COMPUTING TRANSIENT DISTRIBUTIONS IN GENERAL SINGLE-SERVER QUEUES

David M. Lucantoni, Gagan L. Choudhury and Ward Whitt

David M. Lucantoni, AT&T Bell Laboratories, Room 3K-601, Holmdel, NJ 07733-3030, USA
Gagan L. Choudhury, AT&T Bell Laboratories, Room 3K-603, Holmdel, NJ 07733-3030, USA
Ward Whitt, AT&T Bell Laboratories, 2C-178, Murray Hill, NJ, 07974-2070, USA

Abstract We present the two-dimensional transforms of the transient
workload and queue-length distributions in the single-server queue
with general service times and a batch Markovian arrival process
(BMAP). This arrival process includes the familiar phase-type
renewal process and the Markov modulated Poisson process as spe-
cial cases, as well as superpositions of these processes, and allows
correlated interarrival times and batch sizes. Numerical results are
obtained via two-dimensional transform inversion algorithms based
on the Fourier-series method. From the numerical examples we see
that predictions of system performance based on transient and sta-
tionary performance measures can be quite different.

1. Introduction and Summary

In this paper we consider the single-server queue with unlimited
waiting space, a work-conserving service discipline and i.i.d.
(independent and identically distributed) service times that are
independent of a general arrival process. Our purpose is to obtain
computable transient results for this general model. These transient
results are important for studying real-time control of communication
networks and other systems.

In order to obtain computable results, we assume that the arrival
process is a batch Markovian arrival process (BMAP), as in Lucan-
toni [1] [2]. The BMAP is a convenient representation of the versa-
tile Markovian point process Neuts [3] (4] or Neuts (N) process
Ramaswami [5]. The BMAP generalizes the Markovian arrival pro-
cess (MAP), which was introduced by Lucantoni, Meier-Hellstern
and Neuts [6]. The MAP includes as special cases both the phase-
type renewal process (Neuts [7]) and the Markov-modulated Poisson
process (Heffes and Lucantoni [8]). Indeed, stationary MAPs are
dense in the family of all stationary point processes; see Asmussen
and Koole [9]. An important property of MAPs and BMAPs is that
superpositions of independent processes of these types are again
processes of the same type; this property is exploited in Choudhury,
Lucantoni and Whitt {10} to study the effect of statistically multiplex-
ing a large number of bursty sources.

Hence, we consider the BMAP/G/1 queue and derive the two-
dimensional transforms of the workload (or virtual waiting time) dis-
tribution at time r and the queue-length distribution at time ¢ As
usual with the BMAP/G/1 queue, these quantities are actually m x m
matrices, with the (i,7)® element specifying that the auxiliary phase
is j at time f, conditioned upon the phase at time 0 being i.

These transient results can be regarded as matrix generalizations
of transient results for the M/G/1 queue, which can be found in
Takécs [11], Abate and Whitt [12] and references cited there. As in
the M/G/1 special case, a key role here is played by the busy-period
distribution and the emptiness function. These are discussed in Sec-
tions 2.4 and 3 here.
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In fact, there is a long history of transient results for single-server
queueing models generalizing M/G/1, as can be seen from the books
by Neuts [7],[3], Tak4cs [11], Cohen {13] and Benes [14], and refer-
ences therein. With regard to the present work, the 1967 papers by
Cinlar [15], [16] and the early papers of Neuts (cited in [3]) are not-
able.

A distinctive feature of our paper, in relation to previous papers
on transient behavior for these M/G/l-type queues, is that we
demonstrate that our formulas are computable. In particular, we cal-
culate the time-dependent probability distributions by numerically
inverting the two-dimensional transforms. For this purpose, we
apply the two-dimensional transform inversion algorithms in
Choudhury, Lucantoni and Whitt (17]. These algorithms are based
on the Fourier-series method [18], exploiting the two-dimensional
Poisson summation formula, as in (5.44)—(5.48) of [18]. For this pur-
pose, we obtain the busy-period transform by iterating the character-
izing functional equation, drawing upon Choudhury, Lucantoni and
Whitt [19].

