the associated traffic intensity for classi. Let

k
A = A; + .. + A\ bethetotal arrival rate, T = A7? > AT, the overal mean service time and
i=1

P =p1 *+ ...+ pk = AT the total traffic intensity. We assume that the server is eventually
continuously busy, which meansthat p = 1. Obviously the overall departure rate must be 11 if
the server is aways busy. Hence, we should have d; = A;/AT. Our main result in this section is
a FCLT for the departure processes given a joint FCLT for the arrival processes and service
times. The resulting approximation under the standard independence and moment conditions

appearsin (19) below.

Theorem 1. 1f [Agns v s Ay Vains oo s Vin] = [Ags oo s A Vi, oo, Vi] in D2% where
P(A;0C)=P(V;0C) =11<i<kandp > 1,then

N

[A1n, - A Vin, oo Vi Dany o s Dial = [Aq, ooy Ak, Vi, oo, Vi, Dq, ..., D] in D3

whered; = Aj/Atand

/2

R O [ R Oy R A Kk R R
_ Pi -1/2 A : 0
Di(t) =0 - —LOp " A() - 00 Vi(t) - —= > A2 V() + 1, A (D)
| | PO | OP O | P = E{)\J : SR

j#i
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Proof. Let T(t) be the process representing the total work to arrive in the interval [0, t] and let

C(t) be an associated inverse process, defined by

C(t) =sup{s=0:T(s) <t}.

Then D;(t) = A;(C(t)), t = 0, by virtue of the continuously-busy assumption. Since p > 1,

the continuously-busy assumption is eventually satisfied, so that the limiting behavior is

unaffected by any initial discrepancy (idleness). (This can be rigoroudly justified by Theorem 4.1

of [4]; we only consider the continuously busy case.) Define the following random functions in

D:
~ A (nt) | ~ ~
Tn(®) =n""203 vij - Auntd, T =T + o + T,
j=1 O
O -1 0O
~ Ok O
C,(t) = n"12 Eb(nt) - 03 A0 ntg, t>0.
O=1 0
0 0
Asin[8],
[Atns s A Ving oo Vi T1ns oo Tkns T Cal = [Aq, oy Ay, V1, o
in D3k*1 where
Ti(t) = Vivt) + A (), T=T, + + Ty
. Ok o' .0 « O
and C(t) = —Dz AiTiO TH/Z ATig,t=20,
=1 O 0i=1 O

A

(15

Vi Ta, e, T, T, C

by Theorems5.1, 4.1 and 7.3 of [30]; see the Remark after Theorem 5.1 and the Corollary to

Lemma7.6. Applying Theorem 5.1 of [30] again, we see that [61n,

jointly with all the processes above, where

, Dkn] > [Dl,

N

» Di]
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Di(t) = A (/A1) = (A;/AT) % [V; (A UAT) + TjA[ (tAT)]
i=1

= ()\T) 1/2 [A.(t) - (\/AT) z [)\1’2V () + 1 A (t)]D
j=1

/2

O 0 - A
= (AT)'l’ZEn - F;' BA i(t) - El;\\_g Vi(t) - (—)\—)377 Z A2 V(1) + 1A (1)]

]¢I
with g (equality in distribution, as processes) holding by the normalization in (13); e.g., the limits
must satisfy A; (ct) = cY2A;(t). m

Remarks. (2.1) A FCLT for the total departure process D(t) = D (t) + ... + Dy (t) with

p > 1was previoudly established in Theorem 4.2 of [16].

(2.2) Under standard additional independence assumptions, the limit process

[Al, ,Ak, \71, s \7k] is composed of independent Brownian motions (BMs). Then the limit

in Theorem 1 is multivariate BM. If the limit processes Al, e Ak, \71, v \7k in Theorem 1
are independent BMs with zero means and variances a?, ... , af, B%, ..., B2, respectively, then
[Dy, ..., D] isaBM in CK with zero means, variances o2 and covariances 07, where
0 p EF (]I D)\ D’s )\
of = - _'D_+D_'DB2+_Z[)\B,+TJGJ] (16)
o PO P OPO P3 j=1
j#i
and
O A Tia 0 D)\Ta AN
of=-m- P g - Pig T s BT B2+ ARD) . (A7)
O PO P O ) D p Y

(2.3) We obtain the resulting asymptotic method (AM) approximation for the departure

process from (16) if we work with squared coefficients of variation. Let the AM parameters be

ci = Ata?, cd =38to? and c = 17%B2. (18)
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We treat c3; and c2; differently from c3 in (18) because A, (t) and Di, (t) are random functions
associated with counting processes, while \7in(t) is not; see Section 2 of [31]. From (16) and
(18), we obtain

h=(1-q)2ck + P ch+ 3 q(pilpy) (ch + cB). (19

i=1
j#i

whereq; = p;/p and c% and c are the AM variability parameters determined by the FCLT for
the arrival and service processes based on (13), (16) and (18). Note that most of c; in (19) is
dimensionless, as it must be. Note that most of the weights in (19) are functions of g; = p;/p
instead of p; = A;/A; i.e, the relative traffic intensities appear in (19) as well as the relative
arrival rates in (1)-(11). In the special case of two classes, if T, = 0, then q; = 1 and

c&4, a it sould, if T, =0 then qgq; =0 g;=1 and

o
O
1

c2; + (p1/p2)(ciy + c,). If p, and g, are both very small (a rather pathological

o
O
1

case), then cle is very large. However, this is redigtic; then class2 must be contributing rare

exceptionally long service times, asin the case of service interruptions, e.g., machine down times.

