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ASYMPTOTIC FORMULAS FOR MARKOV PROCESSES
WITH APPLICATIONS TO SIMULATION

WARD WHITT
AT&T Bell Laboratories, Murray Hill, New Jersey
(Received July 1989; revision received October 1990; accepted January 1991)

The simulation run length required to achieve desired statistical precision for a sample mean in a steady-state stochastic
simulation experiment is largely determined by the asymptotic variance of the sample mean and, to a lesser extent, by
the second-order asymptotics of the variance and the asymptotic bias. The asymptotic variance, the second-order
asymptotics of the variance, and the asymptotic bias of the sample mean of a function of an ergodic Markov process can
be expressed in terms of solutions of Poisson’s equation, as indicated by positive recurrent potential theory. We review
this positive recurrent potential theory, giving special attention to continuous-time Markov chains. We provide explicit
formulas for birth-and-death processes and diffusion processes, and recursive computational procedures for skip-free
chains. These results can be used to help design simulation experiments after approximating the stochastic process of
interest by one of the elementary Markov processes considered here.

This paper was motivated by our desire to better
understand how to plan simulation experiments.
We have in mind stochastic simulations in which we
estimate steady-state quantities by sample means. To
design the experiment, we need to have some idea
about the simulation run lengths required to achieve
the desired statistical precision. Of course, since we
intend to simulate, we probably cannot directly ana-
lyze the model of interest prior to performing the
simulation. Thus, we suggest approximating the
model of interest by a more elementary model that
can be analyzed analytically. In Whitt (1989) we show
how reflecting Brownian motion (RBM) can be used
to approximate various queueing models for this pur-
pose. Earlier work along these lines was done by
Blomgvist (1969), Moeller and Kobayashi (1974) and
Woodside, Pagurek and Newell (1980). Further work
has been done by Asmussen (1989, 1992).

We can also use other elementary Markov models
in essentially the same way. For example, the
Ornstein-Uhlenbeck diffusion process is a natural
approximation for infinite-server queues; see Whitt
(1982), Glynn and Whitt (1991) and the references
cited there. Here we derive basic formulas and com-
putational procedures for a large class of Markov
processes. The main quantity is the asymptotic vari-
ance of the sample mean because it determines the
size of confidence intervals for large samples. While
we were primarily motivated by simulation, the

asymptotic variance is also important for estimation
from direct system measurements.

There is substantial supporting theory for calculat-
ing the asymptotic variance, the second-order asymp-
totics of the variance, and the asymptotic bias of a
sample mean of a function of an irreducible positive
recurrent Markov process, in particular, the positive
recurrent potential theory for Markov processes. The
main idea is that these asymptotic quantities can be
expressed in terms of solutions of Poisson’s equation;
e.g., see Proposition 10 and its Corollaries 3-5. For
finite-state, discrete-time Markov chains (DTMCs),
this is the familiar theory associated with the funda-
mental matrix Z in Chapters 4 and 5 of Kemeny and
Snell (1960); the asymptotic variance of the sample
mean is given in Corollary 4.6.2 there. With minor
modification, the positive recurrent potential theory
for DTMCs carries over to continuous-time Markov
chains (CTMCs) too, as was pointed out by Kemeny
and Snell (1961). Potential theory for MCs has many
applications, e.g., it also plays an important role in
Markov decision processes (MDPs), as was first shown
by Howard (1960). Relevant discussions appear in
Miller and Veinott (1969), Veinott (1969) and
Denardo (1972). The potential theory for CTMCs
is also discussed in Chapters 2 and 7 of Keilson
(1979). Extensions to denumerable DTMCs are con-
tained in Chapter 9 of Kemeny, Snell and Knapp
(1966). Extensions to Harris’s recurrent DTMCs

Subject classifications: Probability, diffusion: the asymptotic variance of the sample mean. Probability, Markov processes: potential theory and Poisson’s
equation. Simulation, design of experiments: required run lengths.

Area of review: SIMULATION.

Operations Research
Vol. 40, No. 2, March-April 1992

0030-364X/92/4002-0279 $01.25
© 1992 Operations Research Society of America



280 / WHITT

with nondenumerable state spaces are contained
in Glynn (1989a) and the references cited there. The
recurrent potential theory for the M/G/1 queue is
contained in Glynn (1989b). A key early reference
for DTMC:s is Doeblin (1938); see pp. 90 and 111 of
Chung (1967) for the history.

Expressions for the asymptotic variance and the
asymptotic bias of the sample mean of DTMCs and
CTMCs are contained in Kemeny and Snell (1960,
1961) and Chung. Additional results and further dis-
cussion are contained in Keilson and Rao (1970),
Hordijk, Iglehart and Schassberger (1976), Hazen and
Pritsker (1980), Burman (1980), Grassmann (1982,
1987a) and Glynn (1984). We contribute primarily by
providing a survey, i.e., by making clear the connec-
tions to Kemeny and Snell (1960, 1961) and the
positive recurrent potential theory. We also provide
explicit formulas for birth-and-death (BD) processes
and diffusion processes. The explicit formulas facili-
tate deriving analytical expressions in special cases
(see Examples 1-3), determining bounds (see Propo-
sitions 3 and 5) and doing calculations.