The derivations and proofs of the present results are given in
Lucantoni, Choudhury and Whitt (20}, along with additional results
on the transient distributions as well as expressions for the moment
functions of the workload at time ¢. Additional numerical examples
and details about the implementation of the algorithms are also
presented in [20].

The remainder of this paper is organized as follows. In §2 we
review the definition and basic properties of the Batch Markovian
Arrival Process and the single server queue with this arrival process.
In particular, we review the transform of the duration of the busy
period which plays a fundamental role in the transient solution of this
model. In §3 we derive the Laplace transform for the probability that
the system is empty at time ¢. Sections 4 and 5 contain the main
results on the transient distributions of the workload and queue
length, respectively, and numerical examples are presented in §6.

2. The BMAP/G/1 Queue

The Batch Markovian Arrival Process The BMAP is a natural gen-
eralization of the Poisson process (see Lucantoni [1]). It is con-
structed by considering a two-dimensional Markov process
{N(t), J(t)} on the state space {(i,j): i20, 1 Sj<m} with an
infinitesimal generator Q having the structure
Dy Dy Dy Dy - - -
Dy Dy Dy - -
D() Dl AR )
D“ « e e

0

where D,, k20, are mxm matrices; D, has negative diagonal



elements and nonnegative off-diagonal elements; D, k21, are non-
negative and D, defined by

D= Y D,

k=0

2

is an irreducible infinitesimal generator. We also assume that D#D,,
which assures that arrivals will occur.

The variable N(¢) counts the number of arrivals in the interval
(0,], and the variable J(f) represents an auxiliary state or phase.
Transitions from a state (i,j) to a state (i+k,0), k=1, 1<j,{<m,
correspond to batch arrivals of size k, and thus the batch size can
depend on j and /. The matrix Dy, is a stable matrix (see e.g., pg. 251
of Bellman [21]), which implies that it is nonsingular and the sojourn
time in the set of states {(i,j): 1<j<m} is finite with probability
one, for all i; see Lemma 2.2.1 of Neuts [7]. This implies that the
arrival process does not terminate.

Let 1 be the stationary probability vector of the Markov process
with generator D, i.e., X satisfies

nD = 0, 3)

where e is a column vector of 1’s. Then the component 7; is the sta-
tionary probability that the arrival process is in state j. The arrival
rate of the process is then

A=nYkD,e = nd,
k=1

&)

whered = Y kD,e.

Intuitively, we think of D, as governing transitions in the phase
process which do not generate arrivals and D, as the rate of arrivals
of size k (with the appropriate phase change). For other examples
and further properties of the BMAP see [1].

A key quantity for analyzing the BMAP/G/1 queue is the matrix
generating function

D(z) = YD, z*, for lzl<l.
k=0
Let P;(n,t) = PCN(t) = n, J(1) = | N(O) = 0, J(0)=i) be
the (i,j) element of a matrix P(n,t). That is, P(n,t) represents the
probability of n arrivals in (0,¢] plus the phase transition. Then the
matrix generating function P *(z,t) defined by

P*z1) = S P(nnz", for lzl<1,

n=0

is given explicitly by

P*(z,1) = 29", for lzl<1, 120, (5)
where eP@" is an exponential matrix (see e.g., pg. 169 of Bellman,
[21]). Note that for Poisson arrivals, m=1,Dy = —A, D, = A, and

D, = 0, k22, so that (5) reduces to P*(z,{) = e™'"9* which is
the familiar generating function of the Poisson counting process.

The Queueing Model Consider a single-server queue with a BMAP
arrival process specified by the sequence {D,, k20}. Let the ser-
vice times be i.i.d. and independent of the arrival process; let the ser-
vice time have an arbitrary distribution function H with Laplace-
Stieltjes transform (LST) h and n™ moment o,. We assume that the
mean a=0., is finite. Let the traffic intensity, p=Aa.