(2.4) A trivial case arises when k = 1. Then the departure process assuming the server is
continuously busy is obviously just the counting process associated with the service times. From

\7in > \71 plus the Corollary on p. 83 of [30], we get I:A)ln > 61 where 8, = 1/t; and

2 ~ d ~ .. . .
D,(t) = =171V (t/11) = -171¥2 V4 (t). Note that this is consistent with Theorem 1; then

(1 - p1/p) = O,A1/A = L,A; = Oand A (t) = Oforj # 1.

(2.5) Theorem 1 extends relatively easily to queues with m parallel servers. The limit holds
with t replaced by t/m in 6in(t) and I3i(t), so that the AM approximation c; in (19) is
unchanged. The proof of the extended version of Theorem 1 is complicated by the fact that D; (t)
does not coincide exactly with A; (C(t/m)) when m > 1, but the difference is asymptotically

negligible. Theorem 4.1 of [4] can be applied because the normalized difference in the FCLT is
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dominated by
max sup n~Y2 vy,
1<i<k 1<j< A(nt)
Ost<T

which convergesto 0 in probability becausze'i’n = Twhere P('T’ 0 C) = 1; apply the maximum

jump functional with Theorem 5.1 of [4].

(2.6) As noted in [31],[33], the AM approximation is asymptotically correct in heavy traffic,
where heavy traffic applies at subsequent queue where the point process is the arrival process. In
fact, we can simply combine Theorem 1 here with Theorem1 of [17]. In the setting of
Remark 2.2, this means that if the departure process D; (t) serves as the sole arrival process at
another queue of the same type (where the service times are i.i.d. and independent of D; (t)) with
traffic intensity p', then the standard heavy-traffic limit holds for this second queueasp’ - 1
and the limit depends on the process D;(t) only through c3; in (19) and its rate via the

contributiontop’ m
2.2 A Specific Multi-Class Model with Batch Arrivals

We now describe one fairly general special case of the model in Section 2.1 that was
considered in [9],[10]. For classi let the service times be i.i.d. with mean 1; and sgquared
coefficient of variation c3; let arrivals be generated in i.i.d. batches with batch size having mean
m; and squared coefficient of variation cf; let the arrivals within a batch be separated by i.i.d.
spacings with mean &; and squared coefficient of variation cZ; let the interval between the last
arrival of one batch and the first arrival of the next batch be the sum of one spacing and an idle
time; let the successive idle times be i.i.d. with mean n; and squared coefficient of variation cf,i;
and let the service times, batch sizes, spacings and idle times for all the classes be mutually
independent. Lety; = m;&;/(m;&; + n;). The parameter y; measures the long-run proportion

of time that the arrival processisin abusy state (not in anidletime). The arrival ratefor classi is
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A = mi/(m;&; + n;)andthetrafficintensity isp; = AiT;.

Corollary. If p > 1 for this particular multi-class model, then the conditions of Theorem 1 are
satisfied with the limit process [A;, ..., Ay, V1, ... , Vi] being composed of independent BMs,
sothat [Dy, ..., Dy] isaBM in CX and
ca = ATta? = mi(1 - yi)3(ch + ci) + yPck

& =17 = &
chi =3 'o? = pAitof

= a(l - q;)’[mi(1 - yi)?(ch + cG) + yPci] + o? c3 (20)
+ j_%l a?(pi/p;) [(m;(L = yp)2(ch + cf) + vPcg + c3)l,

j#i

whereagaing; = p;j/pandp; = A;/A.

The key supporting FCLT for A, (t) and the formulafor c3; are established in [9]. (The heavy
traffic limit for the workload (virtual waiting time) and waiting time processesasp — lisaso
established in [9].) The Corollary to Theorem 1 expresses c3; in terms of the 4k variability
parameters (c3, cfj, ¢, ¢5), and the 4k means (1, m;, &, n;), 1 < j < k Note that the
means only affect c3; viatheratios pi/pj, yi = mi&;/(m;i&; + n;), i = (pi/p) and the mean

batch size m;.

3. Stationary-Interval Approximation With a Continuously Busy Server

We now determine the sgquared coefficient of variation of a stationary interval between
departures in the departure process for one class assuming that the server is continuously busy.
For this result, the model assumptions are much stronger than in Section 2, but the exact results
for these specia cases can provide the basis for quite general approximations, as we indicated in

Section 1. We call the resulting squared coefficient of variation c3; the stationary-interval (Sl)
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variability parameter for the limiting case of a continuously busy server.