We begin in Section 1 by deriving an expression for
the asymptotic variance of the sample mean of a BD
process (see (6)). In Section 2 we calculate the funda-
mental matrix of a positive recurrent BD process and
related quantities of interest, such as the asymptotic
bias and the second-order asymptotics of the variance
of the sample mean. We obtain continuous-state ana-
logs of the BD formulas for diffusion processes in
Section 3. These are of special interest because diffu-
sion processes are natural candidates to approximate
other stochastic processes. In Section 4 we review the
positive recurrent potential theory for CTMCs; i.e.,
we show that the fundamental matrix of a CTMC is
related to its generator via Poisson’s equation. We also
discuss recursive procedures for calculating solutions
of Poisson’s equations for BD processes and skip-free
CTMGCs. This discussion provides insight into the
recursive procedure developed by Grassmann (1987a)
for calculating the asymptotic variance of a sample
mean of a BD process. Finally, we make some con-
cluding remarks in Section 5.

Another approach to the asymptotic variance of the
sample mean and related quantities of interest is the
spectral representation. As discussed by Keilson,
pp. 33 and 109, when a CTMC is reversible, there is
a complete set of orthonormal eigenvectors associated
with real eigenvalues, so that the transition function
can be represented as a linear combination of expo-
nentials. If we calculate the eigenvalues and eigenvec-
tors, we can thus describe the full transient behavior,
not just the asymptotic values. Halfin (1978, 1984)

developed an efficient algorithm for calculating the
eigenvalues and eigenvectors of a BD process (which
is reversible), exploiting the special structure derived
by Ledermann and Reuter (1954); see also Abate and
Whitt (1989).

1. THE ASYMPTOTIC VARIANCE OF A
SAMPLE MEAN FOR A BD PROCESS

Given a real-valued, continuous-time stochastic pro-
cess Y(¢), the sample mean is

}_’(t)=t‘1v£ Y(s)ds, t>0, (1)

and its asymptotic variance is

&2 = lim ¢ Var(Y(2)). )

If Y(¢) is a stationary process with E[Y(¢)?] < o, then
it has a finite (auto)covariance function

R(t)=Cov[Y(0), Y(2)]
=E[Y(0O)Y()]-[EY(0)]?, t=0. 3)
If R is integrable, then

62 = 2J; R@) dt; 4

e.g., see Chapter 3 of Parzen (1962). In many cases
Y(¢) is not stationary, but is asymptotically stationary;
then formula (4) for the stationary version typically
provides the correct value. (A proof for the case of
irreducible finite MCs appears in (3.10) of Glynn
(1984).) The asymptotic variance is especially impor-
tant because, together with the asymptotic mean » =
lim,_.. EY(¢), it typically determines the full asymp-
totic distribution of Y(¢). Typically, tVX(Y(t) — 7) is
asymptotically normally distributed with mean 0 and
variance 62 as ¢ — o, e.g.,, see Theorem 20.1 of
Billingsley (1968). (This covers functions of MCs as a
special case, but the central limit for functions of MCs
has a long history; see 1.14-16 of Chung (1967)
and Glynn (1989a). These results are for discrete-
time processes, but corresponding results hold for
continuous-time processes by the same argument.)
From (4), it is evident that we can calculate ¢ if we
can calculate the covariance function R(¢), but the
covariance function is often difficult to work with
directly. (For positive results, see Glynn (1989c¢),
Abate and Whitt (1988) and the references cited
there.) Fortunately, it is often not necessary to calcu-
late Var(Y(¢)) or R(¢) explicitly in order to find the
asymptotic value 2 because simplification occurs in



the limit. This simplification is well illustrated by
considering the case of an ergodic BD process X(¢) on
the subset of integers {0, 1, ..., n} with positive birth
rates \;, death rates u;, and stationary probabilities
™ = 7l’0()\()>\1 e )\1_1)/(}11 [N }l.,‘). (The process is
reflecting at 0 and »; i.e., A, = uo = 0.) Let Y(¢) =
f(X(2)), where fis a real-valued function on the state
space of the BD process X(¢). Let f; = f(i) and let f
be the steady-state mean, i.e.,

F=3 B

The following convenient formula was derived by
Burman (1980).

Proposition 1. For a function of a BD process,
n—1 1 J 2
ZT[Z(f f)w]. (6)

Example 1. Assuming that (6) remains valid for
infinite-state BD processes under appropriate
regularity conditions, which it does (see Remark 6), it
is easy to apply it to obtain 52 for the process recording
the number in system in an M/M/1 queue with service
rate 1 and arrival rate (and traffic intensity) p < 1; if
fi=1i,then \; = p, m;= (1 — p)p’ and

., _ 2p(1 + p)
T @)

whereas the full covariance function R(¢) is relatively

complicated; see Morse (1955), p. 168 of Grassmann
(1987a), Abate and Whitt (1988) and Whitt (1989).

We first give a relatively simple direct proof of (6).
(Our proof is very different from Burman’s (1980),
which followed the lines of Burman (1979, 1981).)
Indeed, (6) is a special case of the following formula
for irreducible finite-state CTMCs, which seems to be
of some independent interest. Let the state space again
be {0, 1, ..., n}. Let T;; be the first passage time from
i to j (with T; = 0); again let = be the stationary
probability vector and let f be as in (5).

