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Abstract

We show that there is no batch-means estimation procedure for consistently estimating the

asymptotic variance when the number of batches is held fixed as the run length increases. This

result suggests that the number of batches should increase as the run length increases for

sequential stopping rules based on batch means.
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1. Introduction

The question investigated in the present paper arose in the study of sequential stopping rules

for simulation estimators to achieve specified confidence intervals. The general goal is to have a

procedure incorporated in the simulation program which enables the program to automatically

terminate when the desired statistical precision has been attained. A desirable property of any

candidate stopping rule is asymptotic validity as the prescribed width of the confidence interval

approaches zero (and the resulting run length approaches infinity). By asymptotic validity, we

mean that the probability of coverage (i.e., that the value to be estimated is contained in the

confidence interval) converges to the designated value (e.g., 0.95) as the prescribed width of the

confidence interval approaches zero. Of course, asymptotic validity is not sufficient for a

procedure to be useful, but it seems to be a very desirable property.

In [5] we defined some sequential stopping rules and established general conditions for their

asymptotic validity. There are two requirements: a functional central limit theorem for the

estimation process and strong consistency (with-probability-one convergence) for the variance

estimator. We then became interested in sequential stopping rules based on (non-overlapping)

batch means. It seemed intuitively clear that asymptotic validity requires that the number of

batches must increase without limit as the run length increases. In this paper, we establish a

closely related result: We show that the number of batches must increase without limit as the run

length increases in order to obtain a consistent (weak or strong) variance estimator. This result

suggests that sequential stopping rules based on batch means should have the number of batches

increase without limit as the run length increases, but we have only proved that the sufficient

conditions for asymptotic validity in [5] are not satisfied with a fixed number of batches. It

remains to show that asymptotic validity can not hold for batch means with a fixed number of

batches.



- 2 -

Of course, it is well known that the standard variance estimator based on batch means is not

consistent when the number of batches is held fixed (see Section 3). We want to establish a much

stronger result, namely, that there is no variance estimator based on a fixed number of batches

that is consistent. This result is not very difficult, but a proper formulation seems to require some

care.

In Section 2 we formulate the problem and state the main theorem. In Section 3 we review

the situation for the standard estimator. In Section 4 we prove the main theorem.

Our result also has relevance to fixed-run-length simulations. However, in that context,

asymptotically valid confidence intervals are obtained anyway by cancellation methods, e.g.,

using the t distribution. For further discussion, see Schmeiser [9], Goldsman and Meketon [6],

Sargent, Kang and Goldsman [8], Glynn and Iglehart [4] and Damerdji [2].

2. The Main Result

To be precise, we must first specify what we mean by an estimation procedure. To be

interesting, an estimation procedure should apply to a large family of stochastic processes.

Hence, let X ≡ { X(t) : t ≥ 0} be a measurable mapping from a measure space (Ω ,^ ) into

D ≡ D[ 0 , ∞), the space of right-continuous real-valued functions on the interval [ 0 , ∞) with left

limits, endowed with the usual Skorohod topology and associated Borel σ-field; e.g., see Ethier

and Kurtz [3]. Of course, we want the underlying space (Ω , ^ ) to be sufficiently rich; it suffices

to let Ω = D and X(t) be the projection or coordinate map. We consider the set 3 of all

probability measures P on (Ω ,^ ) such that X satisfies a FCLT with a Brownian motion limit, i.e.,

there exist finite constants µ ≡ µ(P) and σ ≡ σ(P) such that

n − 1/2 ∫
0

nt
[X(s) − µ] ds = = > σB(t) as n → ∞ , (1)

where = = > denotes weak convergence in D with respect to P and B ≡ { B(t) : t ≥ 0} is standard
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(zero drift, unit diffusion coefficient) Brownian motion. Our goal is to estimate σ2 , but we want

our procedure to apply to all P ∈ 3 . In other words, the procedure should apply to all stochastic

processes X in D satisfying the functional central limit theorem (FCLT) (1). In fact, we only need

convergence of all finite-dimensional distributions in (1), but the ordinary one-dimensional

central limit theorem (CLT) obtained by setting t = 1 in (1) is not sufficient to analyze even the

standard estimator (Section 3). Our formulation (1) assumes that X is a continuous-time

stochastic process, but we could have X(t) = X( [t] ) for all t, where [t] is the integer part of t, in

which case X is effectively a discrete-time process and the normalized integral in (1) is

asymptotically equivalent to the usual normalized sum.