Asin [5], we only consider the two-class case. When there are more than two classes, we
assume that all classes but the one of interest are aggregated into one. We assume that customers
in the class of interest arrive in a batch-renewa process. Successive batches are i.i.d. with the
batch sizes having mean m; and squared coefficient of variation c2,; successive interarrival times
of batches are also i.i.d., having mean X;l and squared coefficient of variation 621. (The overal
arrival rateisA; = )A\lml and the overall arrival variability parameter is c2;. In genera, c2; is
not uniquely defined, but it isif the batch sizes have a geometric distribution, because that makes
the arrival process arenewal process; see Section 3.1.) The servicetimes of class 1 arei.i.d. with
mean T, and squared coefficient of variation c2;. The other class is assumed to be either a batch-
Poisson (B-P) process or a batch-deterministic (B-D) process. Successive batches are i.i.d. with
the batch sizes having mean m, and squared coefficient of variation cg,; successive interarrival
times of batches are aso i.i.d. being exponentialy distributed with mean 3\21 and sguared
coefficient 1 in the B-P case, and being constant with mean X;l and sguared coefficient of
variation 0 in the B-D case. (The overdl class-2 arrival rate and variability parameter are
Ay = A,m, and c2,. When the batch-size distribution is geometric, ¢2, is well defined, but
otherwise not.) The class-2 service times are i.i.d. with mean 1, and squared coefficient of
variation c%,. All the batch sizes, interarrival times and service times are assumed to be mutually

independent.

In Section 3.1 we indicate how to approximate a general arrival process partialy specified by
its arrival rate and variability parameter by these special batch processes. Then in Sections 3.2
and 3.3 we calculate the Sl variability parameter for the class-1 departure process, assuming that

the class-2 arrival processis one of these special batch processes.
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3.1 Approximating General Processes by these Special Batch Processes

The arrival process for the second class is quite special, being B-P or B-D, but we can treat
more general processes for the second class by first approximating them by one of our specia
processes. Such approximations can be done in many ways, we suggest obtaining a specific
approximation by working with geometric batch-size distributions. Let the batch size B be

distributed as
PB=k =(1-p)p“?t k=12, .. (21)

The batch-size distribution thus has mean m, = 1/(1 — p) and squared coefficient of variation
p = (my, — 1)/m,. The geometric distribution is particularly useful because the associated B-P
and B-D processes are then two-parameter renewal processes. The two parameters are the mean
batch size m, (or, equivaently, p in (21)) and the mean of the interarrival time of batches)A\;l. In
each case, the overal arrival rate for the process is A, = )A\Zmz. For the B-P process, the
squared coefficient of variation of an interarrival timeisc2, = 2m, — 1, which can assume any
value greater than or equal to 1. For the B-D process, the squared coefficient of variation of an

interarrival timeisc2, = m, — 1, which can assume any value greater than or equal to O.

Hence, given ageneral class-2 arrival process partially characterized by rate A , and variability
c2,, we can approximate it by arenewal process with these same parameters. For any c2,, we can

use aB-D renewal process by setting A, = szz and(m, - 1) = c%,,i.e,
my, =c2 + 1 and Ay = Ao/my, = Ap/(c2y + 1) . (22)

For any c2, =1, we can use a B-P renewa process by setting A, = szz and

(2m, - 1) = c3,,i.e,
my, = (c2, + 1)/2 and A, = Ay/my = 2A,/(c2, + 1) . (23)

We recommend using a B-D process for ¢2, < 1 and a batch-Poisson process for c2, = 1, but a
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full processis not needed here in Sections 3.2 and 3.3.
3.2 When the Second Class is Batch-Poisson

In this section we assume that the class-2 arrival process is B-P. We determine the squared
coefficient of variation of a stationary interval between successive class-1 departures, assuming

that the server is continuously busy.

Given that the server is continuously busy, a stationary interval between departures of class-1
customers, say D4, is one class-1 service time plus the sum of the class-2 service times of all
class-2 customers to arrive during a class-1 interarrival time. As in [5], the Poisson property
associated with the class-2 B-P process makes this class-1 interdeparture time well defined and
relatively easy to analyze. Since the class-1 process is batch renewal, the class-1 interarrival time
is of length O with probability (m; — 1)/m; and of positive length (having mean )Axll and
squared coefficient of variation 621) with probability 1/m;. Since ¢3; + 1 = E(D%)/(ED,)?,

we obtain the desired variability parameter c3; from the first two momentsof D .

Theorem 2. If the server is continuously busy and the class-2 arrival process is B-P, then the first

two momentsof D, are

Aom,T
E(D,) =1, + 2 2% =

P (24)
)\1m1 )\l

and

3 3 2 .2 N 2 (2 2 22222 2
N _ 2 5 2T1AomaTy AomaCeTs  Aoma(Chz + 1)1 Aomi(Car + 1) 15
E(DI) = (cs1 + 1) 11 + + + +

)\1m1 }\1m1 }\1m1 )\iml
e PP L P a1 P @ . @29)
P1 P1T1 _F;%_

s0 that
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A2
i1 = aicsh + (1 - q1)?(pa/p2)[ck + my(ch, + 1)] + (1 - qq)?[my(Cay + 1) —(26)
whereq; = pi/pandp; = A{/A asbefore.