Proposition 2. For a function of a CTMC,

?==23 ¥ (- mET,(f;~ [)m

Jj=01i=0

n j—1

==23 Y (fi-mdET,;+ ET)f~ [)m. (8

j=1i=0
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Formula (6) follows immediately from (8) and the
BD formula

Jj=1

1
ET;+ ET,;= Y, —,i<j. )
fmi M

(Change the order of summation in (8) and use the

fact that Y7o (f; — f )r; = 0.) Formula (9) is an
immediate consequence of the well known formula

J
ET 1 = (1/Nm)) 3, (10)
i=0

see p. 93 Heyman and Sobel (1982). By changing the
role of the birth-and-death rates, from (10) we obtain

(I/Nm) X (11

i=j+1

ET ;=

Of course, (9) follows easily from (10) and (11).

Formula (8) in turn follows relatively directly from
the expression for 2 in terms of the fundamental
matrix of a CTMC, i.e.,

=23 Y fimiZyf, (12)
i
where Z the fundamental matrix, defined by

Z,'j = ‘L’ [P,j(t) - 7l'j] d[, (13)

with P;;(¢) being the transition function; see Kemeny
and Snell (1961), (16) of Keilson and Rao (1970),
Chapter 7 of Keilson (1979) and Glynn (1984). (The
terminology is not consistent; we follow Keilson.) We
discuss (13) further in Section 4; (12) follows easily
from (3), (4) and (13). The DTMC analog of (12) is
Corollary 4.6.2 of Kemeny and Snell (1960); it would
look exactly like (12) if we worked with Z;; — «; instead
of Z;;, which is a common convention in recurrent
potential theory; see Chapter 9 of Kemeny, Snell and
Knapp, and p. 482 of Denardo.

The key connection between (8) and (12) is provided
by the CTMC formula
Zy= 2 — mET,, (14)
which is easy to derive from (13) (see the Appendix);
(14) is the CTMC analog of Theorem 4.4.7 of Kemeny
and Snell (1960), which appears on p. 102 of Kemeny
and Snell (1961). (As noted before (9) there, (3) there
holds when the asterisk is removed.) We obtain (8)



282 / WHITT

from (12) and (14) by rewriting (12) as

Y- mZi(fi— 1)

i=0

1M=

23 3 (i=miZy=mET)S=F) (19

=-=2 ZO Zo(fi— miETy(fi— ).
2012

In the first line of (15) we use the fact that },; =, Z;; =
0 and ¥; Z; = 0. (Other expressions for > will be
given later; see Corollary 3 to Propositions 10 and 12.)

Hence, we have the desired derivation of (6) and
the generalization to CTMCs in (8). However, it is not
evident that (6) is the most effective way to compute
&2 for a BD process. An attractive alternative is
Grassmann’s (1987a) recursive algorithm, which is a
special case of the recursive solution to Poisson’s
equation for a BD process; see Remarks 1 and 2 below.
A naive direct application of (6) can be unsuitable for
calculating 62 when some of the stationary probabili-
ties w; are very small. To avoid exponent overflow, it
is natural to move the factor 1/x; in (6) into the inner
sum and exploit the fact that

S = Tm==3 (=T (16)

J+1

We thus rewrite (6) as

22 [Z(ﬁ, )V 1'—}

j= 0>\_] Uy

2
+2 2 )\[E(f [y ] (17)
j=j*+1 NiLi=j Ly
The idea is to let j* in (17) be such that = is nearly
the maximum probability. If 7 is unimodal and j* is
the mode (or one of the modes), then «;_,/x; is non-
increasing in i for j < j* and =/, is nonincreasing in
ifor j> j*. A sufficient condition for 7 to be unimodal
is for 7 to be log-concave or log-convex, which occurs
if Nj/u;+1 is decreasing or increasing; see pp. 70-73
of Keilson. Of course, unimodality is not essential
to use (17).

We conclude this section with some applications of
(6) and (17) to treat special cases and obtain bounds.
We first show that the unimodality of = discussed
above enables us to bound % above, at least crudely,
independent of 7. For this purpose, let

K/=max{|f,—f|:0<isn}
<max{|f;|:0<i<n} (18)

and
= 1/min{\; 0<si<n-—1}. (19)

The following bound depends on K}, K, and n, but
otherwise not on .

Proposition 3. Ifthe stationary probability vector = of
a BD process is unimodal, then

72 < 2n°K; K,.

Proof. Apply (17) to get

&ZszK}Kx(gl[é 7:,]2+ E}l l{ém]z).

Jj=0 Tj Li=0 j=i*+1 T Li=j

Noting that

m<(j+ Dm forj<j*
0

1

and
ZW;S(}’I—]"F 1)7l'j fOl'j?j*,

i=j

we obtain

<2K2K>\<Z(]+1)27rj+ nz (n— ]+1)27rj)

j=0 J=i*+1

<2n’K; K,.

We can also apply Proposition 2 to obtain a bound
on 5% in terms of the mean first passage times for
general CTMCs. For this purpose, let

Kr=max{ET;;: 0 < i, j < n}. (20)
Note that K7 = max{ET,,, ET,0} for a BD process.