The Embedded Markov Renewal Process at Departures The
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embedded Markov renewal process at departure epochs is defined as
follows. Define X(¢) and J(¢) to be the number of customers in the
system (including in service, if any) and the phase of the arrival pro-
cess at time ¢, respectively. Let T, be the epoch of the k™ departure
from the queue, with T4 = 0. (We understand that the sample paths
of these processes are right continuous and that there is a departure at
1,=0.) Then (X(t\), J(Ts), T4 —Ti) is a semi-Markov process
on the state space { (i,f): {20, 1Sj<m }. The semi-Markov pro-
cess is positive recurrent when p < 1. The transition probability
matrix of the semi-Markov process is given by

-

’én(x) é,(x) é;(x) L
/i(,(x) /al(x) 22(1) L
Qx) = 0 Agx) Ay(x) - - - ,
0 0 Ag(x) - - -

where, for n 20, An(x) and E,,(x) are the mxm matrices of mass
functions with elements defined by

[A"(x)];j P( Given a departure at time 0, which left at least
one customer in the system and the arrival pro-
cess in phase i, the next departure occurs no later
than time x with the arrival process in phase j,

and during that service there were n arrivals),

[én(x)]ij

P( Given a departure at time 0, which left the sys-
tem empty and the arrival process in phase i, the
next departure occurs no later than time x with
the arrival process in phase j, leaving n customers
in the system).

An embedded Markov renewal process with a transition probabil-
ity matrix having the structure in (6) is called “*M/G/1-type’’ (Neuts
[3]) since it has matrix generalizations of the skip-free-to-the-left and
spatial homogeneity properties of the ordinary M/G/1 queue.

We introduce the transform matrices

o oo

An(s) = ([e-“ dA,(x),  B,(s) = (]e-“dé,.(x),
)
Alz,s) = i?)A..(S)z", B(z,5) = iﬂBn(s)z", @
where Re(s) 20 and |zI<1. It was shown in Luca_ntoni [1] that
A(z,5) = Ie'“e”“"dﬂ(x) = h(s/-D(2)), ®)
and
B(z,5) = z7'[s]-Dy]17' [D(2)-Dy}A(z,9). )

The definition in (8) above is consistent with the usual definition of a
scalar function evaluated at a matrix argument (see Theorem 2, pg.
113 of Gantmacher, [22]). In particular, since h is analytic in the
right half-plane, the above function is defined by using the matrix
argument in the power series expansion of 4. This is well defined as
long as the spectrum of the matrix argument also lies in the right half
plane. Note that from (8) we see that A(z,s) is a power series in
D(z). Thus, A(z,s) and D(z) commute. This property is used



repeatedly in [20].

The Busy Period Following the general treatment of Markov chains
of M/G/1-type in 3], we define G r (x), x20, as the probability
that the first passage from the state (i+r, j) to the state
(,j°), iz 1,1 <4, j" <m,r21,occurs no later than time x, and
that (i 1 ") 1s the ﬁrst[ s]Late visited in level i. The matrix with ele-
ments G (x) isG (x) .

By a first passage argument, it was shown in Neuts [23] that the
transform matrix G(s), defined by

- Jerad"
0

G(s) for Re(s) 2 0,

satisfies the nonlinear matrix equation

G(s) = 3 A.(5)G(s)". (10)

n=0
In the context of the BMAP/G/1 queue, G(s) governs the duration of
the busy period. It was also shown in [23] that the transform matrix
governing the duration of a busy period starting with r customers, is
given by G(s)". Equation (10) is the key equation in the matrix ana-
lytic solution to queues of the M/G/1 type.

It was shown in Lucantoni [1] that G(s) is also the solution to

G(s) = Je""emc(‘"‘dﬁ(x) = h(sI-D[G(5)]), an
0

where D[G(s)] = ¥~ D,G(s)*. Equation (11) is the matrix
analogue of the Kendall functional equation, (see (59) in Kendall,
[24]), and the discussion of 1. J. Good on pg. 182 there). In particular,
if m=1 then the BMAP is a Poisson process with Dy=-1, D, =A,
and D,=0 for k22, so that (11) reduces to
G(s) = h(s +A—AG(s)) which is (59) in [24].

The matrix G is the key ingredient in the solution of the station-
ary version of this system. An efficient algorithm for computing this
matrix based on uniformization is given in [1]. For the transient
solution, we need to compute the matrix G(s) for complex s. It is
shown in Choudhury, Lucantoni and Whitt [19] that G(s) may be
computed by iterating in (11). Convergence is guaranteed if the
iteration is started with either Gy, = 0 or G, = G and, in fact, if
both of these iterations are carried out, then by stopping the iteration
at any point the matrices obtained correspond to the transforms of
distributions which bound the true distribution. This extends results
for the M/G/1 queue in Abate and Whitt [25).