Proof. Let U, be aclass-1 batch interarrival time, v, a class-1 service time, {v,,: n = 1} a
sequence of i.i.d. service times for class2, { B,, : n = 1} a sequence of i.i.d. batch sizes for

class-2, and { N(t) : t = 0} a Poisson process with rate )A\z. With probability (m; — 1)/mg,

N, N(U,)
D; = vy; withprobability 1/my, D1 = v; + 3 vy whereN, = 3 By, Hence,
i=1 i=1

E(N2) = A(EU1)(EBy) = Apmy/A; and

Var(Ny) = E[N(U;)] Var (By) + Var [N(U;)](EB2)?

2 ke 2.2 [ (ke > a2 [
_ Aachm3 . A2 N A2Cay O = A2(ck + 1) N Azcalgmz
= ~— t —— M5 = ~ 5,
)\1 D)\l )\% O = )\l )\i E
O O O O
[Nz o -« ~
E O vaid= AomyTy/Ag
=1 O
0N, O )
Var 03 vz = (ENp) Var(vay) + Var (N2)(Evar)
a=1 [
< (ke 2.2 [
A2m;c T3 N A2(ch + 1) . MeCa O2m2 and
- =7 0 21112
A 0M A
O O

E(D) =11 + ;\zmz-[z/;\lml

2

A N DA ~2 D
20oMyToTy  Apmachts  pha(ch + 1) Ax(ch + 1),
+ + + ©Zm . =

E(D?) = 1i(ch + 1) +

A
Aimg Aimy B A1my Aimg E

Remarks. (3.1) If the class-1 arrival process is characterized by the general parameters A ; and

c2,, then we can obtain c2; from (26) by lettingm; = 1 and replacing &-; by ;. Then
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i1 = aics + (1 - g1)®(p1/p2) [ch + my(ch, + 1)] + (1 - g1)®cé . (27)
Furthermore, if the batch-size distribution for class2 is geometric as in (21), then
¢ty = (mp, — 1)/myandcZ, = 2m, — 1 = my(cd, + 1), sothat (27) becomes

i1 = aick + (1 - 91)?(pa/p2) [ch + ¢l + (1 - g1)® ¢y - (29)

Note that (28) is consistent with the AM approximation in (19) in the two-class case. This occurs
because all the approximations now make the class-1 departure process assuming that the server
is continuously busy arenewal process. (Thisis not difficult to prove using the lack of memory

property associated with the Poisson process and the geometric distribution.)
If the class-1 and class-2 service times also have a common distribution, then (28) becomes
i1 = 01¢5 + q1(1 - qq) c& + (1 - g1)?cas (29)
which agreeswith (5) becausethenp; = q; andc = c2.
(3.2) We obtain the desired formula for c2; in (2) directly from (27) by settingt; = 1, = 1
andc?, = c% = 0 (becauseall servicetimesareidentically 1). The general formulais
Chr = d1(1 - qy) [ma(ch, + 1] + (1 - q1)?cay (30)
With geometric batch sizes for class 2, we apply (28) to obtain
Chr = d1(1 - q1) ¢k + (1 - g1)°ciy, (31)

which reducesto (4) becausep; = 4. Obviously (28) and (19) provide a ssmple modification to
treat different service-time distributions. It seems intuitively reasonable that we should weight

c2, more compared to c%; &  T,/T;  increases. (Recall  that

(1 = d1)?(p1/p2) = d1(1 = dq)(T2/14).)
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3.3 When the Second Processis Batch-Deter ministic

The general approximation formulas in (28) and (31) are easy to apply for all values of c2,,
but the B-P model of Section 3.2 only applies to the case ¢2, = 1. To treat lower class-2
variability we consider the B-D process in this section. However, it turns out that the analysis

here supports simply using (28) and (31) for al c2, = 0.

Given that the class1 and 2 arrival processes are independent and stationary versions, the
arrival point of an arbitrary class-1 batch is uniformly distributed over the deterministic interval
between the arrival points of class-2 batches. Using this property, we can calculate the first two
moments E(D;) and E(D%) exactly, given the distribution of U, the class-1 batch interarrival
time. Thus, given ):1 and 621, we can fit a distribution to them, as in Section 3 of [31], and then

caculate E(D ;) and E(D?).

Instead, here we propose a simple approximation: We approximate the number of class-2
batches to arrive during U1 by qul. In particular, we use)A\ZEul = )A\Z/)A\l as its mean and
Xi(eﬁl + 1)/)2? as its second moment. Of course, the approximate mean is exact, but the

approximate second moment is not. With the notation in Theorem 2 and its proof, under this

approximating assumption we obtain

E(Ny) = 7A\2m2/7A\1

- 02 ,.2 ~2 [
_ ApChems  OAx(Ca +1) A,
1 0 A1 Mg

~ ~2 .2
2 9 2
_ AaChoms N A2Cqr M3
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A