Proposition 4. For a CTMC,
n _ 2

&2s2Kr<2 |f,~—f|7r,-).
i=0

Proposition 3 is interesting, because if 7 is not
unimodal, then &2 can be arbitrarily large for a BD
process with bounded », as we show below. From
Proposition 4, we see that the mean first passage times
necessarily can be arbitrarily large too.

Example 2. To see that 62 can be arbitrarily large for
a BD process with bounded #n, we consider a nearly
decomposable BD process. In particular, suppose that
n = 2, so that there are only three states. Consider the
symmetric case with A\ = u, = x and A\, = u; = ; then
1/2+ x)and 7, = x/(2 + x). Let =i, so
that f =1 and ¢ = 4/x(2 + x) — ® as x — 0. Also,

Ty = T2 =



ETy=ETy= 2+ x)/x — »as x — 0. This example
has a high 62 and high mean first passage times for
small x, because for small x the model is bistable,
tending to remain in the states 0 and 2 a long time;
i.e., ETO] = ET21 = l/x

To simplify the expressions further, let P; be the
cumulative distribution function associated with the
stationary probability vector =, i.e.,

P=Ym0<j<n (1)

Example 3. To see the possible computational diffi-
culties with (6), and for its intrinsic interest, consider
an M/M/c/0 loss system with ¢ servers, no extra
waiting space, an individual service rate | and an
arrival rate A, so that the number in service is a
BD process with \; = A, 0 s j < ¢ — 1, and y; = J,
1 < j < ¢. A special case is M/M/o. These models,
like M/M/1 in Example 1, serve as simple approxi-
mations for a large class of models of interest.

With f; = i, it is well known that /= A1 — =) and
the steady state variance (variance of ) is af f -
Are(c — f ). From (6) we obtain

52=2 2 [Z (-1 —n))w,]

0 AT

c—1

=2Y =

j= 0>\7I'J

2
[Z ATy — AT+ }\wiwc]

=2A 2 [7.P, '_7"1']2

j=0Tj

c—1
—2)\2—[71-2P

j=0T;

- 2r.mPi+7l]

c—1 c—1 2
=2\ 1—2cr, 427, Y, (1 =P)+x2 Y ]
™

L Jj=0 Jj=0

[ ‘o P?
=2\ 1 =2¢cm.+ 27 N1 — 7)) + w2 2 ]

L j=0 Tj

r 1 p2
=2\ 1-=2n(c—f)+ =2 2 —’] (22)

Jj=0 J

where P; is given by (21), which is an alternative to
the formula in Section 6 of Benes (1961), which was
derived via the spectral representation. Formula (22)
evidently dose not simplify as much as (7), but for the
special case in which ¢ = «, 7. = 0 and we obtain the
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well known M/M /o result

_22

When ¢ < o, we can compute with (22), but a direct
computation with either (6) or (22) can be difficult
because «; in the denominator can be very small, e.g.,

= 1/Y%0 ()x’/z') approaches e™ as ¢ — «. To
111ustrate, let ¢ = 1,000 and A = 400; then the
M/M/c/0 system behaves like an M/M /o system with
the same parameters. The steady-state mean and var-
iance are approximately 400, so that ; is negligible
for j outside the interval [300, 500] and =, =~ ™%,
From (23), we know that 7> =~ 800, but we have
difficulty computing directly from (6). Similar prob-
lems occur when X is closer to c.

However, 7 is unimodal with mode [A] or [A] + 1,
where [x] is the greatest integer less than x, so that
with parameters ¢ = 1,000 and A = 400 we set j* =
400 in (17) and the computation is easy to carry out.
(To see that the mode is indeed as claimed, recall that
the property is well known for the Poisson distribution
associated with the M/M/~ model, and for the
M/M/c model the M/M/x stationary probability is
just truncated and renormalized.)

Formula (22) is convenient for developing bounds
and approximations. For example, using the crude
bound P; = P;m;, we apply (22) to obtain a lower
bound.

2
[E (Ao }\'ﬂ'i)] =2\, (23)

0 AT

Proposition 5. For the M/M/c/0 model,
G1=2\1=2r(c—f)+72c—f)]
=52, =2\[1 - 2n(c— f)].

\V

a2

On the other hand, BeneS showed for this model
that

O0<R(l)<oje™ and 1<r< 12 (24)
9
from which follow the upper bounds
<6y =20r<2f<2A (25)
and the approximation
2
&2 ~ &,24]) = 2(Uf)
f
_ 2
=2>\[1—27rc(c—f)— L G f)]
f
=2>\[1—27rc(c—7)—7rc mele= f)]. (26)
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From (22), we see that the lower bounds evidently
are good approximations when . is small. For exam-
ple, consider the case ¢ = 100 with 7. = 0.01, so that
A = 84.06 and f = 83.22. Then 3, = (0.664) 2],
5 = (0 666) 2\, 6%p = (0.683) 2\, 62 = (0.706) 2X
and 2 = (0.822) 2\. On the other hand, suppose that
we consider higher blocking with =, = 0.10, so that

= 104.11 and f =93.7 with c= 100. Then o3, =
(—=0.26) 2), 63 = (—0.20) 2), 6%, = (0.081) 2\, 62 =
(0.103) 2Xx and 6% = (0.270) 2X. In both cases, the
Benes approximation (26) performs reasonably well.