In order to compute the right hand side of (11) in each iteration,
two cases are considered in [19]. If the service-time distribution has
a rational Laplace transform (e.g., phase-type or other distributions in
the Coxian family), then the right hand side may be computed
exactly with one matrix inversion and a few matrix multiplications.
If the service time distribution is not rational, then a procedure simi-
lar to uniformization is used.

3. The Emptiness Functions

In this section we characterize the probability that the system is
empty at time r. The key role of this function for general systems
was demonstrated by Benes [14]. We distinguish several cases
depending on what information is available at =0. In particular, we
consider starting with a fixed amount of work x, x 20; starting with a
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fixed number of customers, iy, where t=0 is an epoch of departure;
and starting with an amount of work which is distributed according to
an arbitrary distribution F.

Let V(t) be the amount of work in the system at time ; let
Ph() = P(V(D=0, J(=j | V(0)=x, J(0)=i);
and let the mxm matrix P,,(¢) have (i,j)-entry P (r). Also, let
Pro(s) = Ie"'Pxo(t)dt for Re(s)>0. Then we have the following
generallzanon of the M/G/1 formula. (See (9) on pg. 52 of [11] and
(34) and (36) in [12]).
Theorem 1: The matrix p ,(s) is given by
Pr(s) = e W=DIGODx (o DIG(s)]) ™',
for Re(s)>0.

(12)

Note that the exponential disappears when x =0. Since the com-
ponents of the vector G(s)e are Laplace-Stieltjes transforms and
|G(s)e| < I, for Re(s) > 0, the eigenvalues of D[G(s)] are in the
left half-plane. Therefore, for Re(s) > 0, the eigenvalues of
sl —D[G(s)] are in the right half-plane and the inverse appearing in
(12) is well defined.

Let P, ,(t) be the mxm matrix with (j,k) entry

fA’].*:n(t) = P(V()=0, J()=j | X(0)=iq, J(0)=j, 1,=0).  (13)
As a consequence of Theorem 1, we immediately have
Piaa(s) = [Py (t)dt = G(5)"* pay(s) (14)
(]

= G(s)"(sI-D[G(s)])™".

The unconditional emptiness function, starting with initial work-
load distributed according to cdf F, defined by

Py(n) = IP,(,(t)dF(x), (15)
has Laplace transform
pols) = Ie"‘"l’o(t)df = f(s/-D[G(H)(sI -DIG(H]D)™', (16)
where fis the LST of F. We show in [20] that
e = {070 S

4. The Workload

The Transient Results In this section we derive the transform of the
workload (work in the system in uncompleted service time) at time 2.
We accomplish this in two steps. First, we assume a departure at
time t=0 and derive the distribution of the work in the system at
some fixed time ¢, conditioned on the number of customers left in the
system after that departure. Using this result, we derive the more
general distribution of the work in the system at time ¢, conditioned
on the amount of work at time ¢ =0, where this is not necessarily an
epoch of departure. Although the second result is more general, from
a practical viewpoint the first might be more useful. In particular, in



a real system it might be easier to measure the number of customers,
packets, etc., at departure times than to know the exact amount of
work in the system.

Define the mxm matrix W;_(r,x), whose (i, j) entry is

[W. 0] = PO SEI0=1 | XO)=i0 JO)=i.5=0);
i
ie., W, (1,x) is the conditional delay distribution at time ¢ given the
number of customers in the system following the departure at time
t=0. Let the transform matrices be

wi(ts)= e d, W, (10), wi (€)= [ e ¥w, (Ls)ar,
1] 0

where Re (5)20 and Re (£)>0. In the following theorem, the
inverse need not exist for all argument pairs (&,s); at these points the
left side is defined by continuity.

Theorem 2: The matrix w;_ (E,s) is given explicitly by
Wwig (E,5) = (AT ~ spioo ENIEI=sI-D(A(sN]™}, (18)

and the matrix w; (1,s) is given by

¢
wi, (t,5)= h(s)i"l—sji’ioo(u)e“”+o("“)))"du eUt+DtEMt - (19)
o

where Re (5)20, Re (£)>0, and i’,-oo(u) is defined in (13).