N, )\Zmz'[z
E Z Vo = ——-—
[N O )
Var 0 vyid= E(Ny) Var (vy) + Var (N2)(Evy)
=1 U
° (ke t2.2 (1
_ Aomycd 15 57\20%2 A2Cai] 5 5
A W A; O
O O
S0 that
lel.[l + )A\zszz
E(Ds) = =2 (32)
)\1m1 1
° ° Uz 22 ,:2 |
2AoMoToT Aom,cs 13 AoC? Ao(Cqp + 1
E(D?) = 12(c + 1) + 2MpToTy 22522+sz2+ 2(21 )BT§m§
}\1m1 )\1m1 )\1m1 )\1m1
O O
g (P + p2) P21y p3 2 U
=1ich + + [c& + machp] + — my (Car + 1)O
0 P1 P11 P1 O

and

.2
c1 = gfcd + (1 - g1)2(p1/p2)[cd + mych] + (1 - q1)?[my(Cay + 1) — 1](33)
whereq, = p./p.

If, asin Remark 3.1, the class-1 arrival process is characterized by general parameters A ; and
c2,, then we can let m; = 1 and replace &4 by c2, in (33). Furthermore, if the class-2 batch-
size distribution is geometric as in (21), then ¢, = (m, - 1)/m, and
c2, = m, — 1 = m,c},, so that (33) agrees with (28). Thus, (19), (28) and (33) all support the

same approximation.
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4. Hybrid Approximations

We now illustrate how the results for the continuously-busy limiting case in Sections 2 and 3
can be used to construct heuristic hybrid approximations to cover the usual cases in which the
gueue is not continuously busy. Paralleling [1], the idea is to consider convex combinations that

are consistent with established results in various limiting cases.
4.1 A Direct Two-Class Hybrid Approximation

Let c3; (p) represent the approximate class-1 departure variability parameter as a function of
the traffic intensity p; let c3; be the continuously-busy approximation in (28). (It helps that the
two-class AM and S| approximations for c3; in (19), (28) and (33) agree.) A natural hybrid

approximation based on the two-class caseis

cii(p) = p?ciy + (1 - p?) ¢4 (34)

p?[aicd + (1 - q1)?(pa/p2)lcd + c32] + (1 - gq)?cd] + (1 - p?) ciy

picd + p3(p1/p2) [C% + c3] + (1 - 2p1p + pi) a1 ,

where c2, and c2, are aggregate variability parameters for all other classeswhen k > 2. Formula
(34) was chosen because it satisfies certain limiting consistency conditions. For al p, as
q; —» 0, p; — 0and c3;(p) — c3;, which is consistent with [36]. For al p, as q; — 1,
p1 - pand cii(p) - c3(p), the one-class Sl approximation in (6). For al q;, asp - 1,
p1 — Qqq and c31(p) — c3iin (19), (28) and (33), as it should because the server approaches
being continuously busy. Finally, for all q;, asp — 0, c3;(p) — c2;, which can be shown to

be the appropriate pure light-traffic approximation.
4.2 A Multi-Class Hybrid Approximation

When there are more than two classes, (34) involves aggregating all classes except the first in

order to determine T,, ¢, and c2,. Instead of doing this aggregation, we can use (19). Then (34)
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becomes (13).
4.3 Common Service-Time Distributions

In the special case of common service-time distributions, T; = T, = tandc? = ¢ = ¢

so that (34) becomes

cdr(p) = p1(p — p1) €& + (1 — 2p1p + p?) iy (35)

and (13) becomes

ci1(p) = PP1Cs + pa ji pjEaj + (1 - 2p1p + pf) cdy . (36)
Moreover, (36) coincides with (35) when we use the asymptotic method (10) to approximate the
aggregate variability parameter c2, in (35) in terms of the individual variability parameters Eﬁj,
2 < j £ k. Even with non-identical service-time distributions, (35) and (36) remain candidate
approximations, using (7) and (8) of [32] to determine c3. Of course, it remains to determine c2,
when class 2 is an aggregate of other classes. The AM approximation is (10); the other natural
simple dternative isthe QNA hybrid c2, = weiy + 1 — wwhereciy is(10) and the weight w
comes from (29) and (30) of [32]. Formulas (13) and (35) coincide if c3, is the AM

approximation in (10).
4.4 Extension of the Bitran-Tirupati Approximation
Another candidate approximation is obtained from (2), i.e., (6) of [5], using (6) and (31). Let

cii(p) = p1Ci(p) + ciy

p1[p?cd + (1 - p?) 3] + ciy

p1p?cd + pi(l - p?) c3 + qi(1 - qy) ci + (1 - g1)%ca (37)

(Note that p; and g, both appear in (37).) Formula(37) behaves the same as (34) if p; - Oand

g1 —» Oorifp; - 1andq; - 1, but behaves differently asp — Oand p —» 1. However,
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qualitatively (37) and (34) are quite similar. Note that (37) could be modified using (19), just as

(34) was converted to (13).