2. OTHER ASYMPTOTIC QUANTITIES FOR A
BD PROCESS

Another way to derive (6) as well as other useful
formulas for BD processes is to directly calculate the
fundamental matrix Z in (13) for a BD process. Since
¥ miZ;; = 0 for all j for general CTMCs, from (14) we
see that

Z = mET,; = m; ), mET; (28)
i=0

and

Z;=mET,; — ET;], i # j, (29)

for general CTMCs, where T,; is first passage time to
J from equilibrium. (Formula (28) is the CTMC analog
of Theorem 4.4.9 of Kemeny and Snell (1960).) From
(10), (11), (14), (21) and (28), we obtain the following
formula for BD processes.

Proposition 6. For a BD process,

n—1
_ (1-P)?
lZ =ET,=
= ET,= ZO et 2 o (30)
and
leczz )\k k
i—1 1 _
T 2
Example 1 Revisited. For the M/M/1 queue, P, =
1 — pk+l’
_ p” Zj+1
l ZIJ =ET,; = -

(1=p)3? (1-=p)

and
p7=pT (=1 . .
Zi— 7, (1-p2 1-p 1<)
2 JJ=E7"U=
Gl (=j) ..
(1_p),l>j.

Of course, ETj; is just (i — j) times the mean busy
period for i > j. In agreement with Corollaries 3.1.3
and 3.2.2 of Abate and Whitt (1987), ET,, =
p/(1 = p)*.

Next consider the asymptotic bias of the sample
mean (1) for a function of a CTMC with an initial
probability vector «, defined to be

B. = lim ([E,(Y(1)) - [, (32)

where E, is the expectation starting with «. (In MDPs

fis a reward function, f is the long-run average re-
ward or gain rate and {3, is the bias.) For a CTMC,

Ea=lim[ iiaP,,(s)f ds—tf}

{—0 0 ;= 0,j=0

=lim i a; ‘n;jjf [Pi(s) —m;] ds
Jj=0 ~0

- =

=2 X aZyf (33)

i=0 j=0

From (33) we see that it is easy to apply Proposi-
tion 6 to compute §,. Alternatively, we can apply the
argument in (15) to obtain an analog of (6).

Proposition 7. For a function of a BD process,
= SB 2‘6(0‘:“‘ Wi)ij(fj—f)
i=0 j=

—_;0 2 (ai=T)ET,(f~ f)m,

n—1

Prepl

T M\

f f)7rz Z (o — 7rz) (34)

The variance of the sample mean of a function of a
CTMC under stationary initial conditions can be
expressed as

Var(Y (¢)) = 2¢72 j(; t = $)R(s) ds

0-,2

N

~ T4 0™, (35)

~



where 7 is some positive constant and

n n

23 X w2 (36)

i=0 j=0

¥

see (3.5) of Glynn (1984), noting that further simpli-
fication occurs there (write P(¢t) = II + (P(¢) — II) and
F = Z + II). We can thus apply Proposition 6 to
compute the second-order term + as well as the first-
order term 2. Alternatively, we can apply (14), (15)
and (28) to rewrite (36) as

M=
M=

§=2 kgo(ﬁ—f)

0

i
i

i

[k ETW(ETo— ET)(f— [ )

0j

=2(Z > (ﬁ—f)mmETinZ Y (fi-f )w,«,-ET,,-)

i=0,=0 i=0,/=0

-2 EO ZOkEO (fi= P milmETw ETi1(fi— f)mys (37)
i=0j=0k=
which can aid calculation because ET;; can be calcu-
lated recursively. However, (37) has the same problem
for computation as (6). In Section 4 we will show how
to calculate 8,, 62 and ¥ recursively.
The appearance of Z? in (36) can be explained by
considering the associated matrices

Zﬁf)sj(: tMPy(t) — w1 dt, (38)

which satisfy Z{; = k! (Z*),;; see p. 108 of Keilson.

3. DIFFUSION PROCESSES

Since diffusion processes on the real line are
continuous-state analogs of BD processes, we should
expect that continuous-state analogs of the BD for-
mulas hold for diffusion processes, and indeed they
do. In fact, the analog of (6) is given on p. 94 of Mandl
(1968). This formula can also be derived easily using
the diffusion analogs of (8)-(15) here, as we will show.
For background on diffusion processes, see Mandl,
and Chapter 15 of Karlin and Taylor (1981).

Let the diffusion process have drift coefficient u(x)
and strictly positive diffusion coefficient o2(x), which
we assume are piecewise continuous on the interval
[a, b]. (These conditions cover almost all applications
and, with them, it is easy to verify the results.) Paral-
leling our treatment of BD processes, we assume that
the diffusion is reflecting at the boundary points a and
b. If we want to let ¢ = —c or b = +o0, then we assume
that the boundary point is inaccessible (it cannot be
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reached in finite time). We assume that the transition
function p(¢, x, y) converges to a proper stationary
density «(y). It is well known that