Although we are able to express the transform of the delay expli-
citly in terms of ¢ in (19), we note that this expression is not trivial to
evaluate numerically. It involves numerically inverting a Laplace
transform where the evaluation of the transform at a value of s
requires the numerical integration of the emptiness function times an
exponential matrix where the values of the emptiness function are
themselves obtained by inverting a Laplace transform. The
corresponding expression for the ordinary M/G/1 queue also suffers
from the same difficulty. This may partly explain why the known
formulas for that case have not been widely used for practical com-
putations.

In contrast, however, the transform expression in (18) is rela-
tively simple to evaluate, so that with an inversion algorithm for 2-
dimensional Laplace transforms, we have a practical method for
obtaining numerical results. We describe such an algorithm in
Lucantoni, Choudhury and Whitt [20].

It can be shown using Rouché’s theorem that for each s,
Re(s) 20, the determinant of the matrix
X(s,E) = [E]-5sI—D(h(s))] appearing in the inverse in (18) has
exactly m roots in the region Re( £)>0. (For similar arguments see
Cinlar [15] and Neuts [26] [27].) Since w; is a transform and is
therefore analytic in the interior of the above region, see p.26 of
Deutsch [28], these pairs of (§,s) must also be zeros of the first
matrix on the right in (18). That is, they are removable singularities.
The classical approach to this type of problem would then assume
that the roots are distinct to obtain m independent linear equations for
each row of the matrix on the left. In practice, the roots may not be
distinct, or if they are close, there may be numerical difficulties in
locating these roots. These technical problems are circumvented in
the present case since we derived explicit results for the matrices in
(18).
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Let F be the cdf of the initial work at time O (where ¢ =0 need not
be an epoch of departure) and let f be its Laplace-Stieltjes transform.
Let W(t,x) be the matrix whose (i, /)™ element is the probability that
the work in the system is less than x and the phase is j at time ¢, given
that at time O the phase was i and the initial workload (including the
customer in service, if any) was distributed according to F. Let
w(t,s) and w(£,s) be the Laplace transforms

w(t,s) = Ie""d,W(t.x), w(&,s) = Ie'g’w(l,s)dt.
I 0

Then we have the following theorem.

Theorem 3: The Laplace transform w(&,s) is given by

w(E,5) = (f(s) — spoENEI-sI-D(R(s)]™',  (20)

and

!
w(t,s) = |f(s)I - sIP(,(u)e"""""'(""”“du e+l (a1
(1]

for Re(s)20), Re(€)>0, where Pq(u) and p,(§) are given in (15)
and (16), respectively.

Note that Theorem 2 is a special case of Theorem 3 where
f(s) = h(s)"™. Note that (21) is the direct analogue of Equation ®)
on pg. 51 of [11].

The Limiting Distribution of the Waiting Time Differentiating
with respect to ¢ in (21), we have

%w(z,s) = w(t,$)[s] +D(h(s))] — sPy(2).

Therefore, using (17) and assuming that the partial derivative
approaches 0 as f—o0, we see that the transform of the limiting distri-
bution of the workload is given by w(s) = limw(¢,s) and

1 =doco

wis) = {s(l—p)eg[snb(h(s))r', for p<l,
0, for p1,

which agrees with (44) in [1]. Hence, by [1}, the partial derivative
does indeed approach 0 as t—eco.

S. The Transient Queue Length

Let ¥4,(1) = P(X(1)=i,J(t)=k|X(0)=i(,J(0)=j,14=0), and
let Y; ;(¢) have (j,k)-entry Y2 (). Recall that T, =0 means that there
is a departure at time 0. Then clearly,

y"oﬂ(’) = W,-o(t,O) = J‘dM‘,no(u)eDe(l-v)‘
1]

by conditioning on the last departure before time £. Let y; ;(s) be the
Laplace transform of Yii () Then
Yia(s) = G(5)*pw(s) = pie(s). The probability generating
function of the queue length at time 1 is defined by
Yip(2,8) = 3 yii()z.
i=0

Theorem 4: The matrix y;, (z,s) is given by



Yig(2:5) = [z""“(I—A(z,s))(sl—D(zn"

+ (2= Dhin(AGS)]| [ -AGOT', 2D

for Re(s)>0 and |zl<1, where ﬁ,-“(,(s) is given in (14) and A(z,s) is
given in (8).