With common service-time distributions, (37) reducesto (7). If, in addition, we express c2 in
terms of ¢2; and c2, using the AM approximationin (8), i.e, c2 = q,¢2; + (1 — g;) ¢2,, then

(37) and (7) become (9), as noted in Section 1.
45 The Caseof Zero Service Times

Another consistency condition to consider involves what happens as the mean service time for
one class goes to zero. If T, — 0 with A, fixed, then for class-1 it is as if class-2 were not
present. Consistent with this exact theoretical reference point, (34) approaches (6) for class-1
alone. However, (37) fails to satisfy this condition; it is smaller by the factor p4, which could be
arbitrarily small. Similarly, we can consider what happenswhen 1, - 0 with A fixed, but the
exact behavior is more complicated; (34) approaches c2; + p3(p1/p2)(c2, + ¢%), while (7) is
unchanged, except c2 changesast; — 0, i.e, ¢ - p,(c% + 1) - 1. Hence, (34) captures,
at least qualitatively, the real explosion in variability that occursast; - Oand p; - 1, while
(7) and (37) do not. Thus, (34) is our proposed two-class procedure and (13) is our proposed full

multi-class approximation.
4.6 Summary

A summary of the candidate approximations for c3; discussed here appearsin Table 1. There
are three procedures that work with all k classes and five procedures that work with only 2 classes
(the class of interest plus the rest aggregated). The two Erlang-based two-class procedures INT2
and INT3 from [5] are not included in this list. All procedures in Table 1 have c3; a linear
function of the arrival variability parameters cg,-, so that for an open network of queues the net
arrival-process parameters can be obtained by solving a system of linear equations. Moreover, it

is easy to see that this system of equations always has a unique solution.
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5. TheBitran-Tirupati Experimentswith Common Service-Time Distributions

In this section we compare our approximations for c3;(p) with the approximations and
simulation results of Bitran and Tirupati [5]. Throughout this section, we follow [5] and assume
that al classes have a common service-time distribution. Our leading candidates are (35) and
(36) which are special cases of (34) and (13). (These are our first choices because they satisfy al
the consistency conditions.) Our third candidate is (7) which coincides with (37), and is based on

(2), (4), (6), and (31). Our fourth candidate is (11).

Variants of candidate approximations (35) and (7) are obtained depending on how we
approximate the variability parameters ¢2 and c3, for the respective superposition arrival
processes. The AM approximations for ¢2 and c2, are given in (8) and (10). (It was aready
noted that the AM approximation converts (7) into (11).) The QNA hybrid is the convex
combination wciy + 1 — wwhereciy, isthe AM approximation and the weight w comes from
(29) and (30) of [32]. An S| approximation and other hybrids are discussed in [1] and [31]. We

only consider the QNA hybrid approximation for superposition processes here (and the AM via
(12)).

The first experiments from [5] that we consider involve two or more i.i.d. arrival processes.
Consequently, c2 is the same for al classes. In this case (but not more generally), (11) and (36)

coincide, both reducing to
2 — 2 _ 2
car(p) = papcs + (1 - p1p) Car - (38)

There thus remain three new candidate approximations: (7), (11) and (35). Approximations
(7) and (35) involve applying the superposition approximations in [32] to c3 and c2,, and c2,,
respectively. The QNA hybrid approximations for ¢2, and c2 do not agree. Since the component
streams are i.i.d., the effective number of streams v in (30) of [32] is just the actual number of

streams. For c2,, this is obviously one less than for c3. Following [5], we consider the cases
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v = 2,3,5and 10. For treating c2,, we thus need to consider 1, 2, 4 and 9. The resulting
weights w for (29) of [32] and approximate variability parameters for the six cases involving
cgl = 0.500, 0.333,0.250 and p = 0.6, 0.9 aregivenin Table 2. As can be seen from Table 2,
the QNA hybrid recognizes the tendency for superposition processes to converge to Poisson
processes as the number of streams increases: c2 and c2, increase toward 1 as v increases. The

limiting case in which c2, isreplaced by 1 was used by Bitran and Tirupati to obtain (3).

The three approximations for c3; (p), (38) and the QNA hybrids plus (7) and (35), are
compared to simulation and the Bitran-Tirupati approximations (INT1 and INT3 from [5]) in
Tables3 and 4. All these approximations perform reasonably well (much better than a direct
application of [32], as shown in [5]). The most elementary approximations are (38) and INT1;
(38) is better for small numbers v of component arrival processes, but INT1 improves as v
increases, reflecting the convergence to Poisson. The two QNA hybrids perform essentially the
same, both being somewhat better than (38) and INT1. The performance of the QNA hybrids is
roughly comparable to INT3; however, the QNA hybrids may be preferred because they are more

elementary and generalize to other cases.

It isof course of interest to see how these departure-process approximations perform when the
departure process serves as an arrival process to a subsequent queue. Even a perfect match of
¢4, (p) with simulation does not guarantee good congestion approximations because the
parameter c3; (p) only partially characterizes the departure process. Moreover, the departure
process is typically not renewal. However, experience indicates that good congestion
approximations usualy require c3;(p) to be close to the actual value[33], so that the
comparisonsin Tables 3 and 4 are meaningful. To illustrate how the approximations apply to the
congestion measures, we consider one case from [5], let the number of arrival processes be 5,
c2, = ¢2 = 0.333,and p = 0.6 (the eighth row of Table4). Let the departure process of each

class be routed to a separate single-server queue with i.i.d. Erlang servicetimes (c2 = .333) and
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traffic intensity 0.8. The observed simulation average number of customers in one of these
gueues was 1.79. Using the approximation (45) and (47) of [32] the approximate values by (7),
(35), (38), INT3 and INT1 are, respectively 1.78, 1.78, 1.75, 1.77 and 1.96. In contrast, simple

M/M/1 and M/G/1 approximations are 4.00 and 2.93, respectively.