7r(y)=%,asysb, (39)
where

2
m(y) = 20%0) (40)
is the speed density,
s(y) = exp{— J:y -iiz((-%) dx} 41

is the scale density, and

M(y) = j; m(x)dx, a<y=<h», (42)

provided that the integrals in (41) and (42) are finite,
which we assume; see Sections 15.3 and 15.5 of Karlin
and Taylor or pp. 13 and 90 of Mandl. Moreover, if
T(x, y) is the first passage time from x to y, then

fyM(u)s(u)du, x<y
ET(x,y)=4 (43)

y

[M(b)—M@u)ls(u)du, x=y,

see problem 15, p. 385, of Karlin and Taylor or p. 91
of Mandl, so that

ET(x, y) + ET(y, x) = M(b) f s(u) du. (44)

Paralleling (13), let

Zx, y) = fo [t x, y) = =(y)] dk. (45)
Then, paralleling (14) and (28),

Z(x, y) = Z(y, y) = #(V)ET(x, y) (46)
and

Z(y,y)==(y)ET(e,y)

b
=7(y) f T(X)ET(x, y) dx (47)

from which it is easy to establish the analogs of (6),
(_34) and (37), assuming that all integrals converge. Let
S =[5 f(x)x(x) dx. Here are the analogs of (6) and
(34).
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Proposition 8. For a function of a diffusion process,

52=2 f f ST (x)Z(x, y)f(y)dxdy

=-2 f f (/) =/ (X)ET(x, y)
(f() = f)m(y)dxdy
b y _ 2
=2M(b) f S(y)[ f (fx)—f )w(x)dX} dy

-2 7 (y)U U=/ )”(x)dX}

b b
=J; f a(X)Z(x, y)f(y)dx dy

- f ' f b(a(x)—r(x))ET(X,y)

S(f() = [)m(y)dxdy

| vl
= Z(y)ﬂ_(y) (f(X) f)ﬂ'(X) dX

J;(a(x)—vr(x))dxdy. (49)

(48)

Example 4. Let X(¢) be reflected Brownian motion
(RBM) on [0, o) with drift coefficient —1 and diffusion
coefficient 1. Then 7(x) = 2¢™% and, if f(x) = x, then
(48) gives 62 = », which agrees with Corollary 9 to
Theorem 1 of Abate and Whitt (1988).

Example 5. Let X(¢) be the Ornstein-Uhlenbeck
(0-U) diffusion process on (—w, ) with ¢%(x) =
o2 and u(x) = —ux, where u > 0. Then =(x) =
n(x; o%/2u), where n(x; ¢) is the normal density with

mean 0 and variance ¢. Using the identity

J:y xn(x; 1) dx = —n(y; 1), (50)

we obtain 62 = ¢%/u® from (48), which is consistent
with the well known formula R(¢) = (¢%/2u)e™",
t=0.

To see that (48) is the continuous-state analog of
(6), we can define a sequence of BD processes approx-
imating the diffusion process; see Stone (1963).
Let the nth BD process be defined on the finite set
{a + k/n: 0 < k < [bn]} and let the birth-and-death
rates A,(x) and w.(x) in state x be defined in terms

of ¢*(x) and u(x) by
>\n(a+k/n)="lz‘rz(a‘H‘/”)z+ nu(a+k/n) 51)
pala+k/n)= noa+ k/”)z_ nu(a+k/n) ,

so that the infinitesimal means and variances are

M(a+k/n)— p.(a+ k/n)

u(a+k/n)
- (52)
M(a + k/n);rzlun(‘“r kin) _ oXa+k/n),

which approach u(x) and ¢?(x) at all points of conti-
nuity as n — o, By Stone, this implies weak conver-
gence in function space (see Billingsley) of the BD
processes to the diffusion process as n — .

The diffusion formulas in this section can now be
obtained as the limit of the BD formulas as n — oo,
For example, assuming that a + x is a continuity point
of o%(x):

bl N.(a + (k= 1)/n
k=1 wa(a + k/l’l)

M@ bl \(a+ k/n)}
= (@ + b)) e"p{ 2 loe L k)

o*(a) f””2u(y) e
—>02(a+x)exp{ ] az(y)dy}asn . (53)

Similary, (6) approaches (48).

While this limiting approach yields the correct an-
swer, there is a technical gap in the argument. If
{{Ya(t):t = 0}:n = 1} is a sequence of stochastic
processes converging weakly to another process
{Y(¢):t = 0} as n — o, by the continuous mapping
theorem it follows that the sample averages Y,(f)
converge weakly to Y(¢) as n — o for each t. More-
over, if there is appropriate uniform integrability,
which always holds if the state space is compact as
assumed here, then EY,(t) > EY(¢) and Var Y,(¢) —
Var Y(¢) as n — o« for each ¢. These limits certainly
provide a good basis for using the limiting processes
as approximations, but the complete argument re-
quires interchanging the limits # — o and ¢ — .

4. FUNDAMENTAL MATRICES AND THE
GENERATOR: POISSON’S EQUATION

So far, we have not mentioned the generator of the
CTMC, but, of course, the fundamental matrix Z and
the associated asymptotic quantities are determined



by the generator. To discuss the generator of an irre-
ducible finite-state CTMC, we will use matrix nota-
tion. Matrices will be denoted by capital letters and
row vectors by lower case letters. Let x’ be the column
vector obtained as the transpose of the row vector X,
e the vector of all 1’s, 6 the vector of all 0’s and ¢;
the unit vector having a 1 in the ith place and 0’s
elsewhere.