Equation (22) is the matrix analogue of Equation (77) on pg. 74
in {11]. Let the Laplace transform of the complementary queue
length distribution be defined by

yois) = [e 3 v, 0,

[} n=i+l

with the corresponding generating function

i, (2.5) = Y yii(s)z'.

i=0

Then since y; (1,5) = (s/-D)~ !, we have the following corollary.

Corollary: The transform of the complementary queue length distri-
bution, y; (z,s), is given by

Yales) = 7= [ (61-0)" -y, @),

6. Numerical Results

In this section, we demonstrate the computability of our results.
In particular, we calculate the time-dependent probability distribu-
tions by numerically inverting the two-dimensional transforms via
the inversion algorithms in Choudhury, Lucantoni and Whitt [17).
These algorithms are based on the Fourier-series method {18] and are
enhancements and generalizations of the Euler and lattice-Poisson
algorithms described in {18]. We refer to [20] and [17] for further
discussion and examples of these algorithms.

We consider a BMAP which is a superposition of four indepen-
dent and identical MMPPs. Each MMPP alternates between a high-
rate and a low-rate state where the ratio of the arrival rates in the two
states is 4:1. The durations of each state are such that there is an
average of five arrivals during the sojourns in each state. The indivi-
dual arrival rates are scaled appropriately to achieve the desired
traffic intensity, p. The auxiliary phase in the overall BMAP can be
characterized by the number of individual MMPP’s that are in the
high-rate state. Let j, be the initial number. The service time distri-
bution is assumed to be Erlang of order 16, E ¢, with unit mean so
that the time units are in mean service times. The squared coefficient
of variation of this service-time distribution is 1/16.

Figures 1-3 show several transient workload and queue length
distributions on log scales. In.each case the stationary distribution is
shown by a solid line and the transient distributions are shown by
dashed or dotted lines. In all figures, we assume that j, = 2, i.e., at
time 0, two sources are in the high-rate state and two are in the low-
rate state.

Figure 1 shows how the transient workload distribution
approaches the stationary distribution as ¢ increases. In particular,
Figure 1 displays the workload tail probabilities
P(V(lO)>x|X(0)=i0,J(0)=j(,) as a function of ¢ for two values of
ig, {g = 0 and i, = 32, with j, = 2. Note that the rate of
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convergence to steady-state clearly depends on the initial queue
length.

The transient distributions are proper for p>1, as well. This is
demonstrated in Figure 2 where the workload tail probabilities are
displayed for several values of 1 when p=2.0. For each case in this
example, i, = j, = 2, i.e., the initial queue length is two and two
MMPP’s start out in the high-rate state. As t—oo, V() o0 w.p. 1,
so that V(£) - V(e), where V(o) has the degenerate distribution
P(V(eo)>x) = 1 for all x, as is shown by the solid line. As
expected, the transient distributions approach the limiting behavior as
t increases, but note however, that if the overload is limited in dura-
tion, the system performance might well be acceptable. In particular,
we believe that transient solutions can shed light on the problem of
overload controls.

Finally, in Figure 3, we plot the transient queue-length probabil-
ity mass function with an initial queue length of 32. We note that, as
expected, as ! increases, the initial distribution (concentrated at a
point mass at 32) gradually spreads out to approach the stationary
distribution. Note the striking qualitative differences between the
stationary distribution and the transient results for moderate values of
¢. This is further indication that predictions of system performance
based on stationary analysis could be very far from what is observed
during the short run.