We aso consider a second experiment from [5]. There are two arrival processes with the
arrival-rate proportion p; = Aq/A = j/10,1 < j £ 9. Let dl the arrival and service variability
parameters be 0.333 and let p = 0.6. Since there are only two streams, c3, does not require
aggregation and (35) coincides with (38). Moreover, since ¢c2 = ¢3; = c2, = 0.333, by these
methods c3; (p) = 0.333for all p and p;. However, for the QNA hybrid based on (7), ¢2 must
be calculated. Since the streams have unequal intensity (except in the case p; = 0.5), the
equivalent number of streams v from (30) of [32] isless than two. The calculations for the QNA
approximation of ¢2 appear in Table 5 together with the various approximations for ¢3; (p). The
approximations perform reasonably well, but are not exceptionally accurate, having relative errors
of about 5-20%. As noted in [5], these approximations evidently perform better as the number of

component streams increases (unlike (1) when there is deterministic routing).

6. Conclusions

In Sections 2 and 3 we presented theoretical results characterizing the departure processes of
individual customer classes from multi-class queues under the assumption that the server is
continuously busy. As noted in Remark 2.5, the AM result also applies to multi-server queues.
Obviously, these results can be used to describe the queue in the special limiting case, in which
the server is amost always continuously busy, but they also can be used to develop hybrid
approximations for more general cases. In Section4 we proposed reatively simple hybrid
approximations based on our theoretical results, especially (13) and (34), and in Section 5 we

showed that these hybrid approximations perform reasonably well when compared to simulations.
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Overadl we have established a basis for improvements in the parametric-decomposition method
for approximating open gqueueing networks. It remains to refine the approximations and do more
extensive experiments. Thisisintended for a future paper. Experiments are especially needed in

the case of class-dependent service times. One such experiment is described in Section 3 of [36].

The approximations developed here and in [5] offer significant improvements over the
random splitting formula (1) when the routing is deterministic. Conversely, when the routing is
primarily random, (1) and [32] are preferred. Of course, in many realistic networks both random
routing and deterministic routing are present, so that it is appropriate to account for both kinds of
routing in the network analysis. A hybrid routing approximation has been implemented in [24].

Further work in this direction seems worthwhile.
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Table2. Approximate variability parameters for superposition arrival processes via QNA:
wcay + 1 — wwith the weight w coming from (29) and (30) of [32].
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Table3. Approximate single-class departure-process variability parameters Cgl for one multi-class queue with
independent and identically distributed component streams and service times: the case of p = 0.9 and
c2 = 0.333(cf. Table 1 of [5]).



O O O 0 Variability Parameter c3; 0
E Number of B One EAggregate E New U from Bitran-Tirupati [5] E
] component [JArriva [jDeparture 5 0 g 0
0 streams OStream Ofrom[32] 0(11), (36) LQNA hybrids a
U (productsy U g U and 5 5 & 5 5 U
O O¢2, O ¢§ U @ 0@ g@Es OINTL gINT3 gSimulation
0 T 0 T = S H

v =2 00500 O 0452 [0 .470 5.476 0 470 50.595 U408 U 0500 O
Qp, = 05) D033 O 0350 U 333 [.342 .33 0499 3369 5 0371 U
. 50250 o 0299 o 266 D0.275 7.266 00453 7304 [; 0303 -
O u) O u) 0 & 0 & & O
W =3 00500 O 0464 O 480 492 D406 0501 U403 0507 O
fpy =0333) Joam O o3ee D 333 0349 0.353 (0481 §.351 o 0377 .
. 50250 o 0316 o 260 8.278 0283 00427 0277 [ 0287
O | 0 0 0 & 0 & & 0
=5 00500 O 0484 [ 488 506 0.507 10568 H.403 U 0510 [
E{p1 =02 U033 U 0302 U 333 (357 0-358 0044 7.340 5 0360 g
. J0250 5 0347 o 286 U282 287 00376 [.262 [ 0276 [
O T 0 T 0 & 0 & g 0
v = 10 00500 O 0524 O 494 513 D508 0539 U495 0507 O
Qp, = 01) D033 U o446 U 333 [.359 5.352 0393 .33 5 0354 U
H Ho2so H 0407 H 253 Ho282 g283 H032 g.255 O 0274 H
Table4. Approximate single-class departure-process variability parameters cg 1 for one multi-class queue

with independent and identically distributed component streams and service times: the case of
p = 0.6and cs = 0.333 (cf. Table 3 of [5]).
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Tableb.