To apply the method of batch means, we specify the number m of batches and the total run

length T. We then construct our estimates from the m non-overlapping intervals of length T / m;

i.e., let the i th batch mean be

X
_ _

i (T) =
T
m_ __∫

(i − 1 ) T / m

iT / m
X(s) ds , i = 1 , . . . , m . (2)

We now want a procedure for combining the m observations X
_ _

1 (T) , . . . , X
_ _

m (T) in such a way

that σ2 is consistently estimated as T → ∞. This ‘‘combining transformation’’ should not

depend on the ‘‘fine structure’’ of the process X. In particular, it should not depend on µ and σ2 .

Thus, in this context we say that an estimation procedure is a family of measurable mappings

g T : R m → R for T > 0 , (3)

such that the estimate of σ2 is g T (x 1 , . . . , x m ) when the total run length is T and x i = X
_ _

i (T),

i = 1 , . . . , m. Note that g T can depend on T, but is independent of P.

We say that an estimation procedure is 3 -consistent if for each P ∈ 3

g T (X
_ _

1 (T) , . . . , X
_ _

m (T) ) = = > σ2 (P) as T → ∞ . (4)

Here = = > denotes weak convergence with respect to P in R, which is equivalent to convergence in
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probability since σ2 (P) is deterministic. Since we have a negative result, we focus on this weak

consistency. We would have strong consistency if the convergence was w.p.1 with respect to P.

Here is our main result. It applies to any m.

Theorem 1. There does not exist a batch-means estimation procedure based on a fixed number of

batches that is 3 -consistent.

In Section 3 we show what happens with the standard variance estimator. We see that we do

not get consistency for σ2 for any fixed m, but we can get as close as we wish by letting m be

suitably large. In Section 4 we prove Theorem 1.

3. The Standard Estimator

The standard estimation procedure is specified by

gT
∗ (x 1 , . . . , x m ) =

m(m − 1 )
T_ ________

i = 1
Σ
m 



x i −

m
1_ __

k = 1
Σ
m

x k





2

(5)

for all T > 0, m ≥ 2 and (x 1 , . . . , x m ) ∈ R m . Let =
d

denote equality in distribution.

Theorem 2. Under (1),

gT
∗ (X

_ _
1 (T) , . . . , X

_ _
m (T) ) = = > σ2 m 2 g1

∗ ( [B(i / m) − B( (i − 1 )/ m) ] , 1 ≤ i ≤ m)

=
d

m − 1

σ2 χm − 1
2

_ _______ in R ,

where χm − 1
2 is a chi-square random variable with m − 1 degrees of freedom.

Proof. Note that
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gT
∗ (X

_ _
1 (T) , . . . , X

_ _
m (T) ) =

m − 1
m_____

i = 1
Σ
m





√ T

T

∫
(i − 1 ) T / m

iT / m
X(s) ds

_ ______________ − √ T
mT

∫
0

T
X(s) ds

_ _________






2

=
m − 1

m_ _____
i = 1
Σ
m 

T − 1⁄2 ∫
(i − 1 ) T / m

iT / m
[X(s) − µ] ds − m − 1 T − 1⁄2 ∫

0

T
[X(s) − µ] ds


2

= = > σ2

m − 1
m_____

i = 1
Σ
m 



B(i / m) − B( (i − 1 )/ m) −

m
B( 1 )_ ____





2

=
d

m − 1

σ2 χm − 1
2

_ _______ as T → ∞

by (1) and the continuous mapping theorem (Corollary 1.9 on p. 103 of [3]) using the function

h : D → R defined for any x ∈ D by

h(x) =
m − 1

m_____
i = 1
Σ
m

[x(i / m) − x( (i − 1 )/ m) − x( 1 ) ]2 .

Note that σ2 χm − 1
2 /(m − 1 ) has mean σ2 and variance 2σ4 /(m − 1 ); e.g., see p. 168 of

Johnson and Kotz [7]. Moreover, as m increases,

m

σ2 χm
2

_ _____ = = > σ2 and √ m


 m

σ2 χm
2

_ _____ − σ2




= = > N( 0 , 2σ4 ) , (6)

where N(a , b) denotes a normally distributed random variable with mean a and variance b.