REFERENCES

1. Lucantoni, D. M., New results for the single server queue with a
batch Markovian arrival process, Stoch. Mod., 7 (1991) 1-46.
2. Lucantoni, D. M., The BMAP/G/1 queue: A tutorial, Models and
Techniques for Performance Evaluation of Computer and Com-
munications Systems,’ L. Donatiello and R. Nelson Editors,
Springer Verlag, 1993.
3. Neuts, M. F., Structured Stochastic Matrices of M/G/1 Type and
Their Applications, New York: Marcel Dekker, 1989.
4. Neuts, M. F., A versatile Markovian point process, J. Appl. Prob.,
16 (1979) 764-79.
5. Ramaswami, V., The N/G/1 queue and its detailed analysis, Adv.
Appl. Prob., 12 (1980) 222-61.
6. Lucantoni, D. M., Meier-Hellstern, K. S, Neuts, M. F., A single
server queue with server vacations and a class of non-renewal
arrival processes, Adv. Appl. Prob., 22 (1990) 676-705,
7. Neuts, M. F., Matrix-Geometric Solutions in Stochastic Models:
An Algorithmic Approach. Baltimore: The Johns Hopkins
University Press, 1981.
8. Heffes, H., and Lucantoni, D. M., A Markov modulated character-
ization of packetized voice and data traffic and related statistical
multiplexer performance, IEEE J. on Selected Areas in Communi-
cation, SAC-4 (1986) 856-868.
9. Asmussen, S., and Koole, G., Marked point processes as limits of
Markovian arrival streams, J. Appl. Prob., 30 (1993) 365-72.

. Choudhury, G. L., Lucantoni, D. M., Whitt, W., Squeezing the
most out of ATM, submitted for publication, 1993.

11. Takécs, L., Introduction to the Theory of Queues, New York:
Oxford University Press, 1962.

. Abate, J, and Whitt, W., Transient behavior of the M/G/1 work-
load process, to appear in Oper. Res., 1993.

.Cohen, J. W., The Single Server Queue, Amsterdam: North-
Holland, 1969.

. Benes, V., General Stochastic Processes in the Theory of Queues,
Reading, MA: Addison-Wesley, 1963.



15. Cinlar, E, The time dependence of queues with semi-Markovian

service times. J. Appl. Prob., 4 (1967) 356-64.

(1967) 365-379.

16. Cinlar, E, Queues with semi-Markovian arrivals, J. Appl. Prob., 4

17. Choudhury, G. L., Lucantoni, D. M., Whitt, W., Multi-

M/G/1 queue, submitted for publication.
18. Abate, J. and Whitt, W., The Fourier-series method for inverting

(1992) 5-88.

dimensional transform inversion with applications to the transient

transforms of probability distributions, Queueing Systems, 10

19. Choudhury, G. L., Lucantoni, D. M., Whitt, W., The distribution

of the duration and number served during a busy period in the
BMAP/G/1 queue, in preparation.

20. Lucantoni, D. M., Choudhury, G. L., and Whitt, W., The transient
BMAP/G/1 queue, to appear in Stoch. Models, 1994.

21. Bellman, R., Introduction to Matrix Analysis, New York:
McGraw Hill, 1960.

Chelsea, 1977.

22. Gantmacher, F. R., The Theory of Matrices, Vol. I, New York:

23. Neuts, M. F., Moment formulas for the Markov renewal branch-
ing process. Adv. Appl. Prob., 8,(1976) 690-711.

24. Kendall, D. G., Some problems in the theory of queues, J. Roy
Statist. Soc., Ser. B 13 (1951) 151-185.

25. Abate, J., and Whitt, W., Solving probability transform functional
equations for numerical inversion, OR Letters, 12 (1992) 275-281.
26. Neuts, M. F., The single server queue with Poisson input and

semi-Markov service times, J. Appl. Prob., 3 (1996) 202-230.
27. Neuts, M. F., Two queues in series with a finite, intermediate

waitingroom, J. Appl. Prob., 5 (1968) 123-42.

28. Deutsch, G., Introduction to the Theory and Application of the

Laplace Transformation, New York: Springer-Verlag, 1974.

10°

- -
o o
ro L

probability that workload exceeds x
)
(5]

-
S
L4

106

steady
state

i
20 30
workload value x

Figure 1. Numerical results foc the workload tail probabilities as a function
of the time ¢ and initial queve length i, in the  MMPP/E,/I queue with
traffic intensity p = 0.7 and j, = 2 two of the four MMPPs statting in the
high-rate state.

1050

10

probability that workload exceeds x
)
w

oH

t—=oo
N

1
30 40

workload value x

1

50
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