Let P(t) = (P;(¢)) be the transition function of an
irreducible finite-state CTMC and let

0= lilr(r)l [P() — 1] (54)

be its generator. It is well known that P;(¢t) — =,
as t — o for all i and j; equivalently, we write
P(t) — 1I, where II is a matrix with all rows .
Moreover, = is the unique solution to the system of
linear equations xQ = 0 with xe’ = 1; see p. 264
of Cinlar (1975). In this section, we discuss basic
properties of Z for CTMCs. These properties are not
new, but they have important consequences.

Our first result is an inverse matrix expression for
the fundamental matrix Z due to Kemeny and Snell
(1961). A nice proof'is given on pp. 102-103 of Glynn
(1984).

Proposition 9. The integrals in (13) converge abso-
lutely for all i and j and

Z=M-Q)'—-1 (55)
With the inverse always existing.

From Proposition 9 perhaps it is not obvious how
to exploit special structure in Q, such as occurs with
a BD process, in order to calculate (I — Q). Hence,
we give another representation for Z, which shows
how to calculate both = and Z with a single matrix
inversion. In particular, we express Z as a solution to
Poisson’s equation; see Miller and Veinott (1969),
Veinott (1969) and Denardo (1972). This representa-
tion shows how to calculate quantities related to Z
recursively when the CTMC is skip-free. (By skip-free,
we mean that either Q;; =0 forall j> i+ 1 and all i
or Q;;=0 forall j <i— 1and all i.) Recall that ¢’ is
the column vector of 1’s.

Proposition 10. a. Poisson’s equation
xQ=y (56)

has a solution if and only if ye' = 0. All solutions are
of the form

X = —-yZ + (xe)r. (57)
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b. The alternate form of Poisson’s equation

Ox' =y (58)

has a solution if and only if wy' = 0. All solutions are
of the form

x'=—=Zy"' + (7x")é". (59)
Proof. We only prove a because the proof of b is
similar. Recall that § = (0, 0, ..., 0). Since P(t)e’ =
e', Qe' =0 and (xQ)e' =0, so that ye’ = 0 is necessary.
Henceforth, suppose that ye’ = 0. Note that (56) is

equivalent to x(Il — Q) = (xe)» — y, which by
Proposition 9 has the unique solution

x = ((xe)yr — yNZ + II) = =yZ + (xé')r;

we have used 7Z = yII = 0 and =II = .

Remark 1. For a BD process, (56) reduces to

Xt N1 = XN+ ) + X =y, j20, (60)

where x_; = x,., = 0, which in turn is equivalent to
(add the first j + 1 equations)

Xiw1 = (NX; + 85)/ 1, (61)
where 5; = Yo y;, which has solution

X =mt = 1), (62)
where

j-1
L= si/Nm, j =1,

i=0

and ¢, = 0, provided that 7., y; = 0.

Corollary 1. a. Z is the unique solution of XQ =
I1 — I and Xe' = "

b. Z is also the unique solution of QX = Il — I and
X =0.

Proof. Again we only prove a. Note that (Il — I)e' =
', so that the rows of II — I are suitable y in (56).
Then, from (57), X=—-M1 - 1)Z = Z.

Corollary 2. The (n+ 1) X (n + 1) matrix Q has rank
n and the (n + 1) X (n + 1) matrix Q, obtained by
replacing the first column of Q with e' has rank n + 1.
Moreover, the first row of Q3" is m, the jth row of Q'
is the jth row of —Z for j = 1, and the sum of the last
n— 1 rows of Q' is the first row of Z.

Proof. Since Qe’ = 0, Q has rank at most n. Proposi-
tion 10 implies that in fact Q has rank # and Q, has
rank n + 1. Solving xQ, = y, where y, is y in
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(56) with the first element replaced by c is equiva-
lent to solving (56) itself, the missing first equation
Yo x;Qi0 = Yo can be obtained by adding the last n
equations:

Proposition 10 provides the solution for the many
descriptive quantities of interest associated with
CTMC:s that can be characterized as the solution of
the equations in (56) or (58). Several examples are
given by Denardo, who establishes the generalization
of Proposition 10 to semi-Markov processes. On the
other hand, if a descriptive quantity is given in the
form (57) or (59), then Proposition 10 shows that we
can calculate it by solving (56) or (58). This is espe-
cially useful if we have a BD process or a skip-
free CTMC, because then the equations can be
solved recursively, as indicated for BD processes in
Remark 1.

Corollary 3. a. The asymptotic variance 5* in (12) can
be expressed as 2xf", where x is the unique solution to

xQ = —y with y, = (fi = f ), and xe' = 0.

b. &* can also be expressed as 2 Y, fimix;, where x!
is the unique solution of Ox' = —f' + (xf))e' with
mx'=0.

Proof. Apply Proposition 10 with (12).

Remark 2. Grassmann’s (1987a) recursive algorithm
for 2 is essentially Corollary 3a plus (61).

Remark 3. Corollary 3 and Remark 1 provide an
alternate proof of (6). Since xe’ = 0, ¢° can also be

expressed as 2x(f* — 7e’). Then
=23 (f=Pm=1)

n Jj—=1 i

- 1 -

=22 (fi=Nm Y — X (= f)me (63)
j=0 i=0 >\i7ri k=0

which becomes (6) after changing the order of

summation.