Hence, we can get as close as we want if we choose m suitably large. Moreover, we can obtain

consistency under extra regularity conditions if m → ∞ and T → ∞ so that T / m → ∞; see

Goldsman and Meketon [6] and Damerdji [2]. In fact, Damerdji even proves strong consistency

for a class of stochastic processes.

4. Proof of Theorem 1

To establish the negative result, it suffices to restrict attention to probability measures P such

that X(t) = X( [t] ) for all t ≥ 0, i.e., X is actually a discrete-time stochastic process, with

X( 0 ) = 0 and {X(k) : k ≥ 1 } being a sequence of i.i.d. N( 0 , σ2 ) random variables. Then, for
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any m, when T is an integer multiple of m,

(X
_ _

1 (T) , . . . , X
_ _

m (T) ) =
d 


 T

m_ __ σB(T / m) , . . . ,
T
m_ __ σ[B(T) − B(T(m − 1 )/ m) ]





, (7)

i.e., these batch means are distributed exactly as m i.i.d. N( 0 , σ2 m / T) random variables.

Without loss of generality, we can remove the m / T factor by considering the transformed

functions

g̃ T (x 1 , . . . , x m ) = g T



√ Tm_ __ x 1 , . . . , √ Tm_ __ x m





. (8)

Note that

g T (X
_ _

1 (T) , . . . , X
_ _

m (T) ) =
d

g̃ T (σN) (9)

for all T an integer multiple of m, where σN ≡ (σN 1 , . . . , σN m ) and N is a fixed vector of i.i.d.

N( 0 , 1 ) random variables.

To have consistency, we must have

g̃ T (σN) = = > σ as T → ∞ (10)

for all σ > 0, but this cannot happen for two or more different positive values of σ, say σ 1 and

σ 2 . To see this, first note that the convergence in probability for σ 1 in (10) implies that there is a

deterministic subsequence {T n : n ≥ 1 } of {km : k ≥ 1 } such that

g̃ T n
(σ 1 N) → σ 1 w. p. 1 as n → ∞ ; (11)

see Theorem 4.2.3 of Chung [1]. By (10), g̃ T n
(σ 2 N) = = > σ 2 as n → ∞. Hence, there is a

deterministic subsequence {Tn′ : n ≥ 1 } of {T n : n ≥ 1 } such that

g̃ Tn′ (σ i N) → σ i w. p. 1 as n → ∞ (12)

for both i = 1 and 2. Hence, for i = 1 and 2, g̃ Tn′ (x) → σ i for almost all x with respect to the
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law of σ i N, which implies that g̃ Tn′ (x) → σ i for almost all x with respect to Lebesgue measure

on R m , since σ i N has a positive density with respect to Lebesgue measure. (See the appendix).

However, it is not possible to have g̃ Tn′ (x) simultaneously converge almost everywhere with

respect to Lebesgue measure to two different limits. (The set of convergence to one limit must be

contained in the null set of non-convergence for the other limit.)
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Appendix

Here we give extra details showing that (12) implies that g̃ Tn′ (x) → σ 1 as n → ∞ for almost

all x with respect to Lebesgue measure on R m . Let A = {x :
n → ∞
lim g̃ Tn′ (x) = σ 1 }. Then

0 = P(σ 1 N ∈ A c ) = ∫
A c

f (x) λ(dx)

where λ is Lebesgue measure and f is the density of σ 1 N, which is strictly positive almost

everywhere. Let B n = {x : n − 1 ≤ f (x) < (n − 1 ) − 1 } for n ≥ 2 and B 1 = {x : 1 ≤ f (x) }.

Then

0 = ∫
A c

f (x) λ(dx) =
n = 1
Σ
∞

A c ∩ B n

∫ f (x) λ(dx) ≥
n = 1
Σ
∞

n − 1 λ(A c ∩ B n ) ≥ 0 ,

so that λ(A c ∩ B n ) = 0 for all n and

λ(A c ) =
n = 1
Σ
∞

λ(A c ∩ B n ) = 0 .