Comparison of approximations for the single-class departure-process variability parameter: the

case of two component

arrival  processes with proportions P

c2; = ¢2, = ¢Z = 0.333,andp = 0.6. (cf. Table 7 of [5]).
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Table6. Model data for the two-class three-queue network without common service-time distributions.
(Ajj isthearrival rate of classi at queue], A; isthetotal arrival rate at queue], etc.)



5% confidence interval

0 Cases
Resits 7 1 O2 O3 04 Os
] D ] || ] ]
C311 ViaQNA [32] 0 244 Uoo3 Uoss Ui16 U105
INT1from[5] [ 2.46 50.97 50.40 51.19 50.26
(1) O 236 [j0.80 {031 {107 70.25
(77 U 235 [0.70 040 1.06 0.26
(37) g 154 0051 00.43 0052 00.41
(34) 7 100 Uoeo Hozo Hoes Uo.o4
Simulation E 1.00
O
1
O
O

3,1 ViaQNA [32] .
INT1from[5] [ 13.96 50.74 50.73 52.28 51.17
(1) 01386 057 064 216 116
(7) 01396 [0.74 [0.47 254 1.33
(37) 513.86 00.77 00.61 (1245 132
(34) ;1458 Uos1 Uoeo U1.28 C0.68

O Il 0 Il

Simulation B g U g g
5% confidenceinterval [ O O O O
= ] [ [ L]
EQ 4, viaQNA [32] B 93 038 0340 046 0430
INTLfrom[5] § 94 U39 U155 Ua7 Uoogo
11) 0 91 53.2 0122 54.3 H0.86
(7 0 90 28 155 43 [0.90
37 U 60 [20 0166 020 [O155
(34) B 41 023 0064 028 0003
0
0
0
g

O O oo
Simulation 4.1 E B g E
0 i .
5% confidenceinterval [(exact) 0 0 0 0
0 [ ] U ]
EQ,3viaQNA[32] =205 [1.41 [0.96 [I7.04 [4.47

INTLfrom[5] 5205 D111 0108 0696 03.72
1) g204 Hosg9 Hoso Ueel U369
(7) 0205 AL11 032 7.71 4.18
O O O O
(37) 0204 {119 O.71 745 4.16

DI:II:IDI:II:IDDDD[D%DDDDDDDDDDD%DDDDDDDDDD HQDEDDDDDDDDDDD
O
O
O
O
A A A e e

(34 U216 0130 0069 04.04 [12.16
u g—35—B5—38
Simulation g 0 0 0 0
EQS% confidence interval O 0 0 O
a 0 0 0 0

Table7. Comparison of several approximations with simulation for the two-class three-queue model
specified in Table 6.



APPENDIX A

An Experiment with Class-Dependent Service Times

In this Appendix we discuss an experiment to compare the various approximations for the single-class
departure-process variability parameters cﬁi (p) and the resulting congestion measures at subsequent
gueues with simulation results in the case of class-dependent service-time distributions. For this purpose,
we consider a relatively simple two-class three-queue network. Class 1 visits queues 1 and 2 and class 2
visits queues 1 and 3, in that order. The class-1 (-2) departure process from queue 1 is thus the sole arrival
process to queue 2 (3). In our notation there now are two subscripts, the first referring to the class and the
second to the queue. To evaluate the approximations, we focus on Cﬁi 1 = Cﬁi 1(p), the class-i departure-
process variability parameter from queuel, for i = 1 and 2; EQ1,, the expected queue length (not
counting the customer in service, if any) of class 1 customers at queue 2; and EQ o3, the expected queue

length of class-2 customers at queue 3.

When the total variability parameters Cg and c§ are needed in the approximation they are obtained via
[32], see (7), (8), (29) and (30) there. Their values are displayed in Table 6. The approximate expected

gueue lengths at queues 2 and 3 are computed using the Kraemer and Langenbach-Belz [19] approximation,

i.e,
p? 2 2 2 2
EQ = 20 -p) (ca + ¢s) 9(p, 3, Cs) (A1)
where
O O _ 1-c2)20
[éXp O 2(1 p) ( , ag ’ Cg <1
5 O 0 3p (ca + cs5) O
g(p,ca Cs) = O (A2)
O D(l ) (c2-1) O 224
exp (1 -p) ——-0O,cg=1.
O O (2 +4c2)g *

Of course, here cgil plays the role of Cg and ng plays the role of Cg. (In al our examples

2 _ 2 _
Csi2 = Cs3 = 0)



We consider five cases. The model parameters appear in Table 6 and the results appear in Table 7. The
importance of the new approximations is dramatically demonstrated in cases 1 and 5, where there is a great
difference in the service-time distributions of the two classes. Note especially the expected queue length at
gueue 2 in case 5; the proposed new approximation (34) is better than the others by several orders of
magnitude. Overall, Table 7 should show that the new approximations perform quite well, especially the

leading candidate (34). (Sincethisisatwo-class example, (13) and (34) coincide.)

In [36] asimulation experiment is reported for the multi-class batch-arrival model in Section 2.2. These
experimental results also strongly support the new approximations as well as the low-intensity

approximation principle discussed in Section 1.5.