Corollary 4. a. The asymptotic bias 8. in (32) can be
expressed as xf', where x is the unique solution to
XQ = —a + 7 with xe' = 0.

b. B, can also be expressed as ax', where x' is the
unique solution of Qx' = —f"' + fe' with =x' = 0.

Proof. Apply Proposition 10 with (33).

Corollary 5. a. The second-order term v in (35) and
(36) can be expressed as 2xf', where x is the unique
solution to xQ = —w + (weY)yr with xe' = 0 and w is
the unique solution to wQ = —y with y; = (fi — f)m;
and we' = 0.

b. 4 can also be expressed as 2 Y, fiwix;, where x' is
the unique solution to Qx' = —w' + (rw')e' with nx' =
0 and w' is the unique solution to Qw' = —f" + fe'
with =w' = 0.

Proof. Apply Proposition 10 twice with (36).

5. CONCLUDING REMARKS

Remark 4. For a DTMC with transition matrix P,
the analog of the fundamental matrix (55) is Z =
(I — P + II)™!, where II is again the matrix all of
whose rows are the stationary probability vector, and
the analog of Poisson’s equation (56) is x(I — P) = y;
see Lemma | on p. 482 on Denardo. Equation (56)
can be solved by transforming it to a DTMC using
uniformization; i.e., for sufficiently small 6, I + 6Q =
P is the transition function of a DTMC such that
x(I — P) = =5y if and only if xQ = y; see p. 113 of
Howard, and p. 102 of Kemeny and Snell (1961).
Gross and Miller (1984) suggested calculating EY(z)
using uniformization. For other uses of uniformiza-
tion, see Grassmann (1987b) and the references there.

Remark 5. When the state space is large and Q is
sparse, we can exploit sparse matrix methods in storing
the matrix and iteratively solving Poisson’s equation
(56). We can also enhance convergence by doing
Gauss-Seidel iterations with a judicious ordering of
the states; see van der Wal and Schweitzer (1987),
Mitra and Tsoucas (1988), and Greenberg and
Vanderbei (1990).

Remark 6. We have assumed that the state space of
the CTMC is finite, but the results extend to positive
recurrent CTMCs with infinite state spaces (denumer-
able and nondenumerable) too under appropriate reg-
ularity conditions; see Chapter 9 of Kemeny, Snell
and Knapp (1966) and Glynn (1989a) for associated
DTMC theory. We can apply the familiar regenerative
argument used for DTMCs in 1.14-16 of Chung
(1967). With that approach it suffices to assume that

EC} < and E,-[J; ) |f(X)(t))|dt] < o0,

where Cy is the regenerative cycle associated with
state 0, i.e., the time required starting from state O to



leave and return again. Then

= e Var{ f fX(@)) dt — fCoo:l (64)

where X(0)) = 0. The associated method for comput-
ing &2 in (64) and related quantities is via the absorb-
ing chain theory using the O-avoiding transition
probabilities; e.g., see p. 121 of Kemeny and Snell
(1960), and Hordijk, Iglehart and Schassberger (1976).
Mandl (1968) uses a related regenerative argument to
obtain (48).

We conclude by giving another expression for % in
terms of zero-avoiding probabilities. (Similar expres-
sions exist for 8,.) Let “N;; be the number of transitions
from i to j before first hitting k. We apply the following
continuous-time analog of Proposition 9-58 of
Kemeny, Snell and Knapp to our finite state-space
situation.

Proposition 11. /n a CTMC,

E*N,,
a. ET,'/(+ET/(]'—ET,‘J'= j;
T
E'N..
b. ET‘U"'E’T_‘,,:“‘_H .
T

Proof. Uniformize and then apply the DTMC result.
The following complements Proposition 1.

Proposition 12. For a function of a CTMC,

g ;(ﬁ—f)mE"J\’jj(ﬁ—f)

=2 ; ; P ENy(f;= ).

Proof. For the first line, use Proposition 11b and
the second line of (8). For the second line, use Propo-
sition 11a and the first line of (8). Alternatively, by
Theorem 6.2.5 of Kemeny and Snell (1960),

ZU = + EOij - z WkEONkj
k=1

—WJZEM/(‘FWJZ Zﬂ'kENkJ

k=1 j=1

Substituting into the first line of (15) completes the
proof.

Proposition 12 is closer to the expressions derived
by Hordijk, Iglehart and Schassberger.
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APPENDIX

Proof of (14)

Let 1, be the indicator function of the set A4, let
x N y = min{x, y}, and let E; be the expectation
operator starting in state ;. From (13),

Z,.j=limf [Pi(s)—m;]ds
t—o0 &0

=llmE,J; [IU}(X(S))“WI] ds

—gl_ff:E< [f [I(JQ(X(S))—WJdS“Tu]>

(—(TyAt)
+Ej[J(: [IU}(X(S))dS_Wj]dSI Ti!:l)

=lim <—7l'jE(Tjj A t)

(~(TyA)
+E£ [ij(s)—Wj(S)]dS)

=—W1'Eﬂj+£ [ij(s)—wj] dS=—-7rjET,~j+ ij.
